
Detecting Incompleteness in Access Control
Policies Using Data Classification Schemes
Riaz Ahmed Shaikh, Kamel Adi, Luigi Logrippo

Department of Computer Science and Engineering
Université du Québec en Outaouais

Quebec, Canada
Email: {riaz.shaikh, kamel.adi, luigi.logrippo}@uqo.ca

Serge Mankovski
CA Inc.

125 Commerce Valley DR W, Thornhill
Ontario, Canada.

Email: serge.mankovski@ca.com

Abstract—In a set of access control policies, incompleteness is
the existence of situations for which no policy applies. Some
of these situations can be exploited by attackers, to obtain
unintended access or to compromise integrity. Such cases can be
difficult to foresee, since typical policy sets consist of thousands
of rules. In this paper, we adopt data classification techniques
widely used in the machine learning community for detecting
incompleteness in sets of access of control policies. To the best of
our knowledge, we are the first ones to use data classification
algorithms to detect incompleteness in sets of access control
policies. We show that our proposed solution is simple, efficient
and practical.

Index Terms—Access control, Data classification, Incomplete-
ness, Policy validation.

I. INTRODUCTION

In enterprise environments, permission to access resources
is protected by employing various access control methodolo-
gies. Based on the enterprise security requirements, a policy
administrator selects an appropriate access control method,
such as RBAC [1] or OrBAC [2]. According to the access
control model, the policy administrator defines policies. The
complexity of an access control system is dependent on
number of factors, such as number of subjects, number of
resources, security requirements, access control model etc.
Because of these factors, it is highly possible that a system
may contains anomalies, such as inconsistencies and incom-
pleteness in access control policies.

Incompleteness is the existence of situations for which no
policy applies. Some of these situations can be exploited by
attackers, including the author of the policy or the owner of
the database, to obtain unintended access or to compromise
integrity. Because of the complexity, distribution and size
of typical policy sets, resolving the incompleteness detection
problem is difficult and challenging.

Existing research work has mainly focused on the detection
of inconsistencies in access control policies [3], [4], [5], [6],
[7], [8]. However, less importance has been given to resolving
the completeness problem. Traditionally, completeness checks
can be performed by the policy administrator manually, and
completeness can be achieved by adding new rules in the rule
set. For example, in the case of the OrBAC model [2], the
policy administrator may be able to achieve this goal by adding

negative authorizations. In some systems, incompleteness is
resolved by denying access in the unspecified cases. However,
these meta-rules may not reflect the intention of the security
administrator. Therefore, these anomalies should be brought
to the attention of the security administrator. Detecting incom-
pleteness manually in sets of policies is a very cumbersome
job for large sets of policies. The difficulty increases when
contextual conditions (e.g. time and location) are included in
policies. Therefore, an automated mechanism or tool is highly
needed to assist policy administrators in detecting anomalies,
and validating policies.

In this paper, we adopt data classification techniques widely
used in the machine learning community for detecting in-
completeness in sets of access of control policies. We have
applied three different data classification algorithms such as
Limited Search Induction Algorithm (LSIA) [9], C4.5 [10]
and ASSISTANT’86 [11]. We show that the LSIA and C4.5
data classification algorithms (with some extension that we
have proposed) are very efficient in detecting incompleteness
in sets of access control policies. We show that our solution
is simple and practical. To the best of our knowledge, we are
the first ones to use data classification algorithms to detect
incompleteness in sets of access control policies.

The rest of the paper is organized as follows. Section II
presents concepts and definitions. Section III contains a de-
scription about our proposed incompleteness detection strat-
egy. Section IV shows detailed demonstration of proposed
solution. Section V contains discussion. Finally, Section VI
concludes the paper and discusses future work.

II. CONCEPTS AND DEFINITIONS

A policy set must contain at least one rule. In terms
of data mining, rules are described as ordered collections
of attributes. These attributes are classified into two types:
1) Non-category attributes and 2) Category attributes. Non-
category attributes are decision-making attributes, such as
role, subject, location, time etc. Each non-category attribute
represents some important feature of a particular rule and
contains some discrete or continuous value. On the other hand,
a category attribute represent the class to which a rule belongs.
Typically, a category attribute takes only the values {Allowed,
Denied, Not Applicable}, or similar.

From the perspective of data classification, we can formally
define incompleteness in following manner. Let ℜ be a set
of rules (ℜ = {R1, R2, . . . , Rn}), where ℜ ̸= ϕ. Rules
R ∈ ℜ have an uniform structure, consisting of a number of
attribute/value pairs. This can be realistically expected, if one
assumes that default values can be used. Each rule R ∈ ℜ com-
prises a set of non-category attributes A = {A1, A2, . . . , An}
and one category attribute C. Formally, a rule Ri can be
written as follow:

Ri : A1 ∧A2 ∧ . . . ∧An → C

For example, consider the following rule.

R : role(Doctor) ∧ resource(Medicalrecord)∧

action(Write) → Allowed

In this example, Doctor, Medical record and Write operation
are the non-category attributes of the rule and Allowed is the
class attribute of the rule.

Let Υ(Aj) denote the set of all values assigned to an
attribute Aj . Let υ(Ri.Aj) denote the value assigned to an
attribute Aj in rule Ri.

Definition 1: For each decision-making attribute Aj ∈ A if∪
i=1,..,m

υ(Ri.Aj) ⊂ Υ(Aj)

then ℜ is incomplete with respect to attribute Aj (where ⊂
denotes a proper subset).

In the above definition, each attribute defined in a rule has
only one value. If more than one value is assigned to a single
attribute then each case will be handled individually.

Example 1. Let us assume that a set of rules only uses one
attribute called Day. It can take seven possible values.

Day = {Mon, Tue,Wen, Thu, Fri, Sat, Sun}

If no rule is defined for a particular Day (say Friday), then
according to our definition, the rule set ℜ is incomplete with
respect to attribute Day.

III. INCOMPLETENESS DETECTION STRATEGY

Our proposed incompleteness detection method consists of
the five steps shown in Figure 1. Details about each step is
given below.

Step#1: Get policies for each resource set.
Access control rules are classified with respect to the resource
set. Here, the resource set is anything (soft or hard) that has
an identity and requires permission for access. A resource set
may contain single or multiple things but could not be empty.
For example, a resource set could be medical records etc. Our
algorithm separates the policies according to the resources they
refer to, since policies that refer to different resources cannot
be in conflict.

Step#2: For each resource set, we need to define non-
category attributes.
As defined earlier, non-category attributes are the decision

Fig. 1. Incompleteness Detection Method

making attributes, such as users (e.g. Doctor, Alice), and con-
text (e.g. location, time). Each resource set can be described
by different non-category attributes. These attributes can be
either defined by the policy administrator or can be obtained
by applying some rule mining or parsing technique on each
set.

Step#3: Fetch attribute-values of each rule.
For each rule related to a particular resource set, we need to
fetch attribute values. In order to provide valid input to the
data mining algorithm, all attributes must be in an ordered
collection. For example, Subject, Operation, Location, Time
etc. If a specific attribute is not used in a particular rule, then
we can use a default value.

Step#4: Decision tree generation for each resource set.
In order to detect incompleteness in the policy set that controls
access to a resource, we first generate a decision tree by
applying a data mining algorithm. By default, standard data
classification algorithms such as C4.5 generates compact or
optimized trees, which may not contains all attributes. In
order to ensure that all non-category attributes are present in a
decision tree, we need to ensure that the following condition
holds:

Tα ≥ Ari + 1 (1)

where, Tα represent the depth (levels) of the decision tree, Ari

represents the total number of non-category attributes defined
for resource i and 1 is for the root node which represents
the category attribute. This condition can be obtained by a
modification in the standard data classification algorithm such

TABLE I
POLICY SET FOR EMPLOYEE‘S RECORD

Role Location Time Permission
R1 Doctor - - Denied
R2 General ward 9:00-17:00 Denied

R3
Admin
Staff Emergency ward 17:01-8:59 Denied

R4 Admin office 9:00-17:00 Allowed
R5 17:01-8:59 Allowed

as C4.5 algorithm. The algorithm so modified will be said to
be extended.

Step#5: Incompleteness Analysis
In a decision tree, each branch bi (from the root to a terminal
node) represents one rule. In order to detect incompleteness in
the decision tree, we will apply Algorithm 1. First we check
the terminal node of each branch (Lines: 3-4). If any terminal
node tnode does not contains any category (C) attribute value
(Line: 4), this means that no explicit rule is defined in the
specific context for particular user(Line:7). The information
about the user and context will be fetched from the complete
branch (root to terminal node) (Line: 5). If a category value
is assigned to all the terminal nodes then this means that the
policy set is complete (Lines: 11-13).

Algorithm 1 Incompleteness Detection Algorithm
Input: Decision tree
Output: Context of incompleteness

1: Let A(bi) be the set of all attributes present in one branch.
2: Bool complete = true;
3: for each branch bi in Decision tree do
4: if no category attribute is assigned to terminal node

bi.tnode then
5: A = fetch all attributes of branch(bi);
6: Policy set is incomplete w.r.to label(bi.tnode);
7: Complete context: A(bi);
8: complete = false;
9: end if

10: end for
11: if complete = true then
12: No incompleteness found;
13: end if

IV. EXAMPLE

A. Example 1

Let us assume that we have one resource called employee‘s
records. A sample set of rules that includes five rules is given
in Table I.

This table shows that the resource is accessible to the two set
of users (doctors and admin staff) in different contexts, such as
location and time. The set of rules includes three non-category
attributes: A1 = Role , A2 = Location, and A3 = Time.
Possible values for these attributes are given in Table III. Also,

TABLE II
NON-CATEGORY ATTRIBUTES FOR RESOURCE: EMPLOYEE‘S RECORD

Attribute Possible values
Role-1: Doctor

Role Role-2: Admin staff
...
L1: General Ward

Location L2: Emergency ward
L3: Admin office
...
T1: 9:00-17:00

Time T2: 17:01-8:59
...

we have two permission category attribute values: Allowed and
Denied.

In order to generate the decision tree for this policy set,
we have applied three data mining algorithms: 1) C4.5 [10],
2) Limited Search Induction Algorithm (LSIA) [9], and 3)
ASSISTANT86 [11]. For this purpose, we have used the
Sipina data mining software package developed by Ricco
Rakotomalala in the ERIC Research laboratory [12].

Figure 2(a) shows the decision tree generated by the C4.5
algorithm. One can see that the depth of the decision tree is
three. In this tree, not all defined attributes are present, for
example the attribute time is not present. When we add the
condition (Tα ≥ Ari + 1) in the C4.5 algorithm, then we
get the decision tree shown in Figure 2(b). In this tree, all
essential attributes are present and the most important thing
that we need to notice is that no category attribute (Allowed or
Denied) exists at two terminal nodes (2nd and 4th from left at
the last level). This shows that the policy set of this resource
is incomplete with respect to the location attribute in certain
time contexts. This small extension (enforcement of condition:
Tα ≥ Ari + 1) in C4.5 algorithm, provides a more clear and
complete picture of the domain.

When we applied the algorithm ASSISTANT’86 on the
same policy set, we obtained a more compact tree, shown
in Figure 3(a). Similar to the C4.5, this algorithm does not
provide a complete tree. When we modified the algorithm to
ensure condition 1, we obtained the complete tree shown in
Figure 3(b). However, this algorithm is still not useful to detect
incompleteness.

When we applied the standard limited search induction
algorithm (LSIA) and modified form of the LSIA on the
same policy set, we obtained the decision trees shown in
Figure IV-A. The LISA algorithm generates more condensed
trees (Figure 4(a)) as compared to the C4.5 algorithm (Fig-
ure 2(a)). In Figure 4(a) , two essential attributes, role and time
are not present. In order to get a complete tree, we applied
the proposed modified form of LSIA shown in Figure 2(b).
This figure shows that the extended form of LISA is also
capable of detecting incompleteness in set of access control
policies. However, it requires more iterations as compared to
the extended form of the C4.5 algorithm.

(a) C4.5 (b) Extension: C4.5 with condition (Tα ≥ Ari + 1)

Fig. 2. C4.5: Decision trees for employee‘s record

(a) ASSISTANT’86 (b) Extension: ASSISTANT’86 with condition (Tα ≥ Ari + 1)

Fig. 3. ASSISTANT’86: Decision trees for employee‘s record

(a) LSIA (b) Extension: LSIA with condition (Tα ≥ Ari + 1)

Fig. 4. LSIA: Decision trees for employee‘s record

B. Example 2

Let us assume that we have two subjects Alice and Bob.
Both are allowed to work in a departmental store on different
week days as shown in Table III.

TABLE III
POLICY SET FOR EXAMPLE 2

Subject Day Permission
R1 Alice MON Allowed
R2 Bob MON Denied
R3 Bob TUE Allowed
R4 Alice WEN Allowed
R5 Bob WEN Denied
R6 Alice THU Denied
R7 Alice FRI Allowed
R8 Bob FRI Denied

In order to find the any incompleteness in this policy set,
we have applied three (C4.5, ASSISTANT and LSIA) data
classification algorithms we have just seen. Due to page limit

TABLE IV
COMPARISON OF DATA CLASSIFICATION ALGORITHMS

Incompleteness Detection

Exp. 1 Extra
iterations

Exp. 2 Extra
iterations

C4.5 No - No -
C4.5 with extension Yes 1 Yes 1

LSIA No - No -
LSIA with extension Yes 2 No 0

ASSISTANT’86 No - No -
ASSISTANT’86 with
extension

No 2 No 2

restrictions, we have only shown the decision trees generated
by the extended version of these three algorithm. In Figure 5,
one can see that only the extended form of the C4.5 algorithm
found two incompleteness situations in the policy set.

V. DISCUSSION

Table IV summarizes the comparison of three data classi-
fication algorithms. In this table, extra iterations represents

(a) Extension: C4.5 with condition (Tα ≥ Ari + 1)

(b) Extension: ASSISTANT’86 with condition (Tα ≥ Ari + 1)

(c) Extension: LSIA with condition (Tα ≥ Ari + 1)

Fig. 5. Decision trees for example 2

additional iterations that are required to generate complete
decision trees by the extended version of the algorithm as
compared to the original one. From experiments, we here
concluded that not all data mining algorithms are capable of
detecting incompleteness in sets of access control policies,
for example the ASSISTANT’86 algorithm cannot. If we
enforce condition (Tα ≥ Ari+1) then some data classification
algorithms such as C4.5 (in general) and LSIA (in some
cases) are useful to detect incompleteness in sets of access
control policies. Also, in terms of detecting incompleteness
and computation (number of iterations), the extended form of
the C4.5 is the best. The values of ‘extra iterations’ that are
given in the Table IV are only for the examples presented in
previous section. These can change for different data sets.

Witten and Frank [13] have calculated an ordered complex-
ity of the C4.5 algorithm in following manner.

O(m n log n) +O(n (log n)2)

where n is the size of the training data (in our case the number
of rules) and m is the number of attributes. O(m n log n)
represent the complexity for building complete decision tree
and O(n (log n)2) is required for sub-tree raising (prun-
ing). In our proposed incompleteness detection method, we
are only interested in building a complete decision tree. So
the complexity of our method for building decision trees is
O(m n log n).

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have investigated the use of data clas-
sification techniques for detecting incompleteness in access
control policies. We applied three different data classifica-
tion algorithms such as, Limited Search Induction Algorithm
(LSIA) [9], C4.5 [10] and ASSISTANT’86 [11]. We show
that the C4.5 data classification algorithm (with some modi-
fication that we have proposed) is very efficient in detecting
incompleteness in sets of access control policies. We show that
our solution is simple, efficient and practical. To the best of
our knowledge, we are the first ones to use data classification
algorithms to detect incompleteness in sets of access control
policies. Also, the computational complexity of our proposed
method is linear. Note however that the current method does
not taken into consideration complex boolean conditions that
are often used in access control policies. Those conditions are
the subject of future work.

ACKNOWLEDGMENTS

The work reported in this article was partially supported
by the Natural Sciences and Engineering Research Council
of Canada and CA Labs. The authors would like to thank
all members of the Computer Security Research Lab (UQO,
Canada) specially to Hemanth Khambhammettu and Ji Ma for
providing useful comments and suggestions.

REFERENCES

[1] D. Ferraiolo, D. Kuhn, and R. Chandramouli, Role-based access control.
Artech House Publishers, 2003.

[2] A. Kalam, R. Baida, P. Balbiani, S. Benferhat, F. Cuppens, Y. Deswarte,
A. Miege, C. Saurel, and G. Trouessin, “Organization based access
control,” in Proceedings of the IEEE 4th International Workshop on
Policies for Distributed Systems and Networks (POLICY 2003). Los
Alamitos, CA, USA: IEEE Computer Society, 2003, pp. 120–131.

[3] B. Stepien, S. Matwin, and A. Felty, “Strategies for reducing risks of
inconsistencies in access control policies,” in Proceedings of the 5th
International Conference on Availability, Reliability and Security (AReS
2010). IEEE, Feb 2010, pp. 140–147.

[4] N. Dunlop, J. Indulska, and K. Raymond, “Dynamic conflict detection in
policy-based management systems,” in Proceedings of the Sixth interna-
tional Enterprise Distributed object Computing Conference (EDOC’02).
Los Alamitos, CA, USA: IEEE Computer Society, 2002, p. 15.

[5] S. Benferhat, R. El Baida, and F. Cuppens, “A stratification-based
approach for handling conflicts in access control,” in SACMAT ’03:
Proceedings of the eighth ACM symposium on Access control models
and technologies. New York, NY, USA: ACM, 2003, pp. 189–195.

[6] C.-J. Moon, W. Paik, Y.-G. Kim, and J.-H. Kwon, “The conflict detection
between permission assignment constraints in role-based access control,”
Lecture notes in computer science, vol. 3822, pp. 265–278, 2005.

[7] F. Cuppens, N. Cuppens-Boulahia, and M. B. Ghorbel, “High level
conflict management strategies in advanced access control models,”
Electronic Notes in Theoretical Computer Science, vol. 186, pp. 3–26,
July 2007.

[8] K. Adi, Y. Bouzida, I. Hattak, L. Logrippo, and S. Mankovskii, “Typing
for conflict detection in access control policies,” Lecture Notes in
Business Information Processing, vol. 26, pp. 212–226, 2009.

[9] J. Catlett, “Megainduction : Machine learning on very large databases,”
PhD Thesis, School of Computer Science, University of Technology,
Sydney, Australia, 1991.

[10] J. R. Quinlan, C4.5: Programs for Machine Learning. USA: Morgan
Kaufmann Publishers, 1993.

[11] B. Cestnik, I. Kononenko, and I. Bratko, “Assistant 86: A knowledge
elicitation tool for sophistical users,” in Proceedings of the 2nd European
Working Session on Learning, 1987, pp. 31–45.

[12] R. Rakotomalala, “Sipina data mining software,” http://eric.univ-lyon2.
fr/∼ricco/sipina.html, 2009.

[13] I. H. Witten and E. Frank, Data mining: Practical machine learning tools
and techniques with java implementations. USA: Morgan Kaufmann
Publishers, 1999.

