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Abstract

Formal methods have been proposed as a means of expediting the creation of reliable
software. The use of formal methods allows for clear and unequivocal specification of
a system’s design, and makes possible a form of prototyping that allows for formal
validation against system requirements. However, the adoption of formal methods by
industry has so far been slow.

It is proposed that one of the obstacles to the adoption of formal methods is
the difficulty of bridging the gap between a formally-specified system and a working
implementation. If this gap is too wide, the advantages of formal specification will
be lost in the transition to implementation.

The methodology described in this thesis attempts to close this gap by demonstrat-
ing how a system may be described using LOTOS (Language Of Temporally-Ordered
Specifications) and validated against requirements using two techniques: composi-
tion with agent scenarios and temporal logic model checking. The methodology then
allows for the derivation of a model in the ROOM (Real-Time Object-Oriented Mod-
elling) notation, which may be automatically converted to an implementation in the
C++ programming language.

The methodology is illustrated with two small case studies. The first is the GPRS
Tunnelling Protocol, used for transmitting protocol data units within the network
of the General Packet Radio Service. The second study concerns authentication of
users of the POP3 Internet mail protocol and demonstrates inheritance in LOTOS.
Together, these case studies illustrate the salient points of the design methodology.

ii
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Chapter 1

Introduction

1.1 Background

As the infrastructure of our society comes to depend more and more upon computers,
the production of reliable software becomes a correspondingly more important task.
While we may be able to tolerate occasional failures in personal computer software,
central systems (such as telephone switches) generally must be more reliable. Formal
methods have been proposed as an aid in the creation of reliable software.

Hall points out that, while formal methods are not infallible, “...any system
benefits generally from using at least some formal techniques.”! Formal methods allow
for unequivocal specification of system requirements, enabling developers and testers
to verify that a finished system conforms to requirements. Furthermore, the use of
formal methods may determine certain properties of a system at the specification
stage, thus avoiding expensive error correction later in development. However, the
adoption of formal methods in industry has not been extensive so far. As Vissers et
al. point out: “At any case we can observe a situation which is far away from the large
scale breakthrough of FMs.”? Vissers et al. go on to point out that the important
part of encouraging industry use of formal methods is its potential in supporting the
whole implementation trajectory. The Lotosphere project (examined in some detail in
section 2.2) attempted with some success to create just such a full design methodology,
covering the whole development path from requirements to tested implementation.

'Hall [Hal90], page 12
2Vissers et al. [VvSP93], page 5. See also [CDH196] for a discussion of the adoption of formal
methods by industry.
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1.2 Motivation

The motivation for this thesis draws from earlier work in the Telecommunications
Software Engineering Research Group on the formalisation of the General Packet
Radio Service. The industrial collaborator was interested in the possibility of deriving
implementations, using the ObjecTime toolset, from LOTOS specifications. Also, as
the ROOM notation does not include a formal validation semantics, there was interest
in combining the notation with a formal description technique. Since the thesis was
written, the ObjecTime toolset has been enhanced to allow for validation with respect
to Message Sequence Charts. However, this validation may still not be as powerful
as the validation techniques available with LOTOS that are explored here.

The primary goal is thus to demonstrate a design methodology which combines
the formal expressive power of LOTOS with the ease of implementation of ROOM.
LOTOS and temporal logic are used to express system requirements in a formal way.
A LOTOS specification is then written, using an implementation-oriented style suit-
able for aiding the creation of an implementation using the ROOM notation. This
specification is validated against the formal requirements to ensure that it behaves
as expected. This validation stage can take advantage of all the tools that are avail-
able for LOTOS. In particular, temporal logic model checking requires state space
expansion, for which a number of tools are available (see section 3.5.3). Finally, an
implementation model is created using the ObjecTime toolset.

It is important to note that this thesis does not attempt to define a complete
translation from LOTOS to ROOM. Rather, it defines a design, validation and im-
plementation methodology that uses LOTOS for design and validation and ROOM
for implementation. To this end, subsets of the LOTOS and ROOM notations are
used. In spite of this limitation, a viable methodology has been obtained. Further,
the thesis does not address the issue of automatic translation between the two nota-
tions. However, clear guidelines for manual translation for a user experienced in both
notations are given. It is recognised that manual translation may introduce errors
and so, to fully benefit from the validation of the LOTOS specification, automatic
translation will ultimately be necessary. The development of automatic translation
has been left for further research.

The thesis also does not attempt to provide a complete validation methodology,
which would include ‘high-yield’ scenarios to reduce the required number of validation
sequences. Instead, the validation sections in this document are largely illustrative,
indicating how validation may form part of a design methodology.
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1.3 Organisation of the Thesis

The remainder of this chapter explains the two main notations used in the thesis:
LOTOS and ROOM. Chapter 2 surveys previous work in the field of implementation
of LOTOS specifications, paying particular attention to the Lotosphere project. The
following chapter outlines the design methodology proposed in this thesis, explains the
validation methods used and the specification style advocated and details the method
for deriving an ObjecTime implementation from the LOTOS specification. Chapter 3
concludes by illustrating the methodology using the simple alternating-bit protocol.
The methodology is illustrated by a more substantive example in chapter 4, which
describes the application of the methodology to the GPRS Tunnelling Protocol. A
significant contribution of the thesis is a proposal for allowing inheritance in LOTOS
specifications (see section 3.6.4). Chapter 5 illustrates how inheritance can aid in
the development of the authorisation stage of a POP3 mail server by capturing the
common behaviour between a basic authorisation technique and a more advanced
one. The thesis concludes with an overview of the contributions made and a survey
of possible future work.

1.4 Notations

The thesis presents a design methodology integrating formal methods for requirements
capture and design, together with an object-oriented modelling technique for imple-
mentation. As a precursor to the discussion of the methodology in chapter 3, I will
provide a brief overview of the two major notations used here; the formal description
technique LOTOS and the object-oriented modelling notation ROOM.

1.4.1 The LOTOS Formal Description Technique

Introduction

The LOTOS (Language Of Temporally-Ordered Specifications) language was devel-
oped during the standardisation of the Open Systems Interconnection (OSI). It was
recognised that such a complex set of protocols could not realistically be described us-
ing the informal natural language techniques typically used for system descriptions.
In order for the protocol descriptions to be useful, they needed to be precise, yet
implementation-independent. ISO? determined that formal description techniques
(FDTs) would be best suited to meeting these requirements, and sponsored the de-
velopment of LOTOS and ESTELLE. While ESTELLE was based on finite state

3International Standards Organisation
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machine models, LOTOS was based on process-algebraic concepts derived from Mil-
ner’s CCS* and Hoare’s CSP5. The process-algebraic behaviour description notation
was augmented with an Abstract Data Type (ADT) data description notation, Ehrig
and Mahrs’ ACT ONE [EMS85]. After additional development, the language was
finally standardised by ISO in 1989.

Important features of the language

LOTOS has a number of important features which are relevant to the design method-
ology explained in chapter 3. Among these features are:

Synchronous symmetric communication Communication between processes is
achieved through synchronous symmetric communication. This synchronisa-
tion can involve more than two parties, in which case they must all agree to
synchronise simultaneously.

Atomic events All events are regarded as atomic and of zero duration.

Formal semantics A formal semantics is provided for LOTOS both in terms of
inference rules, indicating the next state of the system, and in terms of expansion
rules, which allow the semantics of all other operators to be expressed in terms
of a small number of basic operators.

Executability The inference rules of the formal semantics of LOTOS make it pos-
sible to create execution environments which determine the description of the
next state of the system given the current state and a chosen action. These en-
vironments allow for simulation (allowing a designer to observe a prototype of
a system in operation) and validation (applying validation sequences describing
required behaviour).

Basic operators

LOTOS specifications are composed of behaviour expressions that describe sequences
of events. Events are referred to as actions and fall into two categories. Internal
actions (denoted by i) can be executed by a process without synchronisation with
other processes or the environment, while ordinary actions must synchronise and are

4Calculus of Communicating Systems, see [Mil89).

5Communicating Sequential Processes, see [Hoa85].

6For further explanation of the development of LOTOS and ESTELLE, together with the FDT
SDL (developed within CCITT (The International Consultative Committee on Telegraphy and Tele-
phony, now the ITU-T)), see Turner [Tur93]. For more detailed tutorials on LOTOS, the reader is
referred to the papers by Logrippo et al. [LFHH92] and Bolognesi and Brinksma [BB87].
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offered at synchronisation points called gates. The most basic behaviour expressions
are those denoted by stop, which indicates that no further action can occur (ie. the
system is deadlocked) and exit, which indicates that a process exits successfully.
Actions can be sequenced using the action prefix operator, ;, creating sequences such
as a; b; c; exit. For the purposes of illustration, lower-case letters, such as a, b
and c, will be used to denote actions, while upper-case letters, such as B and C, will
be used to denote behaviour expressions. Thus, the general case of the action prefix
operator is a; B, which means that the process synchronises on gate a, and then
behaves like behaviour expression B, which can be a stop, an exit or other actions.

To indicate that alternative sequences of events are possible, LOTOS provides the
choice operator, []. This is placed between two or more behaviour expressions, and
indicates that either (or any) of the specified behaviours is possible. For example,
a; B [l c; D can either synchronise with gate a, then behave like B, or synchronise
with gate c, then behave like D. Sometimes, the process with which this expression
synchronises will force the choice; perhaps only synchronisation with ¢ is possible. If
the choice is not forced, LOTOS mandates non-determinism; either branch may be
taken. Non-determinism can be made explicit in either of two ways:

1. Specifying the same initial action on either side of a choice operator indicates
that the process can synchronise with that gate, but then behave differently. For
example a; B [] a; D can synchronise with a process offering to synchronise
on a, but the other process cannot determine whether the following behaviour
expression will be B or D.

2. Using an internal action allows the process to go ahead and make a choice
without synchronisation with another process or the environment. For exam-
ple a;(i; B [1 i; D) synchronises with gate a, but then makes an internal
transition to a system that either behaves like B or like D.

Actions may be grouped together to form a process, which encapsulates its be-
haviour. The process definition takes the form:

process <process—name> | <gate—list> | : <exit—behaviour> :=
...actions...
endproc

In this definition, <gate-1ist> lists the gates through which the process will syn-
chronise. This list must include all the non-internal actions with the exception of those
hidden by the hide operator (see below). The specification of <exit-behaviour>
should either be exit to indicate that the process terminates by exiting, or noexit
to indicate that the process either stops (using the stop action) or invokes another
process. Recursive process definitions are allowed and, in fact, are the way in which
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repeated behaviour must be specified; LOTOS does not provide looping constructs.
A further extension of the <exit-behaviour> allows for passing values to the next
process.

Processes may be composed sequentially using the enable operator (>>). Given
two processes, P1 and P2, P1 >> P2 indicates that if and when P1 terminates with
an exit, process P2 will commence.

The disable operator, [> indicates that one process may interrupt another. For
example, P1 [> P2 indicates that process P2 may interrupt P1 at any point while P1
is executing. The interrupt can only occur if the first action of process P2 is enabled
(that is, can execute). If the interrupt does occur, no further execution of P1 happens,
and execution continues with the actions of P2. If P1 terminates unsuccessfully, P2
may execute, while if P1 terminates successfully (ie. with an exit), the actions of
process P2 are not available.

To enhance the encapsulation of LOTOS behaviour, the hide operator may be
used to hide chosen gates from external synchronisation. For example, in the process
definition below, only gate g is visible to other processes; gate h is only used for the
internal processing of process P1.

process P1 [g] : exit :=
hide h in

(
P1_1 [g, h]

|[B]]
P1_2 [g, h]
)

endproc

process P1_1 [in, out] : exit :=

The above process definition also illustrates process instantiation. The process
P1_1 is defined with gates in and out. Specifying P1_1 in the definition of P1 indicates
that the behaviour of P1_1 will be inserted, with the gate in aliased to g and the
gate out aliased to h. That is, wherever P1_1 would have synchronised on in, it will
now synchronise on g.

LOTOS processes may be composed in parallel in three different ways. The sim-
plest way is through the interleave operator (| ||), which indicates that the processes
continue independently, save that they must both (or all, if there are more than two
processes composed in parallel) agree to exit before the composition can exit. For
example, in the LOTOS fragment below, both P1 and P2 must exit before process P3
can be enabled.
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(P1[g] || P2[h]) > P3[i]

The second parallel composition operator, written as | |, requires strict synchro-
nisation on all non-hidden gates. In the fragment below, processes P1 and P2 must
synchronise on gates f, g and h at every stage.

PL[f, g, b] || P2[f, g, b
A related notion is the generalised parallel operator, written | [gates] |, which
specifies a list of gates on which the processes must synchronise. The processes

interleave on all other gates. Thus, in the fragment below, P1 and P2 must synchronise
on gate £, but interleave on gates g and h.

P1[f, g, b] [[f]] P2[f, g, b]
LOTOS supports data specification through the abstract data type notation ACT
ONE [EM85]. Although ACT ONE allows for the definition of many different data

types, it is generally used here only for the definition of enumerated data types, as in
the following example, defining two possible values of a message:

type message is
sorts msg
ok, err :=> msg
endtype

Given a definition of data types, LOTOS allows for value passing during synchro-
nisation on a gate. An action can offer a value, written ! <value>, or accept a value,
written ? <variable>:<value-type>. If two processes synchronise on a gate, and
both offer a value, it must be the same value in order that the synchronisation can
occur. If one offers a value and the other accepts a value, the value offered must be
of the same type as that accepted by the other process, and the value is passed from
one process to the other.

When values have been passed, we can impose conditions on further execution
using the guard construct. For example, in the LOTOS fragment below, the value
accepted at gate g must be success for the first branch to be taken, or failure for
the second branch to be taken.

g 7 x:signal,

(
I
)

LOTOS provides a number of other constructs, and the issue of data specification
is more complex than indicated here. However, the thesis relies on the subset of
LOTOS syntax just covered.

[x = success] > ...

[x = failure] > ...
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Specification Styles

The issue of specification styles is debated in an important paper by Vissers et
al. [VSvSB91], who distinguish between extensional and intensional definitions of
systems. Extensional definitions are those which describe the system solely in terms
of externally observable behaviour, while intensional definitions include mention of
internal interactions and sequences of actions. The authors identify some of the
conflicting requirements of specifications, pointing out that specifications should be
written in an implementation-independent way, thus allowing implementors the max-
imum freedom possible. This requirement conflicts with another issue, however; the
structure of the specification is likely to govern the structure of an implementation,
so that a poorly-structured specification is likely to result in poor quality implemen-
tations. Thus, the authors argue that specification writers should avoid excessive
implementation detail, while at the same time consider how the specification will be
implemented. It should be noted that it is possible to transform LOTOS specifica-
tions, such that a specification written in a more abstract style can be transformed
into a more implementation-oriented style. For more details, see the Lotosphere
project (discussed in section 2.2).

In order to aid specification writers, Vissers et al. identify four major styles of
specification. The first two styles, referred to as the monolithic and the constraint-
oriented, are extensional in nature and are intended for the early stages of design,
while the state-oriented and resource-oriented styles are more intensional, intended
for later stages of design.

Monolithic style The monolithic style is characterised by the absence of hidden ac-
tions and the lack of parallel operators. The specification appears as a branching
choice between sequences of actions. The prohibition of the parallel operators
prevents the specifier from indicating possible functional decomposition of the
system, making the specification implementation independent. However, the
specification is likely to be longer and harder to read than those written in
other styles.

Constraint-oriented style The constraint-oriented style relaxes the prohibition of
parallel operators, producing more compact and readable specifications than
those possible using the monolithic style. The entities composed using the
parallel operators are not to be viewed as software entities, however, but rather
as constraints on the possible sequences of actions executable by the system.

State-oriented style The state-oriented style makes explicit the global state space
of a system. Because a specification in this style is written in terms of the
global state space, it suffers from the limitation of hiding the distributed nature
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of a system. However, the style can be combined with the resource-oriented
style described below to yield a composite style particularly well suited to the
later stages of design. The resource-oriented style describes the distribution of
a system’s functionality over a set of resources, while using the state-oriented
style within each resource provides information about the functioning of each re-
source. This state-oriented description of each resource may be used to develop
the implementation of the resource.

Resource-oriented style The resource-oriented style represents a system as a com-
position of communicating resources. Observable, internal and hidden actions
are all included, and the system is composed of resources synchronising at gates.
This style is particularly well suited to implementation oriented specifications,
as each resource represents a self-contained entity that may be implemented as
such and then composed with other resources to create the system. Within each
resource, any specification style may be used, including the iterative application
of the resource-oriented style. By this means, we can support a sequence of func-
tional decompositions by decomposing resources into component resources. At
the lowest level, the functionality of a single resource should be simple enough
that any of the preceding styles may be applied.

The specification style presented in this thesis uses the resource-oriented style to
accommodate a functional decomposition of the system into a group of communicating
actors. Within each actor, a modified form of the state-oriented style is used to
describe actor behaviour. In the paper by Vissers et al., an explicit state variable is
used, as in the LOTOS fragment below. The invocation of QA_servicel on the third
line starts the system in the awaitQ state. The definition of process QA_servicel
indicates the choice of states that the process can be in (awaitQ, pendingQ, ...) and
the way that the process should behave according to the state it is in. A transition to
another state is indicated by a recursive invocation, specifying the new state as the
first parameter.

process QA_service|Q, A]:noexit:=
...initialisation...
QA _servicel[Q, A](awaitQ, q, a)
where
process QA _servicel [X, Y](s:state, x:question, y:answer):noexit:=
[s = awaitQ] = X7x1:question;
QA _servicel[X, Y](pendingQ, x1, y)
[ [s = pendingQ] = Ylx;
QA _servicel[X, Y](awaitA, x, y)
[ [s = awaitA] = Y?yl:answer;
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QA _servicel[X, Y](pendingA, x, y1)
[| [s = pendingA] = Xly;
QA _servicel[X, Y](done, x, y)
[| [s = done] = stop
endproc
endproc

The state-oriented style used in this thesis represents each state as a separate
process. Thus, the example above might be rewritten as:

process QA_service|Q, A]:noexit:=
...initialisation...
QA _service_awaitQ[Q, A](q, a)
where
process QA _service_awaitQ[X, Y](x:question, y:answer):noexit:=
X7x1:question;
QA _service_pendingQ[X, Y](x1, y)

endproc

process QA _service_pendingQ[X, Y](x:question, y:answer):noexit:=
Yix;
QA _service_awaitA[X, Y](x, y)

endproc

process QA _service_awaitA[X, Y](x:question, y:answer):noexit:=
Y?yl:answer;
QA _service_pendingA[X, Y](x, y1)

endproc

process QA _service_pendingA[X, Y](x:question, y:answer):noexit:=
Xly;
QA _service_done[X, Y]|(x, y)

endproc

process QA _service_done[X, Y](x:question, y:answer):noexit:=
stop

endproc

endproc

In the LOTOS fragment above, each state of the QA_service is represented by a
different process. Any value parameters that are passed (in this example, x:question
and y:answer) are extended state variables; there is no value parameter to indicate
the current state of the system. The intention is that this style is better suited to
hierarchical decomposition of states (see section 3.6.3), and better suited to imple-
mentation using the ROOM notation (see section 3.8).
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Equivalence and Testing

The semantics of LOTOS may be understood in terms of a generalisation of finite
state machine called a labelled transition system, or LTS. The LTS is often drawn as a
tree, such that each of the nodes of the tree represents a possible state of the system,
and the branches represent alternative execution sequences. The collection of all of
the possible execution sequences is referred to as the traces of the LTS, and hence of
the underlying LOTOS specification.

In order to check whether a LOTOS specification may execute a particular trace,
the trace is composed in parallel with the specification and the combination is ex-
ecuted (usually by means of an execution tool such as LOLA (see discussion on
page 21)). If the combination does not deadlock before the end of the trace sequence,
then the specification can execute that trace. This notion of testing using traces is
used by Brinksma to define a notion of conformance (see [BSS87], also [Bri89]). A
specification Bj is said to conform (indicated by conf) to By if no deadlocks occur
when testing all the traces of B, against B; that would not have occurred when
testing against Bs.

The notion of conformance may be weaker than required, as it does not include
robustness testing. That is, B; conf By does not guarantee that B; does not exhibit
traces that are not specified in By. Brinksma goes on to define the reduction relation,
such that B; red Bs if and only if B; conf B, and Tr(B;) C Tr(B,), where Tr(B)
is the set of traces of specification B. Informally, if B; red Bs, then everything that
B does do is allowed according to By and what B; refuses to do can be refused
according to Bs. The reduction relation is then used as the basis of the notion of
testing equivalence: if By red By and By red B;, By and B, are said to be testing
equivalent.

Brinksma goes on to define the extension relation (indicated by ext). We say
that B; ext B, if B; does everything that By does (though it may do more) and
B; cannot refuse behaviour that By does not refuse. The extension relation is used
by Brinksma in a discussion of implementation: an implementation of a specification
must do everything that the specification does, but it may do more. As with the
reduction relation, extension may be used to define testing equivalence; if B; ext B,
and B; ext By, B; and By are said to be testing equivalent.

These notions of conformance, extension and testing equivalence will be seen to
be important later, particularly when discussing inheritance in section 2.3.2.
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1.4.2 Real-Time Object-Oriented Modelling

Introduction

The Real-Time Object-Oriented Modelling technique, also known as ROOM, was
created to offer an abstraction method for developing real-time systems (see Selic
et al. [SGW94]). The intention is that ROOM should allow developers to manage
the complexity of modern systems through a number of support mechanisms. A key
aspect of this complexity management is the use of graphical notations to represent
both the structure and the behaviour of the system being designed. It is argued that
the use of the graphical notation makes it easier to comprehend the operation of the
system, thus reducing the possibility of design errors. ROOM specifies executable
models, allowing designers to try out their designs before committing them to final
code. Furthermore, the ROOM technique is supported by the ObjecTime toolset,
which provides drawing tools for the graphical notations together with an execution
run-time system to support simulation and debugging.

The term real-time is not necessarily clearly defined, and a number of different
uses of the term are possible. Real-time in the ROOM notation describes systems
which share a number of characteristics. Among these are:

Timeliness The system must respond in a timely manner, and late responses will
have some deleterious effect.

Dynamic structure The system will typically execute over an extended period and
its internal structure will change over time.

Reactiveness The sequence of events to which the system must respond cannot
be determined beforehand; the system must be ready to respond to whatever
occurs. Typically, the response of the system will depend on some internal
state determined by the previous events, so real-time systems are regarded as
state-dependent.

Concurrency Events may arrive from several points simultaneously, and serial han-
dling is typically not sufficient; the system must have multiple concurrent
threads of execution, each handling a different aspect of the system’s behaviour
or a different input event.

Distribution The system will typically not exist on a single node, but will involve
distributed components.

While these items may not form a universal definition of real-time systems, the devel-
opers of the ROOM notation use them to define the subset of systems most amenable
to treatment with the ROOM technique. In particular, the definitions may include
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systems not typically thought of as real-time, while excluding some systems (such as
hard real-time”) that are usually included.

Because ROOM has been developed to manage complexity, it is natural that
the notation embeds notions of object-orientation to allow abstraction and reuse.
The ROOM practitioners regard objects as representing more than just Abstract
Data Types (ADTs). Instead, objects are regarded as logical machines, active over
extended periods of time, reacting to incoming events and exerting influence over their
environment. Regarding objects as logical machines allows the integration of objects
which may be implemented as hardware components, or which may be intangibles,
such as a telephone call.

Object-orientation offers a number of valuable features in the decomposition of
complex systems. In particular, a central concept of object-orientation is that of
encapsulation, that requires objects to hide their internal structure and algorithms
and to present a well-defined interface to other parts of the system. Making a defined
interface available eases the process of using an object — the designer need only
understand what the object does without having to worry about how that behaviour
is achieved. Encapsulation also allows the internal structure or behaviour of an object
to be modified, perhaps to use a more efficient algorithm, without concerning the
designer about the effects of this change on other parts of the system.

Connected with the notion of encapsulation is that of messages. Using messages to
communicate between objects whose internals are hidden by encapsulation allows us
to define clearly the nature and contents of inter-object communication. Thus, when
object A wishes to obtain some information from object B, it must send a request
message and wait for a response. This messaging offers a cleaner way of programming
than the approach of allowing A to access B’s information directly, as may occur in
ordinary functional programming.

A further advantage of the use of object-orientation is the use of inheritance to
reuse design work. Objects are regarded as instantiations of classes, where classes de-
scribe the structure and behaviour of objects. Two classes which have some structure
or behaviour in common may inherit that structure or behaviour from a base class.
The base class need be written only once, removing the need for code duplication,
and the derived classes need contain only behaviour that is new or different. Some
object-oriented languages (such as C++) allow for multiple inheritance, in which a
class can inherit from more than one base class. However, this feature can lead to
ambiguous code (C++ has some notational conventions for resolving this ambiguity,

Selic et al. describe hard real-time systems as those “where missing even a single deadline is

considered unacceptable.”, offering as examples “nuclear power stations, medical equipment, and
aircraft control.” [SGW94], page 21.
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Figure 1.1: Representation of a hierarchically-structured actor in the ROOM notation.

though the code may remain confusing), and the designers of the ROOM methodology
have chosen to not support multiple inheritance.

Actor Structure

ROOM models are based upon decomposition of a system into actor classes. Each
actor class describes an object or group of objects with common structure and be-
haviour. Messages that may be passed between the actors are grouped into message
sets, and these sets form the basis of protocol class definitions. The encapsulation
boundaries of actors are broken only by ports, which allow messages to pass and are
described by a protocol class. In this way, ROOM allows the designer to describe the
precise set of messages that the actor can send and receive and preserve the notion
of encapsulation. Actor class definitions include a description of behaviour that is
regarded as orthogonal to actor structure. That is, the behaviour diagram should not
be embedded within the structure diagram, but should be viewed separately.

The ROOM notation allows for the hierarchical structuring of actors. Actors
may be decomposed into component actors, bound together by message passing.
Component actors may communicate with the outside world through relay ports that
connect a component actor’s port to the encapsulation boundary of the containing
actor. To model multiple instances of a system component, actors may be replicated,
and actors communicating with replicated actors do so through a replicated port. See
figure 1.1 for an example of the ROOM notation for an actor.
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Figure 1.2: ROOMchart representation of the behaviour of an actor.

Actor Behaviour

Actor behaviour is defined in terms of ROOMcharts, a hierarchical state machine
notation which owes much to Harel’s statecharts [Har87]. ROOMcharts describe be-
haviour in terms of transitions between the actor’s different states. Thus, the response
of the actor to a given stimulus depends upon the state of the actor at the time. All
transitions (with the exception of the initial transition, triggered automatically when
the actor is created) must be associated with one or more trigger events, such as the
reception of messages or a timer timeout.

Conditional behaviour may be specified in ROOMcharts either by associating
guard conditions with transitions or through the mechanism of choice points. Guards
are used to specify that a transition should be triggered if the triggering event occurs
and a certain condition applies. The condition often involves testing the content of the
triggering message and, if the condition is not satisfied, not undertaking the transition.
Choice points are used when a given trigger should always result in a transition, but
the transition may be to one of two destinations. The outgoing transition is associated
with the desired triggering event and a condition is included in the specification of
the choice point. If the condition is satisfied, one branch is taken; if not, the other
branch is taken. See figure 1.2 for an example of the ROOMchart representation of
the behaviour of an actor.
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For the actor to influence its environment, actions may also be associated with
transitions (so that if the transition is taken, the action is executed) or states (actions
may be executed whenever the flow of control enters a particular state, or whenever
it leaves a particular state). Actions may change internal variables or send messages
to other actors, and this message passing can be asynchronous (through the send
mechanism) or synchronous (through the invoke mechanism).

ROOMcharts inherit from statecharts the hierarchical state machine structure.
This structure allows behaviour to be defined at a high-level of abstraction, and
allows the states at this level to be decomposed into sub-states and thus provide
greater behaviour detail. The hierarchical structure also allows states to be grouped
together and group transitions (such as a common response to an abort signal) to
be defined. The use of the hierarchy to define a common response to a signal can
greatly improve the readability and comprehensibility of a state diagram. As well
as supporting single exit transitions from a group of states, ROOM supports history
transitions that return to the previous state.

Executable Code

The ROOM notation provides a formal, graphical notation to express both the struc-
ture and the behaviour of real-time systems. Because the notation is defined formally,
it is possible to compile it into executable code, and this facility is provided by the
ObjecTime toolset. The toolset provides graphical tools for the creation of ROOM
models, together with editor windows for the specification of guards on transitions
and action code. The models may be converted into corresponding C++ code that
may then be compiled, using the standard system C++ compiler, to create executable
implementations.

The ObjecTime toolset also provides debugging facilities through the Simulation
RTS, allowing the designer to observe and control the execution of a model before
compiling to the target platform. The debugging facilities include options to inject
messages into ports, observe the traces of messages between actors, create Message
Sequence Charts representing a single execution of the model, and so on.

Summary

While the ROOM notation may be used as part of a design methodology in its own
right, it is used in this thesis largely because it provides a bridge between a formal
model and a C++ implementation. By linking the LOTOS formal description tech-
nique with the ROOM modelling technique, the thesis provides a design trajectory
from abstract specification to working C++ implementation.
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Further details of the ROOM notation, together with diagrams illustrating its
use, are to be found in the sections discussing its use in the design methodology (see
section 3.8.1, for example). The following chapter surveys previous work related to the
methodology outlined in this thesis. Chapter 3 outlines the methodology proposed by
this thesis, indicating the steps required to produce a validated LOTOS specification
and the means by which this specification can be used to derive a ROOM model.



Chapter 2

Previous Work

2.1 Introduction

In this chapter, previous work in the realm of applying the LOTOS formal description
technique to the implementation of communications protocols will be considered. The
principal work in this area is the Lotosphere project, a collaboration between a number
of European universities and telecommunications companies. The Lotosphere project
aimed to create an entire design methodology with tool support, using LOTOS as its
major formal description technique.

Central to the Lotosphere project were the related notions of specification styles
and transformations. Different specification styles allow LOTOS to be used to de-
scribe systems at varying levels of abstraction; some styles are better suited to the
early stages of requirements capture and design, while others are better suited to
later stages of design. However, if systems are to be described at different levels of
abstraction, some means of moving from one level to another is needed, and the Loto-
sphere project focused on correctness-preserving transformations (see section 2.2) to
perform this function. This discussion of transformations is followed, in section 2.2.2,
by a review of work concerned with the process of deriving a C! implementation from
a LOTOS description of a system.

Following the discussion of the Lotosphere project, other approaches to the imple-
mentation of LOTOS specifications are discussed in section 2.3.1. Research on possi-
ble relationships between object-orientation and LOTOS is discussed in section 2.3.2.
The chapter concludes by examining a number of research projects which have applied
LOTOS to the creation of industrially-applicable protocols (see section 2.3.3).

IFor details of the C programming language, see Kernighan and Ritchie [KR&8].
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2.2 The Lotosphere Project

The principal aim of the Lotosphere project (see Bolognesi et al. [BvdLV95]) was to
devise a design methodology that would offer enhanced productivity applicable to the

industrial area of “large scale distributed telematic and information systems”?:

The main objective of the ESPRIT II Lotosphere project (2304) was
the development and industrial exploitation of a powerful, fully tool sup-
ported, system design methodology that is applicable to the entire system
design and implementation trajectory.?

This industrial area is characterised by openness, a requirement that products pro-
duced by different manufacturers can inter-operate successfully. The intention of the
Lotosphere participants was that it should be possible for a standards body to spec-
ify a protocol in an implementation-independent way (what they describe as part of
the “public design culture”), and that there should exist a “private design culture”,
usable by implementors, that complements the public design culture. LOTOS is the
proposed vehicle for these two complementary design cultures, and the Lotosphere
project aimed to extend LOTOS from a specification language to a design language.
This extension required the project to demonstrate how LOTOS could form part of
a complete design trajectory, supported by tools.

The design methodology outlined in the Lotosphere project (see Quemada et
al. [QAP95)) is based on conventional stepwise refinement (see Wirth [Wir71]). The
first stage of design produces an abstract model of the system, that may be regarded
as a black box description (see [QAP95], also Pressman [Pre87|, chapter 13), con-
cerned only with observable behaviour, but allowing systems to be related through
the notion of testing equivalence (see Brinksma et al. [BSS87]). That is, if two systems
are testing equivalent, they may also be described as black box equivalent, indicating
that their observable behaviours are equivalent.

Following stages of the proposed design introduce more detail through successive
refinements, marking the transition from black box descriptions to white box descrip-
tions, revealing the internal structure of the system being designed. This addition
of internal structure is also known as functionality decomposition, and consists of de-
composing given functional units into smaller subunits. The subunits work in concert
to fulfil the functional requirements of the encompassing unit. The final stage of
such a series of refinements is a working implementation. This series of refinements
integrates with a waterfall model of system development (see [Pre87], page 20).

It is obviously important that the process of functionality decomposition does not
change the observable behaviour of the system, and it is here that the notion of testing

ZVissers et al. [VPvdL95], page 3.
3Vissers et al. [VPvdL95], page 15.
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equivalence becomes important. The specifications produced during the refinements
may be tested for equivalence with the preceding black box specification by using the
LOTOS hide operator to hide the internal interactions. In this way, we can ensure
that the behaviour of the new specification conforms to the behaviour of the previous
specification. Further transformations may be needed to accommodate functionality
rearrangement, in which the internal structure of a white box description is modified
to accommodate architectural requirements, thus allowing easier mapping to system
resources. These transformations may also be checked using the notion of testing
equivalence.

Other possible transformations of a design include functionality reduction and
extension. Functionality reduction is used to select between non-deterministic choices
in a more abstract LOTOS specification, while extension adds new functionality. It
should be noted that reduction and extension may not preserve testing equivalence.

The requirement that successive stages of a design be testing equivalent with
each other may be satisfied in either of two ways. One approach is to manually
transform the specification, and check the result in an a posteriori manner by testing
for conformance with the preceding specification. Quemada et al. [QAP95] distinguish
between validation, which they regard as correctness with respect to requirements,
and verification, which is regarded as correctness with respect to a previous stage
of the design. Both validation and verification are to be carried out using LOTOS
testing, which involves composing a specification in parallel with a test case, and
checking that the resulting composition does not deadlock.

Alternatively, one can use correctness-preserving transformations, a central part
of the Lotosphere project. These transformations are ones which have been proven to
preserve correctness. Using correctness-preserving transformations amounts to a for-
mal proof that successive refinements of a specification are equivalent and should elim-
inate the need for a posteriori testing. One of the products of the Lotosphere project
was a catalogue of correctness-preserving transformations (see Bolognesi [Bol92]),
listing transformations which had been proven to retain equivalence.

In the Lotosphere project, a distinction was made between the early and late stages
of design. In the early stages of design, the designer is concerned with establishing the
architecture of a system. This architecture may include abstract functional elements
as well as actual physical components. In the later stages of design, the designer is
concerned with the production of an implementation-oriented LOTOS specification
and from this, an implementation in a standard implementation language. These two
parts of the late stages are sometimes known as the implementation phase and the
realisation phase, respectively. The transformations carried out in the early stages of
design include functionality rearrangement, reduction and extension, while the late
stages of design are concerned with more implementation-oriented transformations,
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such as making states explicit (thus easing the creation of an extended finite state
machine implementation).

The final stage of the Lotosphere design methodology involves the creation of a
working implementation using the TOPO compiler (see Schot and Pires [SP95], page
70). Although some of the compilation process is carried out automatically from
the LOTOS specification, the compiler also relies upon annotations concealed by the
LOTOS comment operator. These annotations allow the designer to specify code
in the C programming language to be executed at given points in the specification.
The issue of creating C implementations from LOTOS specifications is covered in
section 2.2.2.

2.2.1 Transformations of LOTOS

In order to create implementations of LOTOS specifications, it is frequently the case
that an abstract specification must be transformed in some way in order to create
a more implementation-oriented formal description. Van Eijk et al. describe the use
of different specification styles in the implementation of a LOTOS specification of
the sliding window protocol [vEKvS90]. The authors identify the four major styles
of LOTOS specification as suited to different elements of a design trajectory. The
constraint-oriented style is regarded as suited to the early stages of design, as it allows
the specifier to describe constraints on behaviour as separate components which are
composed together. The resource-oriented style offers a more implementation-oriented
style, as each resource (which may map onto separate implementation environment
processes or even separate hardware objects) is written as a separate part of the
specification. For specifying the behaviour of each resource, the monolithic style may
be used for relatively simple entities, while the state-oriented style is better suited for
specifying more complex behaviour.

An essential aspect of the approach adopted by van Eijk et al. is that no par-
allelism existed within final protocol entities. In other words, each LOTOS process
mapped onto a separate UNIX process, and there was no parallelism within a UNIX
process. To ensure the absence of intra-process parallelism, the parameterised ex-
pansion was used (see the discussion on the next page). The result of this process
was a specification consisting of a series of resources, each of which was specified in a
state-oriented style. This specification was then hand-converted into C code, mapping
LOTOS events to UNIX read or write actions.

Another transformational framework forms part of the LOLA tool (see Quemada
et al. [QPF89], [QPF90]). LOLA was designed originally for labelled transition system
verification, but the appearance of state space explosion led the research group to
explore state space reduction techniques through compacting and parameterisation.
One technique is ezpansion, which removes operators such as parallelism (| [gates] |),
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enable (>>) and disable ([>) by the application of the expansion theorems, which
indicate the corresponding behaviour expressions in terms of action prefix (;) and
choice ([1). To prevent expansion creating infinite specifications, LOLA recognises
repeated behaviours and replaces them with process instantiations. A variation on
ordinary expansion is parameterised expansion®, which uses symbolic data values to
reduce the size of the expansion. A parameterised expansion will grow in relation only
to the basic behaviour, and not in relation to the product of the states of the behaviour
and the number of possible values of the data components of the specification. Note
that neither ordinary nor parameterised expansion can be applied to all LOTOS
expressions. In particular, expressions that allow an unbounded number of processes
to exist simultaneously cannot be expanded in any constructive fashion.

2.2.2 Implementing LOTOS in C

An important part of the Lotosphere project was support for the automatic, or semi-
automatic, generation of C code from LOTOS specifications. An early example was
the LOTOS Implementation Workbench (LIW) described in a paper by Manas et
al. (see [MdMvT89], also Manas and de Miguel [MdM89]). The LIW system relied
on a series of annotations to the LOTOS specification, allowing the implementor to
indicate the C code which should be associated with each event. These annotations
were written using the LOTOS comment construct so that they did not affect the
compilation and simulation of the specification. Manas’s paper discusses many of the
issues still relevant to the implementation of formal specifications, in particular ar-
guing that full automation is not really plausible [MdMvT89]. LOTOS is sufficiently
abstract that it specifies a number of different possible implementations, and so re-
quires input from the implementor. Also, the use of abstract data types means that
automatic implementation would be inefficient. For example, an ADT specification
of integers would be typically unbounded; the data type would support arbitrarily
large values. The specification may need only a restricted range, such as that handled
by the C built-in type int, but the implementor must specify that this range is suf-
ficient. Finally, LOTOS does not provide much, if any, support for the specification
of hardware details, such as the particulars of communication channels and timing
issues.

Because the LIW uses annotations, it is able to sidestep many of these objections
to fully automatic code generation. For example, the implementor may associate each
abstract data type with a C built-in type, indicating an efficient implementation.
However, annotations are not without their problems. Most seriously, there is no
way to check that annotations are faithful implementations of the LOTOS they are

‘Parameterised expansion is also supported by the SELA tool (see Ashkar [Ash92]).
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associated with. Also, while a LOTOS specification may indicate a non-deterministic
choice, the corresponding implementation derived from compiling the annotations
will generally be much more deterministic, and will likely have changed temporal
fairness. Furthermore, annotating every event in a LOTOS specification runs the
risk of creating an unreadable specification, thus negating some of the value of using
formal, unambiguous methods for specifying complex systems.

These issues are taken up further in Manas’s 1993 paper in which the TOPO
tool is discussed [MdMSA93]. In this paper, Mafas et al. introduce the idea of
environment fold-in to produce clearer specifications. The protocol specification is
composed in parallel with a process that represents the formal environment. The
formal environment, in turn, acts as a bridge to the real environment and contains all
the annotations necessary for creating real communication constructs, such as reading
from and writing to UNIX sockets.

Wiedmer describes some of the experiences of the Lotosphere researchers in ap-
plying their design methodology to industrial systems [Wie95]. Two of the projects
considered were a ‘Mini-Mail’ service for ISDN and the Transaction Processing ap-
plication layer standard of OSI. The Mini-Mail application was implemented through
two routes: one used C-Extended, an extension of the C language to include con-
structs for synchronous intertask communication, while the other used TOPO. The
Transaction Processing system was created by writing a LOTOS specification in a
style combining resource-oriented and state-oriented styles and then using TOPO to
compile into C. The observations of the researchers included the impression that,
while LOTOS was well-suited to producing structured specifications of large systems,
data type specification using ACT-ONE was laborious and did not support the full
range of data types required.

2.3 Other Related Work

2.3.1 Other Approaches to Implementing LOTOS

Karjoth’s 1993 paper discusses a LOTOS toolset called LOEWE that supports a
number of activities, such as editing, verifying and simulating LOTOS specifica-
tions [KBG93]. The toolset also includes two compilers for creating C implemen-
tations of specifications. The first compiler is based on direct code generation, rather
than the creation of an intermediate representation, and the authors claim that this
basis allows direct compilation of quite complex LOTOS constructs at the cost of
more run-time support. The second compiler follows a more conventional technique,
requiring the LOTOS specification to be transformed into a network of communicating
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finite-state machines that may then be converted relatively simply into implementa-
tion code.

Warkentyne and Dubuis’s 1995 paper describes an intermediate approach that
accommodates almost all LOTOS constructs and implements extended finite state
machine (EFSM) specifications [WD95]. Their strategy supports value matching and
multi-way rendezvous, but does not accommodate selection predicates. The COLOS
compiler takes an annotated specification and uses the method outlined in Dubuis’s
1990 paper to create a system in terms of automata and ports [Dub90]. The produc-
tion of automata ensures that all behaviours are encapsulated in process instances,
each of which will be executed by a single kernel thread in the final implementation.
The implementation relies on run-time support for the ports that provide synchroni-
sation facilities for inter-process communication. As with the LIW and TOPO tools,
abstract data types must be annotated to indicate the corresponding C built-in type
which is used in the implementation. The COLOS run-time provides a number of
built-in gates, called environment ports, used for providing implementation services
to the LOTOS system. In particular, timeouts (often represented in LOTOS as an
internal action i) must be written in terms of interactions on the gate clock. Other
environment ports provide keyboard, screen and socket services.

A recent paper by Yasumoto et al. describes a system for compiling LOTOS
expressions into multi-threaded object code [YHA196]. The authors claim the system
supports almost all LOTOS constructs, although, as Warkentyne and Dubuis indicate,
doing so involves substantial run-time support to handle some of the more esoteric
parts of the LOTOS syntax. The researchers have created a portable thread library
(PTL) which allows their run-time to be implemented on a number of platforms (at
the time the paper was written these were restricted to UNIX varieties).

In the Yasumoto et al. study, the LOTOS specification is mapped to a series of
threads, such that each action-prefixed sequence corresponds to a single thread. A
shared data area is then used for interactions between these threads to indicate when
threads should start, stop or destroy themselves. For example, the behaviour expres-
sion consisting of one expression enabling another (eg. A >> B) would be compiled as
two threads, one each for expressions A and B, and a shared data area which process
A would write to when it completes. Process B would not commence until it sees that
process A has completed. On the other hand, a choice operator (eg. A [1 B) would
result in two threads, but once one thread commenced, the other would destroy itself.
The team have also developed an intermediate formalism (called ASL/F) used for
compiling ACT ONE ADTs into C code.

Yasumoto et al. have evaluated the performance of the code produced by their
tool with code produced by both the COLOS compiler and the TOPO compiler.
They point out that their tool and COLOS both retain fairness when compiling an
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alternative execution expression (such asA [1 B [1 ¢ [I ...), while TOPO always
selects the first expression. According to their tables of results, their tool produces
code which executes at least twice as quickly as that produced by COLOS, and
around 10-20 times as quickly as that produced by TOPO. However, this performance
advantage over COLOS is not maintained in the presence of constraints (modelled
in LOTOS using the parallel operator, ||). Furthermore, rendezvous are modelled
using shared memory, so the applicability of Yasumoto’s tool to the implementation
of distributed systems is limited.

Amyot ([Amy93]) describes work on an implementation mapping LOTOS to the
Occam language (a language used by the Inmos transputer). He points out that
Occam, being based on CSP, has constructs such as two-way synchronisation which
simplify the mapping from LOTOS. However, the version of Occam available in 1993
had very few data types and no support for data structures, limiting the options
for mapping from LOTOS ADTs. Amyot describes a number of small case studies,
such as a full adder, and demonstrates how they may be specified and validated in
LOTOS, then implemented in Occam. Amyot concludes that Occam has drawbacks
that, if overcome, would make it an attractive implementation language for LOTOS
specifications.

It should be noted that most LOTOS operators translate into code in a relatively
straightforward fashion, with the exception of parallel composition. The way in which
parallel composition is defined in LOTOS assumes central concurrency control, which
does not exist in the normal case of distributed implementation. Each of the imple-
mentation approaches described above has involved some solution to the problem of
implementing parallel composition. For example, Yasumoto’s group used a shared
data area and considerable run-time support to cater for interactions between paral-
lel processes. Warkentyne and Dubuis implemented LOTOS specifications in terms
of communicating finite state machines, as did Karjoth. A similar approach is used
in this thesis, although the methodology described here does not allow for multi-way
rendezvous (see section 3.3).

2.3.2 Object-Orientation and LOTOS

Object-oriented analysis and design (OOA/D) has evolved over the last twenty-five
years to occupy a central position in modern software engineering. Based on three
fundamental principles — encapsulation, inheritance and polymorphism — object-
orientation (OO) offers the facility of decomposing the work needed to develop a
system, together with greater code robustness and maintainability than conventional
structured programming techniques. However, LOTOS was developed before object-
orientation had reached its current ascendancy, and so the formal description tech-
nique does not include explicit support for object-orientation.
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Wegner distinguishes between three levels of adoption of object-oriented concepts
in a language [Weg86]. Object-based languages support objects; program elements
whose internal structures are encapsulated. Class-based languages additionally sup-
port classes, which represent the common characteristics of a collection of objects (the
relationship between classes and objects is often described as instantiation, where an
object instantiates a class). Object-oriented languages additionally support inheri-
tance, whereby one class can inherit some of its characteristics from a parent class.
Rudkin [Rud92] and Cusack et al. [CRS90] describe how the structure of LOTOS pro-
cesses, which can interact only with other processes through defined gates, supports
encapsulation. Furthermore, the instantiation of LOTOS processes with parameters
may be regarded as support for classes. Thus, LOTOS may be regarded as both
object-based and class-based. However, as we shall see, LOTOS does not adequately
support inheritance, and so cannot be regarded as object-oriented.

Before considering how LOTOS fails to support inheritance in its present form, it
is important to clarify what is meant by the term ‘inheritance’. Some authors have
described inheritance as a generalisation/specialisation hierarchy, allowing speciali-
sations in which inherited features are “added, modified, or even hidden”?. Others
have been more strict in limiting the way in which inherited features can be treated:
“A feature should never be overridden so that it is inconsistent with the signature
or semantics of the original inherited feature.”® In the following discussion, I will
follow Rudkin in replacing the loose term ‘inheritance’ by the term subtyping. A type
s is a subtype of a type ¢ only if ‘s satisfactorily substitutes for ¢ in an environment
expecting ¢’. It should be noted however that important object-oriented languages
such as C++ also support specialisation in which inherited features are modified or
hidden.

Mayr’s 1989 paper [May89] links subtyping with the extension (ext) relation as
seen in Brinksma [BSS87]. That is, an object type 7", represented by a behaviour
expression P’ is a sub-type of object type T, represented by behaviour expression
P, if any event sequence which is allowed by P is also allowed by P’, and any event
sequence refused by P’ can also be refused by P.” Given a mapping between object
operations and guarded choice in LOTOS, subtyping (or extension) corresponds to
adding extra guarded choices. However, when extra choices are added, it important
that non-determinism is not also added. That is, given a process skeleton:

5See Booch [Boo94], page 61.

6See Rumbaugh et al. [RBP191], page 42.

"This relationship is formalised in Cusack and Lai [CL91] as: A process @ extends P if and only
if: a) @ conforms to P, and b) traces(P) C traces(Q).
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process Pl[gates]:noexit:=
al; a2; P1
I
bl; b2; P1

endproc

P1 can be extended by the sequence [1c1;c2;P1, but not by the sequence [1b1;
b3;P1. The process P1 already includes a sequence whose initial action is b1, so
adding the new behaviour [1b1;b3;P1 would add non-determinism. The extended
P1 would be able to synchronise with b1, and then non-deterministically either offer
b2;P1 or b3;P1.

As it stands, LOTOS does not provide support for subtyping as presented by
Mayr, and he suggests an extension to LOTOS syntax that could be expanded by a
precompiler to yield standard LOTOS. His proposed extension would define subtyping
using the syntax:

process enhanced_printerl is printerl[pr](id:source_id, s:state)
with
[s == ready] = prlline_feed!id; enhanced_ printer1[pr](id, s)

This new syntax indicates that the process enhanced_printerl has the same
gate list and parameter list as printerl, and the same behaviour but including the
additional choice of the specified line.

Mayr’s suggested extension to LOTOS is tentative and, in my view, not fully
developed. In section 3.6.4 I explain how Mayr’s suggestion may be developed to
form a more powerful expression of inheritance in LOTOS.

Perhaps the most important paper discussing the relationship between object-
orientation and LOTOS is that by Rudkin [Rud92]. Rudkin splits his discussion of
inheritance into two parts. First, he establishes the way in which subtyping may be
expressed in LOTOS, and the conditions subtyping imposes on the processes involved
in an inheritance hierarchy. Second, he suggests a new LOTOS primitive process,
self, which will support recursive process invocations in subtyped processes.

Rudkin indicates that subtyping is guaranteed through the extension relation, so
that a process () may be regarded as a subtype of P if Q extends P. Given a behaviour
expression ¢, Rudkin then indicates that a behaviour expression s = t[]m is a subtype
of ¢ if, among other conditions:

1. m is a behaviour expression not including any data type definitions;
2. m is stable, i.e. m does not have any initial internal actions;

3. The initial events of m are distinct from the initial events of ¢.
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Having discussed inheritance in terminating processes, Rudkin goes on to discuss
the issue of inheritance in recursive processes and introduces the new primitive process
self in support. Recursive instantiations of a process that may be subtyped are
written in terms of self, defined such that invocations of self are redirected to the
invoking process.

While Rudkin’s suggestion may have allowed full support for object-oriented spec-
ifications in LOTOS, his ideas were not adopted in the recent E-LOTOS standardisa-
tion, and so LOTOS remains, at best, a class-based language. However, the discussion
in section 3.6.4 extends the ideas of Mayr and Rudkin to suggest how LOTOS may
support a form of inheritance without necessarily requiring changes to the language
standard.

While Mayr and Rudkins’ papers were concerned with the theory of using LOTOS
to support object-orientation, Hedlund describes an industrial application of LOTOS
in an object-oriented development methodology [Hed93]. Ascom Tech AG had been
using the Objectory methodology, and Hedlund describes the issues involved in in-
tegrating LOTOS into this methodology. The issues fall into two groups: method-
ological, or those determining how LOTOS could be integrated within Objectory,
and representational, determining how to represent Objectory constructs in LOTOS.
From a methodological point of view, an important aspect of the integration of for-
mal methods into software engineering processes is that the formal method should not
greatly disrupt existing processes. With this in mind, Hedlund suggests that LOTOS
should be used to verify descriptions of specified object behaviour using existing tech-
niques, rather than require system designers to replace their existing object behaviour
notations with LOTOS. Hedlund’s work on the representational aspects of integrat-
ing LOTOS into Objectory focuses on the following notion: while LOTOS does not
explicitly support object-orientation, the well-defined interface of LOTOS processes
may be used to model the encapsulation required in object-orientation. This map-
ping lead Hedlund to relate object communication to process synchronisation. The
research also indicates how inheritance can be modelled so that a derived class can
add behaviour to that inherited from its base class.

Hedlund concludes that while it is possible to integrate LOTOS into an object-
oriented development methodology, care must be taken in the representation of object-
oriented constructs in LOTOS. In particular, some constructs do not lend themselves
to mapping into LOTOS, while others may be mapped only with care to ensure
that the particular situation is suitable. As with the work of Mayr and Rudkin,
the representation of inheritance described in Hedlund’s paper is applicable only
to subtyping, and can not be applied to situations in which inheritance is actually
specialisation.
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2.3.3 Implementations of Industrial Protocols

Building on the research described in earlier sections, a number of groups have at-
tempted to apply a LOTOS-based development strategy to create implementations
of protocol systems. Typically, these attempts have used stepwise refinement to suc-
cessively create a more implementation-oriented LOTOS specification, followed by
semi-automatic code generation using the TOPO compiler (see section 2.2.2).

The earliest work considered here is described by A. Ferndndez et al. [FQVMS88|.
Fernandez’s group designed and implemented an embedded system called PRODAT
for use as the gateway between a satellite communication system and terrestrial data
networks. The process described in the paper involved the creation of LOTOS mod-
els at several levels of abstraction. The most abstract level described a number of
communicating processes, and subsequent levels refined the description by detailing
the internal behaviour of the top-level components. To ensure that these refinements
were consistent with the initial design, the relationship of testing equivalence was
used. Testing was carried out at both a component and integration level by specify-
ing sequences of actions in LOTOS and composing these tests in parallel with either
components or the entire system specification. The test suite included both accep-
tance and refusal tests; the former are intended to complete successfully, while the
latter are intended to deadlock, indicating that the system has correctly refused an
incorrect action sequence.

Having reached a specification that was relatively implementation-oriented, the
expansion theorems® were used to create LOTOS expressions composed only of choice
and action prefix operators that can be readily represented as finite state machines.
These finite state machine expressions were then converted into a MODULA 2 im-
plementation. The implementation also required the creation of a kernel, written
in MODULA 2, that implemented LOTOS synchronisation. The group concluded
that the project had been successful, and that the development was finished within
schedule despite the lack of tool support for much of the work. However, Fernandez’s
paper concludes that the data description component of LOTOS is much less readily
comprehensible than the behaviour component, and that many of the errors detected
during component level testing were related to problems in data description.

Fernandez’s group followed their work on the PRODAT system with further re-
search on a satellite communications system called CODE® [FMVQ92]. This later
work was able to make use of the increased number of LOTOS tools then available,
and the paper is in part an examination of the evolution of support for LOTOS.
Because the satellite communication system had to support rigorous performance de-

8The expansion theorems describe the equivalence between expressions written using other LO-
TOS operators and expressions written using only choice and action prefix operators.
9Cooperative Olympus Data Experiment
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mands, the group also carried out performance analysis to ensure that the protocols
were satisfactory. This analysis included models based on queueing theory, simu-
lation using the SIMSCRIPT language, and analysis using an extension of LOTOS
(LOTOS-TP, which enhances LOTOS with support for timed and probabilistic be-
haviour). Having analysed the protocols, the group then created a specification of
the system’s behaviour in LOTOS, and used the TOPO tool to perform syntactic and
semantic checking. This implementation-independent specification was refined to add
more behaviour detail, and then transformed to make it suitable for implementation
on the intended target system, a network of transputers. This specification was im-
plemented partly by hand-coding OCCAM and partly by automatic translation to C
using the TOPO compiler. The group concluded that tool support for the LOTOS
design process had greatly improved, even over the relatively short period since their
work on PRODAT, and commented that: “LOTOS is able to produce efficient im-
plementation oriented specifications that can be almost automatically implemented
over the selected hardware architecture.”

Fernandez’s paper was followed by a number of papers published in 1993, among
them Ernberg’s work on an ISDN architecture [EHM93]. Ernberg’s group specified the
ISDN system in a constraint-oriented style, inspired by earlier work using LOTOS
to specify ordinary telephony systems (see Faci et al. [FLS90]). Having created a
specification, Ernberg’s group then attempted to validate the specification to ensure
that it conformed to their informal requirements for an ISDN exchange. The group
identified three main approaches to validation: generating a complete state space,
interactively simulating the specification, and applying test cases in an execution
environment. State space generation was ruled out as impossible for a large practical
specification, and so validation was carried out in the early stages using simulation
on the Hippo tool (see Tretmans [Tre89]). Having achieved a reasonable level of
confidence in the specification, the group then applied a series of test cases using
the LOLA tool [QPF90]. The validated specification was implemented using the
standard TOPO method, annotating the specification with implementation-specific
information. Ernberg’s group conclude that LOTOS allowed them to detect logical
errors at an early stage in the design process and so avoided extra work during the
creation of executable code. Furthermore, the creation of an abstract specification
allows for implementation in other languages.

The fourth paper considered here is by Azcorra et al. [AVACV93]. They specified,
tested and implemented the D-channel layer 3 signalling protocol of ISDN, as defined
in the CCITT Recommendation Q.931. The implemented protocol formed part of a
prototype Integrated Services Private Branch Exchange (ISPBX) developed within
the CEE ESPRIT Program. Azcorra’s development process was split into three main

0Fernandez et al. [FMVQ92], page 189.
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phases: formal design, assessment and implementation. The formal design was carried
out using the state-oriented specification style, felt to be the most straightforward
and efficient for specifying detailed protocol sequences. The design incorporates a
hierarchical element, in which the call handling procedure is viewed first in terms of a
number of phases, each decomposed into an Extended Finite State Machine (EFSM).

The assessment phase involved the creation of a test suite applied to the specifi-
cation to determine whether the specification behaved as expected. The researchers
determined that two forms of testing were necessary. The first testing strategy (iden-
tified as component level by Ferndndez above) tested the 3.931 protocol entity by
causing it to interact with both the upper and lower level interfaces. The second test-
ing strategy (integration level) involved the construction of specification that com-
bined two QQ.931 entities with a backbone network, and a test of the resulting system
through the upper level interfaces only. The test suite for the LOTOS specification
was then run through the TOPO compiler to obtain test cases suitable for applica-
tion to the final implementation. Azcorra points out that the implementation must
be tested because it is possible for the annotation and semi-automatic code genera-
tion processes to introduce errors not present in the validated LOTOS. The process
of testing the implementation is greatly eased by the facility to simply implement the
test sequences created during the validation of the LOTOS specification.

An innovation introduced in Azcorra’s paper is the channel-gate implementation
approach, in which LOTOS gates are modelled as communication channels in the tar-
get environment (such as UNIX). The communication channel is an octet stream that
supports only the reading and writing of some number of octets. Azcorra’s group con-
clude that the LOTOS-based methodology, supported by tools, allowed for a cleaner
system specification, and that the facility to run tests against the specification saved
later effort at the implementation level. However, the group points out that LO-
TOS development methodology was quite immature, and that they had to develop
a number of techniques in parallel with the creation of the ISDN implementation.
Furthermore, the group indicates that it is important to consider at least some imple-
mentation details during the creation of the specification to avoid the production of
an unimplementable specification that will require backtracking after implementation
has started.

The final paper considered in this section is that of Leén et al., describing the
design and implementation of a gateway between DSS1 and SS7 ISDN signalling sys-
tems, as described in CCITT Recommendation Q.699 [LYS193]. The work was carried
out in the framework of the MEDAS!! research project with the twin aims of devel-
oping methodological guidelines and generating a set of tools to support FDT-based
design. The authors point out that although LOTOS’s mathematical theory allows

11 Advanced Methodology for Communication Systems Development
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for formal verification, such verification is impossible for realistically-sized specifica-
tions, so that testing equivalence is the only plausible method available for system
validation. They also argue that the Lotosphere methodology does not constitute a
complete life-cycle model and that it must be enhanced, possibly within the framework
of the spiral software development model (see Boehm [Boe88]). As with previously-
discussed projects, Leén’s group used LOLA to apply test cases to their specification
and then used TOPO to create automatically C code. They point out that the use
of TOPO results in an implementation in which approximately 90% of the lines of
C code are automatically generated, but caution that TOPO produces inefficient im-
plementations of abstract data types, and that hand written implementations of data
types are needed to improve efficiency.

The five papers reviewed above identify some of the major issues in the use of LO-
TOS for the creation of implementations of protocols. While some of the problems
identified by the authors have become less serious with time (for example, Ferndndez’s
first paper describes the lack of tool support in 1988, though excellent tools were later
developed), others remain obstacles to the effective use of LOTOS. One particular
problem with LOTOS (identified in [FQVMS88] and [LYS'93]) concerns the use of ab-
stract data types, which are difficult and error-prone to specify and lead to inefficient
code if hand-written implementations are not available. Furthermore, validation of
industrial protocols through state space exploration is still infeasible, requiring that
designers constrain validation through the use of test sequences. These issues are dis-
cussed further in the following chapter, and in the concluding remarks about possible
future research.

An issue that the papers do not discuss, however, is that of object-orientation.
Object-orientation has become increasingly prevalent in the software industry, with
its proponents claiming that the use of encapsulation, inheritance and polymorphism
lead to more reliable software and more opportunities for reuse of previous work. The
methodology described in the following chapters attempts to redress this deficiency,
by linking LOTOS with an object-oriented notation (ROOM) and indicating how
encapsulation and inheritance can be features of LOTOS specifications.



Chapter 3

Design Methodology

3.1 Overview

This chapter describes the design methodology undertaken in this thesis, explaining
the route taken from system requirements to the final working implementation. The
chapter commences with a discussion of the rationale for the methodology, followed
by a description of the subsets of the ROOM and LOTOS notations used. Section 3.4
outlines the stages of development of a protocol specification and implementation.
Subsequent sections discuss the major stages; the formalisation of requirements and
the creation of the specification, first in outline and then in more detail. Section 3.7
returns to the issue of formal requirements, this time to validate the LOTOS specifi-
cation against initial requirements. This section also includes a discussion of design
verification, which ensures that the internal behaviour of the system conforms to the
designer’s expectations. To conclude the design trajectory, the creation of a ROOM
model and its compilation into a working C++ implementation is examined and the
chapter concludes with a short example of the application of the design methodology
to the creation of an alternating bit protocol implementation. Following chapters will
exhibit the application of the methodology to more substantive examples.

3.2 QOutline of the Design Methodology

The methodology uses the LOTOS formal description technique for the formalisation
of system requirements and the construction of a formal specification, together with
the ROOM notation for the creation of a system implementation. Combining these
two notations allows us to take advantage of their individual strengths to produce
reliable implementations of communications protocols. Among the advantages of

using the LOTOS FDT are:
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1. Support for varying levels of abstraction is a feature, allowing critical structural
aspects of a design to be checked before expending effort on finer points.

2. There is a large body of knowledge concerning validation of specifications using
state space exploration, temporal logic model checking, and so on.

3. Standardisation of the FDT by ISO has encouraged the development of a large
number of design and validation tools that can be used in conjunction with each
other.

In its turn, the ROOM notation provides a powerful hierarchical state machine nota-
tion for describing system behaviour, support for hierarchical structuring of system
components and support for object-oriented inheritance to allow reuse of design work.
Perhaps the most important advantage, however, is that the ROOM notation is sup-
ported by the ObjecTime toolset, which provides automatic code generation for a
working implementation.

This thesis contends that the combination of these techniques allows for the cre-
ation of communications protocol software that is validated against requirements,
and designed using object-orientation and encapsulation to allow for easier future
enhancement and maintenance.

3.3 The LOTOS and ROOM Notations

Previous sections (1.4.1 and 1.4.2) have discussed the LOTOS and ROOM notations
in general terms. For the purposes of this thesis, however, only a subset of each will
be considered. In particular, the use of LOTOS is constrained to reduce the use of ab-
stract, non implementation-oriented constructs. Applying these restrictions reduces
the flexibility and power of LOTOS. However, the creation of a style based on a subset
of the features of LOTOS provides patterns that designers can use to create practical,
implementable specifications. The work of Azcorra et al. [AVACV93] (see page 31 for
more details) indicated that it is important to ensure that specifications are written
with implementation in mind to avoid creating unimplementable specifications.

The systems specified and implemented in the case studies consist of actors that
may be hierarchical in structure (that is, actors may contain other actors that are hid-
den from outside view). These actors communicate with each other over asynchronous
links, though synchronous communication will also be discussed. The behaviour of
the actors is described in terms of hierarchical state machines that may have state
variables. In order to simplify the design somewhat, only enumerated data types will
be considered. Further work may extend this research to use more varied and power-
ful data types. The designs considered do not include group transitions, often used
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to model interrupt behaviour and consideration of interrupts is also left for future
exploration.

These restrictions mean that the implementation models encompass the following
subset of the ROOM notation:

1. Data classes are always enumerated types. The use of enumerated types sim-
plifies the associated LOTOS specification style.

2. Actors, hierarchical or otherwise, have end ports and relay ports, but not inter-
nal ports. The use of internal ports is associated with actors that both contain
other actors and have behaviour of their own, which would complicate the LO-
TOS specification style used here.

3. Actor behaviour is described using hierarchical state machines, but without
group transitions or history transitions. Group transitions and history tran-
sitions are generally used to model interrupt behaviour, which is difficult to
represent in LOTOS (see section 3.6.6) and has been left for further work.

4. Transitions between states are made directly or through choice points. Direct
transitions are used when a transition may or may not be made, depending on
the value of an incoming message, while choice points are used when a transition
must always be made, but the state reached differs according to the value of
the incoming message.

5. Actor communication may be carried out synchronously or asynchronously (see
sections 3.6.5 and 3.8.3).

The specifications of the systems use the following subset of the LOTOS formal
description technique:

1. The specifications may include the action prefix operator, the choice operator,
the hide operator and guard.

2. Parallel composition is allowed, with the restriction that synchronisation may
only take place between two processes. This restriction is justified by the fact
that multiway rendezvous is not practical in implementations of distributed
systems and is not supported by the ROOM notation.

3. Data types are always enumerated. The use of enumerated types greatly sim-
plifies data type specification in this thesis. Extension of the method to include
other data types is left for further work.
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4. The enable and disable operators are not used. The enable operator is not
needed in the state-oriented style used, while the disable operator is generally
associated with interrupt behaviour, which has been left for further work.

5. Process invocation is used, including recursive invocations, though the latter will
be constrained to maintain their gate lists in the same order. This restriction on
gate lists is necessary because, in the state-oriented style used, recursive process
invocation represents a self-transition on a state. If the gate list were allowed
to change order, the behaviour of the state would change in a manner which
would not clearly map to the ROOM implementation.

6. The specifications are written in a modified state-oriented style, elaborated in
section 3.6.3.

The next section outlines the stages of the creation of an implementation, followed
by a discussion of the formalisation of requirements using agent views and tempo-
ral logic. The specification structure designed to express the design constraints is
then discussed, focused on its ultimate implementation with the subset of the ROOM
notation outlined above. Once designed, the specification is validated against re-
quirements in a process outlined in section 3.7. Finally, section 3.8 discusses the
mapping between the LOTOS specification and a ROOM model that will yield a
C++ implementation.

3.4 Stages of the Design Methodology

The methodology follows the sequence of steps enumerated below.

1. Requirements Analysis and Formalisation. The first stage in designing a dis-
tributed system protocol involves requirements analysis. The function the pro-
tocol is to serve must be decided, as a first step towards determining its char-
acteristics. For example, ensuring reliable transmission may be a concern, or
security may demand that users be authenticated before allowing access to cer-
tain services. While system requirements may be expressed informally through
prose descriptions, expressing requirements formally makes possible the valida-
tion of the system design against requirements. Agent views may be employed
informally to clarify the nature of the system to be designed, but may also play
a more formal role in system design. See section 3.5.2 for more details of agent
views and their use in formal requirements.

The second technique considered here for formal requirements analysis is tem-
poral logic (see section 3.5.3). Temporal logic may be used to express the rela-
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tionships between temporally-ordered events, such as cause-effect and stimulus-
response relationships.

2. Consideration of Distribution. The distribution of the system must be con-
sidered, in order to divide different aspects of the functionality of the system.
A communication protocol is used between two (or more) physically separate
entities, and the functionality of the system must be divided between these
entities.

3. Further System Decomposition. The division of the system described in the
previous section is continued, such that individual physical entities themselves
contain multiple software entities, or objects. This division into software entities
is the basis of a design methodology that may be described as object-based or
object-oriented (see section 2.3.2 for an explanation of the distinction between
object-based and object-oriented). By breaking up the system, smaller, more
readily comprehensible units can be produced. LOTOS can support this process
through the encapsulation of behaviour. That is, the system may be designed
at a relatively coarse level of detail, and then refined by decomposing LOTOS
processes into smaller components (examined in greater detail in section 3.6.2).
At each stage, we may apply validation and verification techniques (see below),
to ensure that the specification continues to conform to the requirements for-
malised earlier. Validating the design throughout the process allows correction
of errors before much work has been invested.

The use of decomposition allows construction of quite abstract specifications
during the early stages of the design; these specifications are useful for estab-
lishing the general shape of the system and for documentation purposes. As
specifications of increasing detail are created and approach the level of imple-
mentation, they can retain sufficient abstraction to maintain the big picture.

4. Specification Validation. Once fully detailed, the specification may be vali-
dated against the formal requirements to ensure it behaves as intended. This
validation process is explored in greater detail in section 3.7. The use of formal
specification techniques also allows verification of the system by checking for
the absence of unwanted behaviour such as deadlock and livelock.

5. Implementation. Finally, the validated specification is used to guide the creation
of an implementation (see section 3.8). While the validation process improves
confidence in the functioning of the system, further confidence may be gained
by testing the implementation against test cases derived from the requirements
and the specification.
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I mplementation

Figure 3.1: Outline diagram of the proposed methodology.
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Figure 3.1 illustrates the broad outline of this methodology. The protocol de-
scription is used to create agent scenarios (step 1 above) and a LOTOS specification
(steps 2 and 3). The specification is validated against the requirements expressed as
agent scenarios (step 4) and, when the results of the validation are satisfactory, a

ROOM implementation is derived from the LOTOS specification (step 5).

3.5 Formalisation of System Requirements

3.5.1 Correctness of Real-time Systems

The principal concerns in the examination of qualitative temporal properties are

liveness, fairness and safety [Nis97].

Liveness is a temporal property that guarantees the eventual occurrence of some
event. Another way to define liveness is the requirement to make progress.
That is, a system exhibiting liveness will eventually reach certain important
events, such as an output or a termination.



CHAPTER 3. DESIGN METHODOLOGY 39

Fairness becomes important when a system may, at a given recurring state, non-
deterministically choose between two or more transitions to new states. If one
of the transitions is never chosen, the corresponding behaviour will never make
progress. An example occurs in process scheduling, in which it is important
that all processes make some progress before the system is considered truly
responsive.

Safety refers to guarantees that certain events will never occur. Lamport explains
this notion of safety as “something will not happen.”!. It should be understood
that the word ‘safety’ is not used here to refer to the conventional concept of
safety as avoidance of accidents. Instead, safety is understood as a notion com-
plementary to liveness. Liveness requires that the system make progress; safety
requires that it not do so in a deleterious fashion. Real-time or reactive systems
must combine both requirements: a system that does not exhibit safety may
exhibit undesirable behaviours, while a system that does not exhibit liveness
has no behaviour.

3.5.2 Agent Views and Agent Scenarios

One way to represent system requirements formally is to use agent views. Agent views
were introduced by Clark and Moreira and offer a way of describing the behaviour of
a system in terms of the interactions between the system and its environment or users
(see Clark and Moreira [CM97a] and [CM97b]). Agent views are related to use cases,
an increasingly popular means of describing system behaviour (see Jacobson [Jac92]).
Both techniques are based upon describing sequences of operations or interactions
that form part of a typical execution scenario. A collection of such scenarios allows
for the construction of a behaviour tree, in which each branch represents an alterna-
tive path of execution. Agent views differ from use cases, however, in terms of the
behaviour described. Clark and Moreira indicate that use cases include both interac-
tions between the system and its users and internal operations required to support
this external behaviour. Agent views, on the other hand, describe only the external
interactions of the system, abstracting away from details of internal structure and
operations. The term “agent view” refers to the whole behaviour tree of interactions
— a single branch of the tree is called an agent scenario.

Clark and Moreira advocate the use of LOTOS to formalise the sequences of in-
teractions, such that a single agent scenario can be represented by a single branch
of the labelled transition system resulting from the expansion of the LOTOS spec-
ification of the agent view. Thus, the expected interactions of the system with an

!Lamport [Lam77], page 125
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agent are expressed in terms of sequences of LOTOS actions. Furthermore, in the
case in which more than one agent interacts with the system at once, the LOTOS
processes describing each of their interactions with the system can be combined into
a single process by means of LOTOS parallel operators. If two agents interact with
the system independently, their corresponding processes are combined using the in-
terleave operator (|| |), while agents that must also synchronise with each other may
be represented by processes that combine through the generalised parallel operator
(I [gates]|).

Using LOTOS to formalise the notion of agent views provides a useful means
for formalising system requirements. Because the agent views make no reference
to internal structure, they can be constructed before real system design has begun.
Moreover, this abstraction away from internals means that formalised agent views can
form the basis of black box system validation (see section 3.7) at a later point in the
design process. Individual agent scenarios describe sequences of expected interactions.
If the LOTOS representation of an agent scenario is combined in parallel with the
LOTOS specification of the system, simulation tools can be used to determine whether
the desired sequences of actions can be observed. If the sequences do not occur, then
the system does not meet the requirements expressed in terms of agent views.

3.5.3 Temporal Logic
Introduction to CTL

A second technique applicable to the formalisation of system requirements is temporal
logic. Temporal logic is described as: “a special type of Modal Logic; it provides a
formal system for qualitatively describing and reasoning about how the truth values
of assertions change over time.”? Temporal logic extends ordinary propositional or
predicate logic with temporal operators. A number of forms of temporal logic have
been developed, and the one used in this thesis, computational tree logic (CTL), was
proposed by Clarke et al. [CES86].
The formal syntax of CTL is as follows. AP is a set of atomic propositions.

1. Every atomic proposition p € AP is a CTL formula.

2. If f and f, are CTL formulae, then so are ~f1, fi A fo, AX fo, EX f1, A[f1U f5]
and E[fl U fg]

The formal semantics of CTL is defined in terms of Kripke Structures, which are
state transition graphs in which each state is labelled with the set of atomic propo-

2Emerson [Eme90], page 997
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sitions which is true in that state. For a full description of the formal semantics, see
Jonsson [JK90], page 183.

The semantics of CTL is understood in terms of discrete time branching trees of
system states. The root of a tree represents the initial system state, described as
the conjunction of all the propositions that are true in that state. Because time is
regarded as discrete, subsequent states represent the state of the system in the next
moments, again described as the conjunction of proposition truth values. Different
possible future states of the system are represented by branching in the tree. The
tree can be regarded as defining computation paths, each of which consists of a series
of successive system states.

Intuitively, the symbols = and A have their usual meanings of negating truth
value and conjunction. X may be understood as a nezttime operator, and U as an
until operator. A is used, in place of the usual V symbol, to indicate for all, while F
indicates for at least one. These operators may be combined to create temporal logic
formulae that may be true or false of a given state within a computation tree. In the
examples below, and illustrated in figure 3.2, the formulae are true of the top node
in the corresponding graphs:

a. AG(f) indicates that the formula f is true at all points from the first node
onwards.

b. EG(f) indicates that the formula f is true at all points from the first node
onwards along at least one path.

c. AX(f) indicates that the formula f is true at all the immediate successors of
the first node.

d. EX(f) indicates that the formula f is true at at least one of the immediate
successors of the first node.

e. AF(f) indicates that, along all paths leading from the first node, the formula
f is true at some point in the future.

f. EF(f) indicates that, along at least one path leading from the first node, the
formula f is true at some point in the future.

g. A[f1U f2] indicates that, along all paths leading from the first node, the formula
f1is true until formula f2 becomes true.

h. E[f1U f2] indicates that, along at least one path leading from the first node,
the formula f1 is true until formula f2 becomes true.
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Figure 3.2: Graphs illustrating the meaning of various CTL formulae. Labelled nodes
indicate that the specified proposition is true in that state.



CHAPTER 3. DESIGN METHODOLOGY 43

In the context of LOTOS model checking, the atomic propositions of CTL are
LOTOS actions, indicating that given actions occur. For example, AF'(a) indicates
that synchronisation on gate a will occur at some point in the future along all exe-
cution paths. Thus, when CTL is used for the validation of LOTOS specifications,
the Kripke structures that form the basis for CTL semantics differ from the usual
Labelled Transition System model for LOTOS semantics. In Labelled Transition
Systems (LTSs), actions are represented by transitions between nodes, while in the
Kripke structures, actions correspond to the nodes themselves.

CTL allows formalisation of a system’s intuitive requirements, indicating that
certain properties are true of given states of the system. CTL may be used to express
the fact that certain conditions must hold at some point in the future, or that one
event must always precede another, for example. However, expressing requirements
in terms of temporal logic requires some expertise. The need for this expertise has
been contended as “...a substantial obstacle to the adoption of automated finite-
state verification techniques...”® In order to overcome this obstacle Dwyer et al.
have developed the notion of a specification pattern system [DAC98]. The following
section describes the specification pattern system and its use in this thesis.

A Specification Pattern System

The development of the specification pattern system is inspired by the success of the
use of patterns in other areas of software engineering?. Patterns capture the experi-
ence possessed by expert designers and make it available to others. Typically, patterns
are specified in terms of a problem domain description, followed by a suggested so-
lution. This presentation of the pattern makes it possible for designers to recognise
similar problems posed by their own designs and apply the solutions described in the
pattern documents.

Dwyer’s group has extended the notion of patterns to the creation of temporal logic
formulae describing desired properties of a system. The group has created a taxonomy
of property specification patterns. For each pattern, an intuitive description of the
property to be tested is given, followed by an expression of that property in a number
of notations including linear temporal logic (LTL), CTL and graphical interval logic
(GIL). For each property, a number of formulae are given, each describing a different
temporal scope. The five scopes are:

Global indicating that the property holds over the entire program execution

Before indicating that the property holds up to a given state or event

3Dwyer et al. [DAC98]
4See Gamma et al. [GHIV94].
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After indicating that the property holds after a given state or event

Between indicating that the property holds during any part of the program’s exe-
cution from one given state or event to another state or event

After-until similar to the between scope, but including traces of the program’s ex-
ecution in which the first event or state occurs but the second never does.

The list of formulae is followed by an example of the application of the pattern, and
the pattern concludes with an indication of the relationship between the pattern and
other patterns in the taxonomy. Each pattern has been subject to peer review to
check that the temporal logic formulae really do capture the informal requirement
description at the head of the pattern. This peer review provides greater confidence
in the correctness of the formulae than one would have in formulae one had written
oneself and which had not been checked by others.

The taxonomy is split into three major branches: Occurrence patterns, Order
patterns and Compound patterns. Occurrence patterns describe situations in which
a given event should never occur (the Absence Property Pattern), must occur at
least once (the Existence Property Pattern), should occur throughout a scope (the
Universality Property Pattern) and so on. Order patterns describe the relationship
between two events. For example, the Precedence Property Pattern describes the
situation in which event P must always be preceded by event S. Compound patterns
describe more complex combinations of events, such as those in which a group of
events must be preceded by another group of events.

Some examples of patterns from Dwyer’s taxonomy appear below.

1. The Absence Property Pattern describes a portion of a system’s execution dur-
ing which a given state or event never occurs. With global scope, this condition
is expressed as:

AG(~P)

That is, P is false in all states of the graph. With before R scope, the Absence
Property Pattern is expressed as:

A(-PU (RV AG(—R)))

That is, along all paths, P is false until either R is true or until R will never be
true. With after @) scope, the pattern is expressed as:

AG(Q — AG(~P))
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That is, for each state of the graph, if () is true, then at that state and all
following states, P is false. Finally, these two conditions may be combined to
yield the between @) and R scope:

AG(Q — A(-PU (RV AG(—R))))

2. The Response Property Pattern (in the Order patterns branch) describes causal
relationships in which an occurrence of the cause must be followed by an oc-
currence of the effect. With global scope, the requirement that P cause S is
expressed as:

AG(P — AF(S))

That is, for all states of the graph, if P is true, then at some point in the future
along all paths, S must be true. With after ) scope, the pattern is expressed
as:

AG(Q — AG(P — AF(S)))

That is, for each state of the graph, if () is true, then at that state and all
following states, if P is true, then along all paths at some point in the future, S
must be true. An example of the use of the Response pattern is the requirement
that a resource must be granted after it is requested. Specifying the after @)
scope requires that another precondition (such as security authentication) be
satisfied before the causal relationship between request and resource granting
be applicable.

3. The Precedence Property Pattern (also in the Order patterns branch) describes
the situation in which event P must always be preceded by event S. With global
scope, this is expressed as:

A(ﬁPU (S \% AG(ﬁP)))

That is, P must be false until S is true, or P must always be false. An example
of the application of the Precedence Property Pattern is that a system resource
must only be granted in response to a request.

By matching requirements with these specification patterns, an intuitive under-
standing of the precedence and causal relationships between events may be mapped
into CTL formulae. These patterns have been used in the validation and verification
of LOTOS specifications in this thesis (see, for example, section 4.6.2). The desired
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behaviour of a system was expressed in terms of intuitive requirements. These re-
quirements were matched with the descriptions found in Dwyer’s patterns, and the
corresponding temporal logic formulae were instantiated with the events used in the
specification. These instantiated formulae were then tested against the specification
using the LMC model checker (see section 3.5.3). By this means, the specification
could be validated against requirements without the need for error-prone derivation
of temporal logic formulae from first principles.

Model Checking

Temporal logic formulae may be checked against formal specifications in two ways:
general proof techniques and model checking. General proof techniques attempt to
derive a formal proof of the validity of a formula. While powerful, this technique is
infeasible for all but the simplest systems. For more practically-sized systems, model
checking offers a way to prove that a given system satisfies temporal logic formulae.
Model checking is based upon the generation of the full state space of a system in
the form of a Kripke Structure, then the application of model checking algorithms to
determine whether particular states in the tree satisfy the specified formulae. Because
efficent algorithms exist (see [CES86]), this process can be automated and checked
by a number of existing tools. The one used here is LMC, developed by Ghribi
(see [Ghr92] and [GL93]). An important difference between LMC and other model
checkers is that it was written specifically for LOTOS and converts the labelled tran-
sition system representing the execution of a LOTOS specification into a Kripke-like
structure. Because the tool was designed for LOTOS, it supports the same syntax
and so allows for the use of value-passing operators (! in LOTOS) and symbolic
representation of data values.

3.6 Formal Specification

3.6.1 The Creation of a Specification From Requirements

As outlined in section 3.4, the creation of a formal specification from requirements
involves the identification of discrete units within the desired system, each of which
may be represented by a LOTOS process. The first stage in this decomposition of
the system involves identifying the physical distribution of the system. A system may
employ only two physical entities involved in client-server or peer-to-peer communi-
cation or, alternatively, may involve multiple entities, all of which may be regarded
as peers.
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Having identified the physical distribution of the system and the partitioning it
imposes, we may then examine other aspects of the system requirements to determine
whether further partitioning is necessary. For example, a client-server system will
typically involve the requirement that a given physical server entity be able to serve
multiple clients simultaneously. Particularly if these client-server relationships are not
stateless (as would be the case, for example, if some form of security authentication
precedes transactions), the server must maintain the state of each connection. This
requirement may best be accommodated by constructing the server as a group of
serving processes, one per currently active client. The server cannot be designed as a
monolith — at least some form of decomposition is required. Further decomposition
may be needed if separation of functional concerns is required. For example, we
may wish to separate the part of the server responsible for authentication from the
part responsible for transactions. By following this process, a sketch of the desired
structure, composed of two or more entities communicating in order to provide the
required functionality, is produced.

Because the thesis focuses on the practical implementation of formally-specified
systems, the construction of the specification must concentrate on its ultimate suit-
ability for implementation. The following sections explain some of the details of spec-
ification structure suitable for implementation by means of the ObjecTime toolset.

3.6.2 Structural Specification

The encapsulation that is such an important part of an object-oriented specification
style is represented in LOTOS by using processes and the hide operator. Each process
represents a single actor, which may contain other actors. To simplify the methodol-
ogy, actors that contain other actors (henceforth referred to as containing actors) do
not have behaviour of their own. That is, an actor may be either a containing actor,
and thus have all of its behaviour determined by its component actors, or be an actor
with behaviour. A containing actor will be represented in LOTOS in the following
style:
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process A[gate—list—A]:noexit:=
hide hide—list—A in
(
Al[gate—list—Al]
|[channel —gate—list—1]|
A2[gate—list—A2]

|[channel—gate—list—n—1]|
An[gate—list—An]
)
where
process Al[gate—list—Al]:noexit:=

endproc
process A2[gate—list—A2]:noexit:=

endproc
process An|gate—list—An|:noexit:=

endproc
endproc

The gate-1list-A indicates the gates through which the actor will communicate
with other actors. The use of the hide operator allows for communication between
the constituent actors to be hidden and so provides for a means of encapsulation. The
specification of processes A1, A2 and so on within process A (using the where operator)
hides those processes from parts of the specification outside process A. This hiding of
structure contributes further to the encapsulation of the actors. Generally speaking,
the gates listed in the channel gate lists (channel-gate-1list-1 and others) will also
be listed in hide-1list-A, as they represent the internal communication channels
within actor A. Gates which do not appear in hide-1ist-A will be visible to actors
outside A, and must be listed in gate-1list-A.

Note that because the internals of actor A are hidden from view, top-level design
can be completed without having to write the internal structure of actor A. The use
of the hide operator to hide internal behaviour allows us to create a specification that
may be compiled and validated at a very early stage of design. Also, this hierarchical
structuring is not limited to the top-level of the design; one or more of the constituent
actors of an actor may themselves contain actors with their own internal structure.
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Each of the gates of the actor will be used to pass messages to and from other
actors. As such, the messages that may be passed should be defined using the LOTOS
abstract data type notation. A message type is defined as a LOTOS data type, and its
possible values enumerated. Unfortunately, it is not at present possible to specify that
a given gate will only pass messages of particular types. Instead, the designer must be
careful to only use particular data types for communication through particular gates.
For example, suppose that there is a gate Ss that should only pass the messages listed
in the data type Ss_out below. LOTOS does not provide constructs to enforce this
behaviour. Instead, the designer must ensure that the only messages that are sent on
gate Ss are from the list of values indicated.

type Ss_out is
sorts Ss_out
ACTIVATE request, DEACTIVATE_ request : = Ss_out

endtype

3.6.3 Behavioural Specification

With the structure of the system written, the behaviour of the component actors
can be specified. The behaviour is written in a modified state-oriented style, using
a process to represent each state. A process representing a state machine may be
written in the following style:

process Al[gate—list—Al]:noexit:=
initial—behaviour—A1l
Al—1[gate—list—Al—1](parameter—list—Al)

where
process Al—1[gate—list—Al](parameter—list—Al):noexit:=

endproc
process Al—2[gate—list—Al](parameter—list—Al):noexit:=

endproc
process Al—n|gate—list—Al](parameter—list—A1l):noexit:=

endproc
endproc
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The behaviour initial-behaviour-A1l allows an actor to execute some initiali-
sation behaviour before moving into its initial state, in this case A1-1. Each of the
processes representing the states of the state machine (A1-1, A1-2, ..., Al-n) has
the same gate list, and, if any state variables are required, they are contained within
the (optional) parameter list, which is the same for each process. Again, the hide
operator is used to hide the substates of state A1, so that the substates will not be
visible to other parts of the specification.

Each of the states of the above state machine may itself be a state machine of the
same format, yielding a hierarchical state machine. Alternatively, a state may not be
subject to further decomposition, but instead be defined in terms of the transitions
out of the state. For example, the following state S1-1 has an outgoing transition to
state S1-2 triggered by the arrival of a message at gate a, and a transition to state
S1-3 triggered by a message at gate b:

process S1—1[gate—list—S1|:noexit:=
a 7 msg:message_type;
S1—2[gate—list—S1]

I
b 7 msg:message_type;
S1—3[gate—list—S1]
endproc
More complex behaviour may be described, in which the state next reached is
determined by the contents of a message, expressed in one of the formats below:

process S1—2[gate—list—S1|:noexit:=
a 7 msg:message._type;

(
I
)

endproc

[msg = true] > S1—4[gate—list—S1]

[msg = false] > S1—5[gate—list—S1]

process S1—3[gate—list—S1]|:noexit:=
a ! msg_value_1; S1—4[gate—list—S1]
[
a ! msg_value_2; S1—5[gate—list—S1]

[

a ! msg_value_3; S1—6[gate—list—S1]
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The first format represents the situation in which the arrival of a given message
will always result in a transition, and there are only two choices of next state. The
second format is used when there are more than two choices of next state and/or
when a given message may not always result in a transition.

By the application of the syntax illustrated in this section, it is possible to create
quite complex state machine behaviour. Section 3.6.5 explains how the specification
of state behaviour can be expanded to include sending messages to other actors.

3.6.4 Inheritance

One of the benefits offered by object-orientation is the facility of reuse, particularly
through the mechanism of inheritance. If the behaviour of one system element can
be regarded as an extension of the behaviour of another element, the first can be
defined as a sub-class of the second, inheriting the behaviour they have in common.
Using inheritance in this way allows designers to reuse code already written and
tested, requiring new code only for the new behaviour. Unfortunately, as noted in
the discussion of Rudkin’s and Mayr’s papers (in section 2.3.2), LOTOS does not
provide direct support for inheritance. This section explains how limited support for
inheritance can be provided without needing to change the LOTOS standard syntax.

Working with a slightly modified form of Rudkin’s illustrative example, the fol-
lowing two definitions of a buffer process are considered:

process BUFFER [in, out](q:queue): noexit:=
in7x:element; BUFFER]in, out](x appends q)
[
[q ne empty] = out!hd(q); BUFFER[in, out|(tl(q))
endproc

process BUFFER2 [in, out, flush](q:queue): noexit:=
in?x:element; BUFFER2]in, out](x appends q)
[

[
flush; BUFFER2[in, out, flush](empty)
endproc

[q ne empty|] = out'hd(q); BUFFER2]in, out](tl(q))

The behaviour of BUFFER2 adds an extra gate and an extra choice to the behaviour
of BUFFER. Rudkin points out that a trivial inclusion of the BUFFER process within
BUFFER2 cannot be used because the recursive invocation of BUFFER would refer to
the wrong process. His proposed solution is to add a new primitive process, self,
which would provide the needed polymorphism. Although this addition provides a
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sophisticated solution to the problem, it requires changes in the LOTOS syntax and
semantics, and is thus incompatible with existing LOTOS tools. The proposal made
in the thesis is not as powerful nor as general as Rudkin’s but works with the subset
of LOTOS used here.

Following Mayr, a preprocessor would be used to process a specification written
in a new syntax in order to yield a specification written in standard LOTOS. Mayr’s
syntax provided no facility for defining a derived process with a different gate param-
eter list or value parameter list from the base process. Changing the syntax slightly
provides a more powerful form of inheritance, as seen in this example. Taking the
specification of BUFFER above, we can specify BUFFER2 as:

process BUFFER2 [in, out, flush](q:queue): noexit:=
extends BUFFER [in, out|(q:queue): noexit:=
flush; BUFFER2[in, out, flush](empty)

endproc

The preprocessor can now replicate the code of BUFFER, replacing the recursive
instantiations of BUFFER with instantiations of BUFFER2, to give the same specifica-
tion of BUFFER2 as seen above. The new behaviour is appended to the old behaviour
using a choice operator. This extension will work only given certain conditions on
the two processes being specified. Process () can only be defined as an extension of
process P if the following conditions hold:

1. The gate parameter list of P must be a prefix (proper or not) of the gate
parameter list of Q).

2. If process P has a value parameter list, it must be a prefix (proper or not) of
the value parameter list of process Q).

3. If process P is defined as exiting, process () must be defined as exiting, even if
the added behaviour does not include an exit.

4. Appending the behaviour of () to the behaviour of P must not introduce non-
determinism. This requirement will be met if the initial actions of the behaviour
of () are different from the initial actions of the behaviour of P, and () has no
initial internal actions.

More generally, the operation of the preprocessor may be defined with reference to
the following process definitions: a base process B and a derived process D. Note that
each process is defined in terms of an initial-behaviour and a series of contained
processes. The latter are optional; a process can be defined solely in terms of its initial
behaviour. However, discussing inheritance in terms of this more general process
structure offers two advantages over a more restricted structure. First, the discussion
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is more generally applicable than if it only applied to processes that did not contain
other processes. Second, the state-oriented style described in this thesis requires
that processes representing actors are structured with initial behaviour and contained
processes representing states. As such, the discussion of inheritance is applicable to
actors that inherit some behaviour from base actors, as seen in chapter 5.

process B[gates—B](parameters—B):exit—behaviour—B:=
initial—behaviour—B
where
process Bl[gates—B1](parameters—B1):exit—behaviour—B1:=
behaviour—B1
endproc
process B2[gates—B2](parameters—B2):exit—behaviour—B2:=
behaviour—B2
endproc
endproc

process D[gates—D](parameters—D):exit—behaviour—D:=

extends process B[gates—B](parameters—B):exit—behaviour—B:=
initial—behaviour—D

where
process D1[gates—D1](parameters—D1):exit—behaviour—D1:=
extends process Bl[gates—B1](parameters—B1):exit—behaviour—B1:=

behaviour—D1

endproc

endproc

The preprocessor must:

1.
2.

Ensure that gates-B is a prefix of gates-D;
Ensure that parameters-B is a prefix of parameters-D;

Ensure that if exit-behaviour-B is exit, so is exit-behaviour-D;

. Apply the same conditions to the gate lists, parameter lists and exit behaviours

of processes B1 and D1;

. Append initial-behaviour-B to initial-behaviour-D using a choice oper-

ator, ensuring that all references to B1 are replaced by references to D1, and all
references to B are replaced by references to D;

. Append behaviour-B1 to behaviour-D1 using a choice operator, ensuring all

references to B1 or B are replaced as above;
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7. Copy process B2 into D, ensuring all references to B1 or B are replaced as above;

8. Ensure that the addition of the new behaviour does not introduce non-determinism.
Guaranteeing this is not possible in general, though some static checks may be
applied.

Carrying out these actions will result in a process definition as below:

process D[gates—D](parameters—D):exit—behaviour—D:=
initial—behaviour—D
I
initial—behaviour—B
where
process D1[gates—D1](parameters—D1):exit—behaviour—D1:=
behaviour—D1
[
behaviour—B1
endproc
process B2[gates—B2](parameters—B2):exit—behaviour—B2:=
behaviour—B2
endproc
endproc

This specification of inheritance differs from that presented in Rudkin [Rud92] in
not requiring that a new primitive process, and differs from that presented in Mayr
in allowing derived processes to have extended gate and value parameter lists.

3.6.5 Communication

The nature of communication between processes in the thesis’ design will differ accord-
ing to the physical distribution of the processes. Processes that execute on the same
physical entity (typically those produced by functional decomposition of a higher-level
process) may communicate synchronously. That is, the sender makes information
available to the recipient and the exchange occurs instantaneously and completely re-
liably. Processes that execute on different physical entities will generally not be able
to synchronise in this way. Instead, some form of message passing must be used, with
its attendant risk of loss of information. Typically, one would not expect the sender
process to block awaiting correct transmission, but instead to proceed and perhaps
expect an acknowledgement at a later time.

Synchronous communication is the fundamental form of inter-process communi-
cation supported by LOTOS, as indicated in the example below:
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(...; g ! messagel; h ! data, ...)

gl

(...; g 7 message:message_type; ...)

In the above example, both processes synchronise on gate g, passing the value
messagel from the upper process to the lower process. If one process reaches this
action before the other, it must wait, but once both processes are ready to synchronise,
the communication is instantaneous and both processes proceed to the next action.

While synchronous communication is specified quite naturally in LOTOS, asyn-
chronous communication must typically be specified using an intermediary process
to represent the transmission medium. In the example below, process P1 must syn-
chronise with gate in of the data channel to transmit a message, but P1 may then
continue without waiting to see whether P2 receives the message. The transmission
completes when process P2 synchronises with the gate out of the data channel. The
specification fragment below uses the gate relabelling characteristic of LOTOS pro-
cess invocation. The relabelling means that the invocation of channel[a, b] may
be regarded as binding the gate names a and b to the gates in and out in process
channel. Thus, the first action of the process channel will synchronise with gate a
in process P1, while the second action will synchronise with gate b in process P2.

P1[g,a] |[a]| channel[a,b] |[b]| P2[h,b]
where
process channel[in,out] : noexit :=
in ? signal:signal_type ? payload:payload_type;
out ! signal ! payload;
channel[in,out]
endproc

Process P1 can initiate a transmission using a send operation of the form:
a ! signal ! payload;

while process P2 receives the data using an expression of the form:
b 7 signal:signal_type ? payload:payload_type;

This basic channel specification models a channel that always transmits data cor-
rectly. Modifications are necessary to model a channel that may arbitrarily lose mes-
sages, using the LOTOS internal action i to model the non-determinism of channel
data loss. Thus an unreliable channel specification might look like:
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process channel[in, out] : noexit :=
in 7 signal:signal_type ? payload:payload_type;

(
I
)

endproc

out ! signal | payload; channel[in, out]

i; channel|in, out]

Using this channel specification may lead to problems when automated validation
tools are used, however, as it is possible for the channel to continually lose messages,
leading to an infinite state space expansion. If this loss is likely to be a problem, an
alternative channel specification may be used, in which, for example, the channel can
lose one message, but not two successive messages:

process channel|in, out] : noexit :=
in ? signal:signal_type 7 payload:payload_type;

(
I

out ! signal ! payload; channel[in, out]

i
in 7 signal2:signal_type 7 payload2:payload_type;
out ! signal2 ! payload2;

channellin, out]

)

endproc

These two alternative channel specifications may be appropriate in different cir-
cumstances. For example, in the GTP system described in chapter 4, the protocol
allows only for a certain number of retransmissions before aborting and returning an
error code. Thus, the GTP system can be specified using the first unreliable chan-
nel specification, which loses an arbitrary number of messages, and then the test
sequences can be written to allow for either successful transmission or the error code.
On the other hand, the ABP system described later in this chapter responds to con-
tinual message loss by continuing to retransmit the messages. In this case, use of
the first channel specification would mean that verification tools would never termi-
nate. The second channel specification, on the other hand, allows verification that the
protocol can handle some message loss without the tests running for an excessively
long period. As described in section 3.9.2, further modifications allow a bidirectional
channel to be modelled.
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3.6.6 Interrupts

Reactive systems may need to be ready, at any point, to react to an exceptional event.
Events of this sort might include detection of critical environmental conditions (such
as high temperatures or power failures) or top priority system events. In an embedded
system, these might be handled by processor interrupts. Interrupts provide the facility
for an event to be handled at any time. Typically, once interrupt processing has
completed, the system continues where it left off. Alternatively, the system may exit
or restart from a particular state.

This section will present two possible ways of representing interrupts in LOTOS.
The first is of use when, after the interrupt handling code is complete, the actor
should return to a specific state. The second option is for the actor to return to the
state it was in when the interrupt occurred. Both methods suffer from some flaws, re-
sulting from limitations in the standard LOTOS language. The section concludes by
briefly reviewing an enhancement to LOTOS by Stepien, developed further by Her-
nalsteen and Février that adds a new operator to better support interrupt behaviour
(see [Ste94] and [HF97]).

Specifying termination of a system, or restarting from a single state is relatively
simple in LOTOS. The disable operator ([>) can break out of any behaviour expres-
sion or process. In the example below, whenever process P2 is ready to synchronise on
gate d, the expression a; b; c; exit will be disabled and the second action sequence
(d; e; exit) will be executed:

((a; b; c; exit) >>(d; e; exit))
|[d]|
P2[d]

To ensure that the system returns to a given state after processing the interrupt,
the enable operator may be used to indicate that processing should restart. In the
example below, process Int describes the behaviour to be executed when an interrupt
is received, while P1 indicates the normal processing of the system. The process
P1Int behaves like P1 until the interrupt triggering event (d) occurs, after which the
behaviour of Int is executed to completion. The system then returns to behaving
like P1, until another interrupt occurs, and so on.

process Int[d, €] : exit :=
d; e; exit
endproc

process Pllnt[a, b, ¢, d, €] : noexit :=
P1[a, b, ¢] >>(Int[d, ] >>P1llnt[a, b, c, d, €])
endproc
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The above discussion of the disable operator may be applied to the implementation-
oriented LOTOS style developed in this chapter as follows:

processP1[gate—list]:noexit :=
IntS1[gate—list]
where
processIntS1[gate—list] : noexit :=
S1[gate—list]
> (P2[gate—list] >>IntS1[gate—list])
endproc
processS1 [gate—list] : noexit :=

endproc
processP2 [gate—list] : exit :=

endproc
endproc

In this example, the actor represented by process P1 starts in initial state S1. At
any point, the behaviour of P1 may be interrupted by P2. Once the interrupt has
occurred, the behaviour of the actor will be that of process P2 until the process exits.
The enable operator (>>) indicates that when process P2 exits, the actor will return
to its initial behaviour through recursive invocation.

The presentation of interrupt behaviour above suffers from two main flaws. First,
the actor must return to a specific state, regardless of the state it was in when the
interrupt occurred. It is more usual in reactive systems to resume processing at the
point at which the interrupt occurred. The second and more significant flaw is that
the interrupt can occur at any point. Although individual LOTOS actions are defined
as atomic, there is no provision in LOTOS to make a sequence of actions atomic, so
it would be possible for an interrupt to occur part way through the processing repre-
senting a state transition, for example. Both of these flaws are resolved in the second
means of specifying interrupt behaviour, taken from Hernalsteen and Février [HF97].
The process that may be interrupted is modified so that at any point at which an
interrupt may occur, a suspend; resume sequence is inserted. These actions syn-
chronise with the interrupting process to control the behaviour of the interruptible
process. Thus, an actor may be specified as:
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processP1[gate—list]:noexit :=
S1[gate—list, suspend, resume]
|[suspend, resume]|
P2[gate—list, suspend, resume]
where
processS1 [gate—list, suspend, resume| : noexit :=
istate-behaviour;,
[
suspend; resume; jstate-behaviour;,
endproc

processP2 [gate—list, suspend, resume]| : exit :=
suspend;

resume;
P2[gate—list, suspend, resume]
endproc
endproc

This actor starts in state S1 and its behaviour evolves as specified by the state
behaviour of each state. However, if an interrupt occurs as state S1 is entered, process
P2 will synchronise on the suspend gate, and no further execution can occur within
S1 until the resume action occurs at the end of P2’s execution.

This means of specifying interrupt behaviour resolves the two issues identified
above. Interrupts are limited to occurring in particular places, thus preserving the
atomicity of transitions. After the interrupt handling has occurred, execution con-
tinues at the point at which the interrupt occurred. However, the readability of the
specification is markedly reduced, particularly if the original behaviour of the states
and transitions was quite complex. Hernalsteen and Février conclude that without
an operator designed for the purpose, LOTOS “...is not able to represent correctly
the suspend/resume concept which is essential for the design of real-time systems.”®

Stepien suggests the addition of a suspend/resume operator that would allow one
process to suspend another, resuming execution of the first process only when the
second has completed [Ste94]. This suggestion was developed further in the paper
by Hernalsteen and Février [HF97], and has since been adopted into the E-LOTOS
standard. The operator is written as [g> and specifies that the process on the left of
the operator may be suspended by the process on the right through synchronisation
on the special action g. For example, P1 [g> P2 indicates that process P1 may be
suspended at any point by process P2. If this suspension occurs, process P2 is executed

SHernalsteen and Février [HF97], page 404.
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until it terminates, at which point the execution of P1 continues. The suspension may
occur repeatedly, modelling the behaviour of reactive systems in which interrupts may
occur more than once.

Given the recognised difficulty of specifying interrupt behaviour using standard
LOTOS, the methodology described here does not incorporate interrupts. Devel-
opment of the methodology to include interrupts using the special constructs in E-
LOTOS is left for further research.

3.7 Validation of the Specification

Validation of the specification may be performed in two ways. Validation against
initial requirements may be regarded as black box validation (see section 2.2), be-
cause we are concerned only with observable behaviour. Validation that exploits the
designer’s knowledge of the full internal structure of the system may be regarded as
white bor validation. Between these two types of validation is grey boz validation®.
Grey box validation may be carried out if one assumes knowledge of the interactions
of system entities without assuming knowledge of the internal behaviour of those
entities. This latter form of validation may be useful to determine whether the corre-
spondence between internal behaviour and observable behaviour of a protocol system
is as expected.

Note that a distinction is often drawn between the terms ‘validation’ and ‘verifi-
cation’. The term ‘validation’ applies only to confirming that end-to-end behaviour
requirements are met. The term ‘verification’ is used to describe any checking of a
design that includes the internal behaviour of the system. In the sections that fol-
low, ‘black box validation’ will refer to checking external behaviour, while ‘grey box
verification’ will refer to checking against internal behaviour.

Two validation methods are used in this thesis.

1. Validation sequences are used to check requirements expressed in terms of de-
sired sequences of observable events. The LOTOS specification of a system is
composed in parallel with LOTOS sequences representing agent scenarios. The
resulting compositions are then executed to ensure that the system can support
the behaviour described by the scenarios. Because the sequences deal only with
observable behaviour, they correspond to the black box validation mentioned
above.

2. Temporal logic is used to confirm temporal properties of a system, such as that
X causes Y. These properties may refer to observable events only, providing

6See Castanet and Koné [CK94] and Petrenko et al. [PYD95] for more details on grey box testing,
validation and verification.



CHAPTER 3. DESIGN METHODOLOGY 61

additional black box validation, or may refer to internal events as well, typically
providing grey box verification. The latter is particularly useful to check the
relationship between observable events and internal processing (see, for example,
section 4.6.2).

3.7.1 Validation Using Agent Scenarios

An agent scenario is an expected sequence of events, seen from the point of view of one
or more agents interacting with the system. Applied to communications protocols,
the agents are regarded as those entities that request that messages be sent, and that
receive messages at the other end. Thus the only visible events are message requests
and receptions; events occurring on the link within the communication system are not
visible and are not described in agent scenarios. Given the generalised communication
protocol example below, the agent scenario must only be expressed in terms of events
on the gates s and t, but not in terms of events on the hidden gate 1:

process communication_link[s, t]:noexit:=
hide | in
(
sender(s, 1]
]|
receiver|t, 1]

)

endproc

The expected sequence of events must be written in a format compatible with the
system specification. A synchronisation on the special gate success is added as the
last event, and the sequence is encapsulated within a process (see section 4.6.1 for an
example). The LOLA tool is then used to check whether the sequence is observable.
The tool composes the test process in parallel with the system specification and carries
out a complete state space expansion (see Miguel et al. [dMAQMO95] for details on the
operation of LOLA) . The result of the expansion will be one of three results: may
pass, must pass or reject. A may pass result indicates that, for at least one execution
of the specification in parallel with the test sequence, the success event is reached.
A must pass result indicates that for all executions of the specification in parallel
with the test sequence, the success event is reached. A test for which the success
event is never reached yields a reject result.

While section 3.5.2 described agent scenarios in terms of single execution paths,
writing tests in this format does not allow for non-determinism in the specification.
When specifying systems that communicate asynchronously, and which may lose mes-
sages, it is possible that a given scenario may evolve in a number of ways, depending on
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whether messages are lost. In order to accommodate this choice, the correct response
of the system to message loss must be determined, and the test written including
branches representing all of the possible behaviours. Thus, if the possible outcomes
of sending a message along the link illustrated above are: the receiver reports that a
message was received, or the sender reports that the transmission failed, a suitable
test sequence might be written:

process communication_link_tester[s, t|:noexit:=
s | send_message;
t ! message_received;
success;
stop

s | transmission_failed;
success;
stop

)

endproc

Note that because agent scenarios are written only in terms of externally observ-
able events, one cannot check whether the transmission_failed signal is being sent
in response to a failed transmission, or is being sent as a constant response. Where
necessary, the task of checking that the external behaviour of the system conforms to
internal events is handled in this design methodology using temporal logic.

3.7.2 Validation Using Temporal Logic

Temporal logic formulae are checked against the system with the LMC model checker
(see section 3.5.3). Although it might be desirable to check formulae against the
unrestricted state space expansion of the system specification, this practice has proved
impractical for all but the simplest of specifications. Instead, the specification is
composed in parallel with a test sequence to limit the state space expansion, and
the LMC model checker is then used to test the formula against only that restricted
subset of the state space. If the formula is to be used to check the internal behaviour
of the system, the system specification may need to be rewritten slightly to remove
gate hiding, such as in the example below:
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process communication_link][s, t, []:noexit:=
sender(s, 1]
Il
receiver|t, 1]

endproc

Even if test sequences are used to reduce the state space expansion, it is possible
that the expansion cannot be completed within a reasonable time. The LMC model
checker allows the user to specify the maximum width and depth of expansion, and
then reports whether the formula specified can be said to always hold, or to hold only
to the depth explored.

3.8 Implementation of the Specification

Given a validated LOTOS specification, written in the style presented in the preced-
ing sections, it is now possible to derive a ROOM model of the specified system. This
section presents a mapping from the implementation-oriented LOTOS style to the
ROOM notation. The fact that the LOTOS specification has been validated against
requirements, together with the clear mapping from LOTOS to ROOM, should yield
confidence in the correct operation of the ROOM model and hence the C++ imple-
mentation. Further confidence in the ROOM model may be gained through the use
of the same agent scenarios as used in the validation of the LOTOS specification (see
section 3.9.6).

3.8.1 Actor Structure Implementation

The ROOM notation is based upon the use of actors that encapsulate their internal
data and behaviour and communicate only through defined sets of ports. The LOTOS
fragment below describes an actor, P, that interacts with other actors only through
the gate hR1. Hidden within actor P are two contained actors, P1 and P2. These
two actors communicate through a hidden gate, gR1, and actor P1 communicates
with the outside world through gate hR1. Given this LOTOS actor specification, the
ROOM representation illustrated in figure 3.3 can be derived. Note how the gates
in the LOTOS specification map to the ports in the ROOM notation; actor P1 has
two gates, gR1 and hR1, which map to the two ports seen in the ROOM model. Also
note how the hidden communication channel gR1, represented in LOTOS through
the hide operator and the generalised parallel operator (| [gR1] |), is represented in
ROOM as the link between the two actors P1 and P2, which is not visible outside
the actor P. Finally, note that the ROOM relay port hR1 is derived from a gate on
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pl p2

hR1

hR1

Figure 3.3: ROOM notation for a hierarchically-structured actor

a contained actor (the gate hR1 on actor P1) that is not hidden and that appears in
the gate list of the containing actor P.

process P[hR1] : noexit :=
hide gR1 in
(
P1[gR1, hR1]
|[gR1]|
P2[gR1]
)
where
process P1[gR1, hR1] : noexit :=

endproc
process P2[gR1] : noexit :=

endproc
endproc

For each of the gates of an actor, a protocol class should be defined in ROOM. The
protocol class specifies the possible types of messages that may be passed through a
gate. Each of these types is defined as a data class in ROOM. Because, at present,
this methodology deals only with enumerated data types, all data classes will be of
type Enumerated. The values of these enumerated data classes may be determined
from the enumerated type definitions in the LOTOS specification. For example,
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the LOTOS type definition below indicates that the message can take one of two
values, ACTIVATE _request or DEACTIVATE_request. Thus, an enumerated data class
is defined in ROOM with the two values as indicated. Then, assuming that these are
the only possible outgoing message values on gate Ss, a protocol class is defined such
that the outgoing messages are of the data class just defined. The port Ss is then an
instance of this protocol class.

type Ss_out is
sorts Ss_out
ACTIVATE request, DEACTIVATE request : > Ss_out

endtype

A more complex example of this comes from the alternating-bit protocol exam-
ple seen later in this chapter (section 3.9 onwards). A data class composed of two
components, a number and a bit, is defined using the LOTOS data type definition
below:

type message is number, altbit
sorts mess
opns data : mess = num
seq : mess = bit
msg : num , bit = mess
eqns forall Data: num, Seq: bit
ofsort num
data(msg(Data,Seq))= Data;
ofsort bit
seq(msg(Data,Seq)) = Seq;
endtype

In the ROOM implementation, a corresponding data class is defined as in fig-
ure 3.4(a). A protocol class is then defined, using the data class message, as in
figure 3.4(b).

3.8.2 Actor Behaviour Implementation

The LOTOS style for specification of behaviour described in section 3.6.3 maps to
the behavioural notation used within ROOM, ROOMcharts. ROOMcharts provide
a powerful state machine notation, allow for hierarchical structuring of states, and
permit the execution of action code on transitions, state entry or state exit.

A LOTOS actor that does not contain other actors will have its behaviour de-
scribed as a state machine in the following format:
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+ message/Sequence | Data  View
Field Class DefaultValue

Y althit Boolean false v piu | Protocol View

¥ payload num In Signals _ Data Class Out Signals _ Data Class
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(a) ROOM data class definition (b) ROOM protocol class definition

Figure 3.4: ROOM data and protocol class definitions

process jprocess-name;, jgate-list; jvalue-list; : noexit:=
jinitial-behaviour;, (optional)
jinitial-state;jgate-list;,

where
process jstate-1; jgate-list; jvalue-list;: noexit:=

endproc
process jstate-2; jgate-list; jvalue-list;: noexit:=

endproc
endproc

In the format above, the optional <initial-behaviour> describes actions that
occur before entering the initial state of the actor; these actions will typically be
used for initialisation. The <initial-state> must be one of the process names
listed as <state-1>, <state-2> and so on. This description of the actor maps to the
ROOMcharts representation of actors, in which an initial transition is made without
a triggering event (see the top left corner of figure 3.6(a) for an example of this initial
transition). The actor then remains in the initial state until a triggering event causes
a transition to another state. The <value-1list> is optional, and is used to specify
extended state variables. As such, the list must be the same for each process.

Transitions to other states may be described in three main ways in LOTOS. The
simplest case is that of a state that only has one possible outgoing transition, and is
specified as in the example below:
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Figure 3.5: ROOM behaviour diagram for a simple transition from one state to
another.

process Sl[gate—list—S1|:noexit:=
a ! msg_value_1;
S2[gate—list—S2]

endproc

This LOTOS fragment illustrates a state S1 with an outgoing transition that is
triggered by a message on gate a with value msg_value_1. If such a message arrives,
the transition is triggered and the actor moves to state S2. In ROOM, this case would
be represented by a single transition from actor S1 to S2, with the port a listed in
the list of triggering events for the transition, and a test for the value msg_value_1
as a guard condition on the transition (see figure 3.5).

The second case considered is that of a state with an outgoing transition that
branches according to the value of the triggering message. The LOTOS fragment
below illustrates a state S1-2 with an outgoing transition triggered by the arrival of
a message on gate a. If a message arrives on that gate, the transition is always taken,
though the destination of the transition depends upon the value of the message. If
the message value is true, the next state is S1-4, while if the message value is false,
the next state is S1-5.
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process S1—2[gate—list—S1]:noexit:=
a 7 msg:message_type;

(
I
)

endproc

This LOTOS state description maps to the ROOM notation seen in figure 3.6(a),
in which the choice point tests the value of the message. The graphical representation
of the transition must be augmented by a textual description of the triggering event,
entered into the list of triggers for the transition in the ObjecTime toolset. The choice
point has a fragment of C++ code associated with it to test the value of the message.
The C++ code must return a boolean value indicating which branch is to be taken.
An example of such a code fragment might be:

[msg = true] = S1—4[gate—list—S1]

[msg = false] > S1—5[gate—list—S1]

return (*RTDATA == "true");

The ObjecTime system provides the macro RTDATA that points to the value of the
last message received. Thus, this C++ statement returns the boolean true if the last
message received was "true" and false otherwise.

The last case considered is that of a state with multiple outgoing transitions that
may be triggered by different messages. The transitions are separated by the choice

operator ([1) in LOTOS, as in the LOTOS fragment below.
process S1—3[gate—list—S1]:noexit:=

a ! msg_value_1;

S1—4[gate—list—S1]

I

a ! msg_value_2;

S1—5[gate—list—S1]

I

a ! msg_value_3;

S1—6[gate—list—S1]

This state specification maps to the ROOM notation seen in figure 3.6(b). Each
of the transitions in the ROOM model must be annotated with the triggering event
(here, a message arriving through port a) together with a guard condition. The guard
condition indicates that the transition can only be taken if the condition is satisfied.
In this case, the guard condition for each transition would test the contents of the
message.
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Figure 3.6: State diagrams derived from LOTOS behaviour specifications.

The discussion of behaviour above has dealt only with simple transitions between
states, triggered by incoming messages. In order that actors be able to perform
behaviour, actions must be associated with transitions or states. Generally speak-
ing, these actions will consist of sending messages to other actors, and the issue of
communication is discussed in the following section.

3.8.3 Communication Implementation

As indicated earlier, LOTOS specifications may require synchronous or asynchronous
communication between actors. Synchronous communication is simply indicated us-
ing the LOTOS rendezvous mechanism, while asynchronous communication is spec-
ified using an intermediary process to represent the communication channel. Com-
munication is specified in the ROOM notation by attaching C++ code actions to
transitions or states. Thus, one can specify that if a given transition is taken, a
message should be sent through a given port.

If synchronous communication is required, the ROOM invoke primitive is used.
A simple synchronous communication might be specified in LOTOS as:

aPort ! signal ! dataObject;
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The gate through which communication occurs is aPort and the communication car-
ries two values, signal and dataObject. This synchronous communication can be
represented in the ROOM notation as:

retMessagePtr = aPort.invoke(signal, datalbject);

The port through which the communication should occur (corresponding to the gate
in the LOTOS specification) is specified by aPort, while the signal type is indicated
by signal and the payload by dataObject. The recipient actor would be specified
in LOTOS with an action:

aPort ! signal 7 data:data_type;

In ROOM, the recipient actor must include a reply operation, which may be of the
form:

msg->reply(signal);

The reply method synchronises with the invoke, and data exchange occurs. Op-
tionally, data may be passed in both directions. This would be specified in LOTOS
as:

aPort ! signal ! dataObject 7 reply:reply_type;
| [aPort] |
aPort ! signal 7 data:data_type ! replyObject;

Correspondingly, the ROOM notation supports an extended form of the reply oper-
ation to specify that data is to be returned:

msg->reply(signal, replyObject);

Asynchronous communication is provided via the send primitive, typically of the
form:

aPort.send(signal, priority, dataObject);

As above, aPort indicates the port from which the message will be sent, signal is a
symbolic name for the message, priority allows for priority ordering of triggers and
dataObject is a container for the data payload of the message. For the purposes of
the work described here, it will be assumed that all messages are of normal priority,
so the only features of concern are the gate, the signal and the payload.

If the recipient actor is in a state to receive the message, the message will trigger
a transition and the contents of dataObject can be assigned to an internal variable
or tested as part of a guard condition or choice point.
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It should be noted that the semantics of LOTOS and ROOM communication differ
in their degree of coupling. If asynchronous communication is used between ROOM
actors, they may be regarded as very loosely coupled. An actor wishing to send a
message out on a port may do so without there being an actor ready to receive the
message. That is, if actor A sends a message through a port that is connected to
actor B, it is not necessary that actor B do anything with the message. If the current
state of the recipient does not have a transition triggered by a received message, the
message is simply discarded. An advantage of this communications semantics over
a more tightly coupled system is that the sender will never block if the recipient
cannot handle the message. However, this loose coupling may mask design errors.
If the designer intends that a message should affect the recipient, but the recipient
actor does not have a transition triggered by that message, the ROOM model will
still execute without indicating an error. Thus, detection of “unspecified reception”
is not possible in the ROOM semantics (see [ZWR180] for a discussion of unspecified
reception).

The LOTOS specification style outlined in this chapter provides differing levels of
coupling. If two actors are connected by a communication channel that cannot lose
messages, such as the example on page 55, then if the recipient cannot handle an
incoming message, the system will deadlock. While this would not be desirable in an
implementation, the presence of deadlocks alerts the designer to possible problems
in the design. If the designer decides that it should be possible for the message to
arrive when there is no sensible action to be taken, the LOTOS specification can be
augmented to include a synchronisation with the message in order to dispose of it.

If, however, two LOTOS actors are connected by a communication channel that
can lose at most one message, such as the example on page 56, then if the recipient
cannot handle an incoming message, the channel will simply synchronise with the next
incoming message and discard the first one. This channel specification would only
allow for one ignored message; in order to allow for an arbitrary number of unlimited
messages, the channel would also need to be able to lose an arbitrary number of
messages, as seen in the example on page 56.

Providing these varying levels of coupling yields flexibility during the design stage;
if the designer wishes to be alerted to possible unspecified receptions, a tightly coupled
channel is chosen. If, on the other hand, the designer wishes for the specification to
execute without blocking on ignored messages, a channel that loses messages may be
selected. At present, this variable level of coupling is connected to possible loss of
messages. Further research could explore the possibility of allowing for looser coupling
between actors without also modelling the loss of messages in the communication
channel (see on page 129).
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3.8.4 Inheritance Implementation

ROOM provides inheritance mechanisms for data, protocol and actor classes. These
mechanisms may be used to implement an inheritance hierarchy originally specified in
LOTOS. Section 3.6.4 described a LOTOS notation that could be used to specify that
one LOTOS actor inherited behaviour from another. For example, the process spec-
ification below indicates that process D inherits from B, while adding new behaviour
and states.

process D[gates—D](parameters—D):exit—behaviour—D:=

extends process B[gates—B](parameters—B):exit—behaviour—B:=
initial—behaviour—D

where
process D1[gates—D1](parameters—D1):exit—behaviour—D1:=
extends process Bl[gates—B1](parameters—B1):exit—behaviour—B1:=

behaviour—D1

endproc

endproc

Section 3.6.4 also indicated the conditions that must apply to the definition of
process D so that it can inherit from D. For example, the gate parameter list gates-B
must be a prefix (proper or not) of gates-D. If gates have been added, correspond-
ing protocol classes must be defined in ROOM and added to the definition of the
actor class D. If a given gate is expected to pass additional messages in actor D, the
corresponding protocol class must be extended (see example in figure 3.7(a)). This
extension is performed by creating a new protocol class that inherits from the old
one, and adding the new messages to the new class. Similarly, if a given message type
should include extra messages, a new data class is created that extends the class enu-
merating the old messages. A new protocol class must then be defined to use this new
data class. Finally, a new actor class is defined that inherits from the old class, and
uses the new protocol classes. Figure 3.7(b) illustrates how inheritance is indicated
in ROOM using indentation. For example, protocol class s_apop is indented with
regard to its base class s. New behaviour is defined by adding states to the behaviour
definition of the actor. Figure 3.8 illustrates how inheritance in behaviour definitions
is indicated in ROOM. Note that states that are inherited from the base class are
bordered in gray in the derived class (for example, the state waiting_for_password).
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(a) Example of inheritance in ROOM protocol classes.
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Figure 3.7: Examples of inheritance in ROOM.
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Figure 3.8: Example of inheritance of behaviour in ROOM.

3.9 An Illustrative Example: The Alternating Bit
Protocol

In order to illustrate this discussion, the process was applied to the specification
and implementation of a simple example protocol. The example chosen is sometimes
referred to as Stop-and-Wait ARQ (see Bertsekas and Gallager [BG92], page 66). This
protocol is used to ensure reliable communication of data packets by guaranteeing
that each packet has been received correctly before attempting to transmit the next.
Thus, the protocol may be described at a system level by requiring that the sequence
of messages observed by the receiver be the same as the sequence injected into the
sender (see figure 3.9). The remainder of this section will explain the operation
of the protocol, concluding with the system requirements used in the creation of the
specification. The following sections (3.9.1 onwards) will explain the work undertaken
to produce a LOTOS specification in the style proposed in this chapter, to formally
validate the specification and to derive a ROOM implementation of the protocol.
A more detailed explanation of the specification and implementation is provided in
appendix A.

To ensure that a packet has been received, the sender waits for an acknowledge-
ment from the receiver. However, if this acknowledgement is undistinguished, it is
impossible for the sender to know whether the receiver was acknowledging the last
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Sender Receiver

Transmission Medium

Figure 3.9: System-level description of the alternating bit protocol

packet sent, or whether the acknowledgement was simply a late acknowledgement of
a previous packet. To counteract this potential problem, Stop-and-Wait ARQ uses
sequence numbers attached to a transmission and requires that the acknowledgement
similarly include a sequence number. By checking these numbers against the number
expected, both the sender and the receiver can be sure that the packet or acknowl-
edgement that they have just received is valid. It has been shown by Bartlett et al.
that reliable transmission over a queue-like medium can be achieved if the sequence
number is modulo 2 [BSW69]. That is, we need only use a single bit sequence number
and alternate between the values 0 and 1. For this reason, the protocol is sometimes
called alternating bit protocol (ABP).

The operation of the system is described by the state diagrams in figure 3.10. The
sender (illustrated in figure 3.10(a)) starts in state ready0. When the sender has a
message to be sent, it sends the message to the receiver, along with the alternation
bit 0 and moves to the state waiting0, waiting for an acknowledgement with the
alternation bit set to 0. Acknowledgements with the wrong alternation bit cause the
message to be resent, and the message may also be resent if an acknowledgement is
not received within a reasonable time period. Once a correct acknowledgement is
received, the sender moves to state readyl. If it now has a message to be sent, it
packages the message with the alternation bit 1 and moves to the state waitingl,
waiting for an acknowledgement with the alternation bit set to 1. Upon reception of
a correct acknowledgement, the sender returns to state ready0 and the cycle restarts.

The receiver (illustrated in figure 3.10(b)) is a simpler state machine, as it needs
only to maintain a record of the alternation bit which it is expecting. The two states
waiting0 and waitingl indicate the expected alternation bit. When a message
arrives, an acknowledgement is sent with whatever alternation bit was attached to
the message. If the alternation bit is as expected, the message is a new one and
is passed to the upper layers of the system. If the alternation bit is incorrect, the
message must be a retransmission of a previously received message, and the message
is discarded.
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Figure 3.10: State diagrams for the alternating bit protocol

Because ABP is simple, the system requirements are also simple. The protocol
is intended to allow reliable transmission of data packets, and so requires that the
sequence of messages presented to the sender be received by the receiver in the order
presented, as in figure 3.9.

3.9.1 Formalisation of Requirements

The thesis used the above system description of the alternating-bit protocol to test
the design methodology. The simplicity of the system requirements meant that the
creation of agent scenarios typically involved ensuring that a sequence of messages
be received at the other end in the same order. However, this simple agent scenario
was somewhat complicated by the existence of an unreliable transmission medium.
While the use of a simulated reliable medium was an important check to ensure that
the protocol in principle worked, the purpose of the alternating-bit protocol is to
overcome the problems of an unreliable medium, and so the requirements had to
specify system behaviour in the context of an unreliable medium. It is important
that a medium that occasionally loses either messages or acknowledgements does not
prevent a sequence of messages from being received in order. However, if the medium
consistently loses messages, as it might do if a physical line were cut, there will be no
sequence of received messages, and so the naive scenarios would not have adequately
captured this failure.
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The informal requirements above were separated into safety and liveness require-
ments (see section 3.5.1). The main safety requirement was that for a sequence of
input messages numbered 1, 2, 3 and so on:

1. When message n arrived, all messages numbered 1, 2, ..., n — 1 had already
arrived.

2. When message n arrived, its predecessor was message n — 1.

This second requirement may be seen as recasting the first requirement in an inductive
form, so that if the second was true, the first would also be true. Formulating the
second requirement in CTL, using the Precedence Property Pattern described by
Dwyer et al. (see section 3.5.3), yielded the formula:

A(ﬂPU (S \% AG(ﬁP)))

The proposition P states that message n has arrived and proposition S states that
message n — 1 has arrived.

Similarly, temporal logic was used to specify the liveness property that progress
will be made. Again, following Dwyer et al., the requirement that if message n was
received, then message n+1 would be received at some point in the future was written
as:

AG(P — AF(S))

Proposition P indicates that message n was received, and proposition S indicates
that message n 4+ 1 was received.

The formalisation of requirements was completed by combining agent scenarios
with temporal logic assertions. Thus, the scenarios specified the normal behaviour of
the system in terms of sequences of sent and received messages, while the temporal
logic assertions expressed requirements for safety and liveness.

3.9.2 Development of Specification

Given the system description and formalisation indicated above, a specification was
developed, using the methodology outlined earlier in this chapter. The specification
was validated against the requirements formalised in the preceding section, and then
used to derive a ROOM implementation. The subset of LOTOS used in the alter-
nating bit specification differs slightly from that presented in section 3.3 in using
structures composed of enumerated types. Using structures allowed for a shorter and
more comprehensible specification than using two data items on each communication,
but does not greatly affect the illustration of the methodology.
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The alternating bit protocol is a relatively simple protocol, though it allowed
for a certain amount of hierarchical decomposition. The first level of decomposition
rested on the physical separation of the sender and the receiver, and so yielded the
skeleton specification below. A process representing the channel was included to
specify message loss in the specification; in the implementation there was not any
code representing the channel as such.

process abp_system[sendmsg,recvmsg):noexit :=
hide sendpdu,recvpdu,sendack,recvack in
(
abp_s [sendmsg,sendpdu,recvack]
|[sendpdu,recvack]|
channel [sendpdu,recvpdu,sendack,recvack]
|[sendack,recvpdu]|
abp_r [recvimsg,sendack,recvpdu,r_ test]

)

endproc

The hide operator was used in this fragment to hide the internal workings of the
ABP. Because gates such as sendpdu were hidden, the only externally visible gates
were sendmsg, used to specify the data to be sent, and recvmsg, used to make the
data received from the sender available. This specification was decomposed further
because ABP requires a timer to determine when an unacknowledged packet should
be retransmitted. The sender was decomposed as below:

process abp_s[smsg, spdu, rack] : noexit :=
hide tsig in
(

abp_s_state_machine[smsg, spdu, rack, tsig]

[tsig]]
abp_s_timer[tsig]

)

endproc

Again, the LOTOS hide operator was used to encapsulate the internal workings
of the sender. The existence of the timer was invisible from outside the hide operator.
The external structure and behaviour of the sender remained the same, and further
decomposition could therefore have been carried out without affecting the externally
visible characteristics of the sender, as long as any internal gates were hidden.

The channel was specified as a single process that consisted of two processes
interleaving, thus representing the two directions of transmission.
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process channel [inl,outl,in2,0ut2] : noexit :=
chann [inl,outl]
|l
chann [in2,0ut2]
endproc

As described in section 3.6.5, an unreliable channel could be specified in such a
way that it could lose an arbitrary or a bounded number of messages. For the pur-
poses of the alternating-bit protocol, a bounded specification was favoured because
it prevented excessive state space expansion. Bounded message loss allowed verifi-
cation that the protocol could arrange for retransmission without waiting too long
for the verification tool to complete. Although the channel specification described
in section 3.6.5 allowed only one message to be lost, it would have been trivial to
expand this specification to allow for a larger bound on the number of lost messages
before successful transmission. Both specifications of the channel were used during
validation of the specification (see section 3.9.3).

The specification of the sender and receiver was achieved through the LOTOS style
presented earlier, which represented each state as a process. Because the behaviours
of the sender and receiver were so simple, there was no hierarchy of states; the sender
could be in one of four states, while the receiver could be in one of two states. The
sender had already been decomposed into a state machine and a timer, as illustrated
above. The state machine was specified as:

process abp_s_state_ machine[smsg,spdu,rack,tsig]:noexit:=
sready0[smsg,spdu,rack,tsig|(zero of num) (* initial state *)

where
process sready0O[smsg,spdu,rack,tsig](n:num):noexit:=
smsg ‘n:num; (* receive message from upper layer *)
spdu 'msg(n, 0 of bit); (* send to receiver *)
tsig !timerStart; (* start the timer *)

(* move to a state in which we wait for acknowledgement *)
swaiting0[smsg,spdu,rack,tsig](n)
endproc
process sready1[smsg,spdu,rack,tsig](n:num):noexit:=
smsg 7n:num;
spdu 'msg(n, 1 of bit);
tsig ltimerStart;
swaiting1[smsg,spdu,rack,tsig](n)
endproc
process swaiting0[smsg,spdu,rack,tsig|(n:num):noexit :=

(
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rack ?X:mess; (* receive acknowledgement *)
(
[seq(X) eq 0 of bit] > (* what we expected? *)
tsig !timerStop; (* stop the timer *)
sreadyl1[smsg,spdu,rack,tsig](zero of num)

[seq(X) ne 0 of bit] > (* not what we expected *)
spdu !msg(n, 0 of bit);
tsig ltimerStart;
(* continue to wait *)
swaiting0[smsg,spdu,rack,tsig](n)

)

tsig !timeout; (* timer period over *)
spdu !msg(n, 0 of bit);
tsig !timerStart; (* restart the timer *)

(* continue to wait for acknowledgement *)
swaiting0[smsg,spdu,rack,tsig]|(n)
)
endproc
process swaiting]1[smsg,spdu,rack,tsig](n:num):noexit :=
...similar to above...
endproc
endproc

Following the description of the protocol in the preceding sections, the sender was
specified so that, when in either of the ready states (sready0 and sreadyl above),
it could accept data from the upper layers of the system (synchronisation on gate
smsg). This data would then be encapsulated in a message with the current value
of the alternation bit and sent to the receiver (the spdu). The sender would start a
timer and move to a state indicating that it was waiting for an acknowledgement.

In the waiting states (swaitingO and swaitingl), the sender could receive an
acknowledgement from the receiver. If the alternation bit in the acknowledgement
was the one expected, the sender would stop the timer and move to a ready state. If
the alternation bit was incorrect, the receiver was acknowledging a previous message.
The sender would resend the current message and return to waiting for an appropriate
acknowledgement. Alternatively, the sender could receive a timeout signal, indicating
that an acknowledgement had not been received in the appropriate interval. The
sender would resend the message and restart the timer.
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The receiver consisted of only two states and did not interact with a timer. In
both states the receiver was expecting a message from the sender; the two states
differed only in the value of the alternation bit expected. If a message was received,
the protocol required that it was always acknowledged (the sack in the specification
below). If the alternation bit in the message was the same as expected, the transmis-
sion represented a new message and its data would be passed to the upper layers of
the system (the rmsg) and the receiver moved to the other state, expecting a message
with the other possible value of the alternation bit. If the alternation bit was not the
same as expected, the transmission was a repeat of a previously received message,
indicating that the sender had not received the acknowledgement in time. While an
acknowledgement was sent, the receiver did not pass the data to the upper layers and
remained in the same state. This behaviour is illustrated by the specification of the
rwaiting0 state below:

process abp_r[rmsg,sack,rpdu]:noexit:=

rwaiting0[rmsg,sack,rpdu] (* initial state *)
where
process rwaiting0[rmsg,sack,rpdu]:noexit:=
rpdu ?X:mess; (* receive message *)
sack !msg(zero, seq(X)); (* always acknowledge *)

(
[seq(X) eq 0 of bit] > (* as expected? *)
rmsg !data(X);  (* yes, send data to upper level *)
rwaiting1[rmsg,sack,rpdu]

[seq(X) ne 0 of bit] > (* not as expected *)
rwaiting0[rmsg,sack,rpdu] (* keep waiting *)
)
endproc
process rwaitingl[rmsg,sack,rpdu]:noexit:=
...similar to above...
endproc
endproc

Finally, the timer was specified as being in one of two states, either ready to
start timing (timerready) or actually timing an interval (timertiming). If the timer
was in the ready state and received a timerStart message, it made the transition
to the timertiming state, modelling the commencement of a timer interval, while
if it received an irrelevant timerStop message, it ignored it and remained in the
timerready state, as seen in the specification of the timerready and timertiming
states below:
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process timerready[tsig] : noexit :=
(
tsig !timerStart;
timertiming|tsig]

tsig !timerStop;
timerready/tsig]

)

endproc

process timertiming[tsig] : noexit :=
(
tsig !timerStart;
timertiming|tsig]

tsig !timerStop;
timerready/tsig]

tsig !timeout;
timerready/[tsig]

)

endproc

The final specification contained a little over 200 lines of LOTOS, not including
test sequences. Once the specification was completed, it was then possible to use
the tools of the XELUDO toolkit to compile the specification to an executable form
and to use the interactive simulator, ISLA, to perform simple checking (thus ensuring
that the specification behaved as expected and that there were no obvious deadlocks),
before moving on to the formal validation.

3.9.3 Validation

As described in section 3.7, the LOTOS specification was validated using validation
sequences derived from agent scenarios, and by model checking of temporal logic
formulae.

Validation Using Agent Scenarios

A simple black box validation sequence was written as illustrated below. The sequence
represented the system being used to send a short sequence of numbers, consisting
only of the values one and two (enumerated values were used rather than the Natural
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data type to simplify the simulation process). Correct system operation required
that the same sequence, in the same order, be observed at the other end. Note that
the process abp_tester, which was composed in parallel with the alternating bit
system, synchronised only on the gates sendmsg and recvmsg, so it did not examine
the internal behaviour of the system. Also, the use of two interleaved processes
(abp_tester_s and abp_tester_r) meant that the ordering of events between the
two ends of the system was not important. That is, even if both messages were sent
before the first one was received, the system still conformed to requirements. This
test sequence provided a more flexible validation than if a global ordering on events
had been set (for example, requiring that the first message had been correctly received
before the second one was sent). The test sequence is illustrated below, indicating
how the two processes were interleaved:

abp_system[sendmsg, recvmsg]
|[sendmsg,recvmsg]|
abp_tester[sendmsg,recvmsg]

process abp_tester[sendmsg, recvimsg| : noexit :=

(

abp_tester_s [sendmsg]

abp_tester_r [recvmsg]
)
>
success;
stop
endproc

process abp_tester_s [s] : exit :
s | one of num;
s ! two of num;
exit

endproc

process abp_tester_r [r] : exit :
r | one of num;
r ! two of num;
exit

endproc
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The abp_tester process included the special event success, used by the LOLA
tool to indicate successful execution: if an execution trace reached this action, it would
stop and report success. When the system above was executed using LOLA, the tool
reported a may pass’ result, having analysed 266 states, generated 438 transitions and
found 115 successes. One execution path was truncated, indicating that it had not
reached a success event within the specified expansion depth. This excessively long
execution path represented the repeated loss of messages by the unreliable channel.

Validation Using Temporal Logic

As with the validation sequences, the temporal logic validation of the system was
carried out at two different levels. Testing the system against temporal logic formulae
created during the requirements analysis (see section 3.9.1) provided a form of black
box temporal logic validation, while using formulae that specified temporal ordering
of internal events provided grey box temporal logic verification.

The temporal logic validation and verification were performed using the LMC
model checker. This tool takes a compiled specification and allows the designer to
enter formulae to be checked. The model checker was used on two versions of the
specification:

1. One version used the first definition of the channel in which the channel could
continually lose messages.

2. A second version used the second definition of the channel in which the channel
could lose at most one message.

For the first version of the specification, the safety requirement that messages arrive
in order was specified by mandating that the predecessor of message n was message
n — 1, expressed as:

A(~PU (S V AG(~P)))

The proposition P states that message n has arrived and proposition S states that
message n— 1 has arrived. The LMC model checker reported that this formula ‘holds
to the specified depth’®, and so indicated that it could not expand the specification
fully (keeping in mind that the continual message loss meant a potentially infinite

7See section 3.7.1 for an explanation of the results of LOLA validation.
8In the model checking of the ABP specification, an expansion depth of thirty transitions was
selected to allow results to be obtained in a reasonable time.
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state space), but that the formula held within the expansion that it was able to carry
out.

This first version of the specification was also checked for the liveness require-
ment that a message injected at one end should arrive at the other. In CTL, this
requirement is specified as:

AG((sendmsglone) — — > EF(recvmsglone))

This formula states that, whenever a message is sent, then it arrives at the other end
in some future path. The formula cannot be strengthened to require that the message
is delivered in all future paths, because the communication channel has been specified
such that messages may continually be lost. The LMC model checker reported that
this formula ‘holds to the specified depth’.

The second version of the specification was validated against the following tem-
poral logic formulae:

1. To check for liveness, data two must eventually be received. In CTL, this was
represented as E'F'(P) where P is the reception of the data (in the LOTOS of
the specification, this was ef (recvmsg!two)). When the channel was specified
in such a way that it did not continually lose messages, LMC was able to expand
fully the state space, and so it confirmed that the formula held.

2. To check a safety requirement, the value one must arrive before the value two.
LMC provides extensions to the regular CTL syntax that allow a more compact
representation of this condition:

ag(sendmsg!one --> all(recvmsg!one before recvmsg!two)).

The use of the global quantification, ag requires that whenever there is a
sendmsg!one, there must be a recvmsg!one before a recvmsg!two. It was
not possible for LMC to determine whether this is always true, as doing so
would require generation of an infinite state space. However, LMC could deter-
mine that the formula held within the state space explored, and reported the
expression ‘holds to the specified expansion depth’.

3.9.4 Implementation of the Specification in ROOM

The style of the LOTOS specification mapped naturally to a ROOM model. The two
top-level processes, abp_s and abp_r were implemented as actors. The timer process
was not realised in the ROOM model, though it could have been represented through
ObjecTime’s support for timing behaviour. The channel was implemented simply by
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linking the two actors. Within each actor, the LOTOS processes corresponding to
each state were represented by states in the ROOMchart notation. The first action
in each branch of LOTOS code was represented by a guard on a transition, and
the remainder of the code was represented by C++ code entered into the transition
editing window in the ObjecTime toolset. For example, the LOTOS specification of
the receiver state rwaiting0 included the following lines:

1 process rwaiting0[rmsg, sack, rpdu] : noexit :=
2 rpdu?X:mess;

3 sack!msg(zero,seq(X));

1 (

5 [seq(X) eq 0 of bit] >

6 rmsgldata(X);

7 rwaitingl[rmsg, sack, rpdu]

8 I
These lines of LOTOS described the transition from the rwaiting0 state to the
rwaitingl state, in the case in which a message was received and its alternation
bit was as expected. The C++ representing this in the ROOM model is illustrated
below.

INLINE_METHODS int abp_r_Actor::guard2_tl_event1()
{

return (((message*)msg->data)->bitsetting() == false);

}

INLINE_METHODS void abp_r_Actor::transition2_t1()
{
recvmsgRl.send(rmsg, ((messagex)msg->data)->getpayload());

}

INLINE_METHODS void abp_r_Actor::exit2_rwaiting0()
{
rackR1l.send(ack, message(0, ((message*)msg->data)->bitsetting()));

}
The three segments of code represented the following functions:

1. The first segment, indicated by the function definition guard2_t1_event1(),
was the guard condition which determined whether the transition should be
taken, and corresponds to line 5 of the LOTOS above. If this line of code
returned true (in this case, if the alternation bit was correct), the transition
was taken.
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Figure 3.11: Behaviour specification for the ABP sender actor in the ROOM notation

2. The second segment, indicated by the function definition transition2_t1(),
was the action code which should be executed when the transition was taken,
and corresponds to line 6 of the LOTOS above. This code extracted payload
data from the received message and passed it to the upper layer of the receiver.

3. The last segment, indicated by the function definition exit2_rwaiting0(), was
the exit action code for the state, and corresponds to line 3 of the LOTOS above.
This is code which was always executed when the state was left, regardless
of the transition taken to enter the state. In this case, the receiver sent an
acknowledgement to the sender containing the alternation bit extracted from
the received message.

The implementation of the LOTOS specification continued in this vein, resulting
in the ROOMcharts illustrated in figures 3.11 and 3.12. The two actors were linked
through gates representing their connection via the channel, resulting in the system
structure seen in figure 3.13. The ObjecTime toolset then allowed the model to be
compiled, creating C++ code. The resulting C++ code was compiled to create an
executable implementation.

3.9.5 Executing the ROOM Model

The ObjecTime toolset provides considerable facilities for executing compiled ROOM
models. Figure 3.14 shows the toolset animating the ABP system. On the right is
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Figure 3.12: Behaviour specification for the ABP receiver actor in the ROOM notation

sendmsgR1 recvmsgR1

sendmsgR1 recvmsgR1
pduR1l pduR1

abp_sR1 abp_rR1

rackR1 rackR1

Figure 3.13: Structure of the ABP system in the ROOM notation

a state diagram of the sender process, abp_s. The box around the state sreadyl
indicates that this is the current state of the sender, while the bold arrow leading into
the process from the state swaiting0 indicates that this is the most recent transition
taken. Similarly, the state diagram for the receiver process indicates that the current
state is rwaitingl. At the top of the screen are two windows that indicate the
sequence of events at two ports, corresponding to the sendmsg and recvmsg gates in
the specification. The contents of these two windows indicate that the messages sent
(with data values 0, 1 and 2) were received in the same order. The left-hand column
of each of the two windows indicates the time at which the message was detected,
confirming for example, that the second message was sent (time 7221) after the first
message was received (time 3774). The window just below the ObjecTime logo is
used to specify messages which may be injected into the sendmsg port.
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3.9.6 Validation of the ROOM Model

Although the derivation of the ROOM implementation from the validated LOTOS
specification provides confidence in the correct operation of the implementation, it
is still possible that errors may have been introduced in the manual translation.
Further confidence may be gained by checking the ROOM implementation against
the requirements. In this thesis, this checking has been carried out manually, using
the debugging facilities of the ObjecTime toolset to, for example, inject messages into
ports and observe the model’s behaviour. By this means, some of the agent scenarios
used in the validation of the LOTOS specification were reused in the validation of
the ROOM implementation. Future research could examine the automation of this
checking process, perhaps through enhancements to the ObjecTime toolset.

It should be noted that the validation of the ROOM model does not remove the
need for validation during the development of the LOTOS specification. Validating
the specification at various stages of its development allows for the early correction
of errors, saving effort later in the system’s development. If validation were left until
the ROOM implementation had already been produced, it is possible that serious
errors might lay undiscovered until this last stage, by which time correction would
be difficult and expensive. Furthermore, detection of logical errors may be easier in
LOTOS, a more abstract notation than ROOM, and LOTOS has available a wide
range of validation tools such as LMC and LOLA. In particular, the ObjecTime
toolset does not at present allow for state space expansion, preventing the use of
model checking tools.

3.10 Summary

A design methodology was developed that includes a mapping from the LOTOS
formal description technique to the ROOM modelling technique. In order to make
this mapping process tractable, a subset of the ROOM notation was defined and this
restriction placed limits on the LOTOS constructs that could be used. A subset of
the LOTOS notation was defined, together with a specification style, so that the
specifications produced should be amenable to mapping into ROOM and hence an
implementation.

The use of LOTOS makes possible formal validation of design requirements, and
two techniques were used in the methodology: validation sequences based on agent
scenarios and temporal logic. Both agent scenarios and temporal logic formulae were
created during the formalisation of system requirements, and then used for validation
of the LOTOS specification.
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The final stage of the methodology is the derivation of a ROOM model from the
validated LOTOS specification using the mapping between LOTOS and the ROOM
notation developed in this thesis. The ROOM model is validated manually using the
same validation sequences as were used in the validation of the LOTOS specification.
The ROOM model may then be compiled using the ObjecTime toolset to create a
C++ implementation.

To illustrate the methodology, it was applied to a simple example: the alternating-

bit protocol. The steps of the methodology were followed, resulting in an executable
ROOM model.



Chapter 4
The GPRS Tunnelling Protocol

This chapter describes the application of the methodology presented in chapter 3 to
the GPRS Tunnelling Protocol, to demonstrate the applicability of the methodology
to an industrially-relevant protocol. Sections 4.1 and 4.2 provide background on the
operation of the protocol, while the remainder of the chapter describes the application
of the methodology to the protocol.

4.1 GSM and GPRS

GSM (the Global System for Mobile Communications) is a popular digital cellular
telephony system, standardised by ETSI' in 1991, and commercially available since
1992 (see Mehrotra [Meh96] and Scourias [Sco95]). Since then, GSM has grown
to attract more than 40 million subscribers in over one hundred countries. The
system operates using time-division multiplexing (TDMA) in frequency bands around
900MHz (the original band assigned), 1.8GHz and 1.9GHz (referred to as DCS1800
and DCS1900, respectively). Since the first standard, development of functionality
has continued, captured by phase 2 of the standard in 1996, and the upcoming phase
2+ standard. The phase 2+ standard includes enhancements to the data transmission
services of GSM, such as the high-speed circuit-switched data service (HSCSD) and
the general packet radio service? (GPRS).

The GSM network is composed of a number of cells, each served by a Base
Transceiver Station (BTS). A number of BTSs are controlled by a Base Station Con-
troller (BSC), which is responsible for ensuring that handoff occurs when a mobile
user moves from one cell to another. A number of BSCs are connected to a Mes-
sage Switching Centre (MSC), responsible for establishing connections and routing

!European Telecommunications Standards Institute
2See Brasche and Walke [BW97], Cai and Goodman [CG97] and the GPRS standard [gsm97]
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Figure 4.1: The GPRS network

calls. The MSC uses a number of databases to carry out its work, among them the
Home Location Register (HLR), the Visitor Location Register (VLR), the Equipment
Identity Register (EIR) and the Authentication Centre (AuC). The HLR stores sub-
scription information for all network users, together with an indication of the last
known location of a mobile user. Generally there will be only one HLR for a given
network, and its data is used by all the MSCs in that network. Each MSC has its
own VLR, which stores a copy of the subscription data for each user currently in the
geographical area governed by that particular MSC. The EIR and AuC are used to
authenticate respectively the mobile station equipment and the mobile user.

A call from a mobile user to a fixed user on the external telephone network is
simply routed by the MSC to the external network. However, a call from one mobile
user to another, or from a fixed user to a mobile user, must be routed to the correct
area, and the location information in the HLR is used to indicate the last known
location of the mobile user. The system uses this information to page the user within
that area to establish the call. If the user’s mobile phone is switched on, it will
respond to the paging request and the call can be connected.

GPRS extends the GSM network by the addition of GPRS support nodes (GSNs)
that route data transmissions to the GSM base station controllers (BSCs) (see fig-
ure 4.1). Serving GSNs (SGSNs) are responsible for routing transmissions to and from
mobile stations within their serving areas, while gateway GSNs (GGSNs) act as gate-
ways between the GPRS network and other packet data networks (PDNs). Because
GPRS operates only with packet data networks, all data transmitted between mobile
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stations and either other mobile stations or the external network is in the form of pro-
tocol data units (PDUs). Within the GPRS network, the GPRS Tunnelling Protocol
(GTP) is used for transmitting PDUs between GSNs, and this protocol is explained
in some detail in the next section (see also the GTP standard [gtp97]).

4.2 The Tunnelling Protocol

A GPRS subscription involves one or more packet data protocol (PDP) addresses,
each described by a PDP context in the mobile station, the SGSN and the GGSN.
The PDP contexts maintain a state that indicates whether they are activated for
data transfer. When data transfer between the SGSN and the GGSN is required,
the network must activate the PDP contexts in both GSNs and determine a path
along which data will be transmitted. This process establishes a tunnel used for
communication. If a tunnel is not established, no data transfer can occur. If an
entity on the external network attempts to send PDUs to a mobile station PDP
address for which the PDP context is inactive, the PDU is discarded and an error
notification is returned.

Any given tunnel may be used only for transmitting PDUs of a single network
layer protocol. The two network layer protocols currently supported are X.25 and
IP, though others may be added at a later date. While being transmitted over the
GPRS network, PDUs of these two protocols are encapsulated with GTP headers.
This encapsulation process hides the actual network layer protocol from the network,
simplifying the network entities and allowing for new protocols to be more easily
accommodated. The path used for transmitting these encapsulated PDUs depends
on whether the network layer protocols expect a reliable link. The two network layer
protocols supported, X.25 and IP, differ in their requirements for link reliability.

e The X.25 protocol relies on a reliable data link, so the GTP encapsulated PDUs
are transmitted using TCP/IP. TCP, or the Transmission Control Protocol (see
Postel [Pos81b]), provides facilities for retransmitting lost PDUs, thus yielding
a reliable link.

e If the GTP layer is encapsulating IP (Internet Protocol, see Postel [Pos81al)
PDUs, a reliable data link is not required, and the encapsulated PDUs are
transmitted using UDP/IP. UDP, or the User Datagram Protocol (see Pos-
tel [Pos80]), does not keep track of lost PDUs and thus consumes fewer network
resources.

The protocol stack of the transmission plane of GTP can be seen on the right-hand
side of figure 4.2, illustrating that GTP stands between the supported network layer
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Figure 4.2: The GPRS transmission plane

protocol (X.25 or IP) and the TCP/IP or UDP/IP transmission over the GTP back-
bone.

So that tunnels may be activated and deactivated, GTP defines tunnel control and
management messages. These messages are transmitted using UDP/IP, an unreliable
communication protocol, and so this signalling aspect of GTP must arrange for its
own retransmission of lost messages. A tunnel may be established in response to a
request from a mobile station or, optionally, in response to the reception at a GGSN
of a PDU intended for a mobile station for which an active tunnel does not currently
exist. Only the former case of PDP Context Activation is considered here. Once the
tunnel is established, data transfer may occur until the tunnel is destroyed during
the PDP Context Deactivation process. The sequences of messages involved in PDP
Context Activation and Deactivation are illustrated in figures 4.3 and 4.4. Other
messages are specified for changing the quality of service required for the data link,
for example.

The process of establishing a tunnel is illustrated in figure 4.5. The SGSN PDP
context starts in the inactive state. If an Activate PDP Context Request is received
from a mobile station, the SGSN creates a Create PDP Context Request and assigns
to it the current Transaction ID. The Transaction ID is now incremented, ready to be
assigned to the next message. The Create request is sent to the appropriate GGSN,
and the SGSN PDP Context moves to the activating state (arc A in figure 4.5). If
a response is not received from the GGSN within a specified time period (referred to
as T3-RESPONSE), the request is resent. This process is repeated N3-REQUESTS
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times, after which the SGSN returns an error status to the mobile station to indicate
that a connection cannot be established and returns to the inactive state (arc B in
figure 4.5). All of the retransmissions of a given request have the same Transaction
ID, so the GGSN is able to recognise them as retransmissions. However, the GGSN
responds to all received requests, and the Transaction ID is included in the response.
For the SGSN’s part, a response for which there is not an outstanding request is
recognised as a duplicate and is discarded.

If a response to a Create request is received, the GGSN PDP Context is known to
be active, and the SGSN PDP Context moves to the active state (arc C in figure 4.5).
In this state, data transfer may occur. When the mobile station has completed all
required data transfer, it may issue a Deactivate request. Alternatively, the mobile
station may wish to detach from the GPRS network. Either of these events results
in the SGSN PDP Context sending a Delete PDP Context Request message to the
GGSN and moving to the inactivating state (arc D in figure 4.5). Again, this message
may be retransmitted if a response is not received within the specified time period,
and this retransmission may occur several times. If a response to the Delete request is
received, or the maximum number of requests has been sent, the SGSN PDP context
returns to the inactive state (arc E in figure 4.5).

Certain properties of the tunnel between GSNs, such as the Quality of Service
(QoS), may be modified while the tunnel is active. If a Modify PDP Context Request
is received from the mobile station, the SGSN sends an Update PDP Context Request
to the GGSN and moves to the updating state (arc F in figure 4.5). As with other
messages, the Update request may be retransmitted if a response is not received
within T3-RESPONSE. If a response is received, the SGSN PDP Context returns to
the active state (arc G in figure 4.5). However, if the maximum number of requests
has been sent, it is assumed that the GGSN has failed, and the SGSN moves to the
inactive state (arc H in figure 4.5).

A GPRS network will be composed of many SGSNs, each associated with a given
geographical area, together with a number of GGSNs, at least one for each PDN to
which the GPRS network is to be connected. Decisions about routing among these
GSNs are made by reference to databases. An SGSN which has a PDU to pass to
an external network must determine which GGSN is appropriate to use as a gateway,
while a GGSN with a PDU to pass to a subscribed mobile station must determine
which SGSN is responsible for the routing area currently occupied by the mobile user.
While the route to the appropriate GGSN can be hard-coded based on the PDU type,
routing to an SGSN must be based on locality information held in the Home Location
Register.
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H

Figure 4.5: Simplified state diagram of an SGSN PDP Context. Self-loops related to
timeouts (retransmission of messages) and ignored messages are not shown for clarity.

4.3 System Requirements

So that a specification could be completed in a reasonable amount of time, a simplified
form of the protocol was considered for illustration here. The first simplification was
to consider only one PDP context. In a real GTP system, each physical GSN would
contain a large number of PDP contexts, potentially one for each PDN subscribed to
by each mobile user. The combination of routing between GSNs, together with the
number of PDP contexts within a single GSN, would have resulted in a prohibitively
complex specification. In order to focus on the process of tunnel establishment and
tear down, the system considered here was composed of one SGSN PDP context and
one GGSN PDP context connected by a backbone link. In order to verify that the
PDP contexts could accommodate lost messages, the link was specified in such a way
that it could lose messages.

The SGSN PDP context needed to be able to receive signals indicating that the
link was to be activated, and to carry out all the necessary signalling. It needed also
to receive PDUs to be sent to the associated GGSN, and, assuming that the link was
active, to pass these PDUs across the backbone. Similarly, assuming that the link was
active, PDUs received by the GGSN from the external network needed to be passed
to the SGSN and on to the mobile user.
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4.4 Formalisation of Requirements

The formalisation of the system requirements was based upon a recent draft of the
standard of the tunnelling protocol that indicated the possible states for each PDP
context, the events which would trigger state transitions, and the actions associ-
ated with those transitions. From this standard, sequences of actions were written
indicating the observable behaviour of the PDP contexts in the SGSN and GGSN.
Furthermore, the standard specified the sequences of actions that should occur on the
link between GSNs, in response to external stimuli. Conformance to these sequences
ensures that the GSNs can operate with GSNs produced by other manufacturers.

These formalised requirements formed the basis of validation of the specification
before a ROOM implementation was created. In order to perform this validation,
the requirements were written either in a LOTOS format compatible with that used
in the specification, or in a temporal logic format that could be used by the LMC
model checker. The LOTOS format was used for sequences of expected actions, while
temporal logic was used to test for properties that could be expressed in terms of
orderings of events (see section 3.7 for a discussion of the use of these two techniques).
Section 4.6 discusses the formalised requirements developed at this stage and their
use in the validation of the specification.

4.5 Development of Specification

In order that the validation of the specification of the GTP system could be com-
pleted relatively quickly, a number of simplifications were required. In particular, the
messages defined in the GTP standard consist of a sixteen octet header, followed by
information that varies depending on the signal transmitted (see [gtp97] for details of
the standard). Specifying this data structure in LOTOS would have greatly slowed
the specification process and put undue strain on the validation tools used. Instead,
it was decided that the specification should be written in terms of enumerated types
representing the messages. This enumeration allowed the specification to be written
more quickly and validation to be easier and more comprehensible. The resulting
ROOM implementation was also written in terms of enumerated types, but can be
converted to use the more complex data types to create a true implementation.

The development of the specification followed the state machines indicated in
the GTP standard, and its general structure is illustrated in figure 4.6. The sys-
tem was composed of two processes (Simple_SGSN and Simple_GGSN) connected
by a channel process, GTP_Backbone. Each GSN contained a single PDP Context.
The SGSNPDPContext was composed of two processes. The first, SGSNPDPContext_
stateMachine, represented the signalling behaviour of the PDP context, while SGSN_
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Figure 4.6: Block diagram of the GTP specification.

PDPContext_T3_Response was responsible for timing. These two processes communi-
cated over a hidden gate, T. The SGSN PDP Context communicated with the mobile
station through two gates, Ss and Sd. Respectively, these gates carried signalling
messages and data. The SGSN PDP Context communicated with the GGSN through
the channel, by means of gate Sb. The channel was composed of two interleaved
processes, GTP_Backbone_S2G and GTP_Backbone_G2S, responsible respectively for
messages from the SGSN to the GGSN, and for messages from the GGSN to the
SGSN. The GGSN PDP Context was not decomposed further, and communicated
with the SGSN through gate Gb and passed data to and from the external network
through gate Gp.

Because the simplified SGSN contained a single PDP context, it was written as:

process Simple_SGSN([Ss,Sd,Sb|:noexit:=
SGSNPDPContext[Ss,Sd,Sb|
endproc

The SGSNPDPContext was composed of an actor representing the state of the PDP
context, together with an actor providing timing services. The use of the hide oper-
ator made the interaction between the state machine and the timer invisible outside
of the SGSNPDPContext, while the parallel composition operator, | [T] |, provided a
channel over which the state machine and the timer could exchange messages.

process SGSNPDPContext[Ss,Sd,Sb]:noexit:=
hide T in
(

[T]]

)

endproc

SGSNPDPContext_stateMachine[Ss,Sd,Sb,T]

SGSN_PDPContext_T3_Response[T]
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process SGSNPDPContext_stateMachine[Ss,Sd,Sb,T]:noexit:=
SGSNPDPContext_inactive[Ss,Sd,Sb,T]|
endproc

The initial state of the PDP context was inactive, as indicated by the process
invocation above. Each of the five states of the state machine was then specified as a
LOTOS process, with possible transitions to other states indicated as below:

process SGSNPDPContext_inactive[Ss,Sd,Sb,T]:noexit:=
(
(
Ss ! GT_PDP_ACTIVATE._request;
Sb ! Create_. PDP_Context_Request;

T ! timer_start;
SGSNPDPContext_activating[Ss,Sd,Sb, T]

)

(
Ss ! GT_PDP_MODIFY _request;

SGSNPDPContext_inactive[Ss,Sd,Sb,T|
)

1
(
...and so on...

In the specification fragment above, two transitions from the state SGSNPDPContext _
inactive can be seen. The first transition (representing arc A in figure 4.5), triggered
by a GT_PDP_ACTIVATE_request from the mobile station through gate Ss, caused the
SGSN PDP context to send a Create_PDP_Context_Request to the GGSN along the
backbone (represented by gate Sb). The SGSN started a timer so that it could re-
transmit the message if the GGSN did not respond within a given period, and then
moved to the state SGSNPDPContext_activating. The second transition (a self-loop
not shown in figure 4.5) was triggered by the reception of a GT_PDP_MODIFY_request
from the mobile station and resulted simply in a self-transition to the inactive state,
indicating that this message was ignored.

The timer portion of the SGSN PDP context was modelled as two actors, one of
which (SGSN_PDPContext_T3_Response_timer) provided a simple timer capable of
being started, being stopped, and sending a timeout signal to indicate that the timer
period was over. The second actor, SGSN_PDPContext_T3_Response_Controller,
was responsible for counting the number of timeout signals sent to the PDP context
state machine, and sending a special signal (n3_requests) to indicate that too many
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timeouts had occurred (because either the GGSN or the link had failed). If the
GGSN did not respond to a series of Create_PDP_Context_Request messages, the
SGSN sent a message to the mobile user indicating that its attempts to create a
tunnel had failed and returned to the inactive state.

process SGSN_PDPContext_T3_Response[T]:noexit:=
hide TC in

(

SGSN_PDPContext_T3_Response_ Controller[T, TC]
[TC]]

SGSN_PDPContext_-T3_Response_ timer[TC|
)

endproc

The specification of the GGSN PDP context was much simpler because the context
occupies only one of two states (inactive and active), and there was no need to
retransmit signals and so no need for a timer.

Finally, the backbone link between the SGSN and the GGSN was specified as two
LOTOS processes representing the two transmission directions:

process GTP_Backbone[Gb, Sb]:noexit:=
GTP_Backbone_G2S[Gb, Sh]
i
GTP_Backbone_S2G[Gb, Sb]
endproc

The specification of the backbone was complicated somewhat by the requirement
to lose messages, in order to test the retransmission procedure. As described in
section 3.6.5, the channels were specified so that an arbitrary or bounded number of
messages could be lost. Loss of an arbitrary number of messages was specified as:

process GTP_Backbone_S2G[Gb, Sb]:noexit:=
Sb ? x:Sb_Gb_event;

(
I
)

endproc

Gb ! x; GTP_Backbone_S2G[Gb, Sb]

i; GTP_Backbone_S2G[Gb, Sb]

process GTP_Backbone_G2S[Gb, Sb]:noexit:=
...similar to above...
endproc
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In this channel specification, the channel received a message from the SGSN and
then either synchronised with the GGSN to pass on the message or lost the message
and was then ready to synchronise with the SGSN again. Loss of a bounded number
of messages was specified as:

process GTP_Backbone_S2G[Gb, Sb]:noexit:=
Sb 7 x:Sb_Gb_event;
(
Gb ! x;
GTP_Backbone_S2G[Gb, Sb]

Sb ? x2:Sb_Gb_event;

Gb ! x2;

GTP_Backbone_S2G[Gb, Sb]
)

endproc

process GTP_Backbone_G2S[Gb, Sb|:noexit:=
...similar to above...
endproc

In this example of the link from the SGSN to the GGSN, the link could have syn-
chronised with the SGSN and then either synchronised with the GGSN (thus passing
on the message) or received another message from the SGSN (thus discarding the
first message) and passed this second message on to the GGSN. By this means, the
loss of one message at a time passing between the two GSNs could be modelled. As
with the alternating bit protocol (see section 3.9.2), both forms of unreliable chan-
nel specification were used during the validation procedure. The final specification
contained a little over 700 lines of LOTOS, not including test sequences.

4.6 Validation and Verification

The validation and verification of the specification of the GTP system was carried out
using the two techniques discussed earlier. First, sequences of LOTOS actions were
composed in parallel with the specification to ensure that the observable behaviour
of the system was as intended. Then, temporal logic model checking was performed
to ensure that the internal behaviour of the system conformed to expectations.
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4.6.1 Agent Views and Agent Scenarios

As with the alternating bit protocol, sequences of expected observed behaviour were
created during the early stages of design, then were used to validate the specification.
In order to check these sequences against the specification, a state space exploration
tool was used. Early trials using the SELA tool indicated that the exploration of
the composition of each scenario with the specification could not be carried out to
a sufficient depth within the memory available on the machine used (a Sun Ultra 1
with 96MB of memory). Instead, the LOLA tool (described on page 21) was used,
because it makes more efficient use of memory. LOLA composes the test sequence in
parallel with the specified system and explores the state space.

As explained on page 102, the GTP specification was written with two different
channel specifications: one which would lose fewer than N3_REQUESTS messages,
and one which could lose an arbitrary number of messages. The two channel specifi-
cations required that different validation sequences be used:

1. If the channel would lose fewer than N3_REQUESTS messages, the retransmis-
sion feature of GTP ensures that a message sent from the SGSN will eventually
arrive at the GGSN. Thus, the validation sequences were written such that an
attempt to establish a tunnel would succeed, for example.

2. If the channel could lose an arbitrary number of messages, a message from the
SGSN cannot be assumed to arrive at the GGSN, so the SGSN may report
failure to the mobile station.

Given these differences, each scenario was represented by two different validation
sequences. The first, used with a bounded loss channel, checked that the SGSN did
try more than once to establish a tunnel. The second sequence assumed a more
realistic channel that could lose an unbounded number of messages, but had to be
written to accommodate the possible failure of the system to establish a tunnel. These
two sequences are illustrated by the example below.

The first example scenario modelled the system activating the link between the
SGSN and the GGSN and then sending a PDU from the mobile station to the external
network. The corresponding validation sequence, assuming bounded message loss,
was:
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process must_pass_1[Ss, Sd, Gp, success, failure]:noexit:=
(* MUST PASS 1: Check that we can activate the link and *)
(* send a pdu from the MS to the network. *)
Ss ! GT_PDP_ACTIVATE_request;
Ss ! GT_PDP_ACTIVATE_ confirm_SUCCESSFUL;
Sd ! GT_UNITDATA _indication_send;
Gp ! recvd_PDU;
success;
stop
endproc

Because message loss was bounded, the sequence could be written assuming that
the SGSN would respond to a GT_PDP_ACTIVATE_request with a GT_PDP_ACTIVATE_
confirm_SUCCESSFUL. Having established a channel, the validation sequence models
the mobile station sending a PDU (GT_UNITDATA_indication_send) to be received
at the other end (recvd_PDU). If, on the other hand, the channel was specified so that
it could lose an unbounded number of messages, the validation sequence had to be
written on the assumption that a message could be lost more than N3_REQUESTS
times, so that the SGSN would report failure:

process must_pass_1[Ss, Sd, Gp, success, failure]:noexit:=
(* MUST PASS 1: Check that we can activate the link and *)
(* send a pdu from the MS to the network. *)
Ss ! GT_PDP_ACTIVATE_request;
(
(
Ss ! GT_PDP_ACTIVATE. confirm_FAILURE;

success;
stop

Ss ! GT_PDP_ACTIVATE. confirm_SUCCESSFUL;
Sd ! GT_UNITDATA _indication_send;
Gp ! recvd_PDU;
success;
stop
)
)

endproc
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When these validation sequences were composed in parallel with the corresponding
versions of the specification, the compositions should have executed the actions in
the order indicated, eventually reaching the special event success. In the first case,
reaching success would indicate that the link was successfully established. In the
second case, however, reaching success may indicate either that the channel was
established and a PDU sent, or that the channel establishment failed. At this level
of validation, either of these is a correct response, though of course the GT_PDP_
ACTIVATE_confirm_FAILURE result should be seen only if the SGSN did not receive a
response from the GGSN in the required time. Testing for this relationship between
the response from the GGSN and the FAILURE result during the temporal logic model
checking is described in section 4.6.2. Using LOLA with the test sequences above
produced must pass results, indicating that the LOTOS specification of the GTP
system conformed to this formalised requirement, allowing for establishment of a
tunnel and the transmission of a PDU.

Similar sequences of actions were created to represent other desired scenarios. The
following sequence models the activation of a link, followed by the transmission of a
PDU from the network to the mobile station, followed by deactivation of the link:

process must_pass_2[Ss, Sd, Gp, success, failure|:noexit:=
(* MUST PASS 2: Check that we can activate the link, *)
(* send a pdu from the network to the MS and then *)
(* deactivate the link *)
Ss ! GT_PDP_ACTIVATE_ request;
(

(
Ss ! GT_PDP_ACTIVATE_ confirm_FAILURE;

success;
stop

Ss ! GT_PDP_ACTIVATE_ confirm_SUCCESSFUL;
Gp ! send_PDU;
(

Sd ! GT_UNITDATA _indication_recvd;

Ss ! GT_PDP_DEACTIVATE_ request;

Ss ! GT_PDP_DEACTIVATEL._ confirm;

success;

stop
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Ss ! GT_PDP_DEACTIVATE_ request;
Ss ! GT_PDP_DEACTIVATEL. confirm;
success;

stop

)
)
endproc

When this sequence was composed in parallel with the GTP specification with
a channel allowing unbounded loss, and expanded to a depth of 20 transitions®, the
LOLA tool reported a may pass result, indicating that 65 successes were reached, but
that one expansion was truncated by the depth limit. Given more time, the LOLA
tool would be able to expand the test further to report on the longer expansion.

Furthermore, sequences were created representing undesirable scenarios, such as
sending a PDU before the link is activated, to check whether the specification pre-
vented erroneous behaviour. The example below tested whether the GTP specification
allowed the mobile station to modify the link before the link was established:

process must_fail_1[Ss, Sd, Gp, success, failure]:noexit:=
(* MUST FAIL 1: Check that we can’t send a modify request *)
(* without having previously activated the link *)
Ss ! GT_PDP_MODIFY _request;
Ss ! GT_PDP_MODIFY _confirm_SUCCESSFUL;
failure;
stop
endproc

When this test was composed in parallel with the GTP specification, LOLA
quickly reported that the combination deadlocked, indicating that the system would
not accept this inappropriate command sequence.

4.6.2 Model Checking

In this GTP case study, model checking was used to verify relationships between ex-
ternally visible events and events occurring on the SGSN-GGSN backbone connection.
Although temporal logic formulae would be tested in an ideal case against the GTP
specification alone, in practice the state space explosion of the specification surpasses
reasonable time and memory constraints. Instead, the system was composed with

3The LOLA tool allows the user to limit the time taken for the test by specifying the depth to
which expansion should be carried out.
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test sequences in order to constrain the state space expansion. The test sequences
consisted of sequences of observable actions to trigger interactions between the SGSN
and the GGSN. Temporal logic requirements on the relationship between observable
and internal events were then specified and checked using the LMC model checker.
The requirements checked are described below.

Following the Response Property Pattern of Dwyer et al. (see section 3.5.3) with
global scope, the requirement that the SGSN should follow the reception of a GT_PDP_
ACTIVATE_request on the Ss port with the transmission of a Create_PDP_Context_
Request along the backbone was represented as:

AG((Ss!'GT_PDP_ACTI1V ATE _request) —
AF((Sb!Create_.PDP_Context_Request)))

For this example, the test sequence must_pass_1, seen on page 104, was used to
restrain the state space expansion. This formula was checked against the restricted
state expansion using the LMC model checker which indicated that the formula holds.

As indicated earlier, the observed response of the SGSN PDP context to a request
to activate the link may indicate either the success or failure of this request. However,
the SGSN should indicate failure only if it has tried a number of times to transmit
the request to the GGSN. This behaviour of the system cannot be verified by simply
observing the sequence of events at the Ss gate, but by monitoring the signals from the
internal timer, confidence in the correct functioning of the SGSN PDP context can be
gained. Before verification, however, it was necessary to modify the specification from
its original form to expose the communication channel between the state machine of
the SGSN PDP context and the timer, as seen below. This modification was required
because the LMC model checker cannot check for the presence of hidden actions.

process SGSNPDPContext[Ss,Sd,Sb, T]:noexit :=
(* process SGSNPDPContext[Ss,Sd,Sb|:moexit:= *)
(* hide T in *)

(

SGSNPDPContext_stateMachine[Ss,Sd,Sb,T]
|[T]]

SGSN_PDPContext_T3_Response[T]
)

endproc

With the hide operator commented out, and the timer channel added to the
gate list for the SGSNPDPContext, it was then possible to use model checking to
verify that the state machine issued a failure message only if the timer indicated that
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n3_requests had occurred. This condition was expressed, following the Precedence
Property Pattern of Dwyer et al. with global scope, as:

A(~(Ss!GT_PDP_ACTIV ATE confirm FAILURE) U ((T ! n3_requests) V
AG(—=(Ss!GT_-PDP_ACTIV ATE confirm_FAILURE))))

Again, to constrain the state space expansion of the specification, the formula
was verified against the specification composed in parallel with the must_pass_1 test
sequence. The above formula was verified using LMC.

As indicated above, the temporal logic model checking was used largely in this
case study to verify the correct relationship between observable events and internal
events. For example, once a PDP context is established, reception of a PDU by the
GGSN from the external network should result in the GGSN attempting to transmit
that PDU to the SGSN. Using Dwyer’s Response Property Pattern with after scope,
this requirement was stated as:

AG(Ss!GT_PDP_ACTIVATE confirm_ SUCCESSFUL —
AG(Gp!send_PDU — AF(Gb!G_PDU)))

This formula was demonstrated to hold to the specified expansion depth by the
LMC tool.

The last formula checked is based on a different test sequence. The sequence
models the mobile station activating the link, deactivating the link and then, before
confirmation of the deactivation is received, attempting to activate the link again.
The GTP standard indicates that, in this circumstance, the SGSN should not send
a Create_PDP_Context_Request to the GGSN until the deactivation has been con-
firmed. The test sequence used was:

process test_sequence[Ss, Sd, Gp, success, failure|:noexit:=
(* activate, deactivate, then activate again *)
(* before the confirm *)
Ss ! GT_PDP_ACTIVATE_ request;
(
(
Ss ! GT_PDP_ACTIVATE_ confirm_FAILURE;
stop )

Ss ! GT_PDP_ACTIVATE_ confirm_SUCCESSFUL;
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Ss ! GT_PDP_DEACTIVATE_request;
Ss ! GT_PDP_ACTIVATE_request;

Ss ! GT_PDP_DEACTIVATE_ confirm;
stop )

)

endproc

The requirement that a given event (the Create_PDP_Context_Request not occur
is an example of Dwyer’s Absence Property Pattern. The temporal scope of the
requirement is between, resulting in the following formula:

AG(Ss!'GT_PDP_DEACTIV ATE request —
A(=Sb!Create_.PDP _Context_Request U
(Ss'GT_PDP_DEACTIVATE confirm V
AG(=Ss!GT_PDP_DEACTIV ATE confirm))))

The LMC model checker reported that this formula held on the system produced
by composing the specification in parallel with the above test sequence.

This section has illustrated some of the agent scenario sequences and temporal
logic formulae used in validation of the LOTOS specification. It should be noted that
the state machine for the SGSN PDP Context involved five states with approximately
ten possible transitions per state, according to the event received by the PDP Context.
As such, the coverage provided by the sequences and formulae in this section is
relatively small — in a real development environment, much more validation and
verification would be required before moving on to implementation.

4.7 Implementation of the Specification in ROOM

As with the alternating bit protocol example, the structure of the LOTOS specifi-
cation mapped onto the state-machine based ROOM notation relatively easily. The
top-level structure of the system, composed of the SGSN and GGSN linked by the
backbone, translated into an actor containing actors representing the SGSN and
GGSN, as in figure 4.7. Note that both actors have a small symbol in the lower
left-hand corner, indicating that they both contain other constituent actors. The
gates Sb and Gb appear in this diagram as backboneR1.

Having specified the structure of the GTP system in the ROOM notation, it was
then necessary to specify its behaviour. For example, the state machine representing
the SGSN PDP context could be in one of five states, resulting in the ROOMchart
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Figure 4.7: Structure of the GTP system in the ROOM notation

seen in figure 4.8. The state machine includes additional transitions not shown in
figure 4.5, occurring when the timer times out, for example.

Each of the transitions in the model represented one of the cases within the LO-
TOS description of a state. For example, in the specification fragment of the inactive
state seen above, there appeared the following sequence of LOTOS actions:

(
Ss ! GT_PDP_ACTIVATE._ request;

Sb ! Create_. PDP_Context_Request;

T ! timer_start;
SGSNPDPContext_activating[Ss,Sd,Sb, T]

)

This sequence indicated that if the SGSN PDP context received a GT_PDP_ACTIVATE_
request, it should send a Create_PDP_Context_Request message, start the timer,
and move to the activating state. This fragment appeared in the ROOMchart as a
transition from the inactive state to the activating state, triggered by the appro-
priate message, with action code to send a create request to the GGSN and start the
timer.
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Figure 4.8: ROOMchart of the behaviour of the SGSN PDP context

4.8 Executing the ROOM Model

The ROOM model of the GTP system was compiled and executed within the Sim-
ulation RTS. As before, the ObjecTime toolset allowed daemons to be attached to
ports of the system, thus permitting messages to be injected and trace windows to be
opened to observe the flow of messages through ports. Also, the toolset provides sup-
port for creating trace windows to watch the exchange of messages between system
entities. In order to validate the ROOM model, one of the sequences that was used
in the validation of the LOTOS specification was manually applied to the ROOM
model. In the example below, a GT_PDP_ACTIVATE request was injected into the Ss
port of the SGSN, followed by a GT_UNITDATA_indication_send into the Sd port
and a GT_PDP_DEACTIVATE_request into the Ss port. The toolset simulated the be-
haviour of the system given these incoming messages, yielding the message sequence
chart seen in figure 4.9.%

4Unfortunately, the MSC generated by the toolset does not include the initial GT_PDP_ACTIVATE_
request.
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The four vertical lines represent the four system entities whose behaviour was
traced: the GTP system as a whole (as in figure 4.7), the state machine of the SGSN
PDP context, the timer and the GGSN PDP context. The hexagons indicate the
current state of each entity. Reading from the top of the diagram, the following
sequence of events and states was observed:

1. The SGSN PDP Context sends a signal to the timer requesting that it start
and then moves to the activating state.

2. The timer gives a timeout event but, before retransmission can occur, the GGSN
PDP Context returns a response to the SGSN. This response causes the SGSN
to stop the timer and send a message out on the Ss gate indicating that the
link has been established. Both the SGSN and the GGSN are now in the active
state.

3. The SGSN PDP Context receives a PDU from the mobile station and responds
by forwarding the PDU to the GGSN PDP Context. The GGSN signals that
the PDU has been received by a message on the Gp port.

4. The SGSN PDP Context receives a Deactivate request from the mobile station.
It sends a Delete_PDP_Context_Request to the GGSN, starts the timer and
moves to the inactivating state.

5. When the GGSN receives the request, it sends a response and moves to the
inactive state.

6. When the SGSN PDP Context receives the response, it stops the timer, sends
a message to the mobile station indicating that the link has been deactivated,
and moves to the inactive state.

4.9 Summary

The design methodology described in the preceding chapter was applied to a sig-
nificant example protocol: the GPRS Tunnelling Protocol. The description of the
protocol was taken from the relevant standards document, and used to create formal
requirements as both agent scenarios and temporal logic formulae. A LOTOS speci-
fication was written, using the style specified in the methodology. This specification
was then validated using validation sequences derived from agent scenarios and using
temporal logic model checking. The validated specification was then used to derive a
ROOM model, using the mapping described in the methodology, and the ObjecTime
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Figure 4.9: Message Sequence Chart illustrating the behaviour of the GTP system.
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toolset was used to create a C++ implementation. Finally, the implementation was
animated in the ObjecTime toolset to demonstrate its correct operation.



Chapter 5
The POP3 Mail Protocol

This chapter describes a simple example illustrating the discussion of the representa-
tion of inheritance in LOTOS in section 3.6.4. The example chosen was the autho-
risation phase of the POP3 mail protocol. The case study was much smaller than
the GPRS Tunnelling Protocol, and was not subject to the same level of validation.
However, the case study does provide a good example of how inheritance can ease
the production of a more advanced version of a protocol, building on the work of
producing the basic protocol.

5.1 The POP3 Protocol

Although the World Wide Web has received much more publicity, electronic mail
(or email) remains a popular and important application of computer networks such
as the Internet. Email systems at companies or universities are generally designed
on the basis of machines’ permanent connections to the network; mail destined for a
particular user can thus be delivered directly and immediately. However, this model is
not suitable for the majority of home users who have only intermittent connections to
the network. Attempting to deliver mail directly would result in an enormous number
of failed attempts before eventual connection. In order to address this problem, a
maildrop system was devised, the latest version of which is called POP3' (see Myers
and Rose [MR96]).

If a user handles mail using the POP3 maildrop service, all mail intended for that
user will be delivered to a machine (called the mail server) that does have a permanent
connection to the network. When the user’s machine is connected to the network,
the POP3 protocol allows the user’s mail client to connect to the server, determine

I'POP3 is now superseded in some mail networks by the IMAP protocol (see Crispin [Cri94]),
which offers better mail manipulation services.
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how many messages are available, download chosen messages and delete messages
from the server. The first step in connecting to the server is known as authorisation,
and requires users to identify themselves and prove their identity before being given
access to their mail box.

The POP3 protocol allows two authorisation methods. The first, known as the
USER and PASS command combination, is common but involves the security concern
of sending the user’s password in plain text across the network. The authorisation
procedure involves an exchange of messages such as the one below:

+0K POP3 server ready

USER mrose

+0K

PASS secret

+0K mrose’s maildrop has 2 messages (320 octets)

If the user-name and password combination is incorrect, the last line of the exchange
above is replaced by the message —~ERR, indicating that access to the maildrop has not
been granted.

The second authorisation method involves the more secure APOP command,
which does not send the user’s password in the clear. If the POP3 server imple-
ments the APOP command, its greeting will include a time-stamp of the form:

<processID.clock@hostname>

where the processID is the decimal value of the server’s process identifier, clock is
the decimal value of the system clock, and hostname is the fully-qualified domain
name of the server’s host system. Combining these three pieces of information means
that each time-stamp will be unique. The POP3 client combines this time-stamp
with a secret known only to the client and the server, and applies the MD5 algorithm
(see Rivest [Riv92]) to yield a 16-octet value that is returned as part of the APOP
command. Meanwhile, the server carries out the same calculation and then compares
its value with the client’s value to determine whether access to the maildrop should
be permitted. The APOP command will resemble the following:

APOP mrose c4c9334bac560ecc979e58001b3e22fb

where the string following the user’s name is the hexadecimal representation of the
MD5 digest.

Once authorisation has been completed, the POP3 system enters the TRANSAC-
TION state, in which commands to retrieve and delete mail may be issued. For the
purposes of this case study, however, only the authorisation process will be considered.
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5.2 System Requirements and Their Formalisation

Although a true implementation of a POP3 server would provide facilities to deter-
mine the number of messages in the maildrop, to retrieve and delete messages, and
so on, this chapter is concerned only with the authorisation phase of the server’s
operation. Initially, the server was designed to provide facilities for authorisation
through the USER and PASS command combination. Section 5.4 describes how the
functionality of the server was extended to allow for authorisation using the APOP
command, thus illustrating how the use of inheritance allowed reuse of previous work
in specifying the basic server.

The formal requirements of the authorisation phase of the POP3 server were
expressed in terms of sequences of desired actions. Assuming that a correct user-
name/password combination was supplied, the sequence of actions seen in section 5.1
should culminate in an +0K message. If the username/password combination was
incorrect, the same sequence should culminate in ~ERR

5.3 Development of Specification

To simplify the development of the LOTOS specification, in order that the important
points about inheritance may be illustrated, enumerated data types were used. Thus,
for example, the possible user names were enumerated as:

type user_name is

sorts user_name

opns mrose, frated := user_name
endtype

The top-level behaviour of the system was defined as a server composed in parallel
with a tester process, used to ensure that the desired sequences of actions could be
observed:

behaviour

(
POP3_servers|

[s]]

POP3._tester[s, success]
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The POP3 server was specified in the state-oriented style seen in previous sections:

process POP3_server[s|:exit:=
slok!server_ready; (* send greeting to user *)
waiting_for_user|[s]

where

process waiting_for_user[s|:exit:=
sluser?x:user_name; (* receive USER <username> *)
slok; (* respond with +OK *)
waiting_for_password[s](x)

slquit; (* receive QUIT *)
exit
endproc

process waiting_for_password([s](x:user_name):exit:=
slpass?y:pword; (* receive PASS <password> *)
(
[y = correct_pword| >
slok; (* password correct, so respond *)
authenticated[s] (* with +OK *)
[
[y = incorrect_pword] >
slerr; (* respond with +ERR and allow *)
waiting_for_user[s] (* user to try again *)

)

slquit;
exit
endproc

process authenticated[s|:noexit:=
stop
endproc
endproc
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5.4 Extending the Authentication Method

The specification fragment above illustrates a POP3 server that can accept only login
attempts through the USER and PASS command combination. It may be desirable
also to provide an enhanced server that can support both the basic authorisation
method and the APOP method, so that more advanced clients can be supported.
This enhancement can be performed by copying the existing code and adding new
code to support the APOP method. However, this copying would yield two separate
specifications and would hide the fact that one is really an enhancement of the other.
Inheritance offers a way of taking some of the behaviour from the basic authorisation
system and adding new behaviour, while making it clear that the new system still
relies upon the basic system.
The inheritance of the enhanced server may be indicated using the syntax de-
scribed in section 3.6.4:
process POP3_server_enhanced|s|:exit:=
extends process POP3_server[s|:exit:=
slok!timestamp;
waiting_for_user_enhanced|s]
where
process waiting_for_user_enhanced[s|:exit:=
extends process waiting_for_user[s]:exit:=
slapop?x:user_name?y:apop_value;
(
[y = correct_apop_value|] >
slok;
authenticated|s]
[
[y = incorrect_apop_value] >
slerr;
waiting_for_user_enhanced|s]
)
endproc
endproc
The inheritance syntax specifies the way in which the enhanced server differs from
the basic server. The initial greeting of the enhanced server includes a timestamp that
is used by clients capable of APOP authorisation to determine the digest value. The
process waiting_for_user_enhanced extends the process waiting_for_user (capa-
ble only of accepting the commands USER and QUIT) to accept the APOP command.
The syntax above could be expanded using an automatic preprocessor to yield stan-
dard LOTOS. An automatic preprocessor has not yet been implemented, however,
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so this expansion was carried out manually to yield the definition of waiting_for_
user_enhanced below:

process waiting_for_user_enhanced[s|:exit:=
sluser?x:user_name;
waiting_for_password[s](x)

slapop?x:user_name?y:apop_v;
(
[y = correct_apop.value| >
slok;
authenticated|s]
1
[y = incorrect_apop_value] >
slerr;
waiting_for_user_enhanced|s]

)

slquit;
exit
endproc

The final specification contained a little under 100 lines of LOTOS, not including
test sequences.

5.5 Validation

As discussed in section 5.2, simple validation of the server specification was carried
out by composing it in parallel with an expected sequence of actions to determine
whether the specification supported that sequence. A carefully written sequence made
it possible to demonstrate that the enhanced server supported all of the behaviour of
the basic server together with its new behaviour. For example, a sequence to validate
an ordinary authorisation procedure was specified as:
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process POP3_tester[s, success|:noexit:=
slok?x:server_msg_value;
sluser!mrose;
slok;
s!pass!correct_pword;
slok;
success;
stop
endproc

Allowing the first line to synchronise with any +0K message ensured that the
validation sequence could work with both the ordinary POP3 server, which greets
the user with:

+0K POP3 server ready

and the enhanced POP3 server, which greets the user with:
+0K POP3 server ready <process-ID.clock@hostname>

When this sequence was composed in parallel with either the basic server or the
enhanced server, and was executed using LOLA, the success action was reached, thus
indicating that both servers supported the basic authorisation procedure. Further
validation sequences could be constructed to test whether the server refuses invalid
passwords or to provide further robustness testing.

5.6 Implementation of the Specification

Given the extended and validated specification, both the basic and enhanced POP3
server authorisation phases were implemented using the inheritance mechanism of the
ROOM notation. First, an actor class representing the basic server was constructed,
with a port representing its connection with the client and states corresponding to
the processes waiting_for_user, waiting_for_password and authenticated. A
subclass was then created to represent the enhanced server, inheriting the waiting_
for_password and authenticated states from the basic server, but replacing the
waiting_for_user state with waiting_for_user_enhanced, and with added transi-
tions to check the value of the APOP digest. The model was compiled and executed
using the ObjecTime toolset. As discussed in section 3.9.6, the sequences used in
the validation of the LOTOS specification were used to manually validate the ROOM
model to ensure that the server allowed for both USER/PASS authorisation and
APOP authorisation. Figure 5.1 illustrates the execution of these two sequences,
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Figure 5.1: ObjecTime execution traces illustrating the two forms of authorisation
supported by the enhanced POP3 server.

demonstrating that it was possible to reach the authorised state through either au-
thorisation sequence. Figure 5.1(a) illustrates the state machine for the enhanced
server after a USER and PASS command authorisation, while figure 5.1(b) illustrates
the state machine after an APOP authorisation.

5.7 Summary

To illustrate the discussion of inheritance in section 3.6.4, the methodology was ap-
plied to the POP3 mail protocol. First, a specification of a server that would support
the USER and PASS command authorisation was written. It was shown that this
specification could be extended to support APOP authorisation and, further, that
this extension could be performed using inheritance. The use of inheritance allowed
the specification of the new server to be written by specifying only the new behaviour;
the support for the USER and PASS command authorisation was inherited from the
basic server.

The inheritance mechanism relies upon a preprocessor to expand certain con-
structs in a LOTOS specification. An automatic preprocessor does not yet exist, and
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so the expansion was performed manually. A ROOM model of the two server speci-
fications was then derived and executed to demonstrate the correct operation of the

servers.



Chapter 6

Conclusions and Further Work

6.1 Summary

This thesis presents a protocol validation and implementation methodology based
on the combined use of the LOTOS formal description technique and the ROOM
notation. LOTOS was shown to be a language suitable not only for abstract spec-
ification, but also for specifying object-oriented implementations of systems. Using
LOTOS as part of the design methodology made available the techniques that have
been developed for validation of LOTOS specifications. In particular, the availability
of state-space expansion tools made possible model checking that could not have been
performed on ROOM models alone. Two validation techniques for specifications were
described:

1. A specification to be validated was composed in parallel with execution se-
quences derived from a description of the system in terms of agent views. This
technique was used mainly to validate specifications against initial requirements
(see section 3.7.1).

2. Temporal logic formulae were written to describe both initial requirements and
design features. The specification to be validated was checked against these
temporal logic formulae using the LMC model checker (see section 3.7.2).

Using ROOM provided a connection between a validated LOTOS specification and a
working implementation in the C++ programming language. By demonstrating that
a validated specification can be mapped into a system model in the ROOM notation,
confidence was gained in the correct operation of the final implementation. Further-
more, the scenarios used in the validation of the LOTOS specification were reused to
manually validate the ROOM model, increasing confidence in the implementation’s
correct operation.
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The thesis went on to illustrate the use of the methodology by reference to two
industrially-relevant protocols. The first case study applied the methodology to
the GPRS Tunnelling Protocol, demonstrating many of the general concepts of the
methodology. The second case study, involving the authorisation procedure of the
POP3 Internet mail protocol, indicated the usefulness of inheritance in developing
enhancements of existing systems.

6.2 Contributions of the Thesis

The thesis makes a number of contributions, the most significant of which are listed
below:

Created new design methodology The thesis describes a new design methodol-
ogy that combines the LOTOS formal description technique and the ROOM no-
tation. Appropriate subsets of the two notations are described with a mapping
that facilitates the derivation of ROOM implementation models from validated
LOTOS specifications. Combining the two notations in a methodology allows
the designer to benefit from the facilities of both: LOTOS permits for varying
levels of abstraction in the creation of a design, and allows for the application
of a number of validation techniques; ROOM provides a graphical execution
environment and the automatic creation of executable code.

Constructed implementation-oriented LOTOS specification style The thesis
describes a LOTOS specification style that is suitable for ultimate implementa-
tion through the ROOM notation. The style provides for hierarchical decompo-
sition of actors, allowing a distributed system to be described in terms of self-
contained actors. The style describes actor behaviour in terms of hierarchical
state machines and provides for synchronous or asynchronous communication
between actors.

Devised expression of inheritance in LOTOS In the creation of an implementation-
oriented specification style, the thesis demonstrates how important aspects of
object-orientation such as encapsulation and inheritance may be expressed. The
discussion of inheritance in section 3.6.4 extends the earlier work of Mayr and
Rudkin to offer a powerful and succinct expression of an inheritance relation.
Furthermore, the inheritance method presented in this thesis does not require
changes to the basic syntax of LOTOS, allowing the designer to use existing
LOTOS tools.

Illustrated validation using agent scenarios The thesis demonstrates the part
that agent scenarios can play in the specification of formal system requirements
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and subsequent validation. Building on the work of Clark and Moreira (see
section 3.5.2), the thesis illustrates how important system characteristics can
be specified and validated. The agent scenarios are used not only to validate the
LOTOS specification, but also to validate the resulting ROOM implementation
model.

Applied temporal logic patterns to validation The thesis demonstrates the part
that temporal logic can play in the validation and verification of LOTOS spec-
ifications of protocol systems. In particular, the property specification patterns
of Dwyer’s group are applied to LOTOS (see section 3.5.3). The application of
these patterns appears to offer a more tractable means of applying the power
of temporal logic to the validation and verification of LOTOS specifications.

6.3 Further Work

While the thesis has indicated that a design methodology combining LOTOS and
ROOM may provide a useful way of validating protocol designs before implementa-
tion, further work is required before the methodology is applicable to industrial use.
Among the challenges raised by the thesis are:

Automate mapping While the mapping between the LOTOS specification style
(described in sections 3.6.2 to 3.6.5) and the ROOM notation is expressed un-
equivocally, the mapping has not yet been automated. The automation of the
mapping would be a substantial piece of work, but would not have added greatly
to the exploratory research described in this thesis. Further work could explore
automatic translation which would avoid the problem of introducing errors dur-
ing the manual conversion from LOTOS to ROOM. Similarly, the method for
expressing inheritance introduced in section 3.6.4 would gain from the provision
of an automatic translator.

Use E-LOTOS The thesis currently concerns itself only with the 1989 standard
of LOTOS [£S89]. The upcoming E-LOTOS standard includes a number of en-
hancements to the language, such as support for quantitative time specification.
Future work could consider adding quantitative time to the specification, an ad-
dition that would allow validation of quantitative, rather than just qualitative,
temporal properties. Such research could also draw upon the work of Kremer,
who used stochastic Petri Nets in conjunction with LOTOS specifications to
examine the performance of protocols [Kre95]. Other enhancements available
in E-LOTOS may also allow further development of this methodology to include
type-checking on gates so that illegal messages may be detected at compile time.
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Validate ROOM model The methodology uses agent scenarios derived from re-
quirements to validate the LOTOS specification. These scenarios are then used
to manually validate the ROOM model by injecting messages as indicated in
the scenarios and using daemons in the ObjecTime toolset to watch message
flows. A useful area of future work would be the automation of this process
so that the ROOM model is directly and automatically validated against re-
quirements. This work may require enhancements to the ObjecTime toolset.

Also, as mentioned in section 1.2, this work would require a formal validation
semantics for ROOM.

Model interrupt behaviour The methodology does not as yet include any consid-
eration of interrupt behaviour. Reactive systems need to be able to react to
an interrupt regardless of their current state and, when interrupt processing is
complete, return to their original state. Although the ROOM notation includes
group transitions and history transitions that, together, may be used to model
interrupt behaviour, specifying interrupts in LOTOS is not as easy. Hernal-
steen and Février [HF97] developed Stepien’s suggestions for an extension to
LOTOS involving a suspend/resume operator that would provide support for
some form of interrupt behaviour. This extension has since been accepted as
part of the E-LOTOS standard. Future work could extend the methodology to
include interrupts (see section 3.6.6).

Add dynamic creation of actors All actors discussed in this thesis are static; sys-
tems have their full complement of actors from the beginning. Reactive systems
often involve multiple copies of actors that can be dynamically created and
deleted to meet demand. For example, server software can dynamically create
a handler process for each incoming connection, deleting the handler when the
connection is broken. This dynamic actor creation can be specified in LOTOS
using recursive interleave (see Stepien and Logrippo [SL94] and [SL93]), and
future work could extend the subset of LOTOS considered in this thesis to al-
low for dynamic systems. The ROOM notation includes the notion of optional
replicated actors that can be created and deleted under the control of another
actor, and that could provide an implementation route for dynamic systems.

Extend LOTOS data types In order to expedite the production of specifications,
only enumerated data types have been considered in this thesis. Further research
is needed to explore the possibility of representing real data types, bearing in
mind that industrial protocols may require large data structures (for example,
GTP requires a sixteen octet header as part of each signalling message). The
upcoming E-LOTOS standard provides libraries of data types, and this may
provide a fruitful area of future research. In particular, these libraries may
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answer some of the concerns raised by the work of Ferndndez et al. [FQVMS88],
discussed on page 29 of this thesis.

Improve coupling in communication channels Section 3.8.3 discusses the cou-
pling between actors and explains how a channel that loses messages also allows
the recipient actor to ignore one or more messages. The current channel specifi-
cations do not allow the designer to define a channel that does not lose messages,
but that allows the recipient to ignore messages that it cannot handle. Further
research could explore the possibility of an alternative channel mechanism that
would allow loose coupling without arbitrary message loss.

Explore use of SDL The thesis explores a design methodology integrating LOTOS
and ROOM. Another interesting avenue of research would be to consider im-
plementing specifications written using other formal techniques, such as SDL,
in ROOM.

Extend validation method The validation sections of this thesis are intended to
illustrate the possibility of validating LOTOS specifications written in the style
described in section 3.6.1 against requirements. Applied to industrial problems,
a much more rigorous process of validation and verification would be required.

Add traceability Future work could examine the traceability of designs created
using this methodology. That is, it would be useful to designers to be able to
trace elements of the requirements document through the LOTOS specification
to the ROOM implementation.



Appendix A

Case Study Details

This appendix gives details of one of the case studies used to illustrate the de-
sign methodology; the alternating-bit protocol discussed in section 3.9. Section A.1l
presents the whole LOTOS specification written for this thesis. This is followed in
section A.2 by the ROOM model that was derived from this specification. Finally,
section A.3 includes some of the C++ code automatically generated from the ROOM
model.

A.1 LOTOS Specification of ABP

A LOTOS specification of the Alternating Bit Protocol was written following the
style outlined in chapter 3. The important parts of the specification are as follows:

1. Lines 9 through 19 define the data type message. Objects of this type are
composed of two elements: a number (the payload of the message) and an al-
ternation bit. Lines 11 through 14 describe the possible operations on an object
of type message, providing methods to construct a message from a number and
a bit, and to extract the number and the bit from an existing message. Lines
14 through 18 provide equations to carry out these operations.

2. Lines 21 through 24 define the data type altbit which is a simple enumeration
of two values.

3. Lines 26 through 39 define the data type number which is simply an enumeration
of four values, ‘zero’ through ‘three’, together with some simple operations to
find the predecessor and successor of a given number.

4. Lines 41 through 44 define the data type timerSignal which is a simple enu-
meration of values.

130
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5. Lines 46 through 51 describe the behaviour of the specification, which consists
of the process abp_system synchronising on gates sendmsg and recvmsg with
the process abp_tester. Putting the tester in parallel with the system allows
for execution of the system within the LMC model checker.

6. Lines 55 through 64 define the process abp_system, which is the top-level be-
haviour of the ABP system. This system is composed of a sender (abp_s) and
a receiver (abp_r) communicating over a channel (channel). Note that the
events occurring on the channel (sendpdu, recvpdu), sendack and recvack)
are hidden using the hide operator. This hiding of events means that the
only events visible from outside the abp_system are the sendmsg and recvmsg
corresponding to the sending and reception of a message, respectively.

7. Lines 66 through 166 define the structure and behaviour of the sender, abp_s.
The sender is decomposed into two elements (on lines 67 through 72): a state
machine governing the behaviour of the sender with respect to sending messages
and a timer.

The sender’s state machine (abp_s_state_machine) is defined on lines 74 through
138. The initial behaviour of abp_s_state_machine is simply to start in state
sready0. This state corresponds to the sender being ready to send a message,
and having its alternation bit set to zero. The behaviour of this state is defined
on lines 77 through 85. Lines 78 through 81 indicate that if the sender receives
a message to be sent on to the receiver, that it should create a message with
alternation bit zero, send the message to the receiver and start the timer. The
sender then moves to state swaitingO (line 81). Alternatively, if the sender
receives an acknowledgement from the receiver (line 83), it can ignore it and
remain in state ready0. Lines 87 through 95 define state sready1, which is
exactly the same as sready0 except for the value of the alternation bit.

Lines 97 through 116 define the state swaiting0, which corresponds to the
sender having sent a message to the receiver and waiting for an acknowledge-
ment with alternation bit zero. Line 99 corresponds to the sender receiving
an acknowledgement, and the following behaviour depends upon the value of
the alternation bit. If the value is zero (ie. the expected value), the timer is
stopped and the sender moves to state sreadyl, where it is ready to send an-
other message. If the value is one, the receiver is assumed not to have received
the message and the message is resent (line 106) and the timer restarted. The
sender then remains in state swaiting0. Line 111 corresponds to the sender re-
ceiving a timeout message from the timer, which will happen if the receiver does
not acknowledge a message within a given time period. The message is resent
and the timer restarted. The sender then remains in state swaiting0, waiting
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10.

for a correct acknowledgement. Lines 118 through 138 define state swaitingl,
which is exactly the same as swaiting0 except for the expected value of the
alternation bit.

Lines 140 through 165 define the timer actor, which provides timing services to
the sender’s state machine. The timer starts in state timerready, indicating
that it is ready to start timing. When a timerStart message is received, the
timer moves to state timertiming. In this latter state, the timer may receive
a message indicating that it should stop (line 158), which causes it to return to
timerready. It may also receive an extraneous timerStart message, in which
case it remains in the timerready state. Finally, it may generate a timeout
message.

. The receiver actor (lines 168 through 196) is much simpler than the sender, and

does not contain a timer. The receiver starts in state rwaiting0, indicating
that it is waiting for a message with alternation bit zero. State rwaiting0
is defined on lines 171 through 182. If a message is received (line 172), an
acknowledgement is sent with the same alternation bit as was in the message.
The alternation bit is then checked to see whether its value is as expected. If
so (line 175), the payload data of the message is passed on and the receiver
moves to state rwaitingl. If the value is incorrect, the receiver remains in
state rwaiting0, awaiting the arrival of a message with the correct alternation
bit. State rwaitingl (lines 184 through 195) is the same as rwaiting0 except
for the expected value of the alternation bit.

. The communication channel between sender and receiver is defined on lines 198

through 211. The channel consists of two identical unidirectional channels and
the unidirectional channel is defined on lines 203 through 210. The channel may
receive a message (line 204) and then either pass it on (line 206) or lose it (line
208).

The specification may be tested by one of three processes, appearing on lines
214 through 250. The first, abp_tester consists of a process (abp_tester_s)
that injects messages into the sender interleaved with a process (abp_tester_
r) that receives messages at the other end of the system. If both messages
appear successfully, the enable on line 220 will be triggered and the special event
success reached. Testers abp_tester2 and abp_tester3 are simpler processes
that check that one or two messages can be sent over the ABP system. Although
both abp_tester and abp_tester2 check that two successive messages can be
sent and received in order, the former interleaves the sending and receiving of
messages so that both messages could be sent before the first is received, for
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example. The second tester, abp_tester2 requires that the first message is
received before the second is sent.

The specification was validated as described in section 3.9.3 and a ROOM model
derived as described in section 3.9.4. This ROOM model is presented in the following
section.

2 (* An Alternate Bit Protocol Specification in LOTOS *)
3 (* by Neil Hart *)
4 (* Protocol Research Group, University of Ottawa )
5 (FHHHRR RO RO R
6

7 specification abp[sendmsg,recvmsg, success| : noexit

8

9 type message is number, altbit

10 sorts mess

11 opns data : mess = num

12 seq : mess = bit

13 msg : num , bit = mess

14 eqns forall Data: num, Seq: bit

15 ofsort num

16 data(msg(Data,Seq))= Data;

17 ofsort bit

18 seq(msg(Data,Seq)) = Seq;

19 endtype

20

21 type altbit is

22 sorts bit

23 opns 0, 1 :=> bit

24 endtype

25

26 type number is

27 sorts num

28 opns zero, one, two, three := num

29 succ : num = num

30 pred : num = num

31 eqns ofsort num

32 succ(zero) = one;

33 succ(one) = two;

34 succ(two) = three;
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35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
a0
51
52
23
o4
99
96
o7
o8
29
60
61
62
63
64
65
66
67
68
69
70
71
72
73

pred(three) = two;

pred(two) = one;

pred(one) = zero;
endtype

type timerSignals is

sorts tsignal

opns timerStart, timerStop, timeout : = tsignal
endtype

behavior

(
abp_tester[sendmsg, recvmsg, success]
|[sendmsg, recvmsg]|
abp_system|[sendmsg, recvmsg]
)

where

process abp_system[sendmsg,recvmsg]:noexit :=
hide sendpdu,recvpdu,sendack,recvack in

(

abp_s [sendmsg,sendpdu,recvack]
|[sendpdu,recvack]|

channel [sendpdu, recvpdu, sendack, recvack|
|[sendack, recvpdul]|

abp_r [recvinsg,sendack,recvpdu]
)

endproc

process abp_s[smsg,spdu,rack]:noexit:=
hide tsig in
(
abp_s_state_machine[smsg, spdu, rack, tsig]
[tsig]|
timer[tsig]
)

where
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74 process abp_s_state_ machine[smsg,spdu,rack,tsig]:noexit:=
75 sready([smsg, spdu, rack, tsig]

76 where

7 process sready0[smsg,spdu,rack,tsig|:noexit:=
78 smsg 7n:num;

79 spdu !msg(n, 0 of bit);

80 tsig ltimerStart;

81 swaiting0[smsg, spdu, rack, tsig] (n)

82

83 rack 7X:mess;

84 sready([smsg, spdu, rack, tsig]

85 endproc

86

87 process sreadyl[smsg,spdu,rack,tsig|:noexit:=
88 smsg ’n:num;

89 spdu !msg(n, 1 of bit);

90 tsig ltimerStart;

91 swaitingl[smsg, spdu, rack, tsig] (n)

92

93 rack ?X:mess;

94 sready1[smsg, spdu, rack, tsig]

95 endproc

96

97 process swaiting0[smsg,spdu,rack,tsig](n:num):noexit:=
08 (

99 rack?X:mess;

100 (

101 [seq(X) = 0 of bit] >

102 tsig !timerStop;

103 sreadyl[smsg, spdu, rack, tsig]
104 I

105 [seq(X) = 1 of bit] >

106 spdu !msg(n, 0 of bit);

107 tsig ltimerStart;

108 swaiting0[smsg, spdu, rack, tsig] (n)
109 )

110 I

111 tsig !timeout;

112 spdu !msg(n, 0 of bit);
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113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
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tsig ltimerStart;
swaiting0[smsg, spdu, rack, tsig] (n)

)

endproc

process swaiting][smsg,spdu,rack,tsig](n:num):noexit :=

(
rack?X:mess;
(
[seq(X) = 1 of bit] >
tsig !timerStop;
sreadyO[smsg, spdu, rack, tsig]
[
[seq(X) = 0 of bit] >
spdu !msg(n, 1 of bit);
tsig ltimerStart;
swaiting1[smsg, spdu, rack, tsig] (n)
)
I
tsig ltimeout;
spdu !msg(n, 1 of bit);
tsig !timerStart;
swaiting1[smsg, spdu, rack, tsig] (n)
)
endproc
endproc

process timer[tsig]:noexit:=
timerready/|tsig]

where
process timerready[tsig]:noexit:=

(
tsig !timerStart;
timertiming]tsig]

I
tsig !timerStop;
timerready/[tsig]

)

endproc
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152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

process timertiming[tsig]:noexit:=

(
tsig !timerStart;
timertiming|tsig]
I
tsig !timerStop;
timerready/[tsig]
I
tsig !timeout;
timerready/[tsig]
)
endproc
endproc

endproc

process abp_r[rmsg,sack,rpdu]:noexit:=
rwaiting0[rmsg, sack, rpdu]
where
process rwaiting0[rmsg,sack,rpdu]:noexit:=
rpdu?X:mess;
sack!msg(zero,seq(X)) ;

(

[seq(X) = 0 of bit] >
rmsgldata(X);
rwaitingl[rmsg, sack, rpdul]

I

[seq(X) = 1 of bit] >

rwaitingO[rmsg, sack, rpdu]
)
endproc

process rwaitingl[rmsg,sack,rpdu]:noexit:=
rpdu?X:mess;
sack!msg(zero,seq(X)) ;
(
[seq(X) = 1 of bit] >
rmsgldata(X);
rwaitingO[rmsg, sack, rpdu]

137
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191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

[
[seq(X) = 0 of bit] >
rwaitingl[rmsg, sack, rpdu]
)
endproc
endproc

process channel [inl,outl,in2out2]:noexit:=
chann [inl, outl]
]
chann [in2, out2]
where
process chann [ing,outg|:noexit:=
ing?X:mess ;

(
I
)

endproc
endproc

outg!X ; chann|ing,outg]

i; channling, outg]

process abp_tester[sendmsg,recvmsg,success|:noexit:=

(

abp_tester_s [sendmsg]

abp_tester_r [recvmsg]

)

>

success;

stop

where

process abp_tester_s [s]:exit:=
s ! one of num;
s | two of num;
exit

endproc

process abp_tester_r [r]:exit:=

138
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230 r ! one of num;
231 r ! two of num;
232 exit

233 endproc

234 endproc

235

236 process abp_tester2[sendmsg,recvmsg,success|:noexit:=
237 sendmsg ! one of num;
238 recvimsg ! one of num;
239 sendmsg ! two of num;
240 recvmsg ! two of num;
241 success;

242 stop

243 endproc

244

245 process abp_tester3[sendmsg, recvmsg,success|:noexit:=
246 sendmsg ! one of num;
247 recvmsg ! one of num;
248 success;

249 stop

250 endproc

251

252 endspec

A.2 ROOM Model of ABP

The derivation of the ROOM model from the LOTOS specification follows the process
described in section 3.8. For example, the receiver is defined as:
168 process abp_r[rmsg,sack,rpdu]:noexit:=

The three gates listed (rmsg, sack and rpdu) require three ports on the corre-
sponding ROOM actor. These ports may be seen in the structure diagram of abp_r
in figure A.1.

As explained in section 3.8.3, the channel process in the LOTOS specification is
not represented by an actor in the ROOM model, but instead by a binding between
two actors using asynchronous message passing. Thus, the abp_system on lines 55
through 64 of the LOTOS specification is represented in ROOM as the structure in
figure A.2.

The state machines representing the sender and receiver are transformed into
ROOM as in figures A.3 and A .4.
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Figure A.1: ROOM representation of the abp_r actor.
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Figure A.2: ROOM representation of the ABP system.
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Figure A.3: Behaviour specification for the ABP sender actor in the ROOM notation.

Figure A.4: Behaviour specification for the ABP receiver actor in the ROOM notation.
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A.3 C+H+ Implementation of ABP

Much of the C++ implementation of the ROOM model is automatically generated by
the ObjecTime toolset. The implementation includes a state machine derived from the
graphical representation in the model. Apart from this automatically generated code,
there are small segments of code written by the designer to implement, for example,
guards on transitions or actions to be taken. In all, the C++ implementation of the
ABP system was composed of around 1400 lines of C++, spread over about 40 source
files. For brevity, only the source representing the abp_s actor will be presented here.

The first segments of code presented are those entered into code editors within
the toolset to represent guard conditions on transitions. For example, the first seg-
ment returns a Boolean value indicating whether the alternation bit in the most-
recently received message had the value false. This Boolean value is used by the
automatically-generated state machine code to determine whether the corresponding
transition should be taken.

*kkkkkkkkk gstart of file guard3_t2_eventl.cc:

INLINE_METHODS int abp_s_Actor::guard3_t2_event1()
{

return ((message*)msg->data)->altbit == false;

}

*xkkkkkkkx*x end of file guard3_t2_eventl.cc
*kkkkkkkkkx start of file guard5_t4_eventl.cc:

INLINE_METHODS int abp_s_Actor::guard5_t4_event1()
{

return ((message*)msg->data)->altbit == true;

}

*xkkkkkxkkx*x end of file guard5_t4_eventl.cc
*kkkkkkkk% start of file guard6_tl_eventl.cc:

INLINE_METHODS int abp_s_Actor::guard6_t1_eventl()
{

return ((message*)msg->data)->altbit == true;

}

*kkkkkkk%x* end of file guard6_tl1l_eventl.cc
*kkkkkkkkkx gstart of file guard7_tl_eventl.cc:
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INLINE_METHODS int abp_s_Actor::guard7_t1_event1()
{

return ((message*)msg->data)->altbit == false;

}
*kkkkkkk%x* end of file guard7_t1_eventl.cc

The following segments of code provide the action code for transitions in the
abp_s actor. For example, the first segment corresponds to the transition triggered
by the arrival of data to be sent to the receiver. The data is stored (so that it can
be retransmitted if necessary) and sent to the receiver through port pduR1 with the
alternation bit set to false.

*kxokkkkkkk gtart of file transition2_tl.cc:

INLINE_METHODS void abp_s_Actor::transition2_t1()

{

n = *RTDATA; // store incoming value
pduRl.send(spdu, message(n, false)); // send message
// start timer

*kxkkxkkkk end of file transition2_tl.cc
*xkkkkkkkk gstart of file transition3d_t2.cc:

INLINE_METHODS void abp_s_Actor::transition3_t2()
{
// stop the timer

b

}

*xkxkkkkkk end of file transition3_t2.cc
*kxkkxkkkk start of file transitiond_t3.cc:

INLINE_METHODS void abp_s_Actor::transition4_t3()
{

n = *RTDATA;

pduRl.send(spdu, message(n, true));

// start the timer

b
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*kxkkxkkkk end of file transitiond_t3.cc
*kxkkxkkkk gstart of file transitionb_t4.cc:

INLINE_METHODS void abp_s_Actor::transition5_t4()

{
// stop the timer

.
H

}

*kxkkxkkkk end of file transitionb_t4.cc
*kxokkkkkkk gtart of file transition6_t1l.cc:

INLINE_METHODS void abp_s_Actor::transition6_t1()
{
pduRl.send(spdu, message(n, false));

}

*kxkkxkkkk end of file transition6_tl.cc
kkkkxxkkkk start of file transition7_tl.cc:

INLINE_METHODS void abp_s_Actor::transition7_t1()
{
pduRl.send(spdu, message(n, true));

}
*kxkkkkkkk end of file transition7_tl.cc

The remaining segments of code are all generated automatically and are used to
implement the state machine and bind the user-entered code together.

*kkkkkkkkk start of file 1_abp_s_ActorBehavior.cc:

#ifdef PRAGMA

#pragma implementation "abp_s_Actor.h"
#endif

#include "abp_s_Actor.cc"

#undef Destructor

#undef SUPER

#define SUPER RTActor

#define Destructor abp_s_Actor_Destructor
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#define RTDATA ((const RTDatalObject*)msg->data)
#include "initBehavior.cc"

##tundef RTDATA

#define CALLSUPER SUPER::guard3_t2_event1()
#define RTDATA ((const message*)msg->data)
#include "guard3_t2_eventl.cc"

#undef RTDATA

#undef CALLSUPER

#define CALLSUPER SUPER::guard5_t4_event1()
#define RTDATA ((const message*)msg->data)
#include "guard5_t4_eventl.cc"

#undef RTDATA

#undef CALLSUPER

#define CALLSUPER SUPER::guard6_t1_event1()
#define RTDATA ((const message*)msg->data)
#include "guard6_t1_eventl.cc"

#undef RTDATA

#undef CALLSUPER

#define CALLSUPER SUPER::guard7_t1_event1()
#define RTDATA ((const message*)msg->data)
#include "guard7_t1_eventl.cc"

#undef RTDATA

#undef CALLSUPER

#define CALLSUPER SUPER::tramnsition2_t1()
#define RTDATA ((const num*)msg->data)
#include "transition2_t1.cc"

#undef RTDATA

#undef CALLSUPER

#define CALLSUPER SUPER::transition3_t2()
#define RTDATA ((const message*)msg->data)
#include "transition3_t2.cc"

#undef RTDATA

#undef CALLSUPER

#define CALLSUPER SUPER::transition4_t3()
#define RTDATA ((const num*)msg->data)
#include "transition4_t3.cc"

#undef RTDATA

#undef CALLSUPER

#define CALLSUPER SUPER::transition5_t4()

145
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#define RTDATA ((const message*)msg->data)
#include "transitionb_t4.cc"

#undef RTDATA

#undef CALLSUPER

#define CALLSUPER SUPER::transition6_t1()
#define RTDATA ((const message*)msg->data)
#include "transition6_t1.cc"

#undef RTDATA

#undef CALLSUPER

#define CALLSUPER SUPER::transition7_t1()
#define RTDATA ((const message*)msg->data)
#include "transition7_t1l.cc"

#undef RTDATA

#undef CALLSUPER

#undef Destructor

#undef SUPER

*kkkkkkkkk end of file 1_abp_s_ActorBehavior.cc
*kkkkkkkkk start of file abp_s_Actor.cc:

#include "abp_s_Actor.h"
#include <initData.h>

#undef Destructor

#undef SUPER

#define SUPER RTActor

#define Destructor abp_s_Actor_Destructor

const RTObject_class abp_s_Actor::classData(&RTActor: :classData,"abp_s");
const RTObject_class*abp_s_Actor::getClassData()const

{

return&abp_s_Actor::classData;

}

const RTStateld abp_s_Actor::_parent_state[]=

-

-

-

R R RO O M

-
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1
};

const RTActor_class*abp_s_Actor::getActorData()const
{

static const char*const _state_names[]=

{

(charx*)O0,

lltopll ,

"sready0",

"swaiting0",

"swaitingl",

"sreadyl"

};

static const RTFieldOffset _port_offsets[]l=
{

RTOffset0f (abp_s_Actor,sendmsgR1),
RTO0ffsetOf (abp_s_Actor,pduRl),

RTOffset0f (abp_s_Actor,rackRl),

};

static const char*const _port_names[]=

{

"sendmsgR1",

"pduR1",

"rackR1",

};

static const RTFieldOffset _relay_offsets[]=
{

RTOffset0f (abp_s_Actor,sendmsgR1_relay),
RTOffset0f (abp_s_Actor,pduRl_relay),
RTOffset0f (abp_s_Actor,rackRl_relay),

};

static const char*const _relay_names[]=

{

"sendmsgR1",

"pduR1",

"rackR1",

};

static const RTFieldOffset _ESV_offsets[]=
{

RTOffset0f (abp_s_Actor,n),

};
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static const void*_ESV_types[]=

{

(voidx*)1,

};

static const char*const _ESV_names[]=

{

llnll’

};

static RTActor_class _info=

{

5,_state_names,abp_s_Actor::_parent_state,

//components

0, (RTComponentDescriptor*)0,

//ports

{3, _port_offsets,_port_names, (RTFieldType*)O0},

//relays

{3, _relay_offsets,_relay_names, (RTFieldType*)0},

//ESVs

{1,_ESV_offsets,_ESV_names, (const RTFieldType*)_ESV_types},
//SAPs

{0, (RTField0ffset*)0, (char const*const*)0, (RTFieldType*)0},
//SPPs

{0, (RTFieldOffset*)0, (char const*const*)0, (RTFieldTypex*)O0},
(FsmStaticData*)0

};

if (_info.FsmData==(FsmStaticData*)0) _info.FsmData=initBehavior () ;
return&_info;

}

RTActor*new_abp_s_Actor (RTController*_rts,RTActorRef&_ref)
{return new abp_s_Actor(_rts,_ref);}

abp_s_Actor: :abp_s_Actor(RTController*_rts,RTActorRef&_ref)
:RTActor(_rts,_ref)

,pduR1(this,"pduR1",2,1)

,rackR1(this,"rackR1",3,1)

,sendmsgR1(this, "sendmsgR1",1,1)

{

(num*)0; // for type error detection only

}

abp_s_Actor: :“abp_s_Actor(void)
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#undef Destructor
#undef SUPER

*kkkkkkkkk end of file abp_s_Actor.cc
*kkkokkkkkk start of file abp_s_Actor.h:

#ifndef __abp_s_Actor_h__

#define __abp_s_Actor_h__ included
#include "../system/RTSystem.h"
#ifdef PRAGMA

#pragma interface

#endif

#include "initData_simple.h"
#undef Destructor

#undef SUPER

#define SUPER RTActor

#define Destructor abp_s_Actor_Destructor

extern RTActor*new_abp_s_Actor (RTController*,RTActorRef&);

class abp_s_Actor:public RTActor
{
public:

RTAsyncCommSAP pduR1, rackR1l, sendmsgRi;
RTRelaySAP pduR1_relay, rackR1_relay, sendmsgRl_relay;

abp_s_Actor (RTController*,RTActorRef&) ;
virtual “abp_s_Actor(void);
static const RTObject_class classData;

virtual const RTObject_class*getClassData(void)const;
virtual const RTActor_class*getActorData(void)const;

static const RTStateld _parent_statel[];

static const FsmStaticData*initBehavior(void);

#line 500

INLINE_METHODS int guard3_t2_eventl(void);
INLINE_METHODS int guard5_t4_eventl(void);
INLINE_METHODS int guard6_tl_eventl(void);
INLINE_METHODS int guard7_tl_eventl(void);
INLINE_METHODS void transition2_t1(void);
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INLINE_METHODS void transition3_t2(void);
INLINE_METHODS void transition4_t3(void);
INLINE_METHODS void transitionb5_t4(void);
INLINE_METHODS void transition6_t1(void);
INLINE_METHODS void transition7_t1(void);
#line 1000

protected:

num n;

#line 1500

#line 2000

private:

#line 2500

};

#undef Destructor
#undef SUPER
#endif

*kkkkkkkkk end of file abp_s_Actor.h
*xkxkkkkkk start of file initBehavior.cc:

const FsmStaticData*abp_s_Actor::initBehavior(void)

{

// create a FsmStaticData instance and add methods from the superclass

FsmStaticData*_info=new FsmStaticData("abp_s_Actor",
_CONVERT_ACTORIDS_(1),"RTActor");

// addSAP(SAP name, SAP id, replication factor)

// addMethod(method name, method pointer)
_info->addBMethod ("guard3_t2_eventl",
(RTActorBooleanFunc)abp_s_Actor: :guard3_t2_eventl);
_info->addBMethod ("guard5_t4_eventl",
(RTActorBooleanFunc)abp_s_Actor: :guard5_t4_eventl);
_info->addBMethod ("guard6_t1_eventl",
(RTActorBooleanFunc)abp_s_Actor::guard6_t1_eventl);
_info->addBMethod ("guard7_t1_eventl",
(RTActorBooleanFunc)abp_s_Actor::guard7_t1_eventl);
_info->addMethod("transition2_t1",
(RTActorDataObjectFunc)abp_s_Actor::transition2_t1);
_info->addMethod ("transition3_t2",
(RTActorDataObjectFunc)abp_s_Actor::transition3_t2);
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_info->addMethod ("transition4_t3",

(RTActorDataObjectFunc)abp_s_Actor:

_info->addMethod ("transition5_t4",

(RTActorDatalObjectFunc)abp_s_Actor:

_info->addMethod ("transition6_t1",

(RTActorDataObjectFunc)abp_s_Actor:

_info->addMethod ("transition7_t1",

(RTActorDataObjectFunc)abp_s_Actor:

return _info;

}

*kxkkxkkkk end of file initBehavior.cc
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:transition4_t3);
:transitionb_t4);
:transition6_t1);

:transition7_t1);
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