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Cluster Analysis for the Computer-Assisted 
Statistical Analysis of Melodies 

Luigi Logr ippo  and  Bernard  Stepien 

. . .  notoriamente no hay clasificacion del universo 
que no sea arbitraria y conjetural. La razon es muy 
simple: no sabemos que cosa es el universo. 
--J.L. Borges, "'El idioma ana#tico de John Wilkins" 

Computer usage in musicology seems to be developing 
somewhat more slowly than in other research areas in 
the humanities. Many papers in the field limit them- 
selves to discussing musical databases, and elemen- 
tary types of statistical analyses, involving note or 
interval counts. With some exceptions (for example, 
Morando, 1979 and Steinbeck, 1976) there is little 
mention of the powerful statistical techniques that 
have become everyday tools in other areas. In this 
paper we will show that some of these techniques can 
be adapted with relative ease to the needs of research 
in musicology. Part of our research used standard 
software packages which, with some adaptation, 
proved quite adequate to the task. 

Our main statistical method is cluster analysis. 
Cluster analysis attempts to classify a set of entities 
according to their similarity from the point of view of 
some predefined set of characters, or "indicators." 
For example, if the set of entities being considered is 
a set of melodies, and the set of indicators is the set 
of notes used in each melody, cluster analysis will 
group together melodies using similar sets of notes. 

This method has been used to classify melodies 
from several points of view. We will limit ourselves 
to the presentation of examples in which songs are 
classified by scales (i.e., notes used), intervals, and 
similarity of melodic patterns. The results are im- 
mediately useful to a musicologist attempting to 
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classify melodies by modes, for which scales, intervals, 
and melodic patterns are among the most important 
characters of identification. Other classification cri- 
teria investigated include melodic contours, rhythmic 
contours, and rhythmic patterns. The musicological 
results of this research were presented in Logrippo, 
Pelinski and Stepien (1981) and Pelinski (1981a). 

Our project consisted of two phases. In the first, 
over one hundred monophonic songs were placed in 
a database, and analyzed using a variety of packages, 
one of which was a cluster analysis package. These 
melodies were Inuit personal ("a-ja-jai") songs, some 
collected by Pelinski (1981) in the settlements of Ran- 
kin Inlet and Eskimo Point (two corpora), others col- 
lected by Hauser (1977) in Thule. These are the three 
"corpora"  discussed in Classifications of Songs by 
Tonal Density, and Combined Tonal/Interval Density 
Analysis. After completing this phase (in 1980), the 
second author developed some ideas on how to use 
cluster analysis for classifying melodies by similarity 
of melodic patterns. He wrote a software package to 
do this, and tested it on some other small corpora of 
melodic fragments. This more recent work is also dis- 
cussed below in Similarity of Melodies. 

Related work was previously reported by Wenker 
(1977) and Morando (1979). The first author presented 
a computer-assisted statistical analysis of scales and 
intervals in North-American folk music, without how- 
ever using cluster analysis or factor analysis. The sec- 
ond author used factor analysis in order to uncover 
statistical relationships between the musical styles of 
several classical composers. 

Cluster Analysis 
Cluster analysis was developed in the sixties by vari- 
ous researchers, and today is extensively used in such 
diverse fields as the social and health sciences, biology, 
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and physical sciences. For example, it is used to class- 
ify insects in entomology, and to detect patterns of  
behavior in psychology. There is an abundant litera- 
ture on this topic (Sneath and Sokal, 1973). An example 
of utilization of methods similar to the one discussed 
here in literary analysis can be found in Usher and 
Najock (1982). The specific implementation of cluster 
analysis used in the first phase of the project was BMDP 
(Dixon and Brown, 1979), in its version of November 
1979. BMDP is a biomedical statistical package devel- 
oped at the Health Sciences Computing Facility of the 
University of  California (Los Angeles). 

Staiistical Analysis of  Melodies. The basic concept 
involved in cluster analysis is quite simple. If a num- 
ber of points are scattered on a sheet of paper, it may 
be possible to observe the fact that two of these points, 
A and 13, are "closer" to each other than c and D, etc. 
Similarly, if A, 13, and c are close together in an area 
of the sheet, it may be said that they form a "cluster." 
A point on a sheet of paper is an entity characterized 
by its two Cartesian coordinates. These coordinates 
(in cluster analysis often called "indicators")  can be 
interpreted in many different ways, for example as 
musical parameters, as we shall show in the following 
example. 

Let us consider five extremely simple melodies (p, 
Q, R, S, and T) all consisting of just two notes, say cs 
and Gs. Let us suppose that we have statistics on the 
percentages of  occurrences of  cs and Gs in the five 
melodies, as follows: 

C 
P 20% 
Q 40070 
R 50% 
S 40% 
T 50% 

G 
40% 
30% 
40% 
10% 
10% 

For example, 20% of the notes appearing in P are 
CS, and 40% are Gs (the remaining 40% being rests). 
We can now apply clustering by seeing each melody 
as a point with two coordinates in a two-dimensional 
space. If  we take the number of  occurrences of  cs as 
the first coordinate, and the number of  occurrences 
of  Gs as the second one, we get the following picture 
(for simplicity, we reduce our scale by a factor of 10): 

4 P R 
3 Q 
2 
1 S T 

1 2 3 4 5 6 

Clearly, the mutual distances of  points in this pic- 
ture reflect to some extent mutual similarities of  the 
related melodies from the point of view of tonal struc- 
ture. The picture easily reveals the two clusters (S,T) 
and  (Q,R), the second made up of two melodies mutu- 
ally less closely related than the first. Further, melody 
P is clearly detached from the others, an "outl ier"  
according to statistical terminology. These facts are 
obvious without computer assistance, because we 
considered a space of only two dimensions. Our task 
would quickly become impossible if we start consider- 
ing songs of three, four, five or more notes, which 
would require three, four, five or more dimensional 
spaces. Fortunately, the procedure can easily be auto- 
mated, and with computer assistance even spaces of  
hundreds of  dimensions present no problem. 

We will continue the example above to show how 
this can be done. We begin by calculating the "dis- 
tance" between points in our space. For example, the 
distance between melodies s and T is 1 (the 10070 dif- 
ference in the use of  cs) and between Q and s is 2. In 
order to find the distance between Q and T, we can 
apply the Pythagorean Theorem, which yields a dis- 
tance of 2.23. Continuing in this way, we obtain the 
complete distance table which is: 

Q 12.23J 

R [ 3 11.41l  

S [3.601 2 13.161 

T 14.24[2.231 3 I 1 I 

P Q R S 
We then proceed to find the clusters. We first note 

the smaller distances, then increasingly larger ones 
until all the melodies are classified. We observe that 
the two melodies in the pair (S,T) are mutually the 
closest, at a distance of 1, and this constitutes the first 
cluster. Next, we note that the second shortest distance 
in the table is 1.41, and this gives us the second cluster 
(Q,R). The third closest distance is 2, between s and 
Q. This enables us to join together the two clusters we 
have already found, and gives us (Q,R,S,T). Finally P 
joins this latter cluster at a distance of 2.23 from Q. 
This completes the classification of all the elements. 
Our results can be shown in the following "amalga-  
mat ion"  (or "classification") tree: 
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(the scale at the left shows the approximate distances 
at which the amalgamation occurred). 

Therefore, the clustering algorithm proceeds in 
two steps: 

1) First it computes a "coefficient of similarity," 
or "distance" between the entities in considera- 
tion, in our case, the melodies. 

2) The distances are then used in the second step: 
the amalgamation process. This step will group 
the songs together in "clusters," starting with 
those that are mutually closest, and continuing 
with progressively more distant ones. The results 
of  the amalgamation process can be shown in 
several forms, of  which the two we have found 
the most useful are the amalgamation tree, dis- 
cussed above, and the "sorted shaded distance 
matrix" introduced in the section Similarity of 
Melodies. 

A note of  caution is necessary here. Some readers 
might balk at our choice of "distances" between 
songs, which might seem arbitrary from a musicolo- 
gical point of view. For example, can we really justify 
the fact that Q and R, with a 10% difference in cs and 
Gs, are mutually less different than Q and s, with a 
20% difference in os? Before these methods become 
widely used, such questions will have to be satisfac- 
torily answered. Research in this direction is already 
under way, as is noted by Krumhansl (1985). Tenta- 
tively, we propose the following two answers. From 
the statistical point of  view, there are many different 
methods of calculating distances and performing the 
amalgamation. The "euclidian distance" method pre- 
sented above is simply one possibility, and it was used 
in the example because it is the most easily under- 
stood. For the research discussed in the following sec- 
tion and the one on Combined Tonal Interval Density 
Analysis we preferred the chi square method as being 
the most appropriate: this choice was both recom- 
mended by the literature (Dixon and Brown, 1979) and 
verified empirically. Different methods, however, will 
satisfy different needs, just as one method may un- 
cover relationships not shown by others. Experimen- 
tation is therefore not only possible but also desirable. 
(Some examples are discussed in Logrippo, Pelinski 
and Stepien, 1981 .) Our second answer is more prag- 
matic: that our method can be justified by the results 
that it yields. It enabled us to discover relationships 
that were relevant for musicological analysis, and in 
this sense the method has proved itself. 

In the first phase of our project, we used the method 

on each corpus of songs individually (i.e., Rankin Inlet, 
Eskimo Point and Thule) to understand the internal 
organization of the songs of a given lnuit settlement. 
Subsequently, we mixed the three corpora to verify 
the influence of geographic dispersion on the Inuit 
singing style. Finally, we tried to correlate classifica- 
tions according to different indicators: i.e., tonal sys- 
tems vs. interval systems, etc. For reasons of space, 
we are not able to discuss all this work in detail, and 
we will limit our discussion to the analysis of the 
Rankin Inlet corpus. 

Classification of Songs by Tonal Density 
The term "density" will be used to denote the propor- 
tion of notes or intervals in a song. The density of 
notes will be called "tonal density." In order to class- 
ify the songs by tonal density, we proceeded as follows. 
First, we performed on the encoded songs a simple 
frequency count program (not part of  BMDP). For 
each song and note, we calculated the percentage of 
playing time of the note in relation to the total play- 
ing time of the song. This gave us a table of  percent- 
ages of  time values for each note in each song. In 
rearranged form this is Table 1. On this table, we ran 
BMDP, which produced the amalgamation tree in Fig. 
1. Another simple program (also not part of BMDP) 
rearranged the table of percentages according to the 
results in Fig. 1, and this yielded the "sorted indicator 
table" shown in Table 1. This table, which shows the 
songs sorted by similarity together with their indica- 
tors, is not provided by the standard BMPD package. 

In Fig. 1, the numbers at the top are song numbers, 
sorted in such a way as to group together similar songs 
as much as possible. The numbers at the left are 
"amalgamation distances," i.e., the distances at which 
the songs or groups of songs were clustered together. 
For example, from Fig. 1 it appears that songs 19 and 
38 are very similar from the point of view of tonal den- 
sity, since they were clustered together at the small 
distance of 1.085. On the other hand, songs 34 and 
36, which are quite dissimilar (having been clustered 
together at the relatively large distance of 12.993), are 
also very dissimilar from the other songs in the corpus, 
since they join the closest cluster--the one consisting 
of all the songs appearing at the right side of the figure 
- -only  at the large distance of 24.067. The tonal den- 
sity-sorted indicator table (Table 1) shows song num- 
bers and song authors at the left. For each song and 
each note, it also shows the percentage of time value 
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of the note in the song (these percentages are the "in- 
dicators" discussed above). For example, note F ac- 
counts for 10.5% of the total played length of song 
1, whose author is Kavik. Notes are represented 
according to the external representation discussed in 
Hickey and others (1979), i.e., -C is middle c, etc. 
Note G always appears very frequently because all 
songs were transposed so that G corresponds to the 
main recitation tone. This table gives us a clear pic- 
ture of  the tonal relationships among songs. 

With Fig. 1 and Table 1 in hand, the classification 
of the songs by tonal density does not present diffi- 
culties (see Table 2). It is clear that songs 34, 36, 11, 
and 28 are tonally "unusual"  songs, or "outl iers ."  
Songs 31 and 17 are not classified as outliers because 
they will also appear together in the interval density 
analysis, and therefore deserve to belong to a class of 
their own. Further, we detect a fairly large class of  
songs (class 1), characterized by the use of  notes F, G, 
A, and (with the exception of two songs) c. This class 
does not seem to have any particularly interesting 
subclasses, with the exception of (29,27), two songs 
by Tiktak, which exhibit a low percentage of A and 
will reappear together at the interval analysis stage. 
Other subclasses appear, but they are either small or 
fail to be characterized by the strong occurrence (or 
non-occurrence) of certain notes. In fact, the internal 
structure of  class 1 seems to be due mainly to varia- 
tions in frequency, rather than to note replacements. 
It is quite possible that a larger sample would reveal 
a somewhat more interesting picture. 

In class 3, characterized by notes E, G, A, and + D, 
the substructure is more sharply defined, giving rise 
to the two subclasses 3 ' (using c), and 3 "(using B and 
D instead). Similar criteria enable us to identify class 
4, which is clearly the most strongly characterized of 
all and in fact will reappear intact in the interval 
analysis. 

Looking at Table 1 from a more global point of  
view, one discovers a yet deeper organization that en- 
compasses the whole set of songs. Schematically, this 
is shown in Fig. 3. There are five notes that appear 
in the greater majority of  songs, and these are D, G, 
A, C, and +D. Class 1 is characterized by a strong F, 
class 2 is characterized by the replacement of  A sharp 
for A, class 3 is characterized by a strong E, and class 
4 is characterized by a strong F sharp and the absence 
of D and +D. Within class 3 we have the following 
structure: class 3 ' is characterized by the weakness 

of D, and class 3 " by the replacement of  B for C. 

Classification of Songs by Interval Density 
The basic information on interval density is provided 
in Fig. 2 (Interval Density Amalgamation Tree). Fig. 2 
is to be read in the same way as Fig. 1. Table 3 is 
similar to Table 1, though the indicators here are per- 
centages of intervals. Intervals are represented by the 
number of  semitones they contain, e.g., -2 is the de- 
scending tone, O is the prime interval, and 4 (also 
written + 4) is the ascending major third. Therefore 
descending tones are 13.5% of all the intervals in song 
l by Kavik. It should be noted that, due to space 
limitations, only the central most important part of  
the table is shown. 

According to the method used for the classification 
by tonal density, we obtain Table 4, which shows the 
classification by interval density. It should be noted 
that Table 4 contains more classes than Table 2, as is 
to be expected since there are more intervals than 
notes. 

A global look at Fig. 2 again reveals some interest- 
ing structural facts, as shown by Fig. 4. The analysis 
of Fig. 4 is less clear-cut than the one of Fig. 3, because 
of the greater complexity of the picture. For example, 
class 2 represents a sort of "transition" between class 
1 and class 3 (it is shown as related to class 1 in Fig. 4). 
The modal analysis to be given in the next section will 
show that class 2 consists of the two subclasses (17,31) 
and (38,19), of which only the first relates to class 1 
(because of the -4 and + 4). 

Combined Tonal Interval Density Analysis 
The next logical step is to attempt to combine the pre- 
vious two analyses. Songs that have both a similar 
tonal density and a similar interval density will there- 
fore be classified together. The resulting classes of  
songs can be said to identify "modes , "  in the sense 
that two songs belonging to the same mode will have 
similar tonal and interval structures. (The authors are 
aware of  the fact that the usual definition of modes 
in musicology involves much more than the distribu- 
tion of notes and intervals, the only aspects consid- 
ered here.) 

It is by pure coincidence that we end up with eight 
modes, just as many as the medieval church modes. 
These are shown in Table 5. For example, songs (1, 
13,20,2) which belong together in tonal class 1 ' and 
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interval class 1, form mode 1. Eight songs (i.e., ap- 
proximately one quarter of the total), do not belong 
to any of  these eight modes. As we have mentioned 
already, this analysis helps reveal some interesting 
subclasses of the tonal classes: such are (38,19), two 
very similar songs, (27,29), the aforementioned two 
songs by Tiktak, and (15,35,23), a subclass of tonal 
class 3" characterized by the presence of + D. 

Similarity of Melodies 
At this point it would be legitimate to ask when two 
melodies are similar. In musicology this is a vexed 
question which recently has even been attacked by 
computer-assisted methods (Dillon and Hunter, 1982, 
and Stech, 1981). We use a different approach, based 
on cluster analysis techniques. The simplest way to do 
this would be to consider each note in a melody as an 
indicator, and define a distance on this basis. For ex- 
ample, two melodies that are note-by-note identical 
except for the fact that one uses E instead of c at some 
point, would be considered to be at a distance of 4, 
the number of semitones between c and E. Unfor- 
tunately, this method is too simplistic: for example, 
two melodies that are completely identical except for 
an extra note at the beginning of one of them might 
turn out to be at very large distances. Therefore, it is 
wise to begin by determining a distance by using a 
pattern-matching method, and then use this distance 
to perform amalgamation. 

In this method, the proportion of in-sequence notes 
between two melodic lines (henceforth also called 
"modules") is used as a distance. By way of example, 
we may consider the following two modules: 

module l :  C E G A B 
module 2: A C F E B A G 

They have only three in-sequence notes in common: 
c - E - G, which is 60% of common notes relative to 
the number of notes in the smallest module. We take 
60 to be the distance between these two modules. The 
length of the smaller phrase is used as a reference be- 
cause we are using the concept of degree of inclusion 
of one phrase into a larger phrase. Unfortunately, this 
percentage alone is not sufficient to establish a real- 
istic distance, as shown by the following example. 
Consider the three following modules: 

modu le l :  C D B G 
module 2: D C A B G D 
module3:  E C A E G E F C 

Both 1 and 2 are at a distance of 50% from 3. How- 
ever, since in the first case a sequence of two notes is 
involved (C-G), while in the second case a sequence of 
three notes is involved (C-A-G), we must conclude that 
module 2 is more similar than module 1 to module 3. 
Therefore our concept of percentage distance must be 
corrected by a "secondary ranking" whereby the 
length of  the common sequence is taken into consid- 
eration when the percentage distance is the same. This 
method enables us to establish directly the distance 
between any two melodic lines, without having to 
resort to concepts such as "euclidian distance" or 
"chi square distance" mentioned in the section 
Cluster Analysis. 

In our current research, all notes are given the same 
weight. However, it would be possible to include a hi- 
erarchy of weights based on rhythmic values, posi- 
tion, and others. 

Once all pairs of modules have been compared and 
the distance table is established, the amalgamation 
process is performed similarly. The output is a classi- 
fication of the fragments using various graphics, which 
emphasize the relationships that have been found. 
One major difference between this work and the one 
discussed in the previous sections is that previously we 
were classifying whole songs, while here we are classi- 
fying short melodic fragments manually extracted 
from the songs. The following examples are taken 
from a set of French nursery rhymes. 

One example is shown in the amalgamation tree of 
Fig. 5. Each " leaf"  of the tree is a module and the 
module itself is given on the right. Specifically, the in- 
formation on the right of the tree is to be read as fol- 
lows: module number, cluster number (see below), 
and sequence of notes in the module. For example, 
module 8 belongs to cluster 0 and consists of the five 
notes shown. By looking at the tree, we see immediate- 
ly that module 8 is quite dissimilar from all others and 
so it makes a class of its own. (Here we use the con- 
vention that cluster 0 is the cluster of all the outliers.) 

There are, instead, other fragments that are mutu- 
ally closely related. By aligning their common notes, 
one may be able to discover "root  phrases" in a 
cluster. For example, cluster 1, consisting of modules 
(21,23,16), is characterized by the "root  phrase" 
C-B-A-G. This may be done in the following way. The 
user specifies a "cutoff  distance" for which all mel- 
odies being mutually closer than the distance are to be 
considered as belonging to the same cluster. In this ex- 
ample, the cutoff distance was 69%. The system then 
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proceeds to group the modules into clusters. For each 
cluster, the " r o o t "  of  the cluster is taken to be the 
module that has the smallest distance from all the 
points in the cluster (the "center" of the cluster). The 
notes of  the modules in the cluster are then aligned 
with the corresponding notes in the root. Two addi- 
tional examples of  this are given in Fig. 6, which is a 
small portion of an analysis involving 220 modules 
grouped in 42 clusters (no relation with those of Fig. 
5). Clearly, a critical role in this process is played by 
the choice of  the cutoff distance. Smaller cutoff 
distances will give smaller clusters and longer root se- 
quences, hence there is again much room for ex- 
perimentation. There are several open issues in this 
area. For example, a cluster could have several roots, 
etc. 

The diagram shown in Fig. 7 is the "sorted and 
shaded distance matr ix" mentioned in the section 
Cluster Analysis and is obtained by appropriately 
sorting and darkening the distance table discussed in 
that section. Fig. 7 refers to the example of  Fig. 5 and 
is an alternative way of presenting the clusters of that 
figure. More closely related modules are grouped to- 
gether, and their distances are represented by darker 
symbols. For example, the diagram indicates two main 
classes of mutually similar fragments: (22, 2, 13, 7, 6, 
1, 18, 11)and (11, 19, 5, 14, 17, 15, 3, 4, 12, 10). This 
second class contains a subclass which is (5, 14, 17, 
15, 3, 4), etc. We were now able to discover that mod- 
ule 11 belongs to the intersection of two classes, a fact 
not visible from the amalgamation tree, that demon- 
strates a main advantage of this type of display. An- 
other instance of this phenomenon appeared already 
in the Cluster Analysis section, where the amalgama- 
tion tree did not show the fact that the pairs (P, Q) and 
(Q, T) have equal distances. In general, we can say that 
overlapping classes are hidden in the amalgamation 
tree but show up in the sorted shaded distance matrix. 
These matrices were found to be important tools in 
the research discussed in the sections on classification 
of songs by tonal density and the two following sec- 
tions as well; however, they were not mentioned in 
that context for reasons of  space. 

More recently, we have been experimenting with an 
interactive system, in which the musicologist is able 
to intervene in the way clustering and alignment are 
performed. Therefore, human judgment can be used 
to solve some of the ambiguities that the computer 
can only solve in arbitrary ways. 

Conclusions 
We have presented some computer-assisted methods 
for classifying melodies. Even though our analysis 
could, in principle, have been done by hand, in prac- 
tice this would have been extremely laborious and 
error-prone. The same software packages could be 
used equally well to classify hundreds of  melodies, 

which would be most useful. Of course, large quan- 
tities would require large computers, and in addition 
some different type of processing may be necessary 
in order to further compress the information. 

We would stress that our methods do not yield a 
"cut-and-dry" musicological analysis. They only pro- 
vide tools with which the musicologist can experi- 
ment, especially in order to detect relationships that 
could not be easily found by the naked eye (or ear). 
In our view, one of the most important aspects of the 
methods is that they are simple to use and the results 
are easily checked by hand, by studying the various 
types of  displays and relating them back to the initial 
data. Therefore, there is little chance that the methods 
may force the careful musicologist to draw false con- 
clusions. 

As the reader may have noticed from the descrip- 
tion of the method given in Cluster Analysis, cluster 
analysis has a wide range of applicability. Any col- 
lection of objects having a set of precisely identifiable 
indicators (whatever they might be) can be classified 
in this way. Our method could then be used, with 
only slight adaptations, to classify musical excerpts 
by criteria such as the chords used, the rhythmic 
structures that appear in them, etc. 

On the basis of  their experience, the authors believe 
that these methods may one day be common tools in 
some types of musicological research. We realize that 
this claim may appear to be unsubstantiated in this 
paper, where we have shown only two ethnomusico- 
logical applications. However, the same methods 
could be applied to any corpus of  melodies at hand, 
whether ethnomusicological or not. Gregorian chant, 
for example, seems to be an ideal area of application. 
It is true that each area of musicological research has 
its own established methods that are probably quite 
different from the ones suggested here. However, our 
methods should not be viewed as replacing existing 
ones, rather as augmenting them by providing addition- 
al information. As we have already mentioned above, 
the methods have a high degree of flexibility and are 
capable of much adaptation and customization. The 
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problem of adapting and customizing them to the 
various existing areas of musicological research is a 
major one, and may require much experimentation 
and research. 

We must here raise the question of the manual pre- 
processing required in order for the method to be ap- 
plied. In our research, the musical text was entered as 
a straightforward encoding of the musical notation. 
Only in the work discussed in the section Similarity of 
Melodies, some manual pre-processing was performed 
in order to segment the given melodies into "modules," 
which were then processed in the fashion described 
above. However, considerable additional preprocess- 
ing will probably be required in most cases in order 
to obtain meaningful results. The function of this pre- 
processing might be to include information such as 
relative "importance" of various notes (as determined 
for example by meter or accents), exclude some irrele- 
vant groups of notes, etc. Clearly, the type and 
amount of preprocessing would have to vary accord- 
ing to the type of repertoire and the results desired. 

There are, of  course some obvious limitations to 
these methods as we have used them, the most obvious 
one being the inability to deal with complex contexts 
and several different parameters at once, as is common 
in musicology. To what extent these limitations can 
be overcome, perhaps by combining these techniques 
with others, is an open research question. 
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SONG # 

AMALG. 
DISTANCE 

1 085 
1 690 
1 939 
2 350 
2 634 
2 680 
3.508 
3.521 
3.588 
3.716 
3.785 
3.860 
3.930 
4.599 
4.794 

1 F . ~ I  1 3'3111 3" 1l, 4 I ~ 2 2 21232 3 3 213 3 1 2  3 ~  3 3 2 1  I ~ 2 1 
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I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 

5. 312 I I 
5.545 I I 
5.871 
6.153 
6.961 
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ii .592 
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20.166 
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FIGURE i. RANKIN INLET TONAL DENSITY AMALGAMATION TREE 

PROPORTIONS OF NOTES USED FOR RANKIN INLET ON CLUSTERED SONGS 

SONG # COMPOSER -C -C# D D# E F G# 

RK 1 KAVIK 
RK 18 ULUJUK 
RK 29 TIKTAK 3.5 1.6 
RK 27 TIKTAK 
RK 3 KAVIK 1.6 
RK 26 KOLIT 2.8 

I ~ RK 13 TAUTUNNG 
RK 20 MIRANAA 
RK 30 MANILAK 
RK 24 USSAK 1.6 
RK 2 KAVIK 2.4 
RK 39 T.KIMALA 2.8 7.5 
RK 32 ANOUTIO~ 
RK 21 NT LATILA 
RK 34 RASIGIAK 8.9 3 

OUTL.~ 36 MCCASKIL 
ii PANIGONIA 

RK #8 TTKTAK 
2 RK 31 ANGUTIQT [i:3~ii~ 

RK 17 ULU,]I1K F))~i))~i~ 
RK 19 TAUTUNNG 4 
RK 38 T.KIMAL 

3' RK 40 T.KIMAL 
RK 37 KIMALAR 4.4 
RK 33 KASTGIAK ].3 4.2 
RK 15 ANARUAK ~ii~ii~6 
RK 35 TAPAR~I ~i~ 

3" RE 23 USSAK Ci~i~i 
RK 14 TAUTUNNG 1.9 ~!~--~ 
RK 12 TAUTUNNG !i~i~ 
RK 9 PANIGONIAK 
RK 16 ULUJUK 
RK 25 DSSAK 
RK 4 IRKOOTI 

3.4 

1.3 
5 ~ ~ 

65.2 
3.2 

5.4 

2.0 

F# G A A# 

..... 73.3 ~ ~ 12. 
59.2 ~ '~ 3 

4 66.0 1.4 2.8 
68.8 
51.4  i 5 :  
46.5 1 28 ~ 
58.1 I ~jT:~ 

' 

4 2 .  I ~,2:1 
13.5 .... 
39.3 [I0 C 22.5 

19.2 -.4 
6.3 

12.2 55.9 2.7 2.7 
7 63 

6~.968.6 i~ ~i~l 
2 6B. b 

65.4 
4 6 . 4  !.fi 
~7.~4 9.1 ~ i ~  
5 0 .6  
55.86~ .8 ~ i:~4 
59.9 )~3/~ O 

3 49.7 ~ : ' ~  

[12!3~ ~i)l 53.9 ::7~ F8 
H ~  l 60.4  ~/l;:J2,~ 5 76.2 

|21 ~I 69.1 

1,7 

B C 

4. 
6. 

] 

48.7 
18.5 8.1 

~5~ 5 
5:4 ,29 

TABLE i. RANKIN INLET TONAL DENSITY SORTED INDICATOR TABLE 

C# + D  

8.5 
6.6 

1.6 
2.2 
2.4 

1.9 
3.4 

33.3 

)i �84 ~:ii~i 51 
5~1 

+D# 
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SONG # 

AMALG. 
DI STANCE 

1.995 
2.130 
2.137 
2.609 
2.892 
2.952 
3.003 
3.182 
3.214 
3 505  
3 553  
3 706  
4 134 
4 386  
4 5O9 
4 678 
4 736 
4.817 
5.239 
5.255 
5.396 
6.099 
6.227 
6.283 
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9.190 

ii .877 
11.966 
12.809 
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FIGURE 2. RANKIN INLET INTERVAL DENSITY AMALGAMATION TREE 

CLASS CHARACTERISTIC NOTES! INCLUDES SONGS 

I F,G,A,[C] 1,18,29,27,3,26,13,20,30,24,2,39,32,21 

2 [D],G,A#,C,+D 31,17 

3' C , + D  19,38,40,37,33 
3 �9 .E,G,A 

3" B,O,[+O] 15,35,23,14,12 

4 F#,G,A,[C] 9,16,25,4 

OUTLIERS 34,36,11,28 

TABLE 2. CLASSIFICATION OF SONGS BY TONAL DENSITY 
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MOST COMMON 
NOTES: 

D,G,A,C,+D 

'1 I I 

! 

USES F I A + A# USES 

i 
m t  CLASS 1 CLASS 2 I 

I 

lw I 
CLASS 3 ' 

FIGURE 3 

I 
I USES F# 

NO D,D+ 

CLASS 4 

Ic. ,  I 
CLASS 3" 

PROPORTIONS OF INTERVALS USED FOR RANKIN INLET ON CLUSTERED SONGS 

SONG # COMPOSER 

RK 1 KAVIK 
i' RK 13 TAUTUNNG 

RE 20 MIRANAA 
RK 2 ~AVIK 
RE 12 TAUTUNNG 
RK 26 KOLIT 

I,,RE 18 ULUJUK 
RK 32 ANGUTIQT 
RK 30 MANILAK 
RK 24 USSAK 

RK 34 KASIGIAK 
2 RK 31 ANGUTIQT 

RK 38 T.KIMAL 
~ 19 TAUTUNNG 

21 T1KTAK 
5 RK 29 TIKTAK 

RK 33 KASIGIAK 
RK 28 TIKTAK 
RK Ib ANARUAK 
RK 35 TAPARTI 
RK 39 T.KIMALA 
RK 23 USSAK 
RK 21 N|bAULA 
RK 40 T.KIMAL 
RK 37 KIMALAR 
RK 14 TAUTUNNG 

-8 -7 -6 -5 

i.I 
2.0 
4.0 

5 

3.3 
1,8 

�9 7 

3.9 1 .i 

3.0 3.0 

1.4 
7 

1.6 2.~ 
2.5 

3.8 

1.5 
2,7 

3.8 
7 
6 

-4 -3 -2 -I 0 

;9 59 .0  
I: ~=~ I~ , I  4a.o54" 4 

;;; ~[ i 16 ; b  1 . 2  

60.6 
57.9 

9 58.3  

6.6 [~i ~6;;I 53.6 
1.9 ~; 73.3 

;7~9 56.6 
~5 ~' ~ 57.6 

4. 2 l ~ : ~  5 . 0  5 6 . 3  
5 3.6 iO~' 9 52.3 

1.3 63.6 

8 ~! 55. i 
46.2 

~ I,~ll~i 54.1 
~ ; 2  ~r 2 .,~ 45 .6  
~:~:~ ~9;~ 6 43.? 

22 

32.5 16.-9 

1 2 3 4 

7 i~ 0; 4.1 

~2,5 2 

1 .8~ : I6 , .~  ; ; ~ , 5  3 . I  q 

2.3 a 1 . 4  5 ~ 

32.5  2 . 6  

6 RK 9 PANIGONIAK 
RK 16 ULUJUK 
RK 4 IRKOOTI 

1.7 

TABLE 3. RANKIN INLET INTERVAL DENSITY SORTED INDICATOR TABLE 

5 6 7 
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CLASS CHARACTERISTIC INTERVALS INCLUDES SONGS 
m 

I' -3 1,13,20,2 
I 

1" 
[-4] ,-2,0,2,3 

-3,[-2],o,2,3 

12,26,18,32,30,24,3 

2 17,34,31,38,19 

3 [-7 ],[-5 ] ,-2,0,2,5 27,29,33,28 

4 -7,[-5],[-3],-2,0,2,3,4,5 15,35,39,23 

s -5,-3,-2,0,[ i] ,2,3, [4],[5] 21,40,37,14 

6 [-3],-2,-1,0,1,2,[3] 25,9,16,4 

OUTLIERS 36,11 

TABLE 4. CLASSIFICATION OF SONGS BY INTERVAL DENSITY 

L 
NO ADD. I 

CLASS 1' 

i 
m 

USES -4 I 

WEAK 
-7,-5,+4 
No-3 

i,, 

i 
IWEAK-4, I +4, +5 

MOST COMMON 
INTERVALS: 

-3,-2,0,+2,+3 
f I 

USES-5 I I USES 

L ~  CLASS 

3 4 5 

+1 ,-1 

6 

FIGURE 4 
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MODE 

I 

4 
H 

',OUT- 
LIERS 

Tonal 
Class 

i. 

2 

, 

3 

,, 

4 

In terva l  
Class 

i ,  

i,, 

SONGS 

1, 13, 20, 2 

26, 18, 32, 30, 24, 3 

27, 29 

31, 17 

38, 19 

40, 37, 14 

15, 35, 23 

9, 16, 25, 4 

21, 39, 33, 12, 34, 36, 11, 28 

TABLE 5. SONG CLASSIFICATION BY "MODES" 
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8 0 

24 0 

21 1 

23 1 =* 

16 1 =** 

20 0 . 

9 2 . 

22 2 . ,= 

2 2 . I** 

13 2 '== 
I 

7 2 . ,.$=* 

6 3 �9 '- I - - .  ~ . 

1 3 i ..... = 
18 4 .- ., .... 

Ii 4 '- - :* 

19 5 . . . . .  -- 

5 5 . ..-.$ 
14 6 = = ---- �9 o. �9 el o. 

17 6 . . . . .  ~-$$= 

15 6 '~====* ll �9 �9 �9 
I 

3 6 . . . . .  *$* �9 l �9 �9 �9 .l 

$$=**$ 4 6 . . . . .  ,. 

12 6 .. = ..... ==...---- 
f 

i0 0 c - o e o  e o o e o � 9  = = . o = e e  e e  

THE ABOVE SHADES REPRESENT THE FOLLOWING VALUES 

0.i0= 

0.20= 

0.30= 

0.40= 

0.50= . 

0.60= - 
0.70= = 

0.80= $ 
0.90= # 

1.00= * 

FIG. 7. SORTED AND SHADED DISTANCE MATRIX 


