
An Agent-Based Architecture for
Context-Aware Communication

Romelia Plesa
School of Information Technology and Engineering,

University of Ottawa, Canada

Luigi Logrippo
Département d’informatique et ingénierie,

Outline

• Motivation and Proposed architecture

• BDI basics
• Applying BDI

• AgentSpeak(L) basics
• Example

• Conclusion

Motivation
Presence, Context and the personalization of services

• Most of today’s telephony communication services could
be characterized as context free.
– They provide no real-time context regarding the purpose or the

circumstances of a phone call that one is receiving.

• Context information is needed in order to manage the use
of the phone or other communication services.

• Context-aware support provides the application relevant
knowledge about the environment in which it functions.

Vision

The advocates of presence
technology and contextual
services promise a world
where people will be
connected
• When they want
• How they want
• With whom they want

Communication will be tailored on
specific desires and preferences.

Goal

• to propose an architecture that supports
presence and contextual services in telecom and
allows context-aware call handling based on:

� information about the environment (context)
� individual policies.

New Services

• Context-based services
– All calls from my students will have announcement X

played out.

• Availability services
– Secretaries are not available to answer enquires during

lunchtime

• Notification services
– Remind me of the 3 pm meeting if I am not already in the

meeting room.

• Personal addressing services
– If the call is from a person involved in project X, redirect

it to the team leader.

The Architecture
~ Functional Requirements ~

• collection of context
information using
sensors

• dissemination of context
information

• publishing of presence
information from users
and their devices

• description of user
policies and preferences

• user preferences-based
handling of
communication

Communication

System

Communication

System Policy

Server

Context

Information

Server

Personal

Communication

Manager

Call control context Context update

The Architecture
~ Characteristics ~

• independent of the
communication protocol
(SIP, H.323).

• Context Information
Server updates, stores
and distributes the
context information.

• Policy Server manages
the user’s personal and
subscription / notification
policies.

Communication

System

Communication

System Policy

Server

Context

Information

Server

Personal

Communication

Manager

Call control context Context update

Personal Communication Manager

• a software agent that
represents each user.

• receives request
messages (e.g. SIP
INVITE) and decides how
they should be handled.

– Presence Information Manager - a rule-based process that builds the
“consolidated presence information”.

– Presence Directory - a repository in which known and deduced presence
information is deposited.

– Policies and Preferences Manager - contains the preferences logic to respond
to requests to contact an entity.

Communication

System

Communication

System
Policy

Server

Context

Information

Server

Call control context Context update

Personal Communication Manager (PCM)

Presence

Directory

Policies and

Preferences

Manager

(PPM)

Presence

Information

Manager

(PIM)

Context Aware Call Handling

• Includes context update, service selection based on context
information and user personal policies as well as service
execution.
• The service selection and execution mechanisms will be

incorporated into the Personal Communication Manager (in the
Policies and Preferences Manager (PPM) component).

Personal Communication Manager (PCM)

Context

Information

Server

Communication

System

Communication

System

Presence

Directory

Presence

Information

Manager

(PIM)

Service Selection
Mechanism

Service Execution
Mechanism

Policy

Server

incoming request

obtain presence info
consult policies

execute action

PPM

select next action

The BDI Model

• Belief, Desire, Intention (BDI) is an architecture for
modeling Intelligent Software Agents.

• BDI agents can solve problems in dynamic and real-
time environments.

• The BDI architecture is used in a variety of
applications:
– robots that play soccer
– air traffic controllers in airports.

BDI Agents
• Systems that are situated in a changing environment
• Receive continuous perceptual input

• Take actions to affect their environment

From the various options and alternatives available to it
at a certain moment in time, the agent needs to select
the appropriate actions or procedures to execute.

The selection function should enable the system
to achieve its objectives

BDI Agents

• Beliefs:
– the characteristics of the

environment.
– updated appropriately after

each sensing action.
– the informative component.

• Desires
– information about the

objectives to be accomplished,
the priorities and payoffs
associated with the various
objectives.

– the motivational component.

Input: Output:

• Intentions
– the currently

chosen course of
action (the output of
the most recent call
to the selection
function)

– the deliberative
component.

BDI Agents

BELIEFS
DESIRES

SELECTION
FUNCTION

INTENTION

BDI Mapping
� implementing PPM as a BDI agent

Personal Communication Manager (PCM)

Presence

Directory

(PPM)

Presence

Information

Manager

(PIM)

Service

Selection

Mechanism

Service

Execution

Mechanism

Context

Information

Server

Communication

System

Communication

System
Policy

Server

beliefs

desires

intentions

BDI Agent

Representing Context and Policies

• implement PPM as a BDI agent that conforms to the
AgentSpeak(L) formalism.
– abstract framework for programming BDI agents.
– natural extension of logic programming for the BDI agent

architecture.
– based on a restricted first-order language with events and

actions.

• the behavior of the agent (i.e., its interaction with the
environment) is dictated by the programs written in
AgentSpeak(L).

AgentSpeak(L) - Basic Notions

• The specification of an agent in AgentSpeak(L) consists of:
– a set of base beliefs - facts in the logic programming sense
– a set of plans.

• context-sensitive, event-invoked.
• allow hierarchical decomposition of goals and the

execution of actions.

p ::= te : ct <- h

• te - triggering event (denoting the purpose for that plan)

• ct - conjunction of belief literals representing a context.

• h - a sequence of basic actions or (sub)goals that the agent has to achieve (or
test) when the plan, if applicable, is chosen for execution.

AgentSpeak(L) - Basic Notions

• goal
– s a state of the system, which the agent wants to achieve.
– achievement goals - the agent wants to achieve a state

of the world where the associated predicate is true.
– test goals - returns a unification with one of the agent’s

beliefs; it fails if no unification is found.

• triggering event
– defines which events may initiate the execution of a plan.
– internal, when a subgoal needs to be achieved
– external, when generated from belief updates

AgentSpeak(L) - Basic Notions

• Intentions
– plans the agent has chosen for execution.
– executed one step at a time.
– a step can

• query or change the beliefs
• perform actions on the external world
• suspend the execution until a certain condition is met
• submit new goals.

– the operations performed by a step may generate new
events, which, in turn, may start new intentions.

– an intention succeeds when all its steps have been
completed. It fails when certain conditions are not met or
actions being performed report errors.

AgentSpeak(L) Example

(1) During lunch time, forward
all calls to Carla.

(2) When I am busy, incoming
calls from colleagues should
be forwarded to Denise.

Alice

Beliefs
user(alice).

user(bob).

user(carla).

user(denise).

~status(alice, idle).

status(bob, idle).

colleague(bob).

lunch_time(“11:30”).

AgentSpeak(L) Example

user(alice).
user(bob).
user(carla).
user(denise).
~status(alice, idle).
status(bob, idle).
colleague(bob).
lunch_time(“11:30”).

“During lunch time, forward all calls to Carla”.
+invite(X, alice) : lunch_time(t) ←←←←

!call_forward(alice, X, carla). (p1)

“When I am busy, incoming calls from
colleagues should be forwarded to Denise”.

+invite(X, alice) :

colleague(X) ←←←←
call_forward_busy(alice,X,denise).

(p2)

+invite(X, Y): true ←←←← connect(X,Y).
(p3)

AgentSpeak(L) Example
user(alice).
user(bob).
user(carla).
user(denise).
~status(alice, idle).
status(bob, idle).
colleague(bob).
lunch_time(“11:30”).
+invite(X, alice) : lunch_time(t) ← !call_forward(alice, X, carla). (p1)
+invite(X, alice) : colleague(X) ← call_forward_busy(alice,X,denise).(p2)
+invite(X, Y): true ← connect(X,Y). (p3)

+!call_forward(X, From, To) : invite(From, X)
←←←← +invite(From, To), - invite(From,X) (p4)

+!call_forvard_busy(Y, From, To) : invite(From, Y)&
not(status(Y, idle)))

←←←← +invite(From, To), - invite(From,Y). (p5)

AgentSpeak(L) Example
user(alice).
user(bob).
user(carla).
user(denise).
~status(alice, idle).
status(bob, idle).
colleague(bob).
lunch_time(“11:30”).

+invite(X, alice) : lunch_time(t)
← !call_forward(alice, X, carla). (p1)

+invite(X, alice) : colleague(X)
← call_forward_busy(alice,X,denise). (p2)

+invite(X, Y): true ← connect(X,Y). (p3)
+!call_forward(X, From, To) : invite(From, X)

← +invite(From, To), - invite(From,X) (p4)
+!call_forvard_busy(Y, From, To) : invite(From, Y)& not(status(Y,

idle)))
← +invite(From, To), - invite(From,Y). (p5)

Simulation

John

Alice

Charles

Bob

Stella

Josh

Beliefs base

Plans

Plans

Plans

Plans

Plans

Plans

Belief base consultation

Belief base update

Plan retrieval

Addition of subplan

Action

Essential features (1)
• Context-sensitivity

– The beliefs base is updated with all the changes in the
environment using the AgentSpeak mechanism of event
perception.

• Plan selection
– If multiple applicable plans are available, the agent is able to

select one that is appropriate.
– May depend on the time needed, the overall cost, the risk

factor, the user preferences, etc.
– Decision procedures must therefore be supplied for

supporting plan selection.

Essential features (2)
• Plan failure recovery

– If a plan fails at some stage, the agent is able to
retract properly and select another alternative plan.

• Conflict resolution and goal selection
– The user might have a number of goals that cannot be

achieved simultaneously.
– In such cases, the agent must be able to make a

decision about which goals to try to achieve.
– In making such decisions, it needs to take into account

the importance of the goals as well as the costs of
executing the plans.

Conclusions

• The BDI agent paradigm, although originally
developed for other purposes, is particularly
suited to the user communication domain.

• The actions that the agent decides to take
arise from the instantiation of partially
specified plans, selected to fulfill the user's
goals, given the beliefs that it has at that point
in time.

• The details of the plan are filled in as the plan
progresses, which allows for a wide range of
possible courses of action.

