
Group-Based Distributed Computing
Programming & Distributed Platform Model

By

Kazi Farooqui

Thesis submitted to the
School of Graduate Studies and Research

in partial fulfillment of
the requirements of the degree of

Doctor of Philosophy
in

Computer Science

under the auspices of
Ottawa Carleton Institute of Computer Science

University of Ottawa
Ottawa, Ontario,

Canada

February 2000

Copyright © 2000 Kazi Farooqui, Ottawa, Canada.

Acknowledgments

A number of people have, directly or indirectly, contributed to this thesis. It is my pleasure to have
the opportunity to thank them. First of all, I would like to express my deepest gratitude to my the-
sis supervisor, Dr. Luigi Logrippo. His encouragement, support and guidance have been very
instrumental during my Ph.D studies. I’ m thankful to him for the numerous discussions that I have
had with him and for the suggestions that I received from him. His careful reading of the thesis
improved the content and its form. Luigi has not only been my supervisor, but also my friend. I
could knock his door at any time and still be received with a friendly smile. Luigi, thanks very
much!

The weekly meetings of the Telecommunications Software Engineering Research Group
is an excellent place to test the ideas. I would like to thank all the members of this group for their
useful suggestions and patient li stening. Jacques Sincennes and Daniel Amyot were always avail -
able for discussion. Many thanks to them for sharing uncountable hours, ideas, and fruitful com-
ments.

I would like to thank the members of the ISO /ODP group - Andrew Herbert, Jean-Bernard
Stefani, Kerry Raymond, Peter Linington, Peter Schoo, Gerd Schrumann, and others, for the
numerous discussions that I had with them through the internet. I would like to thank them for
sharing their experience on distributed systems architectural principles.

A project of this scale can seldom be accomplished without the moral support and affec-
tion from the family. The first picture that comes to my mind is that of a tall and elegant girl who
is gifted with a beautiful smile, my wife Shehla. She has been a constant source of affection for
me. I wish to thank her for her companionship during my tough times and for tolerating my eve-
nings and weekends at the off ice. I would like to apologize her for my occasional slipping into my
‘ thesis world’ while talking to her. Our little daughter Juhi kept me cheerful with her innocent talk
and with her playful activities. My parents have always been supportive of my intellectual pur-
suits. They have been a constant source of inspiration. I’m grateful to them for their encourage-
ment and remain indebted to them for their care. Thank you mummy and pappa. Finally, I wish to
remember my Dadima for the love she gave me. To her, I dedicate this thesis.

This work was made possible by the financial support of National Science and Engineer-
ing Research Council (NSERC), Telecommunications Research Institute of Ontario (TRIO),
Motorola and Nortel.

Group-Based Distributed Computing i

Abstract

The synergy of the client-server computing model, the object group model, and the group communication
model leads to a new distributed computing paradigm - the group-based distributed computing paradigm.
This paradigm is characterised by the extension of the existing point-to-point client-server distributed com-
puting model to a model that explicitl y addresses one-to-many and many-to-one client-server interactions,
as well as other aspects of group-orientation such as synchronised message invocation, filtered message
delivery, etc. The group-based distributed computing applications are structured as a client group interact-
ing with a server group. The paradigm of next generation of information systems will involve a large num-
ber of distributed objects which are structured as object groups and which interact in a client-server
manner.

Much research has been done in the past in the area of group communication. However most of this
research exists in the low-level support for group communication, such as different types of ordered and
reliable multicast protocols, membership management protocols, virtual synchrony, replication techniques,
etc. Most of this research provides only low-level pieces of the complete puzzle. The big picture involves a
vision of group-based distributed computing. This vision calls for a shift of focus from low-level issues of
group communication to the high-level issues of an overall distributed environment capable of supporting
group-based distributed computing applications. This thesis is focussed on the dual models of the distrib-
uted environment - the distributed programming model and the distributed platform model, required for the
support of group-based distributed computing applications.

At the programming-level, we describe a communication primitive (analogous to the interrogation
or remote procedure call of the basic client-server model), that explicitly addresses one-to-many and many-
to-one interactions between a client group and server group. It is named group interrogation. It allows a
singleton client to access a server group in one call , through the mediation of a group proxy object, and to
receive multiple and variable number of replies in a controlled manner in response to that call . Similarly it
allows a singleton server to receive multiple service requests from the client group as a single group service
request and to issue multiple replies, one for each component request, in response to a group service
request.

The semantics of the proposed group interrogation primitive supports some of the sophisticated
group communication requirements, such as multiple reply delivery, variable reply delivery, group reply
delivery, controlled reply delivery, terminable reply delivery, and ordered reply delivery. Transparency is an
important issue in a programming primitive. The proposed model allows the programmer to configure the
level of group transparency by specifying different message distribution and collation policies.

At the distributed platform level, the focus is essentially on the group support middleware platform,
which resides on top of the low-level group communication protocols. The thesis presents the software
architecture of an agent-based and policy-driven group support platform in an implementation indepen-
dent manner. This is an extensible, configurable and programmable software architecture which permits
the separation of group coordination aspects from the application issues. The goal is to enhance the level of
middleware support provided by the current generation of distributed platforms such as CORBA.

The thesis identifies a set of “ middleware-level” group support services (GSSs), such as message
distribution service, collation service, synchronisation service, filtering service, etc. commonly required by
group-based applications and the corresponding group support agents (GSAs). The thesis presents a frame-
work for the organisation of these group support agents. This framework is called the group support
machine (GSM). The GSM serves as a framework for the identification of new group support services and
for the identification of interactions that take place between the corresponding GSAs within the GSM, in

Group-Based Distributed Computing ii

order to support different application requirements. Each component of the group-based application is sup-
ported by GSM. The group support platform (GSP) is a set of inter-connected GSMs which communicate
with each other through an inter-GSM protocol (IGP). This protocol defines the nature and format of inter-
action between the peer GSAs within the distributed GSMs.

In this model, the GSAs manage the group communication and coordination patterns on behalf of
the user applications, who influence the behavior of these agents by means of policy specifications. The
idea is to describe the functionality required of the group support platform (GSP) in a declarative language.
The thesis presents such a declarative group support requirements specification language, the group policy
specification language (GPSL), for the specification of a rich set of application requirements with respect
to different group support services such as message distribution, collation, synchronisation, filtering, etc.
Therefore the GSP offers selective group transparency by allowing applications to specify group support
policies.

Finally, the thesis describes the different types of group coordination models that are supported by
the GSP and how the corresponding group coordination patterns can be specified using GPSL by a combi-
nation of basic message distribution policy, collation policy, synchronisation policy, and filtering policy.

This thesis is based upon the architectural principles underlying object-based distributed systems
architectures such as RM-ODP, ANSA, ROSA, OMA, etc., and is scoped within the ODP computational
and engineering models. The thesis presents an integration of diverse distributed object computing technol-
ogies such as the client-server model, object group model, distributed agent model, policy-driven agent
models, group coordination models into an advanced group-based distributed computing model.

Group-Based Distributed Computing i ii

List Of Contents

CHAPTER 1 Introduction to the Problem Domain 1
1.1 Introduction 1
1.2 Group-Based Distributed Computing: Emergence of a New Paradigm 2
1.3 Relationship with Distributed Systems Architectures 3

1.3.1 RM-ODP Viewpoint Model 3
1.3.1.1 Enterprise Model 3
1.3.1.2 Information Model 3
1.3.1.3 Computational Model 3
1.3.1.4 Engineering Model 4
1.3.1.5 Technology Model 4

1.3.2 Relationship to RM-ODP Viewpoint Models 4
1.4 Review of Existing Object Group Models 4

1.4.1 Object Group Terminology 4
1.4.1.1 Object Group 5
1.4.1.2 Interface Group 5
1.4.1.3 Group Member 5
1.4.1.4 Member Name 5
1.4.1.5 Member Role 5
1.4.1.6 Group Identifier 5
1.4.1.7 Group Administrator 5

1.4.2 Object Group Classification Schemes 5
1.4.2.1 Client and Server Groups 5
1.4.2.2 Open and Closed Groups 6
1.4.2.3 Active and Passive Groups 6
1.4.2.4 Transparent and Non-Transparent Groups 6
1.4.2.5 Replica and Heterogeneous Groups 6
1.4.2.6 Static and Dynamic Groups 6
1.4.2.7 Anonymous and Explicit Groups 6
1.4.2.8 Source and Sink Groups 6

1.4.3 General Applications 6
1.5 Review of ODP Client-Server Interaction Model 7

1.5.1 ODP Computational Model Communication Primitives 7
1.5.1.1 Interrogation 7
1.5.1.2 Announcement 7

1.5.2 Operation, Notification, and Termination Message Signatures 7
1.6 Scope of Group-Based Distributed Computing: Application Domains 8
1.7 Group-Based Distributed Computing: Dual Levels of Support 9
1.8 Scope and Aim of Thesis 11

1.8.1 Programming-Level Support for Group-Based Distributed Computing 11
1.8.2 Distributed Platform Support for Group-Based Distributed Computing 12

1.9 Related Work and Differences 13
1.9.1 Programming Level 13
1.9.2 Distributed Platform Level 15

1.10 Structure of Thesis 16

Group-Based Distributed Computing iv

Part-1: Distributed Programming Model: A Group Communication Primitive

CHAPTER 2 Requirements of Programming-Level Group Communication Primitive 20
2.1 Introduction 20
2.2 Client Group and Server Group: Definition & Properties 21

2.2.1 Client and Server Interfaces 21
2.2.1.1 Client Interface 21
2.2.1.2 Server Interface 21

2.2.2 Client and Server Groups 21
2.2.2.1 Server Group 21
2.2.2.2 Client Group 21
2.2.2.3 How are Client Groups Formed 21
2.2.2.4 Client Group Invocation Properties 22

2.2.3 Categories of Client and Server Groups 23
2.2.3.1 Replica Client Group 23
2.2.3.2 Homogeneous Client Group 23
2.2.3.3 Heterogeneous Client Group 24
2.2.3.4 Replica Server Group 24
2.2.3.5 Homogeneous Server Group 24
2.2.3.6 Heterogeneous Server Group 25

2.3 Programming-Level Communication Requirements of Group-Based Applications 25
2.3.1 ‘Singleton-client’ and ‘Server-group’ interaction requirements 25
2.3.2 ‘Singleton-Server’ and ‘Client-Group’ interaction requirements 27

2.4 Limitations of ODP Interrogation Primitive 29
2.5 Conclusion 30

CHAPTER 3 Group Interrogation: A Group Programming Primitive 32
3.1 Introduction 32
3.2 ODP-Based Group Programming Primitives 33

3.2.1 Group Interrogation 33
3.2.2 Group Announcement 33
3.2.3 Group (Operation | Termination) Message 33

3.3 Semantics of Group Interrogation 34
3.3.1 Multiple Invoker and Multiple Invokee semantics 34
3.3.2 Group Invocation Semantics 34
3.3.3 Message collation semantics 34
3.3.4 Controlled Reply Delivery Semantics 35
3.3.5 Terminable Reply Delivery Semantics 35
3.3.6 Invocation Completion Reporting Semantics or Variable Reply Delivery Semantics

36
3.4 Signature of Group Interrogation 36
3.5 Group Message Construction: Collation Schemes 37
3.6 Basic Group Message Construction Schemes 37

3.6.1 Matrix-mode message collation 38
3.6.1.1 Group-Application-1: Managed Group - Manager Object Application 38
3.6.1.2 Group Application-2: Modified Group Application-1 39

Group-Based Distributed Computing v

3.6.1.3 Principles of Matrix-Mode Message Collation 39
3.6.1.4 Implementation of matrix-mode message collation 41

3.6.2 Linear-mode message collation 41
3.6.2.1 Group Application-3: Group Computing 41
3.6.2.2 Group Application -4: Parallel Computing Group 42
3.6.2.3 Principles of Linear-Mode Message Collation 42
3.6.2.4 Observations of Linear-mode invocation collation 42

3.7 Group Interrogation vs. Group Transparency 43
3.8 Comparison between Interrogation and Group Interrogation 43
3.9 Need for Group-Oriented Objects 44
3.10 What is a Group-Based Distributed Application 44
3.11 What is a Group-Oriented (Client | Server) 45
3.12 Identification of Group Invocations in Group-Oriented (Client | Server) 46

3.12.1 Invocation Instance Identifier 46
3.12.2 Unique Identifiers 47

3.13 Communication between Group-Oriented (Clients | Servers) and Local Proxy 47
3.13.1 Client Side 47
3.13.2 Server Side 47

3.13.2.1 Single reply to all the clients based upon the group input 47
3.13.2.2 Individual reply to each client based upon the group input 48

3.13.3 Reply Handling Protocol between the Server object and Proxy object 48
3.14 Conclusion 49

Part-2: Distributed Platform Model: Middleware Support for Group-Based Applications

CHAPTER 4 Group Support Services: Requirements of the Group Support Platform 51
4.1 Introduction 51
4.2 Why Middleware Support for Group-Based Distributed Applications 51
4.3 What Middleware Services in the Group Support Platform and Why 52

4.3.1 Basic Group Support Services 53
4.3.2 Secondary Group Support Services 53
4.3.3 Group Management Services: 54

4.4 Basic Issues of Group Support Services: Elements of Group Support Policy 54
4.4.1 Issues of Message Distribution: Elements of Distribution Policy 55
4.4.2 Issues of Message Collation: Elements of Collation Policy 55
4.4.3 Issues of Message Synchronisation: Elements of Synchronisation Policy 56
4.4.4 Issues of Message Filtering: Elements of Fil tering Policy 56

4.5 Conclusion 57

CHAPTER 5 Group Support Machine: An Organisation of Group Support Services 59
5.1 Introduction 59
5.2 Group Support Agents: Realisation of Group Support Services 59
5.3 Group Support Machine: Configuration of Group Support Agents 60

5.3.1 Parallel Configuration of Group Support Agents 60
5.3.2 Functioning of Group Support Machine 61

Group-Based Distributed Computing vi

5.4 Group Support Platform: A Parallel Configuration of Inter-Communicating GSMs 62
5.5 Agent-Based Approach and Separation of Communication Functions 63
5.6 Group Support Machine: An External, Configurable, and Programmable Architecture 64

5.6.1 Separation of group-coordination aspects from application aspects 64
5.6.2 Extensible and configurable architecture 64
5.6.3 Programmable and policy-driven architecture 64
5.6.4 Support for group transparency and group awareness 64

5.7 Conclusion 64

CHAPTER 6 An Abstract Model of Group Support Machine 65
6.1 Introduction 65
6.2 Middleware Box Between Group Member and Network: External Interfaces of GSM 65

6.2.1 GSM - Group Member Interface 65
6.2.1.1 GSM Invocation Interface (GII): 65
6.2.1.2 GSM Management Interface (GMI) 66

6.2.2 GSM - Network Interface 67
6.3 GSM Components 68

6.3.1 G-Agent 68
6.3.2 D-Agent 68
6.3.3 C-Agent 69
6.3.4 S-Agent 71
6.3.5 F-Agent 72
6.3.6 MM-Agent 72
6.3.7 P-Agent 72

6.4 Interaction between GSAs in the GSM: Internal Interfaces of GSM 73
6.4.1 Interaction between D-Agent and C-Agent: Coordination between basic group sup-

port functions73
6.4.2 Interaction between D-Agent and S-Agent: Synchronise before message distribution

74
6.4.3 Interaction between D-Agent and F-Agent: Insert the filtering constraints before

message distribution at client side75
6.4.4 Interaction between C-Agent and S-Agent: Synchronise before message delivery75
6.4.5 Interaction between C-Agent and F-Agent: Filter the received messages before delivery

76
6.4.6 Interaction between MM-Agent and other GSAs: Communicate group membership information

76
6.5 Conclusion 76

CHAPTER 7 Group Coordination Models: Platform Support and Policy Specification 77
7.1 Introduction 77
7.2 Basic Group Coordination Models 78
7.3 Basic Issues in Group Coordination Models 79
7.4 The Basic Message Distribution Model 80

7.4.1 Group Application-1: Stock Exchange Application 80
7.4.2 Message Distribution Requirements & Policy Specification 81

Group-Based Distributed Computing vii

7.5 Advanced Message Distribution Models: Smart D-Agents 81
7.5.1 Split ting Transformation 81
7.5.2 Message Spli tting Requirements & Policy Specification 81
7.5.3 Renaming Transformation 82
7.5.4 Group Application-2: Parallel Computational Group 83
7.5.5 Renaming Requirements & Policy Specification 84

7.6 Reply Collation and Delivery Models 84
7.6.1 Group Application-3: Stock Inventory System 86
7.6.2 Delivery of Group Termination of a Single Reply Type: Matrix-Mode Collation87

7.6.2.1 Reply Collation Requirements & Policy Specification 87
7.6.2.2 Transparency and Policy Interpretation 88

7.6.3 Delivery of Group Termination of a Single Reply Type: Linear-Mode Collation88
7.6.3.1 Reply Collation Requirements & Policy Specification 88
7.6.3.2 Transparency & Policy Interpretation 88

7.6.4 Unordered Delivery of Singleton Terminations of a Reply Type 88
7.6.4.1 Unordered Reply Delivery Requirement and Policy Specification 89
7.6.4.2 Transparency & Policy Interpretation 89

7.6.5 Ordered Delivery of Singleton Terminations of a Reply Type 89
7.6.5.1 Ordered Reply Delivery Requirement & Policy Specification 90
7.6.5.2 Transparency & Policy Interpretation 90

7.6.6 Unordered Delivery of Multiple Reply Types as Singleton Terminations 90
7.6.6.1 Reply Collation & Delivery Requirements and Policy Specification 90
7.6.6.2 Transparency & Policy Interpretation 92

7.6.7 Unordered Delivery of Multiple Reply Types as Group Terminations 92
7.6.7.1 Reply Collation & Delivery Requirement and Policy Specification 93
7.6.7.2 Transparency & Policy Interpretation 93

7.6.8 Ordered Delivery Multiple Reply Types as Singleton Terminations 93
7.6.8.1 Reply Collation & Delivery Requirement and Policy Specification 93
7.6.8.2 Transparency & Policy Interpretation 94

7.6.9 Disabling the Delivery of Other Reply Types by a Preferred Reply Type 94
7.6.9.1 Group Application-4: Mobile Telecommunications 94
7.6.9.2 Reply Collation & Deliver Requirement and Policy Specification 95
7.6.9.3 Transparency & Policy Interpretation 95

7.6.10 Choice between Multiple Reply Types 96
7.6.10.1 Group Application-5: Group Survey 96
7.6.10.2 Reply Collation & Deliver Requirement and Policy Specification 97
7.6.10.3 Transparency & Policy Interpretation 97
7.6.10.4 Group Application-6: Scheduling Group Meeting 97
7.6.10.5 Reply Collation & Deliver Requirement and Policy Specification 97
7.6.10.6 Transparency & Policy Interpretation 97

7.7 ‘Group-Service’ Request Models: Service Request Collation Models 98
7.7.1 Group Application-7: Network Management Application 98
7.7.2 Constructing a ‘Group-Service’ Request: Matrix-Mode Collation & Policy Specification

99
7.7.3 Transparency & Policy Interpretation 100
7.7.4 Group Application-8: Target Location Acquisition Sonar System 100
7.7.5 Constructing a Service Request from Partial Service Requests: Linear-Mode Colla-

tion & Policy Specification101

Group-Based Distributed Computing viii

7.8 Replies to Group-Service Request: Reply Distribution Models 102
7.8.1 Multiple Replies to Group-Service Request 102
7.8.2 Transparency & Policy Interpretation 102
7.8.3 Single Reply to Group-Service Request 102

7.9 Synchronised Invocation Model 103
7.9.1 Why Synchronised Invocation in the Client Group 103
7.9.2 What are Synchronisation Events in Client Groups 104
7.9.3 What are Synchronisation Messages 105
7.9.4 Communication between the Client Object and the S-Agent 106
7.9.5 Group Application-9: Coordinated Testing Application 106
7.9.6 Synchronisation Requirements & Policy Specification 110
7.9.7 Interaction between GSM Agents to Support Synchronised Message Distribution

from Client114
7.9.8 Transparent & External Support for Synchronised Invocation in the GSM 117

7.10 Filtered Message Delivery Model 117
7.10.1 Why Filtered Message Delivery in the Server Group 117
7.10.2 Communication between the Server Object and F-Agent 118
7.10.3 Group Application-10: A Printer-Pool 119
7.10.4 Filtering Requirements & Policy Specification 119
7.10.5 Interaction between GSM Agents to Support Filtered Message delivery to Server Object

120
7.10.6 Transparent & External Support for Filtered Invocation 122

7.11 Conclusion 122

CHAPTER 8 Group Policy Specification Language: An Introduction 123
8.1 Introduction 123
8.2 Why Group Policy Specification Language 123
8.3 Basic Elements of GPSL 124
8.4 Syntax and Semantics of Group Policy Primitives 125

8.4.1 Distribution Policy Primitive 125
8.4.1.1 DPP Syntax 125
8.4.1.2 DPP Semantics 126

8.4.2 Collation Policy Primitive 126
8.4.2.1 CPP Syntax 126
8.4.2.2 CPP Semantics 126

8.4.3 Synchronisation Policy Primitive 126
8.4.3.1 SPP Syntax 126
8.4.3.2 SPP Semantics 127

8.4.4 Filtering Policy Primitive 127
8.4.4.1 FPP Syntax 127
8.4.4.2 FPP Semantics 128

8.5 Syntax and Semantics Of GPSL Elements 128
8.5.1 Message Specifier Elements 128
8.5.2 Membership Specifier Elements 128
8.5.3 Cardinality Specifier Elements 128

Group-Based Distributed Computing ix

8.5.4 Time Specifier Elements 129
8.5.5 Combination Mode Specification Elements 130
8.5.6 Attribute Combination Specification Elements 130
8.5.7 Message Ordering Specification Elements 130

8.6 Conclusion 132

CHAPTER 9 Inter-GSM Protocol 133
9.1 Introduction 133
9.2 Why Protocol between GSMs 133
9.3 Peer GSAs in Inter-GSM Protocol 134
9.4 A General Format of the Inter-GSM Protocol Data Unit 134
9.5 Encoding of GPDUs 135
9.6 Inter-GSM Protocol between D-Agent and C-Agent 136

9.6.1 Application Message Communication between D-Agent & C-Agent 136
9.6.2 Marshalling of Application Messages in GPDUs 137
9.6.3 Group Exception Handling Protocol Between C-Agents 137

9.7 Inter-GSM Protocol between Peer S-Agents 138
9.7.1 Solicited Synchronisation Protocol 139
9.7.2 Unsolicited Synchronisation Protocol 140

9.8 Inter-GSM Protocol between Peer F-Agents 141
9.9 Inter-GSM Protocol between Peer MM-Agents 143

9.9.1 Distributed Membership Monitoring 144
9.9.2 Membership Change Notification 144

9.10 Inter-GSM Protocol over Multicasting Protocol 146
9.10.1 Group Communication Layer 146
9.10.2 GSM - GCL Interface 147

9.11 Conclusion 147

CHAPTER 10 Group Support Platform: Implementation and Performance 149
10.1 Introduction 149
10.2 Implementation Details 149

10.2.1 Implementation of GSM Agents 149
10.2.1.1 GSM Class 150
10.2.1.2 G_Agent Class 150
10.2.1.3 D_Agent Class 151
10.2.1.4 C_Agent Class 153
10.2.1.5 P_Agent Class 154

10.2.2 Implementation of Inter-Agent Invocations 154
10.2.3 Implementation of Inter-GSM Communication 155
10.2.4 Implementation of Inter-GSM Protocol 155
10.2.5 Implementation Distribution and Collation Policies 156
10.2.6 Implementation of an API for Group Interrogation Primitive 156

10.2.6.1 Implementation of Unsolicited Group Reply Delivery - API 157
10.2.6.2 Implementation of Solicited Multiple Reply Delivery - API 157
10.2.6.3 Implementation of Unsolicited, Multiple and Terminable Reply Delivery - API 158

Group-Based Distributed Computing x

10.3 Performance Aspects 158
10.3.1 Message count 159
10.3.2 Message Complexity 159
10.3.3 Communication Network Speed 160
10.3.4 Message Marshalli ng and Un-marshall ing Overhead 160
10.3.5 Intra-GSM Invocations Overhead 160
10.3.6 Internal Buffer Sizes and Queue Lengths Considerations 161
10.3.7 Concurrency and Multi-threaded architecture aspects 161
10.3.8 Timers 161
10.3.9 Collation Processing Overhead 162
10.3.10 Other Group Processing Overhead 162
10.3.11 Reliability and Robustness 162
10.3.12 Scalabili ty 162
10.3.13 Ease of Use 163

10.3.13.1 Ease of use of GSM Invocation (GII) I nterface and Group Interrogation primitive163
10.3.13.2 Ease of use of Group Policy Programming Interface 164

10.4 Comparison of Group Support Platform with CORBA Middleware 164
10.4.1 Comparison at Programming-Level 164

10.4.1.1 Group Interrogation vs. Remote Procedure Call 164
10.4.1.2 Ease of group request invocation 168
10.4.1.3 Support for Advanced Programming-level facil ities in GSP vs. Corba 168

10.4.2 Comparison at Platform-Level 169
10.4.2.1 Middleware functions of GSP vs. Corba 169
10.4.2.2 Platform programmabilit y Capabilit y in GSP vs. Corba 169

10.5 Case Studies 170
10.5.1 Case Study-1: Group Reply Delivery, Matrix-Mode Collation 170
10.5.2 Case Study-2: Group Reply Delivery, Linear-Mode Collation 170
10.5.3 Case Study-3: Solicited Reply Delivery 171
10.5.4 Case Study-4: Group Request Deliver and Reply Distribution 171

CHAPTER 11 Conclusions and Directions for Future Work 173
11.1 Conclusion and Contribution of Thesis 173

11.1.1 Contribution at the Programming-Level 173
11.1.2 Contribution at the Platform-Level 174

11.2 Directions for Future Work 176
11.2.1 Research on Group-Oriented Programming Languages & Systems 176
11.2.2 Integration of GSM Model in CORBA 177
11.2.3 Extension of GSM Model 177
11.2.4 Extension to Group Policy Specification Language 178

List of References 179
APPENDIX BNF of Group Policy Specification Language (GPSL) 191

Group-Based Distributed Computing xi

List Of Figures

 Fig. 1.1 Group-Based Distributed Computing Model: Synergy of Client-Server Model & Object-Group Model 2

 Fig. 1.2 Modeling of Conventional Distributed Applications as Group-Based Distributed Applications using Object
Group Model and Client-Server Model 9

 Fig. 1.3 Group-Based Distributed Computing: Application Domains 9

 Fig. 1.4 Area of Research: Lightly Shaded Areas 10

 Fig. 2.1 Homogeneous Client Group: Each member invokes instances of the same operation signature 22

 Fig. 2.2 Heterogeneous Client Group: Each member invokes an instance of different operation signature 23

 Fig. 2.3 Client object interrogates a server group 26

 Fig. 2.4 Client Group interrogates a server object 28

 Fig. 3.1 Interrogation Signature 36

 Fig. 3.2 Matrix-mode message collation: An example of Manager Object and Managed Group Interaction 39

 Fig. 3.3 Group Message Stub Using Matrix-Mode Collation: Array Structure Implementation 40

 Fig. 3.4 Linear-mode message collation: An Example of Group Computing 41

 Fig. 3.5 Group-Based Distributed Application and the Group Support Platform. 45

 Fig. 3.6 Protocol between group-oriented (client | server) and proxy 48

 Fig. 4.1 Group Support Platform: Middleware & Group Communication Services 53

 Fig. 5.1 Group Support Machine (GSM): Configuration of Group Support Agents 61

 Fig. 5.2 Group Support Platform (GSP): A Distributed Agent Model 63

 Fig. 6.1 A Model of Group Support Machine (GSM) 67

 Fig. 6.2 A Model of Policy-Driven Group Support Machine 70

 Fig. 7.1 Group Coordination Model: Combination of coordination behavior and group organisation 78

 Fig. 7.2 Stock Exchange Application: A Group-Based Distributed Application 80

 Fig. 7.3 Message Distribution Policy Specification 81

 Fig. 7.4 Splitt ing Policy Specification 82

 Fig. 7.5 A Parallel Computational Group 83

 Fig. 7.6 Renaming Policy Specification 84

 Fig. 7.7 Stock Inventory System 86

 Fig. 7.8 Reply collation and delivery policy of a single group termination (matrix-mode) 87

 Fig. 7.9 Reply collation and delivery policy of a single group termination (linear-mode) 88

 Fig. 7.10 Unordered delivery of singleton terminations of a reply type 89

 Fig. 7.11 Ordered delivery of singleton terminations of a reply type 90

 Fig. 7.12 Policy Specification for interleaved delivery of instances of multiple reply types 91

 Fig. 7.13 Policy specification for Unordered Delivery of Multiple Reply Types as Group Terminations 92

 Fig. 7.14 Policy Specification for Ordered Delivery of Multiple Reply Types as Singleton Terminations 94

 Fig. 7.15 Group Interrogation in Mobile Telecommunications 95

 Fig. 7.16 Policy Specification for Disabling the Delivery of Other Reply Types by a Preferred Reply Type 96

 Fig. 7.17 Policy Specification for Choosing between reply types based upon cardinality requirements 96

 Fig. 7.18 Policy Specification for Choosing between reply types based upon sender identity 97

 Fig. 7.19 Group Interrogation in Telecommunications Network Management 99

 Fig. 7.20 Operation Collation Policy Specification 100

 Fig. 7.21 Group Interrogation in Sonar System 101

Group-Based Distributed Computing xii

 Fig. 7.22 Linear-Mode Collation of partial service requests 101

 Fig. 7.23 Multiple Replies Distribution Policy 102

 Fig. 7.24 Single Reply Distribution Policy 102

 Fig. 7.25 Coordinated Testing Application 109

 Fig. 7.26 Synchronisation Policy Specification for the S-Agent of TAdmin 110

 Fig. 7.27 Synchronisation Policy Specification for the S-Agent of TA-1 110

 Fig. 7.28 Synchronisation Policy Specification for the S-Agent of TB-1, TB-2 112

 Fig. 7.29 Synchronisation Policy Specification for the S-Agent of TC-1 112

 Fig. 7.30 Synchronisation Policy Specification for the S-Agent of TE-1 113

 Fig. 7.31 Synchronisation Policy Specification for the S-Agent of TAdmin - (for Grade-B() message) 113

 Fig. 7.32 Synchronisation Policy Specification for the S-Agent of TAdmin (for Object_Partially_Tested() message) 114

 Fig. 7.33 Synchronised Message Distribution Policy 115

 Fig. 7.34 Coordination between GSM Agents to Support Synchronised Message Distribution from Client 115

 Fig. 7.35 Client’s Filtering Policy Specification 119

 Fig. 7.36 Server’s Filtering Policy Specification 120

 Fig. 7.37 Coordination between GSM Agents to Support Filtered Message Delivery (Server Side) 121

 Fig. 9.1 A General Format of GSM Protocol Data Unit (GPDU) 135

 Fig. 9.2 Inter-GSM Protocol between D-Agent & C-Agent 137

 Fig. 9.3 Inter-GSM Protocol between S-Agents 139

 Fig. 9.4 S-NTF-GPDU Format 141

 Fig. 9.5 F-PAR-GPDU Format 142

 Fig. 9.6 F-RES-GPDU Format 143

 Fig. 9.7 Inter-GSM Protocol between F-Agents 143

 Fig. 9.8 Inter-GSM Protocol over Multicast Protocol 147

 Fig. 10.1 Which Agents are implemented 150

 Fig. 10.2 GSM Implementation: GSM Agents and their Interaction 152

Group-Based Distributed Computing xiii

List Of Tables

Table 2.1: Categories of Client Group 24

Table 2.2: Categories of Server Group 24

Table 2.3: Limitation of ODP Interrogation primitive 29

Table 3.1: Comparison of Matrix and Linear mode Collation Schemes 43

Table 3.2: Interrogation vs. Group Interrogation 44

Table 3.3: Group-Oriented (Clients | servers) 46

Table 5.1: Group Support Services Requirement on the Client and Server side 60

Table 6.1: Interaction of D-Agent with other Agents before & after message distribution 75

Table 6.2: Interaction of C-Agent with other Agents before message delivery to (Client | Server) 76

Table 7.1: Reply Collation and Delivery Schemes 85

Table 8.1: Relationship between Basic issues of Group Support Services and Elements of GPSL 125

Table 8.2: Semantics of Collation Operators 131

Table 8.3: Combined Semantics of Collation Time, Collation Cardinality, and Collation Mode 132

Table 9.1: A Catalogue of GPDUs 145

Table 10.1: Corba vs. GSP: How do they compare w.r.t. Crucial Performance Metrics 166

Table 10.2: GSP vs. Corba: What are the Other Trade-Offs 169

Group-Based Distributed Computing xiv

Group-Based Distributed Computing 1

Introduction to the Problem Domain

CHAPTER 1 Introduction to the Problem Domain

Abstract
This chapter describes the subject of the thesis, beginning with the discussion of the
background and motivation that led to the research and the material presented in
the thesis. The focus of the thesis is on an emerging distributed computing para-
digm - the “ group-based distributed computing” . We describe this paradigm. We
describe the relationship of our work with the existing distributed systems architec-
tures and introduce some basic models which are the basis of the thesis. We delin-
eate and define the scope and the aim of the thesis.

1.1 Introdu ction

Group communication is increasingly becoming an important communication paradigm of modern distrib-
uted systems. Much research has been done in the past in the area of group communication, such as reliable
group communication protocols, ordered multicast protocols, membership management protocols, virtual
synchrony, object-group models, group communication paradigms, etc. However most of this research pro-
vides only low-level pieces of the complete puzzle. The big picture involves a vision of group-based dis-
tributed computing and of a distributed environment capable of supporting group-based distributed
computing applications. This vision calls for a shift of focus from low-level issues of group communication
to the issues of an overall distributed environment required for the support of group-based distributed
applications, in which the users and application programmers have easy and flexible access to the services
provided by the group support infrastructure.

We believe that the synergy of client-server computing model, the distributed object model, object
group model and the group communication model leads to a compell ing and powerful distributed comput-
ing paradigm - the group-based distributed computing paradigm (see figure1.1). This paradigm is
characterised by the extension of the existing point-to-point client-server distributed computing model
to a model that explicitl y addresses one-to-many and many-to-one client server interactions, as well as
other aspects of group-orientation such as synchronised message invocation, filtered message delivery,
etc. This paradigm involves a large number of distributed objects which are structured as object groups
and which interact in a client-server manner.

Experience with the existing client-server distributed computing has demonstrated the importance of
“programming-level” and “distributed platform-level” support for distributed computing applications.
Such dual support greatly simplifies the task of building “client-server” distributed applications. The dis-
tributed platform model provides the “middleware services” necessary to support remote “client-server”
interactions. The distributed programming model, amongst other things, provides the inter-object commu-
nication support, such as a “ remote procedure call ” which gives the programmer a powerful handle to
invoke a remote object, as if it were a local one, and to receive the reply. Such a high-level support is miss-

Group-Based Distributed Computing 2

Introduction to the Problem Domain

ing in the case of group-based distributed computing model. The successful and large-scale deployment of
group-based distributed computing applications is heavily dependent upon the availabili ty of these two-
levels of support. Our thesis addresses these two aspects: the distributed programming-level support and
the distributed platform support required for the successful and large-scale deployment of group-based dis-
tributed computing applications.

1.2 Group-Based Distributed Computing: Emergence of a New Paradigm

We are witnessing the emergence of two new distributed computing paradigms: mobile computing and
group-based distributed computing. Although mobile and group-based distributed applications have been
around for quite some time now, there has been an enormous increase in the demand and deployment of
these applications in the recent past. The major factors responsible for the growth of these distributed sys-
tem paradigms are inherent in the very nature of the business enterprises we want to develop. The basic
components of our distributed enterprise are the people or the application objects (software entities) that
represent them. These objects are mobile and they work as a group in client-server manner to achieve their
enterprise-specific goals. The growing importance and the large-scale deployment of these applications
calls for a sound architectural framework for the support of these applications. This thesis is dedicated to
the development of such an architectural framework for the support of group-based distributed computing
applications.

 Fig. 1.1 Group-Based Distributed Computing Model: Synergy of Client-Server Model & Object-Group Model
A major force responsible for the rapid growth of group-based distributed computing is inherent in

the way in which distributed applications are organised (see figure1.1). The concept of a ‘single server
per service’ is being replaced in many domains by the concept of ‘multiple servers per service’ . One-to-
one correspondence between services and server is neither realistic nor desirable in distributed environ-
ments. There is a clear separation of concepts of services and servers. These services could be realised
by a set of replicated servers or a set of parallel heterogeneous servers or a set of collaborating servers.
Clients need an interface to services rather than to individual servers. Similarly, the concept of a ‘single-
ton client’ is being replaced in some domains by the concept of ‘multiple coordinated clients in some

Single Client
Single Server
per service

Singleton Client Singleton Server

Multiple Coordinated
Clients in some related
role.

Multiple
Servers per Service:

1. Replicated Servers,
2. Collaborating Servers,or

3. Parallel Heterogeneous
Servers

Client Group Server Group

Client-Server
Computing Model

Group-Based
Distributed
Computing Model

invokes

invokes

Group-Based Distributed Computing 3

Introduction to the Problem Domain

related roles’ . These distributed applications could either represent a set of replicated clients or they
could be a set of non-replicated, but coordinated clients in some related roles. We address these issues
within the model of group-based distributed computing.

1.3 Relationship wi th Distributed Systems Architectures

Our model of group-based distributed computing is based upon the architectural principles underlying
distributed system architectures such as the Reference Model of Open Distributed Processing (RM-
ODP) [1 - 8], Advanced Networked Systems Architecture (ANSA) [9 - 15], RACE Open Services
Architecture (ROSA) [16 - 17], OMG’s Common Object Request Broker Architecture (CORBA) [18]
and other related models [21 - 24]. In particular, our model is structured within the architectural frame-
work of RM-ODP and its predecessor, the ANSA. Here we present a brief review of RM-ODP and
explain how our work relates to a subset of its component models.

RM-ODP is a generic architecture for the design of object-based distributed systems. It can be con-
sidered as a meta-standard to coordinate and guide the development of domain-specific ODP standards,
such as the Telecommunications Information Networking Architecture (TINA) [25 - 32] in the telecom
domain and the Open Distributed Management Architecture (ODMA) [33] in the management domain.

1.3.1 RM-ODP Viewpoint Model
RM-ODP prescribes a set of abstractions or projections on a distributed system called viewpoint models, in
order to deal with the full complexity of distributed systems. Each viewpoint model reveals different
aspects of the same system. A viewpoint is a representation of the system with emphasis on a specific set of
concerns, and the resulting representation is an abstraction of the system, i.e., a description of the system
which highlights certain aspects of the system relevant to the viewpoint and abstracts others. Different
viewpoints on the systems address different aspects or concerns of the system. The ODP prescribes the five
viewpoint models. They are the Enterprise Model, the Information Model, the Computational Model, the
Engineering Model, and the Technology Model.

1.3.1.1 Enterprise Model
The enterprise model is directed to the needs of the users of an information system. It describes the (dis-
tributed) system in terms of answering what it is required to do for the enterprise. It is the most abstract of
the ODP framework of viewpoints stating high level enterprise requirements and policies.

1.3.1.2 Information Model
The information model focuses on the information content of the enterprise. The information modeling
activity involves identifying information elements of the system, manipulations that may be performed on
information elements, and the information flows in the system.

1.3.1.3 Computational Model
The computational model is a framework for describing the structure of a distributed application in terms
of application components (called computational objects) and the interactions that occur between them,
independent of any underlying “distributed platform”. The computational model is a (distributed) object
world populated with concurrent computational objects interacting with each other, in a distribution trans-
parent manner, by invoking messages at their interfaces (called computational interfaces). An object can
have multiple interfaces and these interfaces define the interactions that are possible with the object. The
computational model hides from the application designer/programmer the details of the underlying distrib-

Group-Based Distributed Computing 4

Introduction to the Problem Domain

uted platform that supports the application. The computational model is analogous to the (distributed) pro-
gramming model. Hence we use the terms computational model and the programming model
interchangeably throughout the thesis. Similarly, the terms “application component” and “computational
object” is used interchangeably.

1.3.1.4 Engineering Model
The engineering model addresses the issues of the “distributed platform” required for the support of dis-
tributed applications. The distributed platform includes the end-systems (such as processors, storage, oper-
ating systems) that support the application components and the intervening communication support
mechanisms (such as networks, communication protocols, distribution transparency support mechanisms)
required to support interactions between distributed application components. The engineering model
defines a set of useful distribution transparency support mechanisms such as access transparency support
mechanisms, location transparency support mechanisms, migration transparency support mechanisms,
group transparency support mechanisms, etc. It can be viewed as an architectural framework of an object-
based distributed platform. The set of “distribution support” services and mechanisms such as messaging
service, binding service, trading service, location management service, transaction support service, secu-
rity related services, etc. are modeled as engineering objects. A collection of interacting engineering
objects together provide the necessary engineering support for the realisation of interactions between dis-
tributed application components (computational objects). Hence the engineering model animates the com-
putational model. The engineering model is analogous to the distributed platform. Hence we used the term
engineering model and the distributed platform interchangeably.

1.3.1.5 Techno logy Model
The technology model identifies the technical artifacts (i.e., the actual hardware and software) which
implement the engineering objects, computational objects, information objects, and the enterprise objects.
It focuses on the choice of technology required for the implementation of the systems, such as Unix operat-
ing system, ATMswitch, Java applets, CORBA distributed platform, etc.

1.3.2 Relationship to RM-ODP Viewpoint Models
Our work on the group-based distributed computing relates to the ODP computational and engineering
models. This is explained in detail i n section 1.7 and section 1.8.

1.4 Review of Existing Object Group Models

The basis of group-based distributed computing model is the object group model and the client-server
model. In this section we present a brief review of the existing object group model as a predecessor to the
higher level group concepts which are introduced later in the thesis. The next section presents a review of
the client server interaction model.

1.4.1 Object Group Termino logy
The concept of “object groups” proposed earlier by many researchers [34 - 42] is a nice architectural
solution for the design of group-based distributed computing applications. It greatly simpli fies the
structuring and the interaction issues associated with a group of distributed objects. The following is the
basic terminology used in the context of object groups.

Group-Based Distributed Computing 5

Introduction to the Problem Domain

1.4.1.1 Object Group
An object group is a collection of co-located or distributed objects which can be treated as a single logical
entity. It forms a natural unit for performing computational tasks. The basic group abstraction is to treat the
collection of objects in an object group as if it were a singleton object.
However an object may offer multiple interfaces. An object offers its service at an interface and receives its
service through an interface. Hence it is the interfaces which are the members of a group. Hence we have
the following definition.

1.4.1.2 Interface Group
An interface group is a collection of co-located or distributed object interfaces which can be treated as a
single logical entity for the purpose of invocation. It forms a natural unit of addressing and invocation. An
object may be a member of multiple interface groups.

1.4.1.3 Group Member
An (object | interface) group is composed of one or more (objects | interfaces) called the group members. If
each member of an object group offers a single interface, then the object group and interface groups are
synonymous.

1.4.1.4 Member Name
Each member of the group has a unique name or identifier. Individual members of the group are addressed
by their names.

1.4.1.5 Member Role
The group members may play different roles in the group depending upon the services they offer. These
roles are application-specific, such as a ‘manager role’ , an ‘administrator role’ , a ‘subscriber role’ , etc.

1.4.1.6 Group Identifier
The members of a group are collectively identified by a name, called the group name or the group identi-
fier. Any invocation on the group name results in an invocation on individual members of the group.

1.4.1.7 Group Administrator
In many groups, there is usually a special group member in the role of a group administrator which is
responsible for allowing the objects or their interfaces to join or leave the group based upon certain group
membership polices.

1.4.2 Object Group Classification Schemes
The li terature on group communications [34 - 55] has proposed different kinds of classification
schemes for object groups. The schemes are based upon different aspects of the object group which are
of interest from different perspectives.

1.4.2.1 Client and Server Group s
A primary classification used in the context of object groups is with respect to their client and server roles.
Object groups can be classified as client groups or server groups depending upon whether all the members
of the group are clients or servers. The members of the client group offer client interfaces (i.e., invoke ser-
vice requests and expect replies) and the members of the server group offer server interfaces (i.e., accept
service requests and give replies). A precise and complete definition of the groups with respect to this
aspect is presented in section 2.2.

Group-Based Distributed Computing 6

Introduction to the Problem Domain

1.4.2.2 Open and Closed Group s
The object groups can also be classified as either open groups or closed groups. In open groups, a non-
member of the group can make an invocation on the group whereas in closed groups, communication with
the group requires the membership of the group. Our client and server groups are open because clients
which are not the members of the server group can communicate with the server group and vice versa.

1.4.2.3 Active and Pass ive Groups
Similarly, the groups are also classified as active groups or passive groups. All members of an active group
receive and process the invocation whereas in passive groups only one designated member receives and
processes the invocations while all other members act as standby who checkpoint their state periodically.
Our server groups are active groups. Similarly the clients groups are active groups because all members of
the group can send the invocation together.

1.4.2.4 Transparent and Non-Transparent Group s
Groups may be transparent or non-transparent depending upon whether the interaction with the group is
indistinguishable from the interaction with a singleton object providing the same service. Our client and
server group could either be transparent or non-transparent or semi-transparent depending upon the appli -
cation requirements.

1.4.2.5 Replica and Heterogeneous Groups
The groups are categorised as replica or heterogeneous groups. All members of the replica group provide
the same service and their state is identical all the time. The members of the heterogeneous group are func-
tionally different and hence offer different types of service. Our client and server groups could either be
replica groups or heterogeneous groups.

1.4.2.6 Static and Dynamic Group s
Groups may be dynamic or static depending upon whether the membership of the group can change during
its li fe time. Our client and server groups could either be static or dynamic depending upon the application
requirements.

1.4.2.7 Anonymous and Explicit Groups
Yet another classification is based upon whether the group membership is regulated or not. In anonymous
groups, any object can join or leave the group at will and can receive data sent to the group. In explicit
groups, there is usually a special group member in the role of a group administrator which is responsible
for allowing the objects to join or leave the group based upon certain group membership policies. Our cli -
ent and server groups are explicit groups.

1.4.2.8 Source and Sink Group s
We identify another classification based upon the direction of message invocation. A group becomes a
source group when messages are invoked from it and it becomes a sink group when messages are
invoked on it. A client group is a source group of operation and notification messages and a sink group
for termination messages (see section 1.5). Similarly, the server group is a sink group for operation and
notification messages and a source group of termination messages.

1.4.3 General Applications
The object groups are the basis of multi-endpoint communication, namely the abili ty to invoke operations
on a collection of objects without the need to know the exact membership of the collection or the location

Group-Based Distributed Computing 7

Introduction to the Problem Domain

of the members. This capability provides the basis for distributing the implementation of a service over a
set of objects. Generally objects are grouped for:
1. abstracting the common characteristics of the group members and the service they provide,
2. encapsulating the internal state and hiding interactions among group members, so as to provide a uni-

form interface and a single addressing mechanisms to the external world,
3. using groups as building blocks to construct larger system objects.

Traditionally, object groups have been used for load sharing, fault-tolerance, performance improve-
ment, and as a single logical addressing mechanism. In this thesis we exploit the concept of object groups
together with the client-server model in a variety of non-traditional application domains.

1.5 Review of ODP Client-Server Interaction Model

The client-server model is the most basic, widely understood, and much used interaction model which
needs no further introduction. However our aim is to introduce the two client-server style interaction prim-
itives that have been described in the ODP computational model and the associated concept of message
signature, which are probably not widely known. These primitives and concepts are used later in the thesis
for the definition of higher-level group communication primitives.

1.5.1 ODP Computational Model Communication Primitives
The ODP computational model defines two styles of interactions between computational objects in the cli -
ent and server roles. These are the interrogation and announcement. Interrogation is a request-response
style communication between a client and a server object, and is similar to the familiar remote procedure
call [56 - 63]. Announcement is a request-only communication style between a client and a server
object.

1.5.1.1 Interrogation
An interrogation is defined in the ODP computational model as an interaction between a pair of client and
server object consisting of

• the invocation of an operation message by the client object, resulting in the conveyance of infor-
mation from that client object to a server object, requesting a function be performed by the server
object, followed by

• the invocation of a termination message by the server object, resulting in the conveyance of infor-
mation from the server object to the client object in response to the operation message.

1.5.1.2 Anno uncement
An announcement is defined in the ODP computational model as one way interaction between a pair of cli -
ent and server object consisting of

• the invocation of a notification message by the client object, resulting in the conveyance of infor-
mation from that client object to a server object, requesting a function be performed by that server
object.

1.5.2 Operation, Notification, and Termination Message Signatures
In the ODP computational model, the client and server objects communicate by exchanging operation mes-
sage, termination message, and notification message. In the remote procedure call model, an operation
message corresponds to a ‘service request’ and a termination message corresponds to a ‘reply’ . Hence the

Group-Based Distributed Computing 8

Introduction to the Problem Domain

corresponding terms are used interchangeably throughout the thesis. Moreover, in the rest of the thesis, an
operation message is also identified as “OPR-message” , a termination message as “REP-message” , and
notification message as “NTF-message” .

The computational model uniquely defines a message by its signature. A message signature consists
of the name of the message followed by parameter specification. The parameter specification consist of the
number, names and types of the parameters present in the message. Hence we have an operation message
signature, a termination message signature, and a notification message signature in the client-server
model. A message signature also defines the message type.

The computational model recognizes that the invocation of an operation message on a server object
may result in distinct outcomes (replies), each of which can convey different types of results. Each out-
come (reply) is identified by a unique name and carries its own set of parameters, hence each outcome has
its own termination signature. A client object receives an instance of one of these termination signatures
from the server object in response to the invocation of an operation message. Hence an interrogation signa-
ture consists of an operation message signature and a finite, non-empty set of termination message signa-
tures, one for each possible outcome (reply) from the server object (see figure3.1). An announcement
signature consists of a notification message signature.

1.6 Scope of Group-Based Distributed Computing: Application Domains

The previous research on group communication has focussed its efforts on traditional group-based applica-
tions such as those used for replication, fault-tolerance, availability or load sharing. However an object
group model is a powerful application structuring mechanism and client-server model is a simple, yet pow-
erful interaction model. The scope and applicability of group-based distributed computing paradigm can
be enhanced by applying the object group abstraction and the client-server model to the conventional dis-
tributed applications.

Many conventional distributed applications have multiple client and server components. Moreover
these applications have a certain degree of parallelism and independence between these components. The
client components of the conventional distributed applications have to deal with multiple server compo-
nents on a separate and individual basis, thus sacrificing the independence and parallelism inherent in the
application.

As shown in figure 1.2, we use object group abstraction as a mechanism for structuring distrib-
uted applications, and client-server model as a basis of interaction model. When used in this way, con-
ventional distributed applications, in many domains (see examples in chapter 7) can be transformed
into “group-structured and client-server based distributed applications” . Hence, we now have a broad
range of distributed applications which fall in the category of group-structured and client-server based
distributed applications, and hence under the scope of our work. For simplicity, we call these applica-
tions the “group-based distributed applications” or in short “group-based applications” . The essential
characteristics of these applications is that they are organised as a client group interacting with a server
group. Such groups could either be replica groups or homogeneous groups or heterogeneous groups
(see section 2.2.3).

Group-Based Distributed Computing 9

Introduction to the Problem Domain

 Fig. 1.2 Modeling o f Conventional Distributed Applications as Group-Based Distributed Applications using
Object Group Model and Client-Server Model

As shown in chapter 7, there are numerous real-world applications in many domains that can be
modeled as group-based distributed applications (see figure1.3). These include applications in a wide
spectrum of domains spanning telecommunications, network management, parallel computing, collabo-
rative work groups, off ice automation, factory floor automation, process control, aviation, manufactur-
ing, and in commercial domains such as stock exchange, banking, insurance, brokerage, etc.

 Fig. 1.3 Group -Based Distributed Computing: Application Domains

1.7 Group-Based Distributed Computing: Dual Levels of Suppo rt

The focus of the thesis is on the distributed environment required for the support of group-based distributed
applications, as identified by the lightly shaded areas in figure1.4. In general, the distributed environ-
ment required for the support of distributed applications is composed of distributed programming and
the distributed platform model. These correspond to the ODP computational and engineering models
respectively. The distributed platform is composed of low-level communication support services and
the middleware support services. The communication support services include communication proto-

+

decomposition
using
Object Group

interaction
based upon
Client-Server

Conventional Distributed Application
(with multiple client and server compon ents)

Model Model

Object-Group s as an application
structuring mechanism

Client-server model as an
interaction model

Group -Structured and Client-Server Based
Distributed Application

(Client Group invoking a Server Group)

Network Management
Systems

Manufacturing Automation
Systems

Office Automation

Process Control

Collaborative Work
Groups

Parallel Computing

Aviation

Stock Exchange

Banking

Insurance

Brokerage

Work Flow Management
Systems

Telecommunication
Systems

Group-Based Distributed Computing 10

Introduction to the Problem Domain

cols which ensure the end-to-end reliable and ordered message delivery between distributed application
components. The middleware support services provide high-level and commonly required application-
specific services. The type of the middleware services varies with the nature of applications that it is
required to support. The distributed programming model, amongst many other things, supports an inter-
object communication facilit y to facil itate communication between distributed application components.

In the case of client-server based distributed applications, the middleware layer provides general use-
ful services to support distribution-transparent interactions between client and server components. Exam-
ple of such services are object-discovery services (trading), object-binding services, object-location
services (location-transparency support mechanisms), mobili ty management services (migration-transpar-
ency support mechanisms), transaction support services, security services, programming-language hetero-
geneity support services (access transparency support mechanisms), etc. These services are an asset to the
application developer. The question then is what are the corresponding middleware-level services required
for the support of group-based distributed applications and how to configure these services in the group
support platform. The thesis is devoted to these aspects.

Similarly, the existing distributed programming models for client-server applications provide a inter-
object communication primitive, the remote procedure call or interrogation, to support application-level
communication between remote client and server components. In this thesis we focus on corresponding
communication primitives required to support one-to-many and many-to-one communication styles found
in group-based applications and the semantics of such primitives.

 Fig. 1.4 Area of Research: Lightly Shaded Areas

Reliable
and ordered multicast

protocols

management
protocols

Virtual synchrony

?

??

Middleware-level
Group Support Platform

Membership

Programming-Level

Group Communication Primitive

Object Group Models

Programming
Level
Support

Middleware
Level
Support

Heavily Researched Area Little or no existing work

cl
ie

nt
 g

ro
up

se
rv

er
 g

ro
up

D
is

tr
ib

ut
ed

 P
la

tfo
rm

Distributed
Progamming

M
od

el

Group
Communication
Support

Model

Group-Based Distributed Computing 11

Introduction to the Problem Domain

1.8 Scope and Aim of Thesis

The thesis is targeted at the programming-level (ODP computational model) and distributed platform level
(ODP engineering model) support for group-structured and client-server based distributed applications (or
group-based distributed applications, in short), which are discussed in section 1.6.

One of the major source of problems in group-based distributed applications is related to the new
styles of interactions found in these applications. The most common form of interaction in these applica-
tions involves a client object invoking a server group and the client group invoking a server object. The
former represents one-to-many invocation model and the latter represents many-to-one invocation model.
This requires the support of flexible message distribution and collation schemes, based upon application’s
requirements. More sophisticated interaction styles involve message invocation synchronisation and mes-
sage filtering schemes. The combination of these schemes results in complex coordination patterns
between client group and server group. The question then arises how to support these interactions between
client group and server group at the programming-level and at the platform-level. This is the subject of the
thesis. The thesis investigates the issues arising at both these levels.

1.8.1 Programming-Level Support for Group -Based Distributed Computing
The first part of the thesis (chapter 2 to chapter 4) describes the programming-level (computational)
support required for group-based distributed applications. This is the upper lightly shaded area in
figure1.4. At the programming-level, we describe a communication primitive analogous to the interro-
gation (or remote procedure call) of the basic client-server model, that explicitly addresses one-to-many
and many-to-one interactions between client and server groups. We also discuss some of the sophisti-
cated requirements of group communication support at the programming-level in order to incorporate
appropriate semantics in the group communication primitive. Some of the issues that are focussed are:
1. how multiple services are requested and how they are organised,
2. how much knowledge do clients need to have about the server group in order to invoke service requests

on them and be able to handle multiple replies,
3. how multiple replies from the service group are combined into a group reply and the order in which they

are delivered to the client in case of separate reply delivery requirement,
4. how to give the client the control to receive multiple replies at the pace it wants,
5. how to give the client the control to terminate the replies when it has received sufficient number of them

or when it has received whatever it was interested in receiving,
6. how should the client be informed of the end of replies in case of transparent server groups,
7. how multiple service requests from the client group are coordinated into a group service request and how

the multiple clients are organised,
8. how much knowledge do servers need to have about the client group in order to receive and process

group service requests from them,
9. how should the server respond to group service requests from the client group and the number of replies

generated by it,
10. how a single reply or multiple replies generated in response to a group service request is spli t and dis-

tributed to appropriate clients,
11. how invocations from multiple clients in the client group are coordinated to bring about desired state

change in the server applications.
12. how service requests are selectively fil tered in the service group in order to satisfy specific client and

server requirements for message delivery.

Group-Based Distributed Computing 12

Introduction to the Problem Domain

Possible answers to these questions have a strong impact on the degree of group transparency that is
available to client and server applications. The solutions to these issues must take into account individual
application requirements for message distribution, collation, synchronisation, filtering, etc. As shown in
the thesis, these requirements tend to be varied and complex. A precise and unambiguous specification of
these requirements can be given by a suitable policy specification language. This thesis develops such a
language in order to express application requirements for group communication to the underlying group
support engineering mechanisms.

1.8.2 Distributed Platform Support for Group -Based Distributed Computing
The second part of the thesis (chapter 4 through chapter 9) addresses the issues of distributed platform
(engineering) support required by group-based applications. This is the lower lightly shaded area in
figure1.4. Most of the existing distributed platforms, such as Corba and DCE do not provide adequate
support for this new class of applications. This has forced application developers and programmers to
deal with low-level issues related to group communication that could be better provided as uniform and
standard mechanisms by the underlying distributed platform. The aim of the thesis is to address issues
of group communication, such as message distribution, collation, synchronisation, etc., that arise at the
application-level, but are common to a wide range of applications and to put these issues in the distrib-
uted platform. The provision of such a support at the platform level wil l not only enrich the existing dis-
tributed platforms such as CORBA, DCE, etc., but will also substantially simplify the design and
construction of group-based applications. The application designer can now focus on the application
aspects leaving the group communication and coordination aspects to the underlying distributed plat-
form. The group coordination aspects can be separately specified thus separating the application logic
from group coordination logic. This also enables the group coordination requirements to be changed
without recompil ing the application. With this objective, the focus of the thesis is on the following
aspects of the distributed platform. We call such a platform the Group Support Platform (GSP).
1. what group support services are most commonly required by the applications which could be provided

as separate services in the distributed platform, and what functionalit ies are required in the correspond-
ing group support engineering objects,

2. what is the relationship between these group support services and what are the possible interactions
between the corresponding group support engineering objects,

3. how should these objects be organised or configured in the distributed platform,
4. how do the group support objects in the remote machines communicate with each other and what is the

protocol between them,
5. what group coordination patterns exist in group-based applications and how can they supported by the

combination of group support engineering objects in the distributed platform,
6. what requirements do applications place on individual group support objects, and how to specify these

requirements,
7. what information do group support objects need to know from the applications in order to perform their

tasks, and how to specify this information,
8. what is the notation for the precise representation of group communication requirements and what it is

the syntax and semantics of the corresponding group policy specification language,
9. what interface does the group support platform offer to the applications, and what interactions take place

at this interface,
10. how can group transparency be realised through an autonomous, albeit requirements-driven middle-

ware layer between application components and the low-level group communication protocols.

Group-Based Distributed Computing 13

Introduction to the Problem Domain

Our solution to these questions defines an agent-based, configurable, extensible, and policy-driven
distributed platform for the support of group-based applications. In this model, the group support objects
manage the group communication and coordination patterns on behalf of the user applications, which
influence the behavior of the objects by means of policy specifications. We present a software architecture
or a framework for the organisation of group support services in the distributed platform. This framework
serves as a basic unit of the group support platform within which new group support services may be iden-
tified and their interaction with the existing ones defined. This framework gives architectural elegance and
simplicity in the design of the group support platform. The group support platform supports diverse appli -
cation requirements and offers selective group transparency by allowing applications to specify group com-
munication requirements through group support policies.

1.9 Related Work and Differences

As mentioned in section 1.1, the area of group communication has been a subject of extensive research
in the past, whereas group-based distributed computing has received much less attention. Our research
is on higher-level support of group-based distributed computing which use group communication at the
lowest level. This is the major difference.

Some attempts have been made in the past at the programming-level and the platform-level support
for group-based applications, as cited below. However such attempts were focussed on a limited set of
applications. In particular, as discussed below, such attempts have either been incomplete or partial with
respect to considering the overall requirements of group-based applications at the programming and the
distributed platform level. In fact, the very concept of group-structured and client-server based distributed
computing that we present in this thesis and which is basis of our work is lacking in the previous work. We
identify the requirements of group-based applications within a broader framework which recognizes the
group-structured nature of these applications as well client-server nature of interactions in them. We dis-
cuss some notable efforts that have been made earlier and their shortcomings and explain the differences of
our work from the previous ones.

1.9.1 Programming L evel
At the programming-level, previous work such as [64 - 79] has identified the need for one-to-many
communication between client object and server group. Since much of the early work aimed at provid-
ing server groups for fault-tolerance and for replication management, server groups were assumed as
replicated groups in most of the cases and hence the proposed solutions are based upon simpli fied
assumptions about the nature of the server groups and kind of replies expected from them in response to
a service request. Most of the authors have chosen to pick the first or the first ‘n’ matching replies and
discard the rest. Our work takes into consideration not only replica server groups, but also the homoge-
neous and heterogeneous server groups [80]. This allows us to take into account general requirements
of a one-to-many group communication primitive.

An important consideration in case of homogeneous server groups is how to handle (or collate) mul-
tiple instances of replies corresponding to the same termination signature. These replies may not necessar-
ily be identical (in their parameter values) - an assumption made in the previous work. The previous work
has dealt with multiple replies using content-based collation schemes such as giving the average or the
maximum or the minimum of the replies. This scheme is not general enough. We propose a signature
based collation scheme which is general enough and which allows the client to gain access to all the
replies, through a single reply message, and to process them in application-specific manner. Content-based

Group-Based Distributed Computing 14

Introduction to the Problem Domain

collation can also be supported in our model because our reply collation mechanisms are generic and are
driven by application-specific collation policies.

A major difference between ours and previous work is the lack of a general policy-driven collation
framework in all previous attempts. We propose a general collation framework which takes into account
not only the collation mechanism but also the collation time, collation cardinali ty, and the identities of the
source group members whose message the sink object is willi ng to accept, as well as the preferred order of
reply delivery.

An important distinction between ours and previous work is the manner and the format in which the
replies are returned to the client and the control the client has on the receipt of the replies. These are impor-
tant aspects of a group communication primitive.

Our work considers a general reply format such as the one proposed for existing client-server appli -
cations in the ODP computational model - the interrogation primitive, in which each reply that is under-
stood by the client is identified by a name and carries its own set of reply parameters. This, coupled with
the general collation framework and the reply delivery control, results in a powerful group communication
primitive.

In many group-based applications, clients need to handle not only multiple replies, but also different
types of replies individually and separately and in a controlled manner. Server group transparency is
impossible and in many cases undesirable for clients in such applications.

The previous work completely neglects the interaction requirements of a heterogeneous server group.
For example what to do when different types of replies are returned from the server group. How to combine
these different types of termination signatures. The signature-based collation schemes proposed in the the-
sis present an elegant solution to these requirements. Moreover to deal with transparent server groups, the
client needs to know the end of replies. This aspect is missing in previous work. Another aspect of a group
communication primitive is the order of delivery of replies to the client. As shown in later chapters, many
clients not only need to process multiple replies, but have a certain preference with respect to the order of
delivery of replies. This aspect is also missing in the previous work. Our collation framework gives the cli -
ent application the ability to specify the reply delivery ordering requirements.

Our work goes beyond in identifying more sophisticated requirements of group-based applications,
such as solicited versus unsolicited reply delivery, terminable reply delivery, etc. which gives the client
desired-level of control on communication with different types of server groups.

The existing work has been mostly one-sided. It has only considered one-to-many aspects of group
communication. The other important group invocation paradigm which deals with many-to-one communi-
cation is missing. This involves a client group invoking a server object. This paradigm is required by many
applications as shown in chapter 7. The notion of client group exists but the notion of a combined invo-
cation from a client group does not exist. Similarly, the notion of combined reply from a server object in
response to group service request from a client group does not exist in the existing work.

Some client groups lead to a group service request invocation semantics, wherein each member of
the client group periodically makes a service request of the same type, not necessarily identical, on the
server object. Moreover the server object needs to receive all the service requests from the client group
together before it gives the replies. This reply is based upon the client group input. Such class of applica-
tions are totally excluded from the existing work. Our work gives a precise treatment to this type of group
invocation paradigm by taking into account different aspects of many-to-one communication such as peri-
odic nature of service requests invocations from the client group, group service request construction, multi -
ple reply generation by the server, reply spli tting and distribution, etc.

The level of transparency is an important issue in a programming-level communication primitive.

Group-Based Distributed Computing 15

Introduction to the Problem Domain

The issue is to what extent should the semantics of group communication primitive be configurable by the
programmer. We address this issue by giving the programmer the abili ty to specify different message distri-
bution and collation policies within the underlying group support platform.

Our work goes beyond the previous work in group programming model in that it provides a very gen-
eral and logical enhancement of the existing remote procedure call or interrogation paradigm which meets
the needs of one-to-many, and many-to-one group communication. Our group communication primitives
represent a synergy of client-server interaction model and the group communication model.

1.9.2 Distributed Platform Level
At the distributed platform level there exists a big void in existing research, which has mostly been done at
the lowest level. There exists low level support for group communication, in terms of different types of
ordered multicast protocols [81 - 94], membership management protocols[95 - 99], virtual synchrony
[100 - 103], etc. These low-level group communication protocols have been used in distributed systems
for group support, such as ISIS [104 - 106], Horus [107 - 108], Electra [109 - 110], Amoeba, [111 -
112], Transis [113 - 114], Rampart [115 - 116], Totem [117], Relacs [118], V Kernel [119], Consul
[120], Delta-4 [121], and others [122 - 123]. In all these systems, the applications are directly tied to the
low-level group communication layer, without the support of a middleware layer to separate applica-
tions from the low-level group communication issues. In particular, there is no flexibility in specifying
different types of group communications support required by the applications. This results in very low-
level reasoning about the group communication issues still being part of the application.

As shown in chapter 7, group-based applications exhibit a wide variety of group coordination pat-
terns. These group coordination and cooperation aspects should be specified external to the applications
in order to separate application logic from group coordination logic as well as to be able to dynamically
modify the latter without affecting the former. These pertain to the issues of the middleware layer which
can be supported at the lowest level by above mentioned group communication protocols.

As discussed in section 1.7, the middleware-level frees the application designer from worrying
about the issues of group communication at the application level. The middleware-level needs to pro-
vide high-level group support services which can be tailored to application requirements. Hence the
programmability of middleware components is an important requirement. The middleware layer should
also offer a uniform interface to the applications in accessing its services.

In case of group-based distributed applications, the middleware layer is almost non-existent. Refer-
ence to some of the middleware level services in [34 - 35] is promising, but there exist no architecture
or framework for the organisation of those services. Our work [124 - 126] fill s a big gap at the middle-
ware-level.

We identify a set of group support services which are required by a number of group-based applica-
tions in different domains. Then we present a software architecture or a framework for the organisation of
these services in the group support platform. We identify the relationship between these services and the
interactions that take place between the corresponding group support objects in order to support applica-
tions. Finally, we present the protocol for communication between peer group support objects in distributed
nodes. This completes the design of the group support platform.

Programmabil ity of the middleware services is an important requirement. Our work goes further in
identifying the various issues of group support services and putting these issues in a language framework,
resulting in a group policy specification language. This language can be used by the applications to specify
their different group support requirements, such as message distribution, collation, etc.

Group-Based Distributed Computing 16

Introduction to the Problem Domain

1.10 Structure of Thesis

This thesis is structured in two parts. Part-1 deals with distributed programming support and part-2 deals
with distributed platform support for group-based distributed computing applications. Part-1 of the thesis
contains three chapters, chapter 2 through chapter 4, and part-2 contains seven chapters, chapter 4
through chapter 9. The last chapter, chapter 11, contains some concluding remarks and directions for
future work. The following is a brief description of the contents of each chapter.

Chapter-1 is an introduction to the problem domain. It contains the scope and the aims of the thesis
and a brief description of the issues of group-based distributed computing which are the focus of the rest of
the thesis. This chapter also compares our work with the previous work.

Chapter-2 is the first chapter of the part-1 of the thesis. It identifies the requirements of the program-
ming-level group communication between application components. It also describes the limi tations of the
existing programming-level communication primitives such as remote procedure call or interrogation.

Chapter-3 introduces the programming-level communication primitives which provide semantic sup-
port for multi-endpoint interaction between a client-group and a server-group. These primitives are called
group interrogation and group announcement. Message collation is the basis for the construction of group
communication primitives. Some generic signature-based message collation schemes are proposed in this
chapter. The impact of these primitives on group transparency is described. This chapter also describes the
impact of group interrogation primitive on the message invocation, reception, and processing requirements
of the client and server objects. Such clients and servers are called group-oriented clients and servers. The
communication between these objects and the local group support proxy object to which they are bound is
also explained.

Chapter-4 is the first chapter of the part-2 of the thesis. It identifies some of the basic middleware-
level group support services, such as message distribution, collation, synchronisation, filtering, etc., that
are required in the distributed platform for the support of group-based distributed computing applications.
The different aspects and issues involved in the provision of these service are also identified.

Chapter-5 describes how the set of group support services, introduced in the previous chapter, can be
configured together inside an architectural framework called the group support machine and how the com-
ponents of this machine work together in the provision of middleware-level service to the applications.
Each member of the group-based distributed application is supported by a group support machine. The set
of group support machines communicating with each other through an inter-machine protocol constitutes a
group support platform.

Chapter-6 describes in detail the internal components of the group support machine, the functionality
of these components, the interfaces between these components, and the interactions that occur at these
interfaces. The internal structure and the behaviour of the group support machine is described in an abstract
and implementation independent manner. The group support machine offers standardised interfaces both to
the application components and to the underlying group communication layer. These interfaces are
described in detail .

Chapter-7 describes group coordination models implicit in group-based distributed applications. The
group coordination model is characterised by the structure of the application which is a configuration of a
client-group and server-group and the interactions that occur between the members of these groups. The
coordination behaviors inherent in these models can be specified at a high-level using a group policy spec-
ification language. This language is introduced informally in this chapter through examples. This chapter
contains the examples of various group-based applications in different enterprise domains spanning tele-
communications, network management, parallel computing, etc.

Group-Based Distributed Computing 17

Introduction to the Problem Domain

Chapter-8 is an introduction to the syntax and the semantics of the group policy specification lan-
guage which has been presented informally through examples in the previous chapter. The language per-
mits the specification of message distribution, collation, synchronisation, and filtering requirements of an
application, at a high-level independent of the mechanisms or protocols needed to implement them. These
policy specifications are associated with individual message types and are stored as policy scripts in the
group support machine.

Chapter-9 is the last chapter of the part-2. The definition of group support platform is incomplete
without describing the communication between the basic component of the platform - the group support
machine. This chapter describes the remote communication protocol between the peer group support
agents located in different group support machines - the information that is exchanged between the peer
group support agents, the format in which this information is exchanged, and the handshake involved
between the group support agents.

Chapter-10 describes the implementation and performance aspects of the proposed Group Support
Platform (GSP) and the group interrogation primitive. A partial model of GSP is implemented in Java. This
chapter compares the performance of GSP with that of a conventional middleware platform, such as Corba.

Chapter-11 highlights the contributions of the thesis and gives pointers to future work directions.
We suggest that the reader start with chapter-1 in order to find out the scope and the aim of the work

and to gain an insight into the general research area. This allows the reader to put our work in perspective.
Chapter 7 contains numerous examples of group-based applications. The reader new to the subject may
glance through the examples in this chapter before starting the rest of the chapters. The remaining chapters
of the thesis are generally organised in the order in which it is suggested that they be read.

Group-Based Distributed Computing 18

Introduction to the Problem Domain

PART-1

Distributed Programming Model:
A Programming-level Group Communication Primitive

Group-Based Distributed Computing 20

Requirements of Programming-Level Group Communication Primitive

CHAPTER 2 Requirements of Programming-Level
Group Communication Primitive

Abstract
Group-based distributed computing is becoming an increasingly important computing
paradigm of modern distributed systems, but programming-level support for group
communication is hitherto missing. Remote procedure call is a familiar programming-
level abstraction to support “ request-response style” communication in the point-to-
point client server computing model. This chapter investigates the requirements of the
corresponding abstraction for the support of multi-point communication in group-
based distributed applications.

2.1 Introdu ction

Experience with remote procedure call has demonstrated the importance of programming-level support
for point-to-point communication in client-server based distributed systems. It greatly simplifies the
task of point-to-point communication between singleton client and singleton server at the programming
level. The programmer is given a powerful handle to invoke a remote object, as if it were a local one,
and to receive the reply.

In the case of group-based applications, this high-level support is missing. Interestingly enough,
group communication is supported by many kinds of local area networks, such as ethernet, token ring,
etc. and radio broadcast systems. The lowest level communication medium often supports the group
communication that the applications need, it is the operating systems and the programming languages
that do not provide support for group communication at the application-level.

There exists low level support for group communication, in terms of different types of ordered
multicast protocols [81 - 94], membership management protocols [95 - 99], virtual synchrony [100 -
103] in many distributed system platforms such as ISIS [104 - 106], Horus [107 - 108], Electra [109 -
110], Amoeba [111 - 112], Transis [113 - 114], Rampart [115 - 116], Totem [117], etc. However, no
facility is available to the application programmer to access and exploit group communication at the
application level. The middleware support and the programming-level support for group-based comput-
ing is missing in these platforms. The middleware support is discussed in chapter 4 to chapter 9 and
the programming-level support is discussed in chapter 2 to chapter 4 of the thesis.

This chapter investigates the “programming-level” communication requirements of group-based
distributed applications. We also evaluate the capabili ties of the currently available point-to-point “pro-
gramming-level communication primitives” - the remote procedure call and interrogation, against the
requirements of group-based distributed applications.

Group-Based Distributed Computing 21

Requirements of Programming-Level Group Communication Primitive

2.2 Client Group and Server Group : Definition & Properties

Before we start examining the requirements of group-based distributed applications, we investigate the
basic properties of the client group and server group which are the basis of these applications.

2.2.1 Client and Server Interfaces
As a precursor to the definition of the client and server groups, we start with the definition of client and
server interfaces. The client and server are the primary roles in distributed computing.

2.2.1.1 Client Interface
A client interface is an object interface which is characterised by the following properties:
1. the object invokes operation messages through this interface and expects to receive a termination

message at this interface in response to the operation message.
2. the object invokes notification messages through this interface.

2.2.1.2 Server Interface
A server interface is an object interface which is characterised by the following properties:
1. the object expects to receive an operation message at this interface and invokes a termination mes-

sage through this interface in response to an operation message.
2. the object expects to receive a notification message at this interface.

An object offers multiple interfaces. These interfaces could be client interfaces or server inter-
faces. The interfaces offered by an object could be members of different interface groups.

2.2.2 Client and Server Group s
The basic definition of an object group and an interface group are given in section 1.4. We make use of
these concepts and of the ones introduced above in the definition of server groups and client group.

2.2.2.1 Server Group
A server group is an interface group in which all member interfaces are server interfaces. These inter-
faces could be of the same or different types.

2.2.2.2 Client Group
A client group is an interface group in which all member interfaces are client interfaces. These inter-
faces could be of the same or different types.

2.2.2.3 How are Client Groups Formed
The nature and the creation of client groups is not obvious. It deserves special mention. It is important
to note that a client group is formed with respect to a given server interface. There are two main cases of
the creation of client groups. The existing li terature on object group models [34 - 42] recognizes only
one case of the formation of a client group, the first one listed below. We identify the second important
case of the creation of client groups. The proposed group communication primitive supports both these
cases.
1. From replicated server groups: Client groups are formed when the members of an actively replicated

server group need to invoke another server object in order to perform their service. This happens in
cases when a server object containing reference to another server object is replicated thereby forming
a replicated server group. Any invocation on the replicated server group which causes an invocation
on the referenced server object by one member will generate invocations by all other members. In this

Group-Based Distributed Computing 22

Requirements of Programming-Level Group Communication Primitive

kind of application we need only give one operation invocation to the referenced server object and
discard the other identical invocations. The replies must however be sent to all the members of the
replica group.

2. Object groups under the service provision of a singleton server object: Client groups are also formed
when the client components of a distributed application, which need not be identical or replicated, but
are related to each other in some application-specific manner and which require the same type of ser-
vice, are organised as an object group and are placed under the service provision of the same server
interface. A client group is always formed with respect to a given server interface. An important char-
acteristic of these applications is that each member of the client group invokes
 a. instances of the same service request, each of which is an instance of the same operation signature,

not necessarily identical (in their parameter values), such as shown in figure2.1,
 or
b. partial service requests, each of which is an instance of the different part of the same operation sig-

nature at the server side, such as shown in figure 2.2,
periodically (or at fixed time intervals) on a given server interface and the server’s reply to each group
member is based upon the total service request which is obtained by combining the individual service
requests from the client group. The server may give the same reply or different replies to each mem-
ber of the client group. Examples of these type of client groups are given in section 7.7. In this kind of
applications we need to give all operation invocations from the client group to the server object
because the reply of the server is based upon the total group input.

 Fig. 2.1 Homogeneous Client Group: Each member invokes instances of the same operation signature

2.2.2.4 Client Group Invocation Properties
Based upon the nature of the client groups, we identify the following properties of the client groups.
The message invocations from the client group exhibit the following unique properties.:
1. Nature of service invocations: The members of the client group invoke identical operation messages

or instances of the same operation message signature or the instances of the different parts of the
same operation message signature, on a given server interface.

Client-1
op-name(p1,p2,p3,p4,p5)

Client-2
op-name(p1,p2,p3,p4,p5)

Client-3
op-name(p1,p2,p3,p4,p5)

Client-4
op-name(p1,p2,p3,p4,p5)

Client-5
op-name(p1,p2,p3,p4,p5)

Server

op-name(p1:T1,p2:T2,p3:T3,p4:T4,p5:T5)

Operation signature on server side:

Each parameter pi, invoked by the client is an instance of
the corresponding type Ti, but not necessarily identical to

C
lie

nt
 G

ro
up

the corresponding parameter of the other client messages.

Group-Based Distributed Computing 23

Requirements of Programming-Level Group Communication Primitive

2. Timing of service invocations: The message invocations from the client group occur during a well -
defined time interval. The operation (or notification) messages are invoked by the group members
during a fixed time interval or periodically.

3. Reply to service invocations: The server’s reply (or replies) is based upon the group operation mes-
sage which is obtained by combining the individual instances of the operation message from the
group members. Therefore, a client’s future state is dependent upon the current state of all the group
members.

 Fig. 2.2 Heterogeneous Client Group : Each member invokes an instance of different operation
signature

2.2.3 Categories of Client and Server Group s
We categorise the client and server groups as replica groups or homogeneous groups or heterogeneous
groups based upon the type of messages (i.e., operation, notification, and termination message signa-
tures) offered or invoked by the members of the groups and the state of the group members. The mem-
bers of the replica group are identical or replicas of each other at all t imes. The members of the
homogeneous group offer or invoke the same service type (i.e., operation or notification message type)
but their state need not be identical. The members of the heterogeneous group offer or invoke different
service types.

2.2.3.1 Replica Client Group
The members of the replica client group invoke identical operation or notification messages, usually
simultaneously or within a fixed time interval. Examples of these type of groups abound in existing lit -
erature.

2.2.3.2 Homogeneous Client Group
The members of the homogeneous client group invoke instances of the same operation or notification
message signature, usually at regular periodic time intervals. These instances need not be identical. An
example of this type of group is given in section 7.7.1.

Client-1
op-name(p1)

Client-2

op-name(p2)

Client-3
op-name(p3)

Client-4
op-name(p4)

Client-5
op-name(p5)

Server

op-name(p1:T1,p2:T2,p3:T3,p4:T4,p5:T5)

Operation signature on server side:

Each parameter pi, invoked by the client is an instance of
the corresponding type Ti, but not necessarily identical.

C
lie

nt
 G

ro
up

Group-Based Distributed Computing 24

Requirements of Programming-Level Group Communication Primitive

2.2.3.3 Heterogeneous Client Group
The members of a heterogeneous client group invoke instances of different parts of the operation or
notification message signature supported at the server interface, usually at regular periodic time inter-
vals. Heterogeneous client groups are formed when each member of the group gives partial inputs (i.e.,
different parts of the same operation message), but is interested in receiving a total reply from the server
object. These type of groups are termed heterogeneous, because each member of the group invokes an
instance of different operation or notification signature. An example of this type of group is given in
section 7.7.4.

2.2.3.4 Replica Server Group
The members of the replica server group respond with identical termination messages to an operation
message from the client object. Examples of these type of groups abound in existing literature.

2.2.3.5 Homogeneous Server Group
The members of the homogeneous server group respond with instances of the same types of termination
message to an operation message from the client object. These instances need not be identical. An
example of this type of group is given in section 7.6.2.

Table 2.1: Categories of Client Group

Nature of Service
Invocation

Timing o f Service
Invocation

Replies to Service
Invocation

Replica
Client
Group

identical operation messages invoked at the same time
or within a fixed time
interval

server’s reply based upon a sin-
gle client input, other inputs can
be discarded

Homoge-
neous
Client
Group

non-identical, but instances of the
same operation message signature

invoked periodically server’s reply based upon total
client group input

Heteroge-
neous
Client
Group

instances of the different parts of the
same operation message signature

invoked periodically server’s reply based upon total
group input

Table 2.2: Categories of Server Group

Nature of Reply
Invocation

Reply Delivery to
Client Object

Server Group
Transparency to Client

Object

Replica
Server Group

identical replies single reply possible

Homogeneous
Server Group

same type of replies, not neces-
sarily identical

single group reply (replies may
also be delivered separately)

impossible

Heteroge-
neous
Server Group

multiple types of replies multiple group replies, one for
each reply type (replies may also
be delivered separately)

impossible

Group-Based Distributed Computing 25

Requirements of Programming-Level Group Communication Primitive

2.2.3.6 Heterogeneous Server Group
The members of the heterogeneous server group respond with same or different types of termination
messages to an operation message from the client object. An example of this type of group is given in
section 7.6.6. The properties of these groups are summarized in table2.1 and table 2.2 .

2.3 Programming-Level Communication Requirements of Group -Based
Applications

Group-based applications are composed of a client group interacting with a server group. They have a
unique set of communication requirements which arise due to this multiple-client and multiple-server
characteristics of the application. In these applications, each member of a client group invokes a server
group and/or each member of a server group receives an invocation from the client group.

We investigate the ‘programming-level’ (computational-level) inter-object communication
requirements of group-based applications. Our focus is not restricted to the traditional group-based
applications, which come in the category of replicated groups, such as those used for fault-tolerance or
load sharing, where the composition of the group is, essentially, a set of replicated objects. We also ana-
lyze the programming-level communication requirements of a more general category of group-based
distributed applications which fall under the category of homogeneous and heterogeneous groups. We
present these requirements by analyzing the following basic interaction paradigms:

1. ‘Singleton-Client’ and ‘Server-Group’ interaction paradigm
2. ‘Client-Group’ and ‘Singleton-Server’ interaction paradigm

2.3.1 ‘Singleton-client’ and ‘Server-group’ interaction requ irements
In this paradigm, a singleton client interrogates (or invokes) a server group (see figure 2.3). The follow-
ing properties are required from the programming-level group communication primitive. These proper-
ties also have some implications on the capabili ties of group-oriented clients (see chapter 4).
1. Multiple replies: When a client interrogates a server group, it receives multiple replies, one from each

member of the server group, in response to its operation invocation. Group-oriented clients (see defi-
nition in section 3.11) need an invocation primitive which can handle multiple replies from the server
group.

2. Variable number of replies: For some clients, the membership of the server group is transparent. So
the client does not know how many replies to expect. Moreover, the number of received replies is
variable also because the membership of the server group may change dynamically due to member
failures and new members joining the group. Similarly, the number of received replies is variable due
to communication failures. This raises the question of how many replies shall a client application
expect in response to its operation invocation and consequently how long shall the client wait for the
replies. The group invocation primitive needs a special termination to convey “end-of-replies” to the
client application. This termination would be locally generated by the underlying group support plat-
form which is aware of the group membership.

3. Multiple reply types: Clients often need to invoke a heterogeneous server group, and be able to col-
lect not only multiple replies, but also different types of replies. The replies received from a heteroge-
neous server group, in response to an operation invocation, have different termination signatures. A
termination signature corresponds to a reply type and also denotes the context in which instances of
the corresponding reply type are to be processed together. The group-oriented clients should be capa-

Group-Based Distributed Computing 26

Requirements of Programming-Level Group Communication Primitive

ble of receiving and processing multiple reply types.
4. Requirement to combining multiple instances of a reply type: In many group-based applications a cli -

ent receives multiple instances of replies corresponding to a termination signature (reply type) from
the server group, in response to its operation invocation. A termination type corresponds to an appli -
cation context in which the corresponding reply instances are to be processed. Often a client has a
requirement to process all i nstances of a given reply type together as a single unit, but it is ineff icient
for the client application to be interrupted to collect every individual reply instance and process it
separately. Yet in some other cases it is impossible for the client to take any application-specific deci-
sion until all instances corresponding to a given reply type are received. And if the server group is
transparent to the client, as in most cases, the client does not know how many replies to expect, and
consequently when to start analyzing the results. It is desirable that the group invocation primitive
support a “group termination” facility, so that all i nstances of replies corresponding to a given termi-
nation signature (reply type) can be combined together and handed over to the client as a single unit
by the underlying engineering mechanisms. This in turn requires that the group-oriented clients be
capable of processing multiple instances of replies contained in a ‘group termination’ .

 Fig. 2.3 Client ob ject interrogates a server group

5. Unsolicited and separate delivery of individual reply instances: In some group-based applications,
the clients are on-line and they process the replies as soon as they are delivered. In such applications,
the clients want to receive the individual instances of replies, as they keep coming in. They do not
want to wait until all of them have been received and combined into a single group reply. The unso-
licited reply delivery means “give me the reply as soon as it has arr ived” .

6. Solicited reply delivery: In some cases, the client applications wish to have the control to receive the
replies as and when they are required by the client. This prevents the clients from being overwhelmed

S-1

S-2

S-n

request

reply-1

request

reply-2

request

reply-n

Group-
request

reply-1
reply-2

reply-n

G
ro

up
 S

up
po

rt
In

fr
as

tr
uc

tu
re

Client’s reply delivery requirement’s :
1. give me multiple replies
2. give me an end-of-reply indication
3. give me multiple types of replies
4. give me group replies
5. give me individual reply instances as they keep coming
6. give me replies only when I explicitly ask for them (solicited reply deliver mode)
7. terminate the reply delivery when I don’t want them (unsolicited reply delivery mode)

Oriented
Client

Server Group

Group-Based Distributed Computing 27

Requirements of Programming-Level Group Communication Primitive

with huge number of replies, and also gives the client the ability to receive the next reply only when
required by it. In such applications, the clients also specify a certain order of the reply delivery, based
either upon the type of the reply or the sender of the reply. The controlled reply delivery coupled with
ordered reply delivery gives the client the capabilit y to process the desired replies first and to ignore
the rest. This corresponds to the solicited reply delivery, i.e., “give me the reply only when I want it” .

7. Terminable reply delivery: In certain client applications, each reply is processed at the moment of its
reception, without waiting for the receipt of all the replies (see bullet 5). In such cases, the clients
wish to abandon or terminate the group interrogation as soon as the replies already collected by it are
sufficient for it to proceed. Hence the clients need the control or handle to stop the subsequent flow
of incoming replies. This allows the client to dynamically control the number of replies, subsequent
to the operation invocation. Terminable reply delivery is most commonly required in combination
with unsolicited reply delivery.

8. Non-blocking invocation: When a client makes an operation invocation on a server group, multiple
replies are expected. There is, also, a varying amount of delay involved in the reception of replies. In
many applications, the client does not want to be blocked until the receipt of all the replies. Moreover
a client thread may need to make multiple operation invocations on a server group, without waiting
for the replies of the previous invocations. Group-based client applications require the abil ity to per-
form other processing while the replies are in transit.

2.3.2 ‘Singleton-Server’ and ‘Client-Group’ interaction requ irements
In this paradigm, a client group interrogates (or invokes) a server object (see figure2.4). Typically a cli -
ent group is formed when a set of client objects, related to each other in some application-specific man-
ner, organise themselves as a group in order to be (managed or supervised or otherwise) serviced by a
single (manager or supervisor or) server object. The reader is referred to the examples of this type of
interaction paradigm in section 7.7. This type of interaction paradigm has the following characteristics,
which have implications on the capabiliti es of group-oriented servers (see chapter 4).
1. Multiple instances of same service request: The members of the client group have identical service

requirements and hence they invoke either identical service requests or instances of the same service
request (i.e., instances of the same operation signature, but with non-identical parameter values) on
the server object.

2. Periodic service requests (or notifications): Operation or notification message invocations from the
client group often occur periodically or within a specific time interval. For example, a group of man-
aged objects (client group) send their status reports along with the associated status parameters, in
the form of an operation message, to the manager object (server) periodically, and expect to receive
the management command, in the form of a termination message, from the manager object.

3. Reply based upon client group-input- need to combine multiple instances of a request type: In this
type of applications, the members of the client group are related in an application-specific manner.
Instances of the same service request are invoked periodically by the members of the client group on
the server object. These individual instances need to be analysed and processed together as a single
unit in order to generate the reply. Essentially, the final output or the decision of the server object
depends upon the combined input from the client group. The server cannot start processing the ser-
vice requests (operation messages) until it has received the service requests from all the client group
members. After processing the group input, the server may either give the same reply or different
reply to each member of the client group. In either case the reply is dependent upon the cumulative
group input. Hence the server wants to receive a combined set of instances of a service request (cor-

Group-Based Distributed Computing 28

Requirements of Programming-Level Group Communication Primitive

responding to an operation signature) as a single group operation message so that it can eff iciently
perform the processing of the combined group input. Additionally, the server cannot handle (or
receive) individual inputs from the client group because of:
(a). client group transparency: In many cases, the client group is transparent to the server object. A

question that arises in these cases is how long shall the server keep waiting expecting inputs from
the client group before it can start processing. Moreover, the server does not know about the
dynamic situations occurring in the client group such as member failures or communication fail -
ures.

(b). increased load on servers: Even if the client group is not transparent, it is inefficient for the
server object to be continually interrupted to receive every individual input (OPR or NTF mes-
sage) from the client group, keep accumulating them and keeping record of the number of inputs
that are received. This would waste the server’s time and resources in collecting and combining the
inputs and it would require the server object to deal with the issues of a distributed client group.
Group-oriented servers (section 3.11) benefit by receiving a single group input, a group operation
or a group notification invocation, from the underlying engineering mechanisms. However, in
order to achieve this the group programming primitive must have a ‘group input’ semantics.

Hence there is a requirement to collate the instances of operation messages or notification messages
corresponding to an operation signature or notification signature, so that a single collated group
input can be offered to the group-oriented server object. This collation must be performed by the
underlying group support platform before message invocation on the server object. This facilit ates
the server object in processing the entire client group’s service requests in a single processing with-
out undue waste of time and resources of the server.

 Fig. 2.4 Client Group interrogates a server ob ject

request

reply-1

request

reply-2

reply-n

Client-1

Client-2

Client-n
request

G
ro

up
 S

up
po

rt
P

la
tfo

rm

reply-1
reply-2

reply-n

Group request Group -
Oriented
Server

Note: “requests” are not identical, but are instances of
the same “operation signature”.

Server’s request delivery and reply generation requirements:
1. Give me a single ‘group request’ which is a combination of

individual service request instances.
2. My reply is based upon group service request.
3. I’ll either give a single reply to be (split and) distributed to all

members of the client group or I’ll give multiple replies, one for
each member of the client group.

Client Group

}multiple replies

Group-Based Distributed Computing 29

Requirements of Programming-Level Group Communication Primitive

2.4 Limitations of ODP Interrogation Primitive

The ODP interrogation primitive (see definition in section 1.5) or the remote procedure call primitive
support the basic point-to-point ‘single request - single reply’ communication semantics. They do not
scale up to the requirements of the communication between client group and server group.

These primitives accept a single request from the client and give a single reply to the client. They
terminate with the return of a single reply to the client. It is possible to construct a single group reply
through the use of appropriate collation mechanisms as described in the next chapter and to return the
multiple replies as a single group reply. But the requirement of receiving individual reply instances as
they keep coming in from the server group, in a controlled manner, is not supported by the interrogation
or the remote procedure call primitive.

On the server object side, these primitives give a single service request to the server and accept a
single reply from the server. They terminate with the receipt of a single reply from the server object,
whereas the group-oriented servers need to give multiple replies, in response to a group operation invo-
cation.

Therefore while the ‘group request’ and ‘group reply’ semantics can easily be integrated in the
ODP interrogation primitive through the use of appropriate collation mechanisms, the multiple and
variable reply delivery support is not available in it. Also the capabil ity to receive and process multiple
reply types separately is a key requirement of group-based applications. This enables the client to
receive the desired reply types before the others and to terminate the reply delivery when it has received
the required number or types of replies. As shown in table2.3 , the ODP interrogation primitive also
lacks other requirements of group communication such as solicited reply delivery semantics, terminable
reply delivery semantics, and non-blocking invocation semantics.

These semantics have an impact on the group message processing, invocation generation and
invocation reception capabilities of the client and server. This is described in chapter 4.

Table 2.3: Limitation o f ODP Interrogation primitive

Requirements of a group
communication p rimitive

Support in ODP Interrogation
Primitive

Multiple reply delivery requirement (client side) not supported

Group reply delivery requirement (client side) supported, through the use of appropriate
message collation mechanisms

Variable reply delivery requirement (client side) not supported

Separate delivery of individual reply instances (client
side)

not supported

Solicited reply delivery requirement (client side) not supported

Terminable reply delivery requirement (client side) not supported

Multiple reply acceptance requirement (server side) not supported

non-blocking invocation semantics (client side) supported in some implementations

Group-Based Distributed Computing 30

Requirements of Programming-Level Group Communication Primitive

2.5 Conclusion

The programming-level communication requirements of group-based applications are fundamentally
different from those of singleton-client and singleton-server’ communication. It requires major exten-
sions to the semantics of the ODP interrogation primitive. This support is crucial for the large-scale
development and deployment of group-based distributed applications.

Group-Based Distributed Computing 31

Requirements of Programming-Level Group Communication Primitive

Group-Based Distributed Computing 32

Group Interrogation: A Group Programming Primitive

CHAPTER 3 Group Interrogation: A Group
Programming Primitive

Abstract
Group-based distributed applications, structured as a client-group and server-group,
have distinct “ programming-level” communication requirements. The “ interrogation”
or the “ remote procedure call ” is a famili ar programming-level primitive to support
“ request-response style” communication in point-to-point client server computing. In
this chapter we present the corresponding communication primitive for the support of
multi-endpoint and client-server style communication between a client group and server
group. This primitive is called group interrogation. We present the semantics of group
interrogation. Message collation is a key requirement for the construction of group inter-
rogation. We present some generic signature-based collation schemes which preserve the
contents of the messages received from the source group. The semantics of group interro-
gation has has an impact on the message invocation, reception, and processing require-
ments of application objects. We describe properties or capabilities required of such
group-oriented client and server objects.

3.1 Introdu ction

Many applications can profit from the “programming-level” group communication support, but such a sup-
port is lacking in currently available programming languages and operating systems. In this chapter we
propose group programming primitives that are general enough to cover the requirements of many types of
group-based applications and can be integrated in real programming languages and systems. We define the
semantics of these primitives.

This chapter introduces the ODP-based “programming-level” communication primitives which pro-
vide semantic support for multi end-point interaction between ‘client-group’ and ‘server-group’ . These are
the group interrogation and group announcement.

The proposed primitives are a logical extension of the ODP interrogation and announcements primi-
tives. They extend the basic point-to-point client-server interaction model in order to address one-to-many,
many-to-one, and many-to-many client server interactions required in an group-based application. These
primitives provide partial group transparency to the client and server applications.

The proposed group programming primitives imply the use of some message collation mechanisms
in order to construct ‘group request’ and ‘group reply’ . We propose signature-based message collation
schemes which construct a single group message from the component messages as well as preserve the
contents of these messages. They preserve the client-server style computing in a group-based distributed
application.

Group-Based Distributed Computing 33

Group Interrogation: A Group Programming Primitive

3.2 ODP-Based Group Programming Primitives

Object groups give rise to new invocation semantics which apply to the collection as a whole and is known
as group invocation semantics. The synergy of the object group model and the client-server model gives
rise to a new and a very powerful invocation semantics.

Our aim is to provide a general programming primitive for the support of group communication.
Especially, we wish to integrate client-server style interaction in a multi -endpoint object group environ-
ment. We present a generic definition of the proposed group-programming primitives followed by the sig-
nature and semantics of these primitives.

We adopt the programming-level interaction primitives of the ODP model, the interrogation and
announcement, as the basis for the definition of the group programming primitives, for the support of the
group communication requirements listed in the previous chapter. Here we present a simple and logical
extension to the basic ODP-interaction styles.

3.2.1 Group Interrogation
A group interrogation is a multi-endpoint interaction between the client group and the server group con-
sisting of
a. one group operation invocation: one (or more) operation invocation(s), which are instances of the same

operation signature or are instances of different parts of the same operation signature, initiated by a sin-
gle (or multiple) client(s) in a client group, resulting in the conveyance of information from the invoking
client object(s) to the invoked server group members, followed by

b. one or more group termination invocations, received by each invoking member of the client group in
either solicited or unsolicited manner, in response to the group operation invocation, resulting in the
conveyance of information from the invoked members of the server group to the invoking members of
the client group; where each group termination invocation is composed of one or more termination invo-
cations, which are instances of the same termination signature or are instances of different parts of the
same termination signature, initiated in response to the group operation invocation by the members of
the server group.

The construction of group operation and group termination invocations is described in section 3.6.

3.2.2 Group Announ cement
A group announcement is a multi -endpoint interaction between a client group and a server group consist-
ing of:
a. one group notification invocation: one (or more) notification invocation(s), which are instances of the

same notification signature or are instances of different parts of the same notification signature, initiated
by a single (or multiple) client(s) in the client group, resulting in the conveyance of information from the
invoking client object(s) to the invoked server group members.

Group announcement is a one-way communication, i.e. from client group to server group, while
group interrogation is two-way. The latter subsumes the former. Hence the former is not discussed hence-
forth.

3.2.3 Group (Operation | Termination) Message
A group operation is a single message obtained through a combination of multiple instances of an opera-
tion signature (or instances of different parts of an operation signature) issued by the members of the client
group. A group operation is invoked as a single operation on each member of the server group. A group
operation corresponds to a ‘group service request’ from the client group.

Group-Based Distributed Computing 34

Group Interrogation: A Group Programming Primitive

A group termination is a single message obtained through a combination of multiple instances of a
termination signature issued by the members of the server group in response to a client’s (or a client
group’s) operation invocation (or group operation invocation). A group termination is invoked as a single
termination on each member of the client group. A client may receive multiple group terminations, one
corresponding to each termination signature, in response to its operation invocation on the server group. A
group termination corresponds to a ‘group reply’ fr om the server group. The message combination
scheme, also known as the collation scheme, is described in section 3.6.

3.3 Semantics of Group Interrogation

The fundamental basis of group interrogation primitive is the distribution of an operation message from the
client object to the server group, the collation of replies received from the server group into a group reply
before delivery to the client object, and the abil ity to deliver multiple replies individually in a controlled
manner to the client object. It involves multiple (message) invokers and receivers, group invocations, mes-
sage collation, reply soliciting and termination. These constitute the inherent characteristics of the pro-
posed group interrogation primitive. They are described below.

3.3.1 Multiple Invoker and Multiple Invokee semantics
There are multiple clients and multiple servers involved in a group interrogation. The group interrogation
provides the basis for application-level multi -endpoint interaction between a singleton client and a server
group, client group and a singleton server, and client group and a server group.

3.3.2 Group Invocation Semantics
The group interrogation primitive allows a server to access multiple service requests from the client group
through the receipt of a single group operation invocation. Similarly, it allows a client to access multiple
replies from the server group through the receipt of a single group termination invocation.

3.3.3 Message collation semantics
The ‘group request’ and ‘group reply’ semantics imply the existence of some (engineering) mechanisms
which combine individual (operation | termination) messages into corresponding group (operation | termi-
nation) messages at the (server | client) side. The following semantics are inherent in the message collation
process:
a. Parameter collation semantics: (Operation | termination) messages carry information, from the (client |

server) object to the (server | client) group, in the form of a set of parameters. Each parameter in the
(operation | termination) carries a certain type of information. The group (request | reply) semantics
imply that the information contained in the parameters of individual messages need to be combined in
order to construct group (operation | termination). How the information, i.e., parameter types, in the
(operation | termination) messages is combined to construct a group (operation | termination) message is
discussed in detail in section 3.6.

b. Collation cardinality semantics: A (server | client) object may receive multiple (operation | termination)
invocations from the (client | server) group. A question that arises in such cases is how long shall the
(server’s | client’s) infrastructure continue to accumulate messages before starting the collation process.
The group interrogation semantics implies the existence of a finite collation cardinality, for example the
size of the (client | server) group, the knowledge of which is available to the underlying engineering
mechanisms. When the required number of (operation |termination) messages are received, the underly-

Group-Based Distributed Computing 35

Group Interrogation: A Group Programming Primitive

ing engineering mechanisms will collate these messages into a single group (operation | termination)
message and invoke it on the (server | client) object.

c. Collation duration semantics: In some group-based applications the knowledge of the cardinality of the
(client | server) group is either unavailable or is of no significance. Instead it is required to collate mes-
sages received during a certain period of time. In many cases, the collation duration represents the max-
imum time interval to accumulate messages, in order to avoid indefinitely waiting for the reception of
messages. Messages received during this period are input to the collation mechanisms, and the resulting
group (operation | termination) message is invoked on the (server | client) object.

d. Collation membership semantics: Yet, some other group-based (server | client) applications are inter-
ested in receiving (operation | termination) messages from specific members of the (client | server)
group, for example to ignore some members temporarily or because of some other application criterion.

3.3.4 Controlled Reply Delivery Semantics
There are two modes of reply delivery in a group communication primitive. These are unsolicited reply
delivery and solicited reply delivery. In the unsolicited reply delivery mode, the reply is delivered to the cli -
ent object as soon as it is received by the underlying local group support infrastructure. The solicited or the
controlled reply delivery mode gives the client the control to receive the replies as and when it is required.
This requires a special primitive, such as “poll_reply()” , to be associated with the group interrogation. This
allows the client to dynamically control reply reception, subsequent to an operation invocation on the
server group.

The “poll_reply()” has local semantics. It is intercepted and interpreted by the local group support
proxy mechanisms (see next chapter). Therefore the format or the signature of this primitive is program-
ming-language specific or can be mutually agreed between a client application and the underlying group
support mechanisms in order to avoid any conflict with the client’s message signatures.

The “poll_reply()” could be implemented as either a blocking or non-blocking call . In the former case,
the client is blocked until a reply is received by the underlying group support mechanisms. In the latter
case, either the reply, if available, is returned to the client or an appropriate no reply availabil ity indication
is returned to the client immediately.

In case of non-blocking invocation, multiple operation messages may be invoked on the server group
by the client object. Each group invocation is uniquely identified by the invocation instance identifier (iii d).
Therefore, the request for replies is also identified, such as “poll_reply(iid)” , in order to request the reply
corresponding to a specific group invocation.

3.3.5 Terminable Reply Delivery Semantics
Terminable reply delivery capabilit y gives the client the control to terminate the receipt of subsequent
replies when it does not want them any more. This is mostly required in conjunction with unsolicited reply
delivery. This semantics can be realized through the use of local primitive, such as a terminate_replies(iid)
from the client to the underlying group support engineering mechanisms which terminates the subsequent
flow of replies corresponding to the specified group invocation instance.

The “terminate_replies()” also has local semantics and is intercepted and interpreted by the local
group support mechanisms. Its format or signature is programming language specific or can be mutually
agreed between a client application and the underlying group support mechanisms in order to avoid any
conflict with the client’s message signatures. It is non-blocking.

Group-Based Distributed Computing 36

Group Interrogation: A Group Programming Primitive

3.3.6 Invocation Completion Reporting Semantics or Variable Reply Delivery Semantics
In certain applications, the server group is transparent to the client and the client cannot process the replies
until all of them have been received. Even if the replies can be processed as soon as they are received, in
some applications a client cannot take an (application-specific) decision unless it is known that all the
expected replies have been received.

Replies may be given to the client either individually as soon as they are received or they may be col-
lated and offered as group terminations to the client. In any case the underlying group support mechanisms
must inform the client when delivering the last reply. One possibilit y is to include a special termination sig-
nature, say end_of_replies(), in the group interrogation which is invoked by the local group support mech-
anisms after the delivery of the last reply to the client. Since “end_of_replies()” has local semantics - it is
generated by the local group support mechanisms (proxy) and is interpreted by the client, the format (or
signature) of this message can be mutually agreed between a client application and its group support mech-
anism in order to avoid any conflict with the client’s termination signatures.

These semantics call for the design of a new programming language communication primitive. How-
ever, as shown in section 10.2.6, some of the semantics of the group interrogation can be implemented
or simulated in existing programming languages by using a series of multiple remote procedure calls.

3.4 Signature of Group Interrogation

The semantics of group interrogation permits the use of the interrogation signature. The group interro-
gation signature is the same as an interrogation signature, with the “end_of_replies()” message (see
section 3.3.6) included in the list of termination signatures. It may be noted that the other group interro-
gation control messages such as “poll_reply()” and “ terminate_replies()” (see section 3.3.4 and
section 3.3.5) are implicitl y a part of the group interrogation. The interrogation signature consists of an
operation signature, and a finite, non-empty set of termination signatures, as shown in figure3.1. An
(operation | termination) signature comprises of the following elements:
1. name of the (operation | termination), and
2. zero or more parameter specifications; each parameter specification consists of a parameter name and a

parameter type.
In case of a matrix-mode group (operation | termination) (section 3.6.1) each parameter name in

the corresponding (operation | termination) signature identifies a multi-element data structure which
contains elements of the associated type.

 Fig. 3.1 Interrogation Signature
In case of interrogation, a client expects to receive a single instance of one of the termination signa-

tures, specified in its interrogation signature. Similarly, the server responds with a single instance of one of
the termination signatures, specified in its interrogation signature.

In case of group interrogation, a client expects to receive zero or more instances of each termination
signature, specified in its interrogation signature, in response to its operation invocation on the server

operation-name(p1: T1, p2: T2.,, pn: Tn)::
termination-name-1(p11: T11, p12: T12,, p1r: T1r)
.

termination-name-m(pm1: Tm1, pm2: Tm2, , pmk: Tmk),

termination-name-2(p21: T21, p22: T22,, p2q: T2q)

where, p’s stand for parameter names and T’s stand for the corresponding type names
.

...................

...................

Group-Based Distributed Computing 37

Group Interrogation: A Group Programming Primitive

group. Similarly, the server responds with zero or more instances of each termination signature, specified
in its interrogation signature, in response to a group operation message from the client group.

3.5 Group Message Construction: Collation Schemes

The ‘group request’ and ‘group reply’ semantics associated with the group interrogation implies the exist-
ence of some (engineering) mechanisms in order to combine the individual (operation | termination) mes-
sages into corresponding group (operation | termination) messages which can be invoked on the (server |
client) object as a single invocation. The combination of individual messages into a single group message
is called message collation. The main question that arises is how to combine the messages, i.e., what colla-
tion scheme to use.

There are many collation schemes which can be used for the construction of group messages. Some
of the collation schemes modify the contents of the message and tend to be very application-specific, while
others do not alter the contents of the message but rather arrange the component messages in a certain
order such that the contents of the components can be scanned and processed by the recipient object. We
broadly classify the message collation schemes in the following two categories:
1. Content-based collation scheme: These collation schemes perform the ‘mixing’ of the messages by

modifying and processing the contents, i.e., parameters of the messages. For example, a client object
may wish to obtain the ‘average’ value or the ‘maximum’ or ‘minimum’ value of all the replies received
from the server group. These schemes may employ a variety of content-modification procedures such as
the use of mathematical functions (addition, multiplication, etc.) to combine messages, synchronization
functions to display the audio and video contents of the messages in certain synchronized manner, etc.
The collation process may also modify the original message signature, i.e., the signature of the collated
group message is different from the original message signature the instances of which were combined.
These schemes are application-specific, and not the scope of this thesis.

2. Signature-based collation scheme: Each operation and termination message carries different types of
information in the form of different ‘parameter types’ . The message name together with the information
types that it carries constitute the message signature. These collation schemes do not modify or process
the contents of the message, instead they combine the instances of a given message signature by linking
the instances of parameter types of a message signature in a certain order. The collation process does not
modify the original message signature, i.e., the signature of the collated group message is the same as
the original message signature the instances of which were combined.

3.6 Basic Group Message Construction Schemes

A group (OPR|REP) message is composed of multiple (OPR|REP) messages. Collation is the basis for the
construction of group message. We propose some basic message collation (or combination) mechanisms
such that the resulting group message is compatible with the ODP interrogation type system.

We adopt the signature-based collation scheme for the construction of group (operation | termina-
tion) message because it preserves the content of the component messages as well as their signature. This
enables the group-oriented (client | server) object to scan and process the original and unmodified compo-
nent messages which are presented to it as a single group invocation. Moreover content-based collation
schemes are application-specific, whereas signature-based collation schemes are general and permit the
recipient (client | server) object to gain access to the parameters of the component messages of a group

Group-Based Distributed Computing 38

Group Interrogation: A Group Programming Primitive

message, and hence be able to later modify them in application-specific manner.
Before presenting the message collation modes, let us look at the elements of a message signature,

the instances of which are to be combined into a group message. The elements of an (operation | termina-
tion) signature are the (operation | termination) name and its parameters. Each parameter is typed and has
a name. Essentially, an (operation | termination) signature is a collection of typed information, the parame-
ters, which are collectively identified by the (operation | termination) name. The collation process therefore
deals with the combination of message parameters. The operation name identifies a service (or a function)
provided by the server object. The termination name corresponds to an application context in the client
object, in which identically named replies can be analyzed (or processed).

We have two basic parameter collation requirements corresponding to the following scenarios found
in group-based distributed applications:

• Each member of the (client | server) group sends a complete instance of an (operation | termina-
tion) signature to the (server | client) object.

• Each member of the (client | server) group sends instances of different parts of the same (opera-
tion | termination) signature to the (server | client) object.

Corresponding to these requirements, we propose the following message collation mechanisms. They
permit the combination of multiple instances of a message signature or instances of different parts of a
message signature into a single group message.

• matrix-mode message collation

• linear-mode message collation

However it must be recognized that these are only two of the many other possible collation schemes.
They are proposed because they are simple and straightforward to implement (see section 3.6.1.4) using
simple programming language data structures.

3.6.1 Matrix-mode message collation
This collation scheme combines multiple instances of a message signature into a single group message
which is then invoked on the sink object. We explain this collation scheme with an example of the Open
Distributed Management Application [33], from the network management domain.

3.6.1.1 Group -Application-1: Managed Group - Manager Object Application
The application consists of a group of managed objects (MO) managed by a manager object, as shown
in figure3.3. Each managed object represents some physical network resource such as a switch, a mul-
tiplexor, a communication link, etc. A collection of managed objects representing identical resource
types (such as all switches in a certain geographic area) are organized as a group and a manager object
is assigned to manage the group of identical resource types. The collection of managed objects can be
viewed as a client group, because each MO periodically sends the status information of the physical
network resource that it represents, to the manager object (the server object), in the form of an opera-
tion message: my_status(sp 1:T 1,.., sp n:T n), and expects an advice, for example, a manage-
ment signal to appropriately modify the physical resource attribute values, from the manager object in
the form of a termination message: modif y_status(sp 1:T 1,..., sp n:T n). The status param-
eters in the operation messages convey the current values of different attributes of the managed
resource, and in the terminations they represent a modified value suggested by the manager object.

Each MO sends its status information in my_status(sp 1:T 1,.., sp n:T n). The manager

Group-Based Distributed Computing 39

Group Interrogation: A Group Programming Primitive

object is not invoked, by its group support proxy (section 3.11), until the status notifications from all the
MOs are received. It is required to present a single group operation message, which contains the set of
status parameters received in the individual operation messages, to the manager object. This enables the
manager object to obtain a network-wide status information through a single operation invocation.
Moreover, since the total performance of network is dependent upon the performance of the component
network resources, the manager can decide to modify the individual attribute values for each managed
object based upon this complete status information in the group operation message. After analyzing the
status parameters received in the group operation message, the manager object sends appropriate termi-
nation messages to the MOs. This application represents the need to combine operation messages
before they are invoked on the server object.

 Fig. 3.2 Matrix-mode message collation: An example of Manager Object and Managed Group Interaction

3.6.1.2 Group Application-2: Modified Group Application-1
Consider group application -1 with the following modifications. The manager object, now becomes the cli -
ent and the managed objects (MO) become the members of the server group. The manager object issues an
operation invocation: report_status() , on the MO-group and expects to receive multiple termina-
tions, my_status(sp 1:T 1,. . , sp n:T n) , one from each member of the MO-group. The termina-
tions carry the management status information in the form of a set of parameters. The manager wants the
set of status parameters, received in each termination message to be presented together as a single unit to it,
so that it can analyze the status reports collectively. This application represents the case of termination
message collation, before they are invoked on the client object.

3.6.1.3 Principles of Matrix-Mode Message Collation
1. Single composite invocation: The collation process results in the construction of a single group message,

which is invoked on the sink object. Each component of the matrix-mode group message is called a row
message (figure3.3). Each parameter in a row message is typed and has a unique name.

2. Collation reference: The reference for the construction of matrix-mode group (operation | termina-
tion) message is the corresponding1 (operation | termination) signature at the (server | client) object
(see figure3.3). This is called the collation reference signature. Therefore, the names and types of
parameters in the final matrix-mode group (operation | termination) are the same as those in the col-

MO-1

MO-2

MO-3

Manager

my_status(2.1, 3.4, 5.6)

my_status(2.3, 3.6, 5.4)

my_status(2.4, 3.3, 5.7)

my_status(p1, p2, p3)

2.1
2.3
2.4

3.4
3.6
3.3

5.6
5.4
5.7

Proxy

Proxy

Proxy

Proxy

collation reference signature

Group-Based Distributed Computing 40

Group Interrogation: A Group Programming Primitive

lation reference signature.

 Fig. 3.3 Group Message Stub Using Matrix-Mode Collation: Array Structure Implementation
3. Parameter collation principle: Since there are multiple row messages in a group message, a group mes-

sage consists of multiple instances of parameters corresponding to each parameter name. The parameter
instances corresponding to a given parameter name in the individual row messages are collected and col-
lated in a multi -element data structure. Hence there are as many multi-element data structures in a group
(operation | termination) message as the number of parameters in the collation reference signature. As
shown in figure3.3, the multi -element data structures are combined into a single group (operation |
termination) message stub, which is identified by the name of the collation reference signature. This
stub is then invoked on the (server | client) object.
Since the individual row messages may carry a variable number of parameters, which could be less than
or equal to or greater than the number of parameters in the collation reference signature, the following
semantics are implied in the parameter collation process:

3.1 Null binding semantics: If a row message contains no instance of a parameter name in the reference sig-
nature, the corresponding parameter in the group message is bound to a (programming-language-spe-
cific) “null ” value (figure 3.3), and this value is included in the corresponding multi -element data
structure. The sink object interprets that the corresponding parameter is not provided by the source.

3.2 Chopping parameter semantics: If a row message contains more parameters than those specified in the
reference signature, then the parameter instances for which there is no corresponding parameter name in
the collation reference signature are deleted. This implies that only those parameters which are desired
by the invoked (server | client) object are retained.

These principles ensure the integrity of the computational type system of the group message.

1. Operation signature with the same name. In case of termination, it is the termination signature with the same
name in the corresponding operation signature.

my_Sta t us(sp 1:T 1, sp 2:T 2, sp 3:T 3, sp 4:T 4)

Null

Null

Null

Null

P P P

P P P

Row Messag e P P P

P P P

P P P P

Group
Message N ame

Legend :

P: Parame t er
Instance

Group
Message S t ub

Group-Based Distributed Computing 41

Group Interrogation: A Group Programming Primitive

3.6.1.4 Implementation o f matrix-mode message collation
In the previous section we have outlined the general principles of message collation. However the actual
implementation of the collation scheme is specific to the data structures of the programming language used
by the client and server applications. The construction of ‘multi-element data structures’ and the organisa-
tion of these data structures in a group (operation | termination) stub, can be realised in programming lan-
guages using a variety of data aggregation schemes. Here we outline some of them:
1. Array structure: A multi-element data structure is a linear organization of components. An array data

structure in many programming languages is used for holding multiple data elements of a given type. An
implementation of matrix-mode collation using this scheme is shown in figure3.3.

2. Linked-list structure: A linked-list of elements is a more dynamic data structure capable of storing arbi-
trary number of elements of a given type.

3.6.2 Linear-mode message collation
This collation scheme combines instances of different parts of a message signature into a single group mes-
sage which is then invoked on the sink object. We explain this scheme with an example of ‘ group comput-
ing’ . A very simple sub-set of this application has been chosen in order to demonstrate the linear-mode
collation principle.

 Fig. 3.4 Linear-mode message collation: An Example of Group Computing

3.6.2.1 Group Application-3: Group Computing
The application consists of a three-member client group bound to a server object. The server provides a
‘computational service’ , say, the computation of a mathematical function: (x 2+y2+z2) . It supports an
operation: compute (x:T x, y:T y, z:T z) . Each parameter of the server’s operation signature comes
from a different source, one from each member of the client group. The individual clients invocations:
compute(x:T x) , compute(y:T y) , and compute (z:T z) are collated to produce a single opera-
tion: compute(x:T x,y:T y, z:T z) , which is then invoked on the server object. This represents a very
tightly coupled group-application, in which any change in the client group membership has an impact
on the operation collation at the server object. Many group-based applications fall in this category (see
section 7.7.4), where each client provides the partial input, say a fixed number of parameters, but is
interested in the complete reply given by the server object. The total operation message is constructed
from component messages.

Client-1

Client-2

Client-3

Server

compute(y:T y)

compute(z:T z
) compute(x:T x,y:T y, z:T z)

Proxy

Proxy

Proxy

Proxy

collation reference signature

compute(x : Tx)

Group-Based Distributed Computing 42

Group Interrogation: A Group Programming Primitive

3.6.2.2 Group Application -4: Parallel Computing Group
Consider another tightly-coupled group-based application. It consists of a client group and a server group.
The server group is a ‘parallel computing group’ , i.e., each server performs different processing on the
same client input, and hence produces different result types. As a simple example, consider the server
group composed of five members: the adder, substractor, multiplier, divisor, and the averager. Each client
provides two parameters in its operation invocation: compute(x:T x, y:T y),and expects to receive the
sum, difference, product, quotient, and average of the numbers from the server group. Each server provides
part of the reply: resul t (a:T add), result(b:T sub), r esult(c:T mul), result(d:T div),
and resu l t(e:T avr), and the total reply: result(a:T add , b:T sub , c:T mul , d:T div ,
e:T avr), is constructed by the linear combination of the server replies. This kind of application represents
the case of termination message collation. It also implies that a client can bind to the server group if each
member is capable of giving the client a subset of the reply and the total set of replies received from the
server group meets the client’s requirements.

3.6.2.3 Principles of Linear-Mode Message Collation
1. Single composite invocation: The linear-mode collation process results in the construction of a group

(operation | termination) message at a (server | client) object, from instances of different parts of the
same (operation | termination) signature issued by the members of a (client | server) group (see
figure3.4). Each component of the linear-mode group message is called a tuple message, e.g., com-
pute(x:T x) is a tuple message. Each parameter in a tuple message is typed and has a unique name.
The set of parameters in a tuple message is called the tuple parameter set, e.g., {x} is a tuple parameter
set. A linear-mode group (operation | termination) message is offered to the (server | client) object
through a single invocation.

2. Collation reference: The reference for the linear-mode group (operation | termination) message construc-
tion is the corresponding (operation | termination) signature at the (server | client) object. This is called
the collation reference signature. The number, names and types of parameters in the linear-mode group
(operation | termination) is the same as those in the collation reference signature.

3. Parameter collation principle: Each tuple message carries a variable number of parameters, which may
be less than or equal to the number of parameters in the collation reference signature, such that:
1. the total number of parameters in the component tuple messages is equal to the number of parameters

in the collation reference signature, and
2. no parameter in the collation reference signature is received more than once, and
3. for every parameter in the tuple message, there is a corresponding parameter with the same name and

type in the collation reference signature at the (server | client) object.
Since no more than one instance is received for each parameter in the collation reference signature from
the individual tuple messages, the parameter collation process is a simple linear combination of parame-
ters received in the tuple messages. Each received parameter instance (in the tuple message) is assigned
to the corresponding parameter in the reference signature. Parameters for which no instances are
received within a collation duration (if specified), are assigned (programming-language specific) “null ”
values.

3.6.2.4 Observations of Linear-mode invocation collation
A linear-mode group (operation | termination) message is essentially a singleton message obtained through
the combination of parameters received from (clients | servers).

Group-Based Distributed Computing 43

Group Interrogation: A Group Programming Primitive

1. Limitation on component invocations: The number of components (tuple messages) of a linear mode
group message is equal to the number of ‘ tuple parameter sets’ in the collation reference signature. In
the extreme case the minimum number of components is one (when the number of parameters in the
‘ tuple parameter set’ is equal to the number of parameters in the reference signature) and maximum
number of components is equal to the number of parameters in the reference signature (when each tuple
message contains one parameter).

2. Limitations on source group membership: The number of (clients | servers) that can contribute to linear-
mode group (operation | termination) is equal to the number of ‘ tuple parameter sets’ in the correspond-
ing (operation | termination) signature at the (server | client) object. Therefore the number of (clients |
servers) in the (client group | server group) is equal to the number of tuple parameters sets in the corre-
sponding (operation | termination) signature at the (server | client) object.

3.7 Group Interrogation vs. Group Transparency

Transparency is an important issue in a programming primitive. By giving the group (operation | termina-
tion) reception capabil ity to the (server | client) applications, the members become group-aware and hence
lose some group-transparency. We present the effect on group transparency to the (clients | servers) which
are capable of accepting and processing group (terminations | operations). The difference between the
properties of matrix-mode and linear-mode group messages is summarized in table3.1 .

1. Membership cardinality transparency: When a (server | client) receives the matrix-mode group (opera-
tion | termination) invocation it becomes aware of the number of (client | server) group members that
have sent the (operation | termination) invocations from the length of the group operation stub. However,
the number of contributors to the linear-mode (operation | termination) invocation is transparent to the
(server | client) object, unless the knowledge of ‘ tuple parameter sets’ is known to the (server | client)
application.

2. Member identity transparency: The issue here is the source of the component (row or tuple) invocations;
how does the invoked (server | client) object know which member in the (client | server) group has sent
which component invocation. In both the matrix-mode and linear-mode group messages, the identity of
the source objects is hidden to the sink objects, unless there is an explicit parameter in the group (opera-
tion | termination) signature to convey this information to the sink application. The underlying engineer-
ing mechanisms have a knowledge of the source of the (operation | termination) messages and hence this
information can be locally provided to the applications via this parameter.

3.8 Comparison b etween Interrogation and Group Interrogation

While the ‘group request’ and ‘group reply’ semantics can easily be integrated in the ODP interrogation
primitive through the use of the proposed collation mechanism, the multiple and variable reply invocation

Table 3.1: Comparison o f Matrix and Linear mode Collation Schemes

Group
message

components

Membership
Cardinali ty

Transparency

Member
Identity

Transparency

Limitation on the size of the
source group

Matrix-mode Variable No Yes No. (Variable-size source group)

Linear-mode Fixed Yes Yes Yes. (Fixed-size source group)

Group-Based Distributed Computing 44

Group Interrogation: A Group Programming Primitive

and delivery semantics are not available in it. Similarly, group interrogation possesses some unique proper-
ties (see section 3.3) which are not required in a client-server case. The requirements for interaction
between an client group and server group are fundamentally different from those of a singleton client-
server interaction. The differences are summarized in table3.2 .

3.9 Need for Group -Oriented Objects

The semantics of the group interrogation primitive proposed earlier has an impact on the message invoca-
tion, reception, and processing requirements of the client and server objects. These semantics imply that
the clients should be capable of handling not only multiple and variable number of replies from the server
group, but also capable of receiving multiple reply types, of processing group replies, of interpreting spe-
cial ‘end-of-reply’ semantics, and of invoking ‘ terminate_replies()’ and ‘poll_reply()’ . Similarly, the serv-
ers should be capable of receiving ‘group operation messages’ , of processing these messages, and of
generating multiple (and different types of) replies in response to a ‘group operation message’ . These
semantics imply that certain special capabilities are required of clients and server objects which are
involved in group interrogation. These are described in the following sections.

3.10 What is a Group -Based Distributed Application

We define a “group-based distributed application” as consisting of:
1. Group-based client application, and 2. Group-based server application.

The group-based (client | server) application is a distributed application organized as a (client |
server) group. Such an application is composed of group-oriented (clients | servers). A model of the group-
based distributed application is shown in figure 3.5.

Table 3.2: Interrogation vs . Group Interrogation

Interrogation Group Interrogation

1. single request - single reply communi-
cation semantics (client and server side)

1. single request - multiple reply communication semantics, each
reply may be of different type (signature) (client side)

2. group request - single reply communication semantics (server
side)

3. group request - multiple reply communication semantics, each
reply may be of different type (signature) (server side)

sender blocking call (client side) non-blocking call (client side)

single reply delivery mechanism multiple reply delivery mechanism

location transparent call (client and
server side)

location transparent + fully or partially group transparent call
(client and server side)

(no such requirement) terminable reply delivery semantics (client side)

(no such requirement) invocation completion reporting semantics (client side)

(no such requirement) controlled (or solicited) reply delivery semantics (client side)

Group-Based Distributed Computing 45

Group Interrogation: A Group Programming Primitive

3.11 What is a Group -Oriented (Client | Server)

The (client | server) object which is involved in communication with a (server | client) group and is capable
of supporting the group interrogation semantics is called a group-oriented (client | server). A group-ori-
ented (client | server) possesses the following properties (see figure3.5).
1. Partial group-awareness: A group-oriented (client | server) object is partially aware of the (server | cli -

ent) group. However it may not be aware of the cardinality or the identities of the group members.
2. Group invocation interface: It offers a group invocation interface (gii). On the client side, operation

messages are invoked and group termination messages are received at the gii . On the server side, group
operation messages are received and termination messages are invoked at the gii.

3. Group management interface: A group-oriented object optionally offers a group management interface
(gmi). The gmi is used for communicating management or other policy related information from the
object to the underlying group support platform. Depending upon the available group transparency, each
object may obtain certain information about the group such as group membership, etc. through the gmi.
This is discussed in detail in section 6.2. It may be noted that gii and gmi are logical interfaces and
may be combined in some implementations.

 Fig. 3.5 Group -Based Distributed Application and the Group Suppo rt Platform.
4. Message (invocation | reception) (on | from) local proxy: Each group-oriented (client | server) object is

supported (i.e., bound to) by a local proxy object called the Group Support Machine (GSM), which acts
as a proxy of the (server | client group) with which it is interacting. The client invokes the operation mes-
sages on this proxy which is then transparently multicast to the all the objects in the server group as
specified in the distribution policy. Similarly, the replies received from the server group are transparently
collated by the proxy into group termination message before being invoked on the client object. The
proxy also supports the other group interrogation semantics described in section 3.3.

5. Group message reception and processing capabili ty: The group-oriented client is capable of invoking an
operation message and of accepting multiple group termination messages at its “gii ” . The termination

G

R

O

Proxy (GSM)

gmi

gii

Proxy (GSM)

gmi

gii

Proxy (GSM)

gmi

gii

Proxy (GSM)

gmi

gii

T

C

C

C

C

G

U

R

Proxy ((GSM))

gmi

gii

Proxy (GSM)

gmi

gii

Proxy (GSM)

gmi

gii

Proxy (GSM)

gmi

gii

S

R

U

L

S

S

S

S

C
om

m
un

ic
at

io
n

N
et

w
or

k

Group Suppo rt Platform

Client Group

Server Group

Group-Based Distributed Computing 46

Group Interrogation: A Group Programming Primitive

handlers in the group-oriented clients are capable of analyzing and processing multiple messages in a
group termination message. Similarly, the group-oriented server is capable of accepting group operation
message and of generating and invoking multiple termination messages (in response to the group opera-
tion) at its “gii ” . The operation handlers in the group-oriented server are capable of analyzing and pro-
cessing multiple messages in a group operation message.

6. Group interrogation semantics support capability: The group-oriented clients are capable of interpreting
“end-of-reply” semantics and of invoking “poll_reply()” and “ terminate_replies()” at its gii .

The properties of group-oriented (client | server) objects are summarized in table3.3 .

3.12 Identification o f Group Invocations in Group -Oriented (Client | Server)

Our group interrogation primitive supports both blocking and non-blocking invocation semantics. In case
of blocking invocations, the client is blocked until the receipt of a single group reply (consisting of collated
replies from server group) from the local proxy, the GSM.

In case of a non-blocking invocation, a client does not have to wait for the receipt of the replies after
invoking an operation on the server group. A client can issue multiple operation invocations on the server
group, one after the other, without waiting for the replies of the previous operation invocations. Due to
communication delays, different link speeds, etc., replies are received by the client in any order. The ques-
tion then is how shall the client know which reply is for which operation invocation.

3.12.1 Invocation Instance Identifier
The solution to the issue raised above lies in being able to uniquely identify an operation invocation. The
client may invoke different operation messages or multiple instances of the same operation message one
after the other. So it should be possible to identify every instance of the operation message issued by the
client.

In our model the proxy object provides the solution. Whenever, an operation is invoked by the client
object, it is intercepted by the local proxy, the GSM, which returns a handle, an invocation instance identi-
fier(iiid), to the client object (only in case of non-blocking invocation). This handle is used both by the
proxy and the client. When the proxy receives a termination message (reply), identified with an iiid, from
the server group, the proxy either gives the message along with the iii d to the client or it invokes the mes-
sage on a special interface of the client, so the client can relate the received reply with the corresponding

Table 3.3: Group -Oriented (Clients | servers)

Group -Oriented Clients Group-Oriented Servers

Multiple reply handling capabil ity (in response to an operation
invocation).

Multiple reply generation and invocation capabilit y
(in response to a group operation).

Variable reply handling capabili ty through “end-of-reply” notifica-
tion from the proxy (GSM) object.

Number of returned replies is either one or equal to
the number of components in the group operation.

Multiple reply types handling capabil ity (in response to an opera-
tion invocation).

Multiple reply types generation and invocation capa-
bilit y (in response to a group operation).

Group termination processing capabilit y. Group operation processing capability.

Reply delivery soliciting capabil ity (solicited reply delivery)

Reply delivery termination capability (unsolicited reply delivery)

Non-blocking invocation capabili ty.

Group-Based Distributed Computing 47

Group Interrogation: A Group Programming Primitive

operation invocation. The client may also use this handle to solicit the next reply or to terminate the replies
corresponding to an operation invocation.

On the server side, the proxy invokes the group operation message on the server and is blocked until
the receipt of the replies. The replies received from the server are tagged, by the proxy, with the ii id that
was associated with the operation message. This process is described in section 6.4.1.

3.12.2 Unique Identifiers
An invocation instance identifier is unique in a given group-based application in order to uniquely identify
an instance of operation message and its corresponding termination messages. It is represented as a combi-
nation of client-group identifier, the client identifier, the operation message identifier and the invocation
instance count. For example, it can be represented as, inv_instance_id:= group_id. member_id. op_inv_id.
instance_count. Hence it uniquely identifies the sender of the invocation, the name of the invocation, and
the number of times this operation has been invoked by the sender.

3.13 Communication b etween Group -Oriented (Clients | Servers) and Lo cal Proxy

There is a local protocol between the group-oriented (client | server) object and the group proxy
object to which it is bound. This protocol pertains to the exchange of application messages (operation,
notification, and termination) and group interrogation control messages (poll_reply(), terminate_replies(),
end_of_reply()) between the (client | server) object and the proxy through the GII.

3.13.1 Client Side
As shown in figure3.6, singleton (operation | termination) messages are invoked by the group-oriented
(client | server) on their local proxy while group (operation | termination) messages are invoked by the
proxy on the group-oriented (server | client) object.

The client expects to receive an invocation instance identifier from the proxy after it invokes an opera-
tion message on it (for non-blocking invocation). How the invocation instance identifier is returned to the
client or is associated with a message is implementation dependent. It may be returned via the program-
ming language specific invocation mechanism or the reply may be delivered on a special interface (a call
back interface) of a client object (see section 10.2.6).

Additionally, as shown in figure3.6, there is a local exchange of group interrogation control mes-
sages between the client object and the proxy. The poll_reply() and terminate_replies() are generated by
the client and intercepted and interpreted locally by the proxy. The end_of_reply message is generated by
the proxy and interpreted by the local client object. Group-oriented clients have the capability to invoke
and receive these group interrogation control messages.

3.13.2 Server Side
A group operation received by a server object contains the ‘service requests’ (of a given type) of individual
members of the client group. The server object’s reply is based upon this ‘group input’ . After scanning,
analyzing, and processing component service requests in the group input, the server object may either give
a single reply or multiple replies, one for each source of the component invocation.

3.13.2.1 Sing le reply to all the clients based up on the group inpu t
In some applications, a server may generate a single reply based upon the group input. This reply is to be
sent to all the members of the client group whose service requests were present in the group operation mes-
sage. This is programmed in the proxy object (see section 7.8.3).

Group-Based Distributed Computing 48

Group Interrogation: A Group Programming Primitive

3.13.2.2 Ind ividual reply to each client based upon the group inpu t
In some other applications, a server may give a different reply to each client. Although the replies are still
based upon the group input, but each reply is different, and possibly of a different type (an instance of dif-
ferent termination signatures). In this case the number of replies generated by the server is equal to the
number of components (row messages) of the group operation message (see section 7.8.1).
A server object may have multiple terminations listed in its interrogation signature. It may respond to a
group operation message with any of these terminations. It may generate zero or more instances of termi-
nations corresponding to a given termination signature in response to a group operation message.

3.13.3 Reply Handling Protocol between the Server ob ject and Proxy ob ject
A question that arises on the server side is how many replies should the underlying proxy object expect to
receive from the server in response to a group operation message, and in case of multiple replies, how does
the proxy know which reply is meant for which client. (The proxy object is responsible for sending the
replies to the clients.) These issues pertain to a ‘ local understanding’ between the server and the proxy
object or they can be explicitly programmed in the proxy object.

The proxy object is explicitly programmed (see section 7.8) to expect either a single reply or multi -
ple replies from the associated server object. In case of multiple replies, the proxy object is pro-
grammed regarding the order in which replies are expected from the server object. For example, one
policy could be that a separate reply is received from the server object, one for each client, in the order
in which the corresponding component message (row message) was arranged in the group operation
message stub. Since the proxy had earlier collated the group operation message stub, it knows the iden-
tities of the clients and the order on which their operation messages were collated. So it can send the
replies received from the server objects to the appropriate clients.

 Fig. 3.6 Protocol between group -oriented (client | server) and p roxy

Group-Oriented
Client

gii

Exception
messages

Server
gii

Exception
messages

GRP-REP-msg
end_of_reply() REP-msgGRP-OPR-msg

OPR-msg

terminate_replies()

OPR-msg

TER-msg

Group Programming Model

Group Engineering Model

poll_reply()

Group-Oriented
Server

ProxyProxy
(GSM) (GSM)

Group-Based Distributed Computing 49

Group Interrogation: A Group Programming Primitive

3.14 Conclusion

Group Interrogation is a programming-level communication primitive that gives the programmer the
access to the low-level group communication at the application level. It provides the semantic support for
combining multiple service requests from client group into a single group operation which can be invoked
on a (group-oriented) server object. Similarly, it provides the semantic support for combining multiple
replies from the server group into a single group termination which can be invoked on a (group-oriented)
client object. This allows the server object to access multiple service requests from the client group in a
single invocation. Similarly, it allows the client to access multiple replies from the server group, in
response to a group interrogation, in a single invocation.

The semantics of the group interrogation is simple and easy to understand, yet powerful enough to
express different message collation and reply delivery requirements. The client is provided with a handle to
receive multiple and variable number of replies in a controlled manner. Group Interrogation provides par-
tial group transparency to client and server applications.

PART-2

Distributed Platform Model:
“Middleware Support”

for
Group-Based Distributed Computing Applications

Group-Based Distributed Computing 51

Group Support Services: Requirements of the Group Support Platform

CHAPTER 4 Group Support Services: Requirements
of the Group Support Platform

Abstract
Currently available distributed platforms such as CORBA, DCE, DCOM, etc. offer mid-
dleware services for the support of client-server based distributed applications. This
chapter investigates what “ middleware services” are required in a “ group support plat-
form” for the support of group-based distributed applications. We identify the different
aspects involved in the provision of each group support service in order to identify the
functionality required by the corresponding group support agents.

4.1 Introdu ction

Much research has been done in the past in the area of group communication. However most of this
research is devoted to the low level support for group communication, such as different types of ordered
multicast protocols [81 - 94], membership management protocols [95 - 99], virtual synchrony [100 -
103], etc. These protocols provide low-level support to group-based distributed applications.

Experience with currently available distributed platforms such as CORBA [18], DCE [19],
DCOM [20] demonstrates the importance of middleware-level support for point-to-point and distributed
client-server communication. These platforms provide the “middleware services” necessary to support
client-server computing, such as messaging, binding, trading, location management, transaction, secu-
rity, etc. In this chapter we address the following question. What “middleware services” are required in
a “group support (distributed) platform” in order to provide the engineering support for the group-based
applications (see section 3.10). We identify some basic group support services that are required by a
wide variety of group-based applications and describe the different aspects of those services.

4.2 Why Middleware Suppo rt for Group -Based Distributed Applications

The “middleware layer” is, in general, a layer of services sandwiched between the application and the low-
level communication facil ities. It is characterised by the following properties:
1. Value-added service components: The middleware layer contains the most-commonly needed services

which are required by a wide variety of applications, such as access transparency service, location trans-
parency service, mobility support services, transaction support services, security services, etc. These
services make use of the low-level communication faciliti es.

2. Programmable service components: This layer provides generic services and hence they should be tai-
lored to application requirements. The middleware service components can be programmed according to
application requirements and policies.

Group-Based Distributed Computing 52

Group Support Services: Requirements of the Group Support Platform

3. Interacting service components: The distributed application consist of distributed ‘application compo-
nents’ which are spread on different network nodes. Each application component is supported by a mid-
dleware layer. The middleware service components in these distributed network nodes interact with their
peer components or with other service components in order to provide some value-added service to the
application.

Some platforms, such as ISIS [104 - 106], Horus [107 - 108], Amoeba [111 - 112], Electra [109 -
110], Transis [113 - 114], Rampart [115 - 116], etc. provide low-level group communication support,
such as message multicasting protocols, membership management protocols, virtual synchrony, etc. to
distributed applications. However in these platforms the applications are very closely tied to these low-
level group communication faciliti es, thereby sacrificing the flexibility in obtaining different types of
services required in group-based applications. There is no middleware-level support in these platforms.

Group-based applications do not merely require message multicasting service or membership man-
agement service. As shown in chapter 7, group-based applications exhibit a rich variety of inter-object
interaction patterns, message collation scenarios, inter-object synchronisation scenarios, etc. These rich
interaction patterns need a well organised, configurable and programmable “middleware support” , which
should be programmed according to application requirements and policies. Such a sophisticated and organ-
ised “middleware services” is lacking in the case of group support platforms. It is an aim of this thesis to
identify these services and to configure them as a logical and programmable entity in a group support plat-
form.

4.3 What Middleware Services in the Group Suppo rt Platform and Why

The next step is the identification of the “middleware-level” services required for the support of group-
based distributed applications. We call these services the Group Support Services (GSS), which are part of
the Group Support Platform (GSP). As shown in figure 4.1, the GSP consists of the “group communi-
cation layer” and the “middleware services layer” .

The group communication layer consists of the low-level message multicasting protocols, such as
unordered broadcast protocol (UBCAST), source-ordered broadcast protocol (FBCAST), causally-ordered
broadcast protocol (CBCAST), atomic-ordered broadcast protocol (ABCAST), etc. and membership man-
agement protocols, such as virtual synchrony (VSYNC) etc. These protocols are extensively researched in
existing literature [81 - 99]. The middleware layer consists of application-specific services which pro-
vide extra functionality other than the low-level group communication function.

Our aim is to identify the issues of ‘ group communication’ that arise at the application level, but are
common to a wide range of applications and to put these issues in the “middleware” support. The provision
of such a support at the platform level will substantially simpli fy the design and construction of group-
based distributed applications. The application designer can now focus on the application aspects leaving
the group communication and coordination aspects to the underlying distributed platform.

It may be noted that the set of group support services identified below do not represent the service
requirements of all the group-based applications. These requirements vary considerably from one applica-
tion to another. Our aim is to identify some common and widely applicable services which are required by
many group-based applications, such as the ones discussed in chapter 7. Some of these services have
earlier been identified in [34 - 35]. We categorize these services as basic services, secondary services,
and management services depending upon their role.

Group-Based Distributed Computing 53

Group Support Services: Requirements of the Group Support Platform

 Fig. 4.1 Group Supp ort Platform: Midd leware & Group Communication Services

4.3.1 Basic Group Suppo rt Services
The distribution of a message from a source object to the sink group and the collation of (related) messages
received from the source group at a sink object is a fundamental requirement of almost all group-based
applications. These two are the core services required for the support of group-based distributed computing
applications, which are organised as a client group interacting with a server group.
1. Message Distribution Service: The distribution of a message from the source object to a sink group

makes use of the underlying multicasting protocols. However, the distribution service needs to specify
different aspects of distribution such as when to distribute the message, the recipients of the message, the
message delivery ordering requirements, (see section 4.4) etc. These items are application specific
and as such are programmed by the application.

2. Message Collation Service: In group-based applications, (related) messages from the source group need
to be collected and combined into a single group message before being offered to the sink object. How-
ever there are many aspects of collation (see section 4.4) that need to be programmed in the collation
service in order to meet the different message collation requirements of the applications.

4.3.2 Second ary Group Suppo rt Services
These services are the util ity services which are required by many group-based applications. However we
intend to capture a wide variety of service requirements through these middleware-level services. The pro-
vision of these services is dependent upon application requirements.
3. Message Synchronisation Service: Synchronised activity is a characteristic feature of many group-based

applications. For example in some applications, a message cannot be distributed to the sink group until a
permission (or quorum) is received from other members of the source group. Similarly, in some other
applications, a message cannot be distributed to the sink group until some specific event occurs in the

UBCAST FBCAST CBCAST ABCAST

Group Management Service

Group Communication Service

.

Distribution Collation Synchronisation

Filtering Ordering Other Services

M
id

d
le

w
ar

e
S

er
vi

ce
s

L
ay

er

Group
Comm.
Layer

G
ro

u
p

 S
u

p
p

o
rt

P
la

tf
o

rm

Group-Based Distributed ApplicationGroup-Based Distributed Application

VSYNC

Group-Based Distributed Computing 54

Group Support Services: Requirements of the Group Support Platform

source group. Yet in some other applications, members of the client group need to invoke messages on
the server group in some synchronised way in order to gain mutually exclusive access to the server
group or to bring certain application-specific state changes in the server group (see example in
section 7.9). Synchronisation includes a wide range of application requirements. It may imply some
kind of turn taking protocol within the source group or it may imply concurrency control in which
messages are delivered to the sink object (a shared resource) in some serialised order. There are many
aspects of synchronisation (see section 4.4) that need to be programmed in the synchronisation ser-
vice in order to meet the different message synchronisation requirements of the applications.

4. Message Filtering Service: Filtering of received messages before their delivery to the group members,
based either upon the client’s criterion or the server’s criterion or both is a very common requirement
in server groups (see example in section 7.10). However there are many aspects to the fil tering ser-
vice (see section 4.4) that must be specified by the application. Filtering also requires “m-out of-n
selection” in order to select the best ‘m’ out of ‘ n’ qualified contenders in the server group.

5. Message Ordering Service: Ordering of the message delivery to the sink objects is a common require-
ment of message distribution service and message collation service, in order to ensure state consistency
in replicated groups or to satisfy some other application requirement. In case of message distribution
service, the ordering requirement is usually satisfied by the choice of appropriate multicasting protocols.
In case of collation, the message delivery is ordered based upon factors such as the type of the message
(for example some reply types must be delivered before others) or the source of the message (for exam-
ple replies from certain server group members be delivered before those from other members), etc.

4.3.3 Group Management Services:
The management services are required for the support of both the basic services and secondary services. A
commonly required group management service is the following.
7. Membership Management Service: These include services which control the membership of the group

such as new members joining the group, current members leaving the group, monitoring the failure of
group members, and notifying the change in the group membership. The membership of the group has
an impact on distribution, collation, synchronisation, and filtering procedures.

4.4 Basic Issues of Group Suppo rt Services: Elements of Group Suppo rt Policy

In this section we identify the basic issues involved in the distribution, collation, synchronisation and fil ter-
ing of a message. These pertain to the different aspects of a group support service that must be specified by
the application in order to obtain that service. They can also be viewed as group transparency parameters.
As shown in chapter 8, these issues also represent the basic elements of a group policy specification
language. These policy elements are interpreted by the “policy-neutral” group support agents which
contain the required mechanisms for the execution of these policies.

The notion of policy has been discussed earlier by many authors in different domains - management
domain [127 - 133], trading domain [134], cooperative work domain [135 - 143], etc. A policy is a high-
level statement of the objectives that an object or a mechanism is required to accomplish. The policy
does not describe the behavior of an object in detail . It only prescribes the requirements which can later
be transformed into behavior using appropriate translation mechanisms. In the following sections we
identify the basic elements of policy as applicable to the group support middleware platform.

Group-Based Distributed Computing 55

Group Support Services: Requirements of the Group Support Platform

4.4.1 Issues of Message Distribution: Elements of Distribution Policy
Distribution of a message from a member to a group is a basic requirement of group-based applications.
The distribution service requires the specification of the following items:
a. What to distribute: This involves the specification of the message signature, the instances of which are to

be distributed.
b. To whom to distribute: This involves the specification of member identifiers to whom the message is to

be distributed.
c. When to distribute: This involves the specification of a synchronisation condition which must be fulfill ed

before a message is distributed. This enables the distribution of a message to be synchronised with other
events in the group.

d. How to distribute: Distribution usually has some delivery ordering requirements in the sink group. The
following delivery guarantees are required in message distribution:
- Unordered delivery: Messages from the source object are delivered to the sink group in any order using
the Unordered broacast (UBCAST) protocol.

- Source ordered delivery: Messages from the same source are delivered to the sink group in the order in
which they were sent using the FIFO broadcast (FBCAST) protocol.

- Causal ordered delivery: Messages from different source objects are delivered to the sink group based
upon the causal order in which those messages were invoked from their sources using the CBCAST
protocol.

- Destination ordered delivery: Messages from different sources are delivered to the members of the sink
group in the same order; which may not necessarily be the order in which they were sent.

e. Resilience of distribution: Some applications require the guarantee that a message be delivered to atleast
some minimum members of the sink group or to none of them, in the same order. This is achieved using
an ABCAST protocol.

4.4.2 Issues of Message Collation: Elements of Collation Policy
Collation is the process of collecting and combining (related) messages received from the source group
into a single group message before delivery to the sink object. The collation service requires the specifica-
tion of the following items:
a. What message to collate: This involves the specification of the message signature, the instances of

which are to be collected and collated into a single group message. According to our collation
scheme (see section 3.6), only messages of the same type can be combined into a group message.
Messages of different types are collated and delivered separately to the sink object.

b. Whose messages to include in the collated group input: A message of a given type is usually received
from multiple members of the source group. A sink object may wish to include either all messages in the
final collated group input or a subset of them based upon their source.

c. How many messages to include in the collated group input: A sink object may wait until all of the
expected inputs are received or it may put a limit on the collation period by restricting the number of
inputs to a certain minimum.

d. How long to wait accumulating the inputs: Messages may be lost due to communication failures or a
message may not be generated at all due to member failure. A time limit must be explicitl y imposed on
the collation period in order to avoid indefinite delay in constructing and delivering the final collated
group input to the sink object. In some cases messages of a given type are generated periodically by
members of the source group. In such cases collated group inputs are delivered to the sink object period-
ically. However, if multiple inputs are generated by a source object during a collation period, then the

Group-Based Distributed Computing 56

Group Support Services: Requirements of the Group Support Platform

sink object may decide to include:
- All inputs received from a given source during the collation period in the group message.
- First Input from a given source in the collated group message, and the subsequent inputs from that
source are included in the subsequent collation periods for the construction of subsequent group mes-
sages.

- Recent Input received from a given source during the collation period in the group message, while the
earlier inputs are discarded.

e. How to collate: The final issue in the collation process is how to combine the received inputs into a group
message. This is discussed in chapter 3.

f. When to deliver collated message: Once a group message is constructed, it may either be delivered
immediately to the sink object or it may be deferred until some synchronisation condition is satisfied.
This allows the message delivery to be synchronised with other events in the group.

g. In what order to deliver collated messages: Group messages may be delivered immediately once they are
constructed or the sink object may impose certain ordering requirements on message delivery in order to
receive the most important message types first and the rest later.

4.4.3 Issues of Message Synchron isation: Elements of Synchron isation Policy
Synchronisation is the process of coordinating the (distribution | delivery) of a message (from | to) a mem-
ber with respect to:
(a). the distribution and delivery of other messages, i.e., occurrence of other events in the group or
(b). the receipt of quorum messages (approval) from other members of the group.
The following issues are involved in synchronising the distribution or delivery of a message:
a. What message to synchronise: This involves the specification of the message signature, the instances of

which are to be synchronised with other messages.
b. With whom to synchronise: A member needs to perform synchronised activity with respect to the activi-

ties of other members in the group. So we need to identify the synchronisation enabling messages as
well as the sources of these messages.

c. How many messages are required for synchronisation: A message may require single or multiple syn-
chronisation enabling messages before it can be scheduled for distribution or delivery.

d. How long to wait to receive synchronisation: Synchronisation enabling messages may be lost due to
communication failures. In order to avoid indefinite delay, an explicit time limit may be imposed on the
receipt of synchronisation enabling messages, after which an exception condition is reported to the mes-
sage sender (and the message is not distributed or delivered).

e. Disabling of synchronisation: The distribution or delivery of a message may be abandoned if an excep-
tion condition is reported by the members of the synchronisation group.

4.4.4 Issues of Message Fil tering: Elements of Fil tering Policy
Filtering is the process of selecting the received messages for delivery to the sink object based upon the fil -
tering criterion (see section 7.10) specified either by the source object or the sink object or both. The
following issues are involved in the filtering of a received message:
a. What message to fil ter: This involves the specification of message signature, the instances of which are

to be filtered in.
b. On what basis to filter: Fil tering is usually performed on the basis of a filtering criterion which is a bool-

ean expression of filter attributes. Client’s attributes are evaluated against server’s fil tering criterion and
server’s attributes are evaluated against client’s filtering criterion. The received message is filtered in at

Group-Based Distributed Computing 57

Group Support Services: Requirements of the Group Support Platform

the server side only when both the clients and the server’s filtering criterion are satisfied.
c. How many of the filtered objects to select: If a message is groupcast to a server group, multiple objects in

the server group may satisfy the filtering criterion. However, the client object may want only one or a
fixed number of fil tered objects to process the message. Therefore the client must specify the number of
fil tered objects that must be finally selected to execute the service request.

4.5 Conclusion

This chapter has identified the “middleware-level” group support services that are required in a group sup-
port platform in order to support the group-based applications. There are different aspects to each service.
These aspects must be specified by the application in order to obtain the required group support service.
These aspects are part of the group policy specification language.

Group-Based Distributed Computing 58

Group Support Services: Requirements of the Group Support Platform

Group-Based Distributed Computing 59

Group Support Machine: An Organisation of Group Support Services

CHAPTER 5 Group Support Machine: An
Organisation of Group Support Services

Abstract
This chapter describes how the set of group support services, introduced in the previous
chapter, can be configured together inside an architectural framework called the “ group
support machine” and how the components of this machine work together in the provi-
sion of middleware-level service to the applications. Each member of the group-based
distributed application is supported by a group support machine. The set of group sup-
port machines communicating with each other through an inter-machine protocol consti-
tutes a “ group support platform” . This chapter introduces an abstract model of an
agent-based group support machine.

5.1 Introdu ction

In the previous chapter we have introduced a set of group support services which cater to the group com-
munication requirements of a wide range of group-based distributed applications. These services can be
provided as standardised “middleware” mechanisms by the underlying distributed platform. In this chapter
we turn our attention to the organisation of these services in a common distributed platform so that the
combination of them can be used in a logical and flexible way by the applications.

It is our intention to design a generic software architecture for the provision of group services. In this
chapter we present such an architecture for the middleware support of group-based distributed applications.
Each group support service is realised by a corresponding group support agent. A set of these agents,
locally bound together and interacting with each other through inter-agent interfaces, constitutes a frame-
work called the group support machine (GSM). Each member of the (client | server) group is supported by
a GSM. The combination of GSMs communicating with each other through an inter-GSM protocol consti-
tutes a group support platform (GSP).

5.2 Group Suppo rt Agents: Realisation o f Group Suppo rt Services

Each group support service, introduced in the previous chapter, provides a distinct function. In our model
each group support service is realised by the corresponding group support agent (GSA). Hence we have
the Distributor Agent (D-Agent), the Collator Agent (C-Agent), the Synchroniser Agent (S-Agent), the Fil -
ter Agent (F-Agent), and the Membership Manager Agent (MM-Agent) corresponding to the distribution,
collation, synchronisation, filtering, and membership management services respectively. The functionality
of these GSAs is described in detail in chapter 6.

Group-Based Distributed Computing 60

Group Support Machine: An Organisation of Group Support Services

5.3 Group Suppo rt Machine: Configuration o f Group Suppo rt Agents

Group-based applications do not need single isolated group support services; instead a combination of
these services is required for the provision of group communication requirements of an application. More-
over these services need to interact with each other in order to provide group communication support to the
applications.

The message distribution and collation are the basic services required by every application while syn-
chronisation and filtering are the additional services required by some of the applications (see chapter
7). These services are required by every group member and hence they should be accessible to every
group member. Moreover since the group members are distributed on a set of network nodes, it is pref-
erable that these services are locally available at each member node so that the failure of one node (or
the links leading to that node) does not prevent other members in obtaining the group support services.
We propose a configuration of the group support agents, available to each group member, within a sin-
gle logical architectural framework called the Group Support Machine (GSM). A model of GSM is
shown in figure5.1. The GSM is a configuration of Group Support Agents (GSAs), the components of
which interact with each other locally via inter-GSA interfaces (see chapter 6) and remotely through
inter-GSM protocol (see chapter 9) for the provision of group support service. GSM is a software
machine, the components of which are software entities.

The group support services are required on both the client and server sides. However, these services
are required by different message types on the client and server sides, as shown in table 5.1 .

5.3.1 Parallel Configuration o f Group Support Agents
The next question is how to organise the group support agents within the framework of GSM. The answer
is that this is a design issue and there is no unique configuration. The proposed solution is one of the many
possible configurations. It reflects the independence of the GSAs as well as the interactions that occur
between them (see chapter 6).

The GSAs are independent entities which perform orthogonal functions. Hence they are configured
as a system of parallel agents which can be accessed by the (client | server) group members. The MM-
Agent provides the supporting function to the rest of the GSAs. It monitors the group membership and
feeds information about the group membership to the rest of the GSAs which need this information in
order to provide their service. Hence it is placed as an agent in the supporting role.

The GSM offers its services to the individual components of the group-based application. These
components are the members of the (client | server) group. These group members should not have to inter-
face with the individual GSAs in the GSM in order to obtain their service. The composition and the config-
uration of the GSM should be transparent to the group member. Moreover the members should be able to
receive services from the GSM as single logical entity. Additionally, the GSM should be able to (accept |

Table 5.1: Group Support Services Requirement on the Client and Server side

Distribution o f Collation o f Synchronisation o f Fil tering o f

At
Client

OPR-message
NTF-messages

REP-messages the distribution of
OPR-messages NTF-
messages

Not required

At
Server

REP-messages OPR-messages
NTF-messages

the delivery of
OPR-messages
NTF-messages

OPR-messages
NTF-messages

Group-Based Distributed Computing 61

Group Support Machine: An Organisation of Group Support Services

deliver) messages (from | to) the member object in its local programming language. Hence a Group Agent
(G-Agent) which represents the GSM and interfaces with the local member object is bound to the GSAs as
shown in figure 5.1. The G-Agent acts as a single point of contact with the GSM.

 Fig. 5.1 Group Supp ort Machine (GSM): Configuration o f Group Support Agents
The GSAs inside a GSM need to communicate with their peer agents in other GSMs through an

inter-GSM protocol (see chapter 9). Each GSA generates certain types of messages in order to commu-
nicate with its peer agents in other nodes. Hence a GSM receives many different types of messages
from other GSMs. There is a need for an agent to intercept the different types of messages received
from the network (i.e., the underlying group communication protocols), parse these messages and give
them to the appropriate GSAs for respective service processing. This function is performed by the
Parser Agent (P-Agent). The P-Agent presents a single logical interface to the underlying network (or
group communication protocols).

So, the parallel configuration of GSAs is bound to the G-Agent on one side and to the P-Agent on the
other. The G-Agent interfaces with the member object and the P-Agent interfaces with the network.

5.3.2 Functioning of Group Suppo rt Machine
The GSM is composed of multiple GSAs which interact with each other before the (distribution | delivery)
of the message (from | to) a group member in order to support the group communication requirements of

S-Agent D-Agent C-Agent F-Agent

P-Agent

MM-Agent

G- Agent

Group
member

.MP-1 MP-2 MP-n

Group Suppo rt Machine

Group Communication L ayer (GCL)

GII

GMI Legend:
GII: Group Invocation Interface
GMI: Group Management Interface
MP: Multicast Protocol

Group-Based Distributed Computing 62

Group Support Machine: An Organisation of Group Support Services

the application. The next question is how do the components of the GSM work together in the provision of
group communication service to the applications. In this section we will present a brief description of the
functioning of the GSM. A detailed description is presented through example applications in chapter 6
and in chapter 7.

The GSM is placed between the member object and the communication network. It intercepts the
messages received from both sides for processing by the appropriate GSAs before the distribution or deliv-
ery of message.

When a message is received from the member object for distribution to the sink group, it is inter-
cepted by the G-Agent. The G-Agent gives this message to the D-Agent as well as to the other agents such
as the S-Agent and the F-Agent. This allows the S-Agent to obtain the appropriate synchronisation of the
message w.r.t other events in the source group, before its distribution. Similarly, the filtering constraints to
be associated with the message are obtained from the F-Agent. On the receipt of the synchronisation signal
(if any) from the S-Agent and the filtering constraints (if any) from the F-Agent, the D-Agent distributes
the message to the sink group using the appropriate multicasting protocol.

Similarly, when a group protocol data unit GPDU (see chapter 9) is received from the network, it
is intercepted by the P-Agent. There are two main types of GPDUs, the control GPDUs and data
GPDUs. The control GPDUs carry the inter-GSM protocol control information only and data GPDUs
carry both control and user messages. The P-Agent decodes the GPDUs and depending upon its type, it
gives it to the appropriate GSAs for processing. If a data GPDU is received, the P-Agent gives it to the
C-Agent as well as to the S-Agent and the F-Agent. This allows the S-Agent to obtain the appropriate
synchronisation of the message w.r.t. the other events in the sink group, before its delivery to the mem-
ber. Similarly, it allows the F-Agent to evaluate the filtering attributes of the source object against the
fil tering criterion of the sink object. Once the appropriate synchronisation signal and the fil tering signal
is received from the S-Agent and the F-Agent respectively, the C-Agent performs the collation of the
received message with other appropriate messages and delivers the group message to the sink object.

Thus, while the components of the GSM perform orthogonal functions, the final distribution and
delivery of the message involves the interaction between the components of the GSM. In chapter 6, we
present, in detail, the relationship and the interaction between GSAs.

The GSM framework serves as a middleware component placed between the application and the
underlying group communication protocols. In particular it can use a range of underlying message multi -
casting protocols with different reliability and ordering guarantees.

5.4 Group Suppo rt Platform: A Parallel Configuration o f Inter-Communicating GSMs

Our aim is to design a middleware platform for the support of group-based applications, which are struc-
tured as a client group and a server group. The members of the client group and the server group are dis-
tributed on network nodes. Each member needs local access to the group support services organised within
the GSM framework in order to avoid loss of group service support due to communication failures are node
failures. Hence we propose a distributed agent model of the group support platform in which each member

Group-Based Distributed Computing 63

Group Support Machine: An Organisation of Group Support Services

of the (client | server) group is supported by an instance of the GSM.

 Fig. 5.2 Group Supp ort Platform (GSP): A Distributed Agent Model

The model of the proposed group support platform is shown in figure 5.2. Each member is sup-
ported by a GSM. Each GSM is supported by the underlying Group Communication Layer (GCL)
which provides group communication protocol support such as message multicasting protocols, mem-
bership management protocols, etc. The multicast protocol objects in the GCLs are connected to and
communicate with each other through a communication network. This network could be a local or wide
area network depending upon the distribution of the member objects.

The Group Support Platform (GSP) is composed of inter-communicating GSMs. The GSP is a dis-
tributed agent model, because the GSMs are distributed and the group support agents in each GSM interact
with their peers in other GSMs via the inter-GSM protocol (chapter 9) for the provision of the group
support service required by the applications.

5.5 Agent-Based Approach and Separation o f Communication Fun ctions

An agent is an entity or a software object (in an object oriented paradigm) which provides a “policy-neu-
tral” functionality within a given application domain and whose behavior can be modified by the applica-
tion of external user requirements or domain-specific policies. The GSM framework is an agent-based
approach. The entities within the GSM framework are policy-neutral. For example, the C-Agent can sup-
port any collation function or accept any number of messages for collation, etc. The actual message colla-
tion process is guided by the policies which are external to the entity (see chapter 7).

The communication functions within the GSM are separated into different agents for the sake of
“modularity” and “separation of concerns” . Each group support service identified in the previous chapter is
a distinct and independent function which warrants a separate “module” of its own. Moreover, these sepa-
rate modules need to communicate with each other in order to accomplish certain specific application
requirements as shown in section 6.4. It may be noted that GSM is a model and a particular implemen-
tation of GSM may choose to combine all functions in a single class definition.

GCL

G
S
M

C-1

GCL

G
S
M

C-2

GCL

G
S
M

C-n

GCL

G
S
M

S-m

GCL

G
S
M

S-1

GCL

G
S
M

S-2

Group Suppo rt Platform

Client Group Server Group

.

.

Communication Network

Group-Based Distributed Computing 64

Group Support Machine: An Organisation of Group Support Services

5.6 Group Suppo rt Machine: An External, Configurable, and Programmable
Architecture

The GSM is an agent-based software architecture for the organisation of group support services. This
framework of organising group support services offers the following advantages to the applications:

5.6.1 Separation o f group-coordination aspects from application aspects
The group-support services, such as message distribution, collation, synchronisation, etc., are organised
within the GSM framework, and are layered below the application components. This layered architecture
lets the complex coordination behaviors (see chapter 7), found in group-based applications, to be mod-
eled and executed external to application elements. The resulting partitioning of application and group
coordination behaviors yields improved modularity, maintainabil ity, and extensibility of group-based
applications. The group communication and coordination aspects are separated from the application
aspects. The designer can focus on the application aspects while leaving the group coordination aspects
of the application to the GSM. The latter can be separately programmed as discussed below.

5.6.2 Extensible and configurable architecture
The GSM promotes explicit identification of group coordination services and a place for the insertion of
these services. The GSM is a framework within which new group support services can be added and inter-
action with the existing service identified. Therefore the model allows the group support platform to evolve
as new group support functionality is required.

5.6.3 Programmable and po licy-driven architecture
The GSM is intended to be a generic and a programmable service architecture. As shown in chapter 7,
it enables individual member preferences w.r.t. group services, such as to whom to distribute the mes-
sages, how to distribute the messages, how to collate the messages, with whom to synchronise the mes-
sages, etc. to be programmed through policy specifications. The GSM consists of ‘ policy-free’ and
neutral group support agents which can be programmed according to different application require-
ments. Therefore the architecture permits changes to the group coordination behaviors to be modeled
external to the applications by modifying appropriate group support policies, such as distribution pol-
icy, collation policy, etc., without re-compiling the whole application.

5.6.4 Suppo rt for group transparency and group awareness
Depending upon the user requirements, the GSM can provide varying levels of group transparency to
applications. Through the group management interface (chapter 6), the applications can be notified
about the current group membership and other group management information.

5.7 Conclusion

The GSM represents an agent-based software architecture for the organisation of group support services. It
is composed of group support agents which provide specialised support for group communication require-
ments of applications. We have presented the architecture in an abstract form allowing its implementation
in different programming languages and computing environments. The GSM is a primary unit of the mid-
dleware support for group-based applications. It is a modular, configurable, extensible, and programmable
software framework. The group support platform, is essentially a distributed agent model composed of
inter-communicating GSMs.

Group-Based Distributed Computing 65

An Abstract Model of Group Support Machine

CHAPTER 6 An Abstract Model of Group Support
Machine

Abstract
This chapter describes in detail the internal components of the GSM, the functionali ty of
these components, the interfaces between these components, and the interactions that
occur at these interfaces. The aim is to describe the internal structure of GSM in an
abstract and implementation independent manner. This chapter contains the summary of
the functions of the GSAs illustrated later in the thesis through example applications in
subsequent chapters.

6.1 Introdu ction

The GSM is the basic entity of the group support platform. It is a multi -agent software framework, the
components of which offer diverse group support services and interact with each other in complex ways for
the support of numerous types of group-based applications. In this chapter we describe in detail the ser-
vices offered by the component agents of the GSM, the interactions that occur between the components of
the GSM, and the interfacing of the GSM with the member object.

6.2 Middleware Box Between Group Member and Network: External Interfaces of GSM

The GSM acts as a single logical middleware entity placed between the member object and the underlying
group communication layer. It offers interfaces both to the member object and to the group communication
layer, as shown in figure6.1. In this section we will describe the characteristics of these interfaces and
the nature of information that is exchanged at these interfaces.

6.2.1 GSM - Group Member Interface
The internal components of the GSM and the way these components work together are hidden from the
member object. The GSM appears as a single logical proxy object to the group member. Apart from appli -
cation messages (i.e., OPR, NTF, REP messages) which are exchanged between the group members
through the GSMs, the member object also need to input certain management information to the GSM
which is required for the proper functioning of the GSAs. Hence the GSM offers two interfaces to the
member object. These are the GSM Invocation Interface (GII) and the GSM Management Interface (GMI).

6.2.1.1 GSM Invocation Interface (GII):
The GII is used by the (client | server) member object to invoke (operation, notification | termination)
messages on the GSM for distribution to the (server | client) group. It is used by the GSM to invoke

Group-Based Distributed Computing 66

An Abstract Model of Group Support Machine

group (operation, notification | termination) messages on the local (server | client) object. The group
messages are constructed locally in the GSM. These application messages are treated as data by the
GSMs and are exchanged transparently between the GSMs after appropriate group service processing.
The member object interfaces with the GII via its group invocation interface (gii). The following are the
characteristic features of the GII:
a. Compatibilit y with member’s invocation interface: The message invocations are accepted from and

delivered to the member object at the GII in the member’s native invocation style. The invocation mech-
anism of the GII is compatible with the member’s programming-language specific invocation mecha-
nisms.

b. Support for group interrogation capabili ty: Apart from using GII f or invoking operation and notification
messages, this interface is also used by the client object for invoking group interrogation control mes-
sages (see section 3.3), such as “poll_reply()” and “ terminate_replies()” on the GSM. These mes-
sages give the client the capabil ity to control the delivery of replies in response to an operation
invocation on server group.

6.2.1.2 GSM Management Interface (GMI)
The GMI is used by the member object to perform certain management operations on the GSM or to com-
municate some local information to the GSM which is required for the functioning of the GSAs in the
GSM (see section 7.9.4 and section 7.10.2). Similarly, the GMI is used by the GSM to communicate the
object group related information, such as the current membership of the client and server group, to the
member object, depending upon the group transparency available to the member.

GMI is a proprietary interface between the member object and the GSM. Every group-based applica-
tion has different management requirements, and hence different types of information is exchanged at this
interface. The following are the examples of types of information that are exchanged between the member
object and the GSM through the GMI:
a. Application-specific information: The GSAs in the GSM are to a large extent application-neutral and

perform their functions independent of the applications they support. However in some cases, they
need certain application-specific information in order to perform their function. For example (see
section 7.10.2), the F-Agent needs the values of some dynamically changing server attributes, such as
the current load on the server (e.g., the queue length of the printer), current values of performance
parameters, etc., based upon which it performs the filtering of the received messages. This informa-
tion is input by the server object to the GSM through the GMI. Similarly, as shown in section 7.9.4,
the S-Agent needs certain information from the client application such as which members of the
server group have successfully executed its operation messages and which ones have not, so that the
S-Agent can send appropriate ‘synchronisation notification messages’ to the other members of the cli -
ent group, so that next operation messages are invoked only on those server group members who have
successfully executed the previous operation messages. This information is given to GSM via GMI.

b. Group membership information: An object group is a dynamic entity. Members may join and leave the
group, and there are member failures due to node and link failures. In some applications, the group mem-
bers are interested in being informed about the current group membership. Depending upon the group
transparency subscribed by the member object, the GSM (i.e., the MM-Agent) notifies group member-
ship updates to the member object through the GMI.
c. Group support policies: The GMI may also be used by the member object to specify group support

policies such as message distribution policy, collation policy, filtering policy, and synchronisation pol-
icy to the respective GSAs, which offer their services based upon the user’s requirements specified in

Group-Based Distributed Computing 67

An Abstract Model of Group Support Machine

these policies.

 Fig. 6.1 A Model of Group Support Machine (GSM)
The GMI is a logical interface. As shown in figure6.1, each GSA supports its own management

interface such as the Distributor Management Interface (DMI), the Collator Management Interface
(CMI), the Synchroniser Management Interface (SMI), and the Fil ter Management Interface (FMI).
These interfaces are used to input or output the information types explained above.

6.2.2 GSM - Network Interface
The GSM makes use of the low-level message multicasting and ordered delivery service provided by the
underlying group communication layer, to transport the group protocol data units between the GSMs. The
interface between the GSM and the underlying group communication layer is called the GSM Network
Interface (GNI). A minimal information needs to be exchanged through this interface.

The group communication layer consists of different types of multicast protocol objects (MP-
Objects) which provide different message ordering and delivery guarantees. The GSM (i.e., the P-Agent)
only needs to select the appropriate MP-Object that meets its ordering and delivery requirement and give it

S-Agent D-Agent C-Agent F-Agent

P-Agent

MM-Agent

G- Agent

Group
member

.MP-1 MP-2 MP-n

Group Suppo rt Machine

Group Communication L ayer (GCL)

GII

SMI DMI CMI FMI

GNI

GMI

gii

gmi

Legend:
gii: group invocation interface
gmi: group management interface
GII: GSM Invocation Interface
GMI: GSM Management Interface

Group-Based Distributed Computing 68

An Abstract Model of Group Support Machine

the GPDU and the list of the group members to whom the GPDU is to be multicast. The GSM (the P-
Agent) invokes the following message on the MP-Object: multicast(this_GPDU, to_these_members). Sim-
ilarly, the MP-Object transfers the received GPDU to the GSM through by invoking the following message
on GNI: input(this_GPDU).

6.3 GSM Components

The GSM is a multi-component software machine. Each component of GSM performs a specialized group
support function. In this section we describe in detail the function offered by each GSA and the exception
conditions that are encountered in group service processing. The functionality of the GSAs is described in
an abstract manner. The reader is referred to appropriate examples in chapter 7.

The GSAs are policy-driven agents. They perform their respective functions based upon the corre-
sponding group support policy described in the previous chapter. These policies can be input to the GSAs
through their management interfaces (such as DMI, CMI, SMI, and FMI) or the policies can be specified as
policy scripts. The policy scripts are stored in policy repository objects (PROs). The GSAs communicate
with the PROs to find out what actions to perform when they receive a message.

6.3.1 G-Agent
The G-Agent acts as a gateway to the GSM. It supports the GSM Invocation Interface (GII). It inter-
faces with the member object on one side and with the rest of the GSAs on the other side, as shown in
figure6.1. The G-Agent provides the engineering support for the group interrogation semantics, i.e., it
supports the non-blocking invocation semantics, solicited reply delivery semantics, terminable reply
delivery semantics, as discussed in the previous chapters.

On the client side, the G-Agent gives the (operation, notification) message and the invocation instance
identifier that it has generated for that message instance to the D-Agent for distribution to the server group.
If the client application requires that the message distribution be synchronised with respect to other events
in the client group and if filtering constraints are to be associated with the message before its distribution,
then the G-Agent gives the message to the D-Agent, as well as to the S-Agent and to the F-Agent. This
allows the S-Agent to start synchronisation processing and the F-Agent to search for filtering constraints
associated with the message type, in parallel with the functions of the D-Agent such as message marshal-
ling and GPDU construction. On the server side, the G-Agent gives the termination message and the invo-
cation instance identifier that is associated with the message to the D-Agent for distribution to the client
group.

6.3.2 D-Agent
The D-Agent performs the distribution of messages based upon the distribution policy specified in the D-
Policy Script. At the client side, there is a D-Policy Script, one for each (operation, notification) message,
thus allowing instances of each message type to be distributed to different members of the server group or
to be sent using different ordering protocols depending upon application requirements. At the server side,
there is a D-Policy Script, one for each operation message, which specifies reply distribution policy for the
distribution of replies corresponding to the group operation message. The D-Agent performs the following
functions.
1. Message encoding, splitt ing, and renaming: The D-Agent encodes the (OPR, NTF | REP) message

received from the G-Agent as parameter name and value tuples and constructs the (OPR, NTF | REP)-
GPDU by encapsulating the (OPR, NTF | REP) message, the invocation instance identifier associated

Group-Based Distributed Computing 69

An Abstract Model of Group Support Machine

with the message, and the filtering constraints, if any, obtained from the F-Agent (see section 6.4.3).
The filtering constraints are associated only with operation and notification messages. If name trans-
formations (see section 7.5.3) are specified in the D-Policy Script, then appropriate name transforma-
tions are performed on the message name and/or its parameter names. If splitt ing transformation (see
section 7.5.1) is specified in the D-Policy Script, then multiple GPDUs are constructed one for each
message component.

2. Synchronised message distribution: In applications which require synchronised message distribution
(see section 7.9), the D-Agent delays the distribution of the message until the reciept of a positive
synchronisation signal from the S-Agent. The D-Agent then delivers the GPDU, the information
about the members to whom it is to be distributed and the type of multicasting protocol to be used to
the P-Agent, which in turn selects the appropriate MP-Object for message distribution. Finally, if an
operation message is distributed, the D-Agent informs the C-Agent of the identities of the server
group members from whom to expect the replies.

3. Associating appropriate identifiers with termination messages: On the server side, the D-Agent is
responsible for the distribution of termination messages received from the server object (in response to
group operation message) to the respective clients. The replies received from the server object are iden-
tified by the ‘group invocation instance identifier’ (see section 6.3.3) which is different from the
‘ invocation instance identifiers’ which were associated with the individual components of the group
operation message. However, the D-Agent must associate the appropriate invocation instance identi-
fiers with the replies before sending the replies to the corresponding client objects. This is accom-
plished as follows.
The D-Agent receives from the C-Agent the list of clients whose operation messages were collated into a
group operation message, the invocation instance identifiers which were associated with each operation
message, and the group invocation instance identifier which was associated with the group operation
message.
If a single reply is received from the server object, then this reply is distributed to all the clients whose
components were included in the group operation message, with appropriate invocation instance identi-
fiers tagged to them. In case of multiple replies, the order in which the replies are received from the
server object corresponds to the order in which the component messages were arranged in the group
message and it also corresponds to the order in which the clients are listed in the client list given to the
D-Agent by C-Agent. Based upon the list of clients and the list of the invocation instance identifiers
received from the C-Agent, the D-Agent, associates appropriate identifiers with the received replies and
sends them to the corresponding clients.

6.3.3 C-Agent
The C-Agent performs the collation of messages based upon the collation policy specified in the C-Policy
Script. At the client side, there is a C-Policy Script, one for each operation message type, which specifies
the reply collation and delivery policy for the replies received in response to the operation message. At the
server side, there is a C-Policy Script, one for each operation and notification message type, thus allowing
instances of each message type to be collated using a different collation scheme as required by the applica-
tion. The C-Agent performs the following functions.

1. Message decoding, collation, and ordered delivery: On the (client | server) side, the C-Agent receives the
(REP | OPR, NTF) GPDUs from the P-Agent. It decodes these GPDUs and extracts the message and the
invocation instance identifier associated with the message from the GPDU. Then it constructs the message

Group-Based Distributed Computing 70

An Abstract Model of Group Support Machine

in a format that is understood by the local object. When the required number of the instances of the mes-
sage are received from the specified group members within the specified collation time period, the C-Agent
constructs the group message using the specified collation scheme and gives the group message along with
the invocation instance identifier to the G-Agent, which in turn invokes the message on the member object
using the local invocation mechanism.

 Fig. 6.2 A Model of Policy-Driven Group Suppo rt Machine
In some applications, the client may wish to receive certain reply types before others or replies from cer-
tain sources before those from others. The C-Agent performs the ordered reply delivery function accord-
ing to the ordering scheme specified in C-Policy Script.

2. Message delivery after fil tering constraint processing: Some group-based server applications require
that (operation, notification) messages be delivered to the server objects only if the server object sat-
isfies the client’s filtering criterion or the client satisfies server’s filtering criterion or both (see
section 7.10). Filtering of messages based upon client’s and server’s attributes and filtering criterion
is performed by the F-Agent.
In such applications, the C-Agent includes the received message in the collation process and delivers it

D-Policy
Script

D-Agent

C-Policy
Script

C-Agent

F-Policy
Script

F-Agent

S-Policy
Script

S-Agent

MM-Agent

P-Agent

G-Agent

GII

GNI

Group Support Machine

PRO PRO PRO PRO

Group-Based Distributed Computing 71

An Abstract Model of Group Support Machine

to the server object only after the receipt of a proper filtering signal from the F-Agent.
3. Associating a unique identifier with group operation message: On the server side, the C-Agent is respon-

sible for the collation of service requests of the same type (i.e., instances of the same operation mes-
sage type) received from the client group within a (periodic) collation window (see example in
section 7.7), into a group service request (group operation message), before delivery to the server
object. The group operation messages must be locally identified between the GSM and the server
object, with a “group invocation instance identifier” . This allows the G-Agent to identify its termina-
tion messages with a single group invocation instance identifier.
In such cases, the C-Agent deletes the “invocation instance identifiers” associated with the component
operation messages and generates a locally unique “group invocation instance identifier” which is asso-
ciated with the group operation message. All replies received in response to this group operation mes-
sage from the server object are identified with the group invocation instance identifier. Finally, the C-
Agent gives to the D-Agent, a li st of invocation instance identifiers of component messages (which were
replaced with a group invocation instance identifier) and the list of the clients, so that the D-Agent can
send the termination messages to the clients with the appropriate invocation instance identifiers tagged
to them.

4. Generation of the special “ end_of_reply()” termination message: On the client side, the C-Agent is
responsible for the collation and ordered delivery to termination messages. In some applications, the
membership of the server group is transparent to the client and the client cannot start processing the
replies until i t has received all of them. Since the knowledge of the server group is available to the C-
Agent, it sends a special “end_of_reply(invocation_instance_id)” termination message to the client, after
it has received all the expected replies. This is treated as a normal termination by the G-Agent and for-
warded transparently to the client object.

5. Generation of group exception messages: The exception conditions arising due to collation, synchronisa-
tion and filter processing on the server side may result in the non-delivery of the operation message to
the server object. In such cases, the clients must be informed and the reason for non-delivery reported.
These exception conditions are reported to the C-Agent (see section 9.6), which in turn informs them
to the local client object by constructing appropriate exception termination messages.

6.3.4 S-Agent
The S-Agent is responsible for the synchronisation of the (distribution | delivery) of the operation and noti-
fication messaged (from | to) the (client | server) object, based upon the synchronisation policy specified in
the S-Policy Script. There is an S-Policy Script, one for each operation and notification message on the cli -
ent side as well as on the server side. This allows the (distribution | delivery) of instances of each message
type to be synchronised with different events in the (client | server) group, depending upon the application
requirements.

In applications which require synchronised message (distribution | delivery), whenever an operation
or a notification message is received from the (client | network) for (distribution | delivery), the (G-Agent |
P-Agent) gives the message not only to the (D-Agent | C-Agent), but also to the S-Agent in order to syn-
chronise the (distribution | delivery) of the message with other events in the (client | server) group. The (D-
Agent | C-Agent) defer the (distribution | delivery) of the message until the receipt of the synchronisation
signal from the local S-Agent.

In order to obtain the required synchronisation, the S-Agent sends the synchronisation soliciting
requests (S-SOL-GPDU) to the synchroniser group members from whom the synchronisation or permis-
sion to (distribute | deliver) the message is to be obtained, waits for their responses (S-RES-GPDU), and

Group-Based Distributed Computing 72

An Abstract Model of Group Support Machine

when the required number of responses are received within the specified time period, it evaluates the
responses to check if the synchronisation condition specified in the S-Policy Script is satisfied (see also,
section 7.9 and section 9.7). Based upon its evaluation, the S-Agent either sends a positive or negative
synchronisation signal to the local (D-Agent | C-Agent) responsible for message (distribution | deliv-
ery).

6.3.5 F-Agent
The F-Agent is responsible for the fil tering of the received operation or notification messages at the server
side, based upon the client’s message fil tering policy or the server’s fil tering policy or both, as specified in
the F-Policy Script. There is an F-Policy Script, one for each operation and notification message, on both
the client and server side. This allows the clients and servers to specify their own filtering criterion and fil -
ter attributes (object attributes) independently, so that a message is delivered to the server object only if
both the client’s and server’s message delivery criterion are satisfied.
1. Filter criterion evaluation: On the server side, the F-Agent is responsible evaluating the server’s filtering

criterion using the client’s filter attributes (received in the OPR or NTF-GPDU) and the client’s filtering
criterion (received in the OPR or NTF-GPDU) using the server’s filter attributes. If both the client’s and
the server’s filtering criterion is satisfied, the F-Agent gives a positive filter signal to the C-Agent, other-
wise a negative filter signal is given.

2. m-out of n selection: If the client specifies that a specific number of servers which satisfy the client filter-
ing criterion be selected for message delivery and execution, then the F-Agents in the server group
enter into an “m -out of- n” selection process in order to select the best ‘m’ out of the ‘n’ contenders
(see section 9.8).

6.3.6 MM-Agent
The MM-Agent is the local agent in charge of maintaining the current group membership information,
such as a record of current group members, their identities, their application-specific roles, addresses, etc.
It is responsible for monitoring the current group membership, such as the communication link failures and
node failures (see section 9.9). Similarly it receives member addition and removal notifications from
the group administrator. The MM-Agent notifies any change in the group membership information to
the other GSAs which need this information in order to perform their functions.

6.3.7 P-Agent
The P-Agent acts as a gateway to the GSM from the network side (i.e., from the underlying MP-Objects). It
supports the single logical GSM-Network Interface (GNI). On the other side it interfaces with the rest of
the GSAs.

The P-Agent receives from the GSAs the GPDUs, the identities of the members to whom the GPDU
is to be sent, and the information about the type of MP-Object to be used for multicasting the GPDU. The
P-Agent selects the appropriate MP-Object and gives it the GPDU and the addresses of the group members
to whom it is to be distributed.

The P-Agent receives different types of GPDUs from the network side (i.e., from MP-Objects). It
decodes the type field of the received GPDU, and based upon the type of the GPDU, the P-Agent gives the
GPDU to the appropriate GSA for processing.

Group-Based Distributed Computing 73

An Abstract Model of Group Support Machine

6.4 Interaction b etween GSAs in the GSM: Internal Interfaces of GSM

The GSAs are to a large extent independent in the provision of their respective services. However they need
to interact with each other locally, within the GSM, in order to provide the total group service required by
the applications. In the following sections we describe the relationship and the interaction between the
GSAs and the kind of information that need to be exchanged between them. Our intention is to identify the
most commonly required interactions between the GSAs. Application-specific requirements may add more
interactions or more information to the interactions identified below. Some examples of complete scenarios
of interaction between GSAs are given in section 7.9.7 and in section 7.10.5.

6.4.1 Interaction b etween D-Agent and C-Agent: Coordination between basic group support functions
The basic support for group-based distributed computing is achieved through coordination between distri-
bution and collation functions, as shown below for the client and server side considerations.
1. Client side: The D-Agent distributes the operation messages to the members of the server group.

Depending upon the application requirements, an operation message may be sent to all the members of
the server group or it may be sent only to partial server group membership. The C-Agent is responsible
for the collation of replies received from the server group in response to an operation message. The C-
Agent must know how many replies to expect and from whom to expect. The D-Agent gives this infor-
mation to the C-Agent. The D-Agent invokes the following notification on the C-Agent, via the DC-
interface, after the successful distribution of the operation message.
dc_collate _replies_from(OPR_inv_instance_id: inv_i nstance_id_type,

membership_l i st: member_id_list_type)

This message notifies the C-Agent to expect replies, associated with the identifier specified in the
OPR_inv_in stance_id, from the server group members specified in the membership_list .

2. Server side: On the server-side, the C-Agent is responsible for the collation of the instances of an opera-
tion signature (i.e., instances of the same service request type) received from the client group, within a
(periodic) collation window, into a group operation message (see examples in section 7.7). These
messages may not necessarily be received from all the members of the client group within the speci-
fied collation window. Hence the replies received from the server in response to the group operation
message must be sent only to those clients whose operation messages were received within the colla-
tion window.
The C-Agent deletes the “invocation instance identifiers” associated with individual operation messages
and assigns a local “group invocation instance identifier” with the group operation message before
invoking it on the server object. The C-Agent has the knowledge of the components of the group opera-
tion message as well as of the identities of the clients who have sent these messages. The replies gener-
ated by the server object in response to the group operation message are identified with the “group
invocation instance identifier” . However the replies must be sent to the appropriate members of the cli -
ent group with their original “ invocation instance identifiers” associated with them. The D-Agent is
responsible for the distribution of replies. It must know to whom to distribute the replies and what iden-
tifier to associate with each reply. The C-Agent gives this information to the D-Agent, because the C-
Agent knows the identities of the clients whose operation messages were included in the group operation
message as well as the original invocation instance identifiers that were associated with individual oper-
ation messages.

Therefore the C-Agent invokes the following notification on the D-Agent, via the CD-interface after

Group-Based Distributed Computing 74

An Abstract Model of Group Support Machine

the successful collation of the group operation message and its delivery to the server object.
cd_send_re plies_to(GRP_OPR_inv_instance_id: inv_in stance_id_type,

membership_l i st: member_id_list_type,
OPR_inv_inst ance_id_list: inv_instance_id_list_type)

This message notifies the D-Agent to send the replies received from the server object to the clients li sted
in the “membership_list ” .

Either a single reply or multiple replies are received from the server object. In case of multiple
replies, the number of replies is equal to the number of components in the group operation message and
the order in which the replies are received corresponds to the order in which the operation messages
were packed in the group operation message, i.e., the nth reply is in response to the nth operation mes-
sage and must be sent to the corresponding client.

The replies received from the server object are identified with “GRP_OPR_inv_instance_id ” .
However the D-Agent must send the replies to the respective clients tagged with their original “opera-
tion invocation instance identifier” which was associated with the corresponding operation message. The
order in which the clients are listed in the “membership_list ” corresponds to the order of identifica-
tion of their respective operation messages in the “OPR_inv_instance_id_list ” . So the D-Agent
sends the nth reply received from the server object to the nth client listed in the “membership_list ” and
tags that reply with the nth “operation invocation instance identifier” li sted in the
“OPR_inv_instance_id_list ” .

6.4.2 Interaction b etween D-Agent and S-Agent: Synchronise before message distribution
Synchronised activity is a characteristic feature of many group-based applications. Either the distribution
of a message from a source object to the sink group may need to be synchronised with other events in the
source group or the delivery of a message to a sink object may need to be synchronised with other events in
the sink group or both. In this section we wil l look into the former case.

In some applications, the distribution of (operation | notification) messages issued by the client need
to be synchronised with other events in the client group(section 7.9). As shown in the example in
section 7.9.5, the messages from the members of the “coordinated client group’ are distributed in syn-
chronisation with the message distribution from other members. Similarly, in other applications, a cli -
ent may need to take the approval or quorum of other members in the group before a message can be
distributed to the server group. In our model, the S-Agent is responsible for obtaining the required syn-
chronisation (or quorum) according to the application’s synchronisation policy by soliciting, receiving
and processing “synchronisation-enabling messages” . In such applications, the D-Agent does not dis-
tribute the message until the receipt of a local synchronisation signal from the S-Agent. So the S-Agent
needs to inform the D-Agent the outcome of the synchronisation process in order for it to perform syn-
chronised distribution. The S-Agent also has to advise the D-Agent to whom the message should be dis-
tributed, because the message distribution to all the group members may not be approved. In such cases
the S-Agent invokes the following notification message on the D-Agent, via the SD-interface, after
obtaining and processing the required synchronisation (or quorum) from the synchroniser objects (see
details in section 7.9 and in section 9.7).
sd_distrib ute_message_to(inv_instance_id: inv_ins t ance_id_type,

membership_l i st: member_id_list_type)

This messages notifies the D-Agent to send the (operation | notification) messages identified by the
“ inv_instance_id ” to the server group members specified in the “membership_list ” .

Group-Based Distributed Computing 75

An Abstract Model of Group Support Machine

6.4.3 Interaction b etween D-Agent and F-Agent: Insert the filtering constraints before message
distribution at client side

In some applications, such as in example in section 7.10.3, the client specifies some ‘ filtering con-
straints’ that must be satisfied by the members of the server group in order for the client’s service
request (operation message) to be delivered to them for processing. These filtering constraints are spec-
ified as set of client attributes (which are evaluated against server’s filtering criterion) and client’s filter-
ing criterion (which is evaluated against server’s attributes). These attributes and constraints, called the
filter attributes and filter constraints respectively, are pre-specified in the F-Agent as part of the client’s
filtering policy for each message type. If the client wishes that its service request be executed by “m -
out of- n” servers in the group, based upon its fil ter criterion, then filter cardinali ty is also included in
the filtering policy. When a service request (operation message) is received from the client for distribu-
tion, the F-Agent interacts with the D-Agent in order to give the ‘ filtering attributes’ and ‘ filtering crite-
rion’ to the D-Agent so that they are also distributed along with the message. The F-Agent invokes the
following notification on the D-Agent, via the FD-interface, to communicate the fil ter constraints.
fd_include _filter_constraints(inv_instance_id: in v_instance_id_type,

filter_attrib ute_list: attribute_list_type
filter_criter i on: constraint_expression_type,
filter_cardin ality: cardinality_type)

6.4.4 Interaction b etween C-Agent and S-Agent: Synchronise before message delivery
In some cases, the delivery of a message to a group member need to be synchronised with other events in
the group. This is a particular requirement in some server groups, in which the delivery of an (operation |
notification) message to a server object needs the approval or quorum of some specific members of the
server group in some supervisory roles. In such applications the message delivery to the server object by
the C-Agent is withheld until the receipt of a synchronisation signal from the S-Agent. The S-Agent must
obtain the required quorum (or synchronisation) from the specified members according to application-spe-
cific synchronisation policy and then inform the C-Agent about the outcome of the quorum. Hence the S-
Agent invokes the following notification on the C-Agent, via the SC-interface, to inform the result of the
synchronisation process (“sync_result ”), which is usually a binary information.
sc_synchro nisation_result(inv_instance_id: inv_in stance_id_type,

sync_result: sync_result_type)

Table 6.1: Interaction of D-Agent with other Agents before & after message distribution

S-Agent F-Agent C-Agent

Client
side

D-Agent receives the synchro-
nisation signal from S-Agent
before the distribution of
(OPR | NTF).

D-Agent receives the ‘ filter-
ing constraints’ fr om F-Agent
before the distribution of
(OPR| NTF) message.

D-Agent informs the C-Agent about the
number and sources of expected
replies, after the distribution of OPR-
message.

Server
side

no interaction required. no interaction required. D-Agent receives the identities of the
clients to whom a REP-message is to be
distributed from C-Agent.

Group-Based Distributed Computing 76

An Abstract Model of Group Support Machine

6.4.5 Interaction b etween C-Agent and F-Agent: Filter the received messages before delivery
In applications which require fil tered message delivery to server object (see section 7.10), although
each GSM (C-Agent) in the server group receives the client’s service request (operation message), only
some of them may actually deliver the message to the server object due to the filtering constraints spec-
ified by the client. In such cases the C-Agent cannot include the received message for collation process
(and/or for subsequent delivery to server object) until the filtering constraints and attributes sent along
with the message are evaluated by the local F-Agent according to a pre-specified server’s filtering pol-
icy and a permission received from it. Hence, the F-Agent needs to interact with the C-Agent in order to
communicate the outcome (“ filter _result ”) of the filtering process and the m -out of- n selection
process to the C-Agent. This interaction occurs over the FC-interface.
fc_filteri ng_result(inv_instance_id: inv_instance _id_type,

filter_resul t : filter_result_type)

6.4.6 Interaction b etween MM-Agent and o ther GSAs: Communicate group membership information
The group membership, the member identities, and the location of members may be transparent to the (cli -
ent | server) application components bound to the GSM. However this information must be available to
GSAs in order for them to perform their functions. The MM-Agent is responsible for maintaining the cur-
rent group membership information. It is responsible for monitoring the current group membership, includ-
ing communication link failures and node failures. Similarly it receives member addition and removal
notifications from the group administrator. Hence the MM-Agent interacts with the other GSAs, via the
MM-GSA interfaces, to communicate the group membership information whenever there is a change in it.
add_member_notification(group_id: group_id_type,

member_id: n ame_type,
member_role: role_type,
member_locat i on: address_type)

delete_mem ber_notification(group_id: group_id_typ e,
member_id: n ame_type)

6.5 Conclusion

The GSM is a software architecture of group support middleware. The components of the GSM offer spe-
cialised group support services based upon the application requirements specified in the group policy
scripts. Although the components of the GSM perform orthogonal group support functions, they need to
interact with each other in order to provide the total group support service required by the applications.

Table 6.2: Interaction of C-Agent with other Agents before message delivery to (Client | Server)

S-Agent F-Agent D-Agent

Client
side

no interaction required no interaction required receive from the D-Agent, the number and
sources of expected replies.

Server
side

receive the synchronisation
signal from S-Agent before
the delivery of the (OPR |
NTF) message.

receive the filtering signal
from the F-Agent before the
delivery of the (OPR | NTF)
message.

inform the D-Agent about the identities of
the clients to whom the REP-message(s)
is(are) to be distributed, after the delivery
of the corresponding GRP-OPR-message.

Group-Based Distributed Computing 77

Group Coordination Models: Platform Support and Policy Specification

CHAPTER 7 Group Coordination Models: Platform
Support and Policy Specification

Abstract
The basic “ client-server” model describes how a singleton client obtains service from a
singleton server. In this chapter we describe the extended coordination models found in
group- based distributed applications - the “ group coordination models” . These
extended models coordinate multiple, independent servers to provide complex services
for the clients. Similarly they permit the coordination of operation invocations from mul-
tiple, independent clients in order to request a ‘group service’ from a server object or to
bring a desired state change in the server object. In this chapter we describe these
extended coordination models which enhance the basic client-server interaction model
in a multi -object environment. The coordination behaviors inherent in these models can
be specified at a high-level using a group policy specification language. This language is
introduced informally through examples.

7.1 Introdu ction

In general, a coordination model is characterized by a multi-component configuration and the interactions
that occur between the components of the configuration [143 - 148]. The focus of this chapter is on
coordination models found in group-based applications. We call such coordination models the “group-
based client-server coordination models” or in short the “group coordination models” .

A group coordination model is characterized by the structure of the application consisting of the con-
figuration of a client group and a server group and the interactions that occur between the members of
these groups. The former aspect of the coordination model is static while the latter aspect is dynamic and
thus programmable. The intra-group and the inter-group interactions between the members of the client
and server groups can be viewed at a high-level as group coordination patterns or group coordination
behaviors. Therefore, as shown in figure 7.1, a group coordination model is a combination of a group
coordination behavior within a given group organisation.

In this chapter we show how different group coordination patterns (or behaviors) can be obtained by
composing the basic group support services such as message distribution, collation, synchronisation, fil ter-
ing, etc. in different combinations. The combination of these basic services in different group organisations
yields different group coordination models.

In this chapter we introduce some basic group coordination models and discuss associated group
coordination patterns (or behaviors). These high-level group coordinations patterns are expressible as a
combination of basic message distribution schemes (policy), message collation schemes (policy), message
synchronisation schemes (policy), message filtering schemes (policy), etc.

Group-Based Distributed Computing 78

Group Coordination Models: Platform Support and Policy Specification

 Fig. 7.1 Group Coordination Model: Combination o f coordination b ehavior and g roup o rganisation
Our aim is to represent group coordination patterns as programmable coordination behaviours which

can be specified as message distribution, collation, synchronisation, and filtering policies. These policies
are interpreted by the generic and policy neutral group support agents within the GSM. Therefore the group
support agents support group coordination behaviours which can be specified and programmed within the
GSM, external to the application logic.

In this chapter we informally introduce GPSL, the group policy specification language, as a language
framework which is capable of specifying different group coordination patterns. A formal introduction to
the syntax and semantics of the language is given in chapter 8.

7.2 Basic Group Coordination Models

Group-based applications exhibit a wide spectrum of coordination models. These coordination models
involve numerous and complex coordination behaviors and multi-object organisation schemes. In this sec-
tion we introduce some basic group coordination models found in group-based applications and discuss
what group support services, such as distribution, collation, synchronisation, etc., are involved in the provi-
sion of the associated group coordination behaviors.
1. Singleton Client - Server Group Coordination Model: This model is characterized by a client object

interrogating a server group and receiving multiple replies, one from each member of the server group.
This coordination model involves the distribution of an operation message from the client object to the
server group and the collation of multiple termination messages received from the server group before
delivery to the client object. Message distribution scenarios are presented in section 7.4 and
section 7.5. The reply collation and delivery scenarios are described in section 7.6.

2. Client Group - Singleton Server Coordination Model: This model is characterized by a client group
interrogating a singleton server and receiving multiple replies, one for each member of the client group,
from the server object. In this model, a set of client objects, related to each other in an application-spe-
cific manner, invoke instances of the same operation message signature (not necessarily identical) on the
server. This group coordination model involves the collation of instances of the same operation signature
into a group operation message (group service request) which is invoked on the server object and the
distribution of the server’s reply (or replies), which is based upon the group service request, to the client
group. In this model the subsequent behavior of each client is dependent upon or biased by the previ-

Group Coordination Model

Group Organisation Group Coordination Behavior

+

Combination o f:
1. Message Distribution Schemes
2. Message Collation Schemes
3. Message Synchron isation Schemes
4. Message Filtering Schemes

A configuration o f:
1. Client Group

and
2. Server Group

Group-Based Distributed Computing 79

Group Coordination Models: Platform Support and Policy Specification

ous behavior of the rest of the members of the client group. Service request collation models are
described in section 7.7and reply distribution models are described in section 7.8

3. Client Group - Server Group Coordination Model: This model is a generalisation of the previous mod-
els. It involves multiple servers (or managers) in different roles serving (or managing) a client group.
Each server (or manager) takes care of the different service aspect of the clients.

4. Synchronised Invocation Model: This is a special case of the “client group - server group” model in
which distribution of an operation message from each member of the client group is synchronised with
respect to the other events in the client group. This enables a group of clients to perform synchronised
invocations on the server group in order to gain an exclusive access to the server group and to bring
about a desired state change in the members of the server group. This coordination model involves syn-
chronising the distribution of operation messages to the server group and collating server replies before
delivery to the client object. This model is described in section 7.9.

5. Fil tered Invocation Model: While the synchronisation of the distribution of (operation | notification)
messages occurs in the client group, the fil tering of these messages, based upon some filtering criterion,
before delivery to the server objects, occurs in the server groups. This model is characterized by the dis-
tribution of (operation | notification) messages to all the members of the server group but the fil tering of
these messages only at the subset of server group members based upon either the client’s filtering crite-
rion or the server’s filtering criterion or both. This model is described in section 7.10.

7.3 Basic Issues in Group Coordination Models

In most of the group-based applications, the clients often need to invoke multiple servers, coordinated to
reflect how those servers interrelate and contribute to the overall application. Similarly the servers often
need to receive multiple service requests from a group of (related) clients, coordinated as a single ‘group
service request’ . Similarly, the members of the client group need to invoke service requests on the server
group coordinated to bring about certain specific state change in the server application. These multi -client
and multi -server applications give rise to many interaction issues. The basic issues that arise in these one-
to-many and many-to-one coordination models are:
1. how multiple services are requested and how those services are organised,
2. how multiple replies from the service group are combined and the order in which they are delivered to

the client,
3. how multiple service requests from client group are coordinated into a group service request and how

multiple clients are organised,
4. how multiple replies generated in response to group service requests are distributed to the clients,
5. how invocations from members of the client group are coordinated to bring about the desired state

change in the server application,
6. how service requests are selectively filtered in the service group in order to satisfy specific client and

server requirements, etc.
Coordination models represent one way to handle these diverse group organisation and group inter-

action issues. We illustrate through examples the different group coordination models which involve a
combination of message distribution, collation, synchronisation and filtering services. We start with the
basic coordination models which involve single group support services and proceed to more complex ones
which involve multiple services.

Group-Based Distributed Computing 80

Group Coordination Models: Platform Support and Policy Specification

7.4 The Basic Message Distribution Model

The most basic coordination pattern in a group-based application is the distribution of a service request or
a notification from a client object to a server group. The basic message distribution scheme involves the
specification of server group membership to whom the message is to be distributed and the type of ordered
multicast protocol to be used for message distribution, to the D-Agent.

7.4.1 Group Application-1: Stock Exchange Application
An automated stock exchange serves as a good example of group-based application in commercial domain.
As shown in figure 7.2, the stock exchange is composed of three main entities: the stocks, the brokers,
and the customers (each supported by a PC or a workstation). These entities are distributed on a combi-
nation of local and wide area networks. Each of them can be logically organised as a stock group, a bro-
ker group, and a customer group. A stock object is responsible for the management of its broker group
and the broker object is responsible for the management of its customer group.
Each member of the stock group represents a company whose shares are traded in the stock market and
periodically notifies the stock information of that company to the set of brokers who have subscribed to
that information. The following notification is broadcast periodically by the stock object to its broker
group: stock_i nfo(stock_id,time_of_day,stock_va l ue,stock_volume) .

 Fig. 7.2 Stock Exchange Application: A Group-Based Distributed Application
Each broker deals with the stocks of many companies, and hence a broker may be a member of “bro-

ker groups” of many stock objects. Brokers may also be specialised in certain types of stocks (or compa-
nies) and hence the customers must take services of specific brokers in order to buy the stocks of specific
companies. A customer may purchase different stocks through a broker. A broker is required to (periodi-
cally) notify the customers about the value of the stocks which they have purchased.

Stock-1 GSM

Stock-2 GSM

Stock-3 GSM

Stock-n GSM

Stock Group Broker Groups Customer Groups

Broker-1 GSM

Broker-2 GSM

Broker-r GSM

Broker-v GSM

Broker Group-1

Broker-m GSM

Broker-n GSM

Broker-p GSM

Customer-n

Broker Group-n

Customer-1

Customer-2

Customer-l

Customer-p

Customer-r

Customer-u

Customer-Group-1

Customer Group-v

Group-Based Distributed Computing 81

Group Coordination Models: Platform Support and Policy Specification

Each broker has a customer group which buys, sells, and receives other information about the stock
through the broker. A customer may be a member of customer groups of many brokers.

7.4.2 Message Distribution Requirements & Policy Specification
The above mentioned application represents a case in which information distribution is a major require-
ment. Each stock object notifies the current stock information to its broker group. Since this information is
distributed periodically, there is no stringent requirement for the atomicity of message delivery; it is suff i-
cient that stock notifications are delivered to the brokers in the order in which they are sent, i.e., source
ordered multicast is sufficient. Hence the D-Agent in the GSM bound to each stock object is programmed
with the following policy:

 Fig. 7.3 Message Distribution Policy Specification

7.5 Advanced Message Distribution Models: Smart D-Agents

Message distribution is the most basic group communication service. However coordination behaviors
within group-based applications tend to be complex and require some syntactical message transformations
before distribution. In the following subsections we present the two commonly required message transfor-
mations through examples and policy specification.

7.5.1 Splitting Transformation
The message distribution in its most basic form involves the distribution of complete (operation, notifica-
tion, or termination) message to the sink group. The source object invokes the complete message, but in
some cases, the members of the sink group are not interested in the entire message, or they may not be
capable of accepting or interpreting the complete message. Each member of the sink group may be inter-
ested in different parts of the message and hence capable of interpreting only limited parts of the message
signature. This implies that the message contents be selectively distributed to the sink group. Spli tting
transformation is a syntactical message transformation which splits a message into multiple component
messages. Each component message is identified by the name of the message and contains one or more
parameters of the original message.

This type of message transformation facil itates many group coordination models as shown in this
chapter. In particular it allows a computation to be divided amongst server group members by spli tting the
service request (operation message) into multiple component service requests (component operation mes-
sages) and distributing them to the members of the server group. The partial results can be combined upon
receipt, and a single answer can be presented to client. This type of distribution and collation scheme fully
exploits the multiprocessing capabilit ies available in distributed systems.

7.5.2 Message Splitting Requirements & Policy Specification
In group application-1, a broker object receives stock information from different stock objects at periodic
intervals. It is required to distribute the average stock price information daily (at the end of the business
day) to its customer group. The broker object sends the following notification to its customer group:

notificat i on_distribution_policy
for stock _info

distribut e stock_info(stock_id,time_of_day,stock _value,stock_volume)
to my_broker_group
using SOURCE_ORDERED_MULTICAST

end_polic y

Group-Based Distributed Computing 82

Group Coordination Models: Platform Support and Policy Specification

stock_info (price_Nortel,vol_Nortel,price_ATT,vol_ ATT,price_IBM,vol_IBM,
price_Cogn os,vol_Cognos). However the customers are interested only in the information about the
stocks that they have purchased. Hence relevant information needs to be distributed to individual members
of the customer group. The D-Agent, on the broker side, can be programmed to perform spli tting transfor-
mation before the distribution of the message, as shown in figure 7.4.

 Fig. 7.4 Spli tting Policy Specification

The source (broker) object need not be concerned about sending multiple component messages to
individual members of the sink (customer) group; it can make a single message invocation. The source may
also not necessarily need to know who the recipients are and what part of the information they are inter-
ested in. Moreover the broker application need not be modified as the customers are dynamically added or
removed from the customer group. These object group related aspects can be modified external to the (bro-
ker) application in the GSM.

7.5.3 Renaming Transformation
Another common group coordination model is the binding of a client object to a heterogeneous server
group. Clients often require access to multiple heterogeneous servers to obtain independent services in dis-
tributed applications such as parallel computational groups, process control applications, off ice automa-
tion, etc. In such applications each member of the server group provides a different service. As shown in
the example below, each member of the server group accepts the same client input, but performs different
processing on it and hence produces different types of results. In particular the client’s service request is
identified by different names by each member of the server group. In some cases it is also possible that the
service request (operation message) parameters are identified by different names on the client and server
side.

The above mentioned situation is also possible in homogeneous service groups, in which each mem-
ber of the server group can perform the requested operation and produce the same result, but the same ser-
vice request is identified by different names by each member. In all such cases, it is desirable that the
clients be able to invoke the server group through a single generic service request in order to maintain the
server group transparency.

notificat i on_distribution_policy
for stock _info

distribut e stock_info(price_Nortel,vol_Nortel,pri ce_ATT,vol_ATT,
price_IBM,vol_IBM,pric e_Cognos,vol_Cognos)

transform ed_as

[
component_message stock_info(price_Nort el, vol_Nortel)
to customer-1,customer-5,cutomer-9

us i ng SOURCE_ORDERED_MULTICAST

co mponent_message stock_info(price_ATT, v ol_ATT)

to customer-1, customer-2, customer-3, cu stomer-4
us i ng SOURCE_ORDERED_MULTICAST

co mponent_message srock_info(price_IBM, v ol_IBM)
to customer-2,customer-5,customer-6,custo mer-7
us i ng SOURCE_ORDERED_MULTICAST

co mponent_message stock_info(price_Cognos , vol_Cognos)
to customer-4,customer-8, customer-9
us i ng SOURCE_ORDERED_MULTICAST
]

end_policy

Group-Based Distributed Computing 83

Group Coordination Models: Platform Support and Policy Specification

This implies that the (operation, notification, termination) messages be appropriately renamed at the source
before distribution to the sink group so that these messages can be identified by their recipients. Naming
transformation is a syntactical message transformation in which a message and/or its parameters are
renamed appropriately before distribution. Since the GSM on the source side has the knowledge of the sink
group, this transformation is performed by the D-Agent before message distribution.

7.5.4 Group Application-2: Parallel Computational Group
In many cases a distributed application is organised as group-based application in order to exploit the par-
allelism and heterogeneity of application components. In such applications, the service is offered not by a
single server, but by a set of independent and heterogeneous server objects. One such application is a par-
allel computational group, which is an example of heterogeneous server group. In this example we con-
sider a simple computational group which is composed of set of server objects which offer different
services, such as an Adder, Multiplier, Arithmetic-Mean Generator, Geometric-Mean Generator, and Har-
monic-Mean Generator.

 Fig. 7.5 A Parallel Computational Group

The composition of the computational group is unknown to the client. The client invokes a single
generic service request: compute(a,b,c,d,e) on the group in order to obtain the sum, product, arith-
metic-mean, geometric-mean, and the harmonic-mean of the five numbers. However this service request is
recognized by different names by each member of the server group, as shown in figure 7.5. Hence the
client’s generic service request must be appropriately renamed before distribution. The client expects to
receive a single reply in the following termination signature: result(sum, product, am, gm,
hm). However each member of the server group sends part of the reply, namely the result(sum),
result(p r oduct), result(am) , result(gm), and result(hm) . Therefore the partial
replies sent by the members of the computational group must be assembled together into a single reply in
the client’s termination signature format.

Therefore the client can obtain the total service by invoking a single request on a group of heteroge-
neous servers and collating the received replies. The parallel computational group exemplifies a group
coordination model which involves operation message renaming and distribution on the client side and
reply collation on the client side. All these coordination patterns are rendered transparent to the client and

HM-Generator

GSMCLIENT

sum_of(p1,p2,p3,p4,p5)
::result(sum)

product_of(p1,p2,p3,p4,p5)

::result(product)

am_of(p1,p2,p3,p4,p
5
)

::result(am)

gm_of(p1,p2,p3,p4,p5)
::result(gm)

hm_of(p1,p2,p3,p4,p5)

::result(hm)

ADDER

MULTIPLIER

AM-Generator

GM-Generator

compute(a,b,c,d,e)
::result(sum,product,am,gm,hm)

PA
R

A
LL

E
L

C
O

M
P

U
TA

T
IO

N
A

L
G

R
O

U
P

Group-Based Distributed Computing 84

Group Coordination Models: Platform Support and Policy Specification

server application by the GSM. This type of coordination model also implies that a client can bind to a
server group if each group member provides partial service and the total service provided by individual
members meets the clients requirements.

7.5.5 Renaming Requirements & Policy Specification
In Group Application-2, the client’s generic service request must be renamed appropriately before distribu-
tion to the computational group, so that it can be recognised by the members of the computational group.
The following renaming and distribution policy specification programs the D-Agent on the client side
GSM to rename the message before distribution.

 Fig. 7.6 Renaming Policy Specification

The client is unaware of the existence of the multiple servers involved in the provision of the compu-
tational service and of the need to invoke individual servers by a different operation name.

7.6 Reply Collation and Delivery Models

The most common group coordination model is the binding of a client object to a server group. The server
group could either be a homogeneous group or a heterogeneous group. In this type of coordination model,
the client object interrogates a server group and it receives multiple replies, one from each member of the
group. The question that arises is how does the client want these replies to be collated and the order in
which the replies to be delivered to it. As shown in the examples in this section, the clients have their own
requirements (or preferences) with respect to the collation of replies and the order in which those replies
are delivered to them. The following issues arise with respect to the reply collation and its delivery to the
client object.
1. Reply collation based upon cardinality: The reply collation policy implements the failure semantics of

the group interrogation. It dictates how many servers must successfully reply in order for the group

operation _distribution_policy
for comput e
distribut e compute(a,b,c,d,e)
transform ed_as

[
renamed_message sum_of(p1,p2,p3,p4 , p5)
to ADDER
using SOURCE_ORDERED_MULTICAST

renamed_message produ ct_of(p1,p2,p3,p4,p5)
to MULTIPLIER
using SOURCE_ORDERED_MULTICAST

renamed_message am_of (p1,p2,p3,p4,p5)
to AM-GENERATOR
using SOURCE_ORDERED_MULTICAST

renamed_message gm_of (p1,p2,p3,p4,p5)
to GM-GENERATOR
using SOURCE_ORDERED_MULTICAST

renamed_message hm_of (p1,p2,p3,p4,p5)
to HM-GENERATOR
using SOURCE_ORDERED_MULTICAST
]

end_policy

Group-Based Distributed Computing 85

Group Coordination Models: Platform Support and Policy Specification

interrogation to be considered successful. In some other cases, the client may want to receive fixed-size
group terminations, separately, in order to ease the processing of the terminations.

2. Reply collation based upon sender identity: In some other applications, the client wants to receive the
replies sent by some specified senders together in a single group termination, in order to separately anal-
yse the replies received from different sender groups.

3. Reply collation based upon reply type: In case of heterogeneous server groups, different types of replies
are received from the group in response to the client’s operation invocation. In such applications the cli -
ents wish to receive all i nstances of replies of a given type together in a single group termination, in
order to separately analyse different types of replies.

4. Separate delivery of singleton replies: Many clients wish to receive singleton replies as soon as they are
received by their local GSM because they do not want to wait for a long time to receive all the replies as
a single group reply. In these applications, the replies are processed as soon as they are received.

5. Ordered reply delivery: Some clients wish to receive and process the replies in a certain order. Sequen-
tial delivery of singleton is requested in the following cases:
- Pick the chosen few and discard the rest: In some cases, the clients want to receive and process certain

desired reply types or replies from certain important (crucial) members before others and if the replies
already collected are suff icient, the client requests to terminate the delivery of the rest of the replies.

- Process all of them in a certain order: When the client application requires processing of certain reply
types or replies from certain senders in some sequential order, for example to bring a certain desired
state change, etc.

In such cases the clients pre-specify the order of reply delivery to their proxy object, the GSM (C-
Agent), and the replies are delivered to the clients only when the reply delivery is explicitly solicited.
This is typical of clients which have ‘solicited reply reception capabili ty’ .

6. Disabling of reply delivery: In some cases, the client is interested in receiving a certain reply and if that
reply type is received from any of the senders, it may require other reply types to be abandoned and only
the desired one delivered to it. Similarly if an exception termination is reported by any of the senders,
then the client may wish to abandon the rest of the replies.

Table 7.1: Reply Collation and Delivery Schemes

Collation and d elivery of instances of sing le reply type to client

1. multiple reply instances delivered as a single group termination: matrix-mode collation

2. multiple reply instances delivered as a single group termination: linear-mode collation

3. multiple reply instances delivered separately in any order

4. multiple reply instances delivered separately in specific order

Collation and d elivery of instances of multiple reply types to client

5. delivery of multiple instances of each reply type as separate group terminations in any order

6. delivery of multiple instances of each reply type as separate group terminations in specified order

7. delivery of multiple instances of each reply type as singleton terminations in any order

8. delivery of multiple instances of each reply type as singleton terminations in specific order

Special Cases

9. discarding the rest of the reply types on the arrival of the specific reply type

10. choosing between reply types

Group-Based Distributed Computing 86

Group Coordination Models: Platform Support and Policy Specification

These requirements are typical of group-oriented client applications. They dictate a sophisticated
reply collation and delivery policy specification in order to program the C-Agent in the client’s GSM about
how and when to deliver the replies. The GPSL is capable of specifying these complex reply collation and
delivery policies as shown in the examples below.

Some of the important reply collation and delivery schemes commonly required by group-oriented
client applications are summarized in table7.1 . In the following subsections we ill ustrate these scenar-
ios through examples, together with the corresponding policy specification.

7.6.1 Group Application-3: Stock Inventory System
A stock inventory system is a good example of group-based application which exhibits different reply col-
lation and delivery scenarios. The consumers, suppliers, and the inventory manager are the main compo-
nents of an inventory system.

Every retail business (such as department store, grocery store, stationery store, etc.) has its own
inventory system. Each retail business sells multiple types of merchandise. The inventory manager is
responsible for keeping sufficient merchandise in the inventory storage. It must order the merchandise from
the suppliers whenever the merchandise goes below a certain threshold level. Typically there are multiple
suppliers for each type of merchandise. The suppliers of a particular merchandise are organised as a sup-
plier group. Hence there are multiple supplier groups, one for each type of merchandise.

 Fig. 7.7 Stock Inventory System

Consider the configuration of a distributed inventory system shown in figure7.7. Every retail
business has a set of retail outlets (for example check-out machines) through which products are sold to
customers. These retail outlets act as consumers and they are organised as a consumer group. The
inventory manager periodically checks the current levels of merchandise availability by sending the fol-
lowing service request (operation message) to the consumer group: query_sale_status() . On
receipt of this request, each member of the consumer group responds with the following reply (termina-

Retail
Outlet-2

Retail
Outlet-n

Retail
Outlet-3

Supplier-1

Supplier-p

S
up

pl
ie

r
G

ro
up

-1
S

up
pl

ie
r

G
ro

up
-m

GSMGSM
Inventory
Manager

Supplier-1

Supplier-k

C
o

n
su

m
er

 G
ro

u
p

Group-Based Distributed Computing 87

Group Coordination Models: Platform Support and Policy Specification

tion message): sale_status(me r chandise-1, merchandise- 2,....,merchandise-
n) , indicating the number of products of each type that have been sold since the previous query through
a given retail outlet (check-out machine).

After receiving the current merchandise sale information from the consumer group, the inventory
manager calculates the current merchandise availability for each merchandise type. If any merchandise
falls below a certain threshold level in the inventory, the inventory manager must start the process of order-
ing the merchandise from the corresponding merchandise’s supplier group.

The inventory manager starts with finding out how much quantity of a given merchandise each sup-
plier can provide and consequently how many suppliers it should contact (or place an order) in order to
meet its inventory requirements. So it invokes the following service request (operation message)
“query_merchandise_ava i lability(merchandise_id) ” on the supplier group (acting as
a server group) to find out their supply capability. Each member of the supplier group responds with the
following reply to indicate the quantity of merchandise it can supply:
merchand i se_availability(merchandise_id,q uantity) .

7.6.2 Delivery of Group Termination o f a Sing le Reply Type: Matrix-Mode Collation
When a client interrogates a homogeneous server group, it receives multiple replies which are instances of
the same reply type (i.e., termination signature), but they are not identical replies. The client wants to
receive all the replies together in a single group termination so that it can analyse (or process) them
together and make some application-specific decision based upon group reply. Moreover the client cannot
start processing the individual replies until it has received all of them. In such cases, a single group termi-
nation is constructed (in either matrix or linear mode depending upon whether complete or partial reply
instances are received) after all the replies are received by the C-Agent in the client’s GSM. The previous
example illustrates this as well as some other reply collation requirement.

7.6.2.1 Reply Collation Requirements & Policy Specification
In group application-3, the inventory manager cannot calculate the current merchandise level (merchandise
availability) until it has received the ‘sale status’ information from all the members of the consumer group
(check-out machines). So it wants to receive this information from all the members of the consumer group
together through a single group termination. Since every member of the consumer group sends the sale sta-
tus of each merchandise, the replies must be combined in matrix-mode (see section 3.6.1). Moreover
the inventory manager does not want to wait an indefinite period of time for the delivery of group reply.
Usually the ‘sale status’ replies are received immediately from the consumer group, so the inventory
manager wants any number of replies received within 5 minutes of issuing the
“query_sale_status ” be combined into a group termination and delivered to it.

 Fig. 7.8 Reply collation and d elivery po licy of a single group termination (matrix-mode)
The policy specification shown in figure 7.8 captures these requirements for the collation of replies.
The C-Agent in the GSM of the inventory manager is programmed with this policy.

terminati on_collation_policy
for query _sale_status

[
deliver sale_status(me r chandise-1,.................,merchandi se-n)
from con sumer_Group
within 5 minutes
collation _cardinality UNSPECIFIED
collation _mode MATRIX

]

end_polic y

Group-Based Distributed Computing 88

Group Coordination Models: Platform Support and Policy Specification

7.6.2.2 Transparency and Policy Interpretation
The policy specifies the collation of any number of the instances of the reply “sale_status(mer-
chandise - 1,.,merchandise-n) ” received from the consumer group within 5 minutes of the issu-
ing of the corresponding operation message “query_sale_status ” in the matrix mode. The client
(inventory manager) need not be concerned about collecting multiple and possibly variable number of
replies, if the consumer group is transparent.

7.6.3 Delivery of Group Termination o f a Sing le Reply Type: Linear-Mode Collation
In some cases a client object is transparently bound to a server group, as if it was bound to a singleton
server. The client expects to receive a single reply as a singleton termination message. If each member of
the server group gives partial reply (i.e., part of the termination signature), then the total reply must be con-
structed by assembling together partial replies using linear-mode collation (see section 3.6.2).

7.6.3.1 Reply Collation Requirements & Policy Specification
In group application-2, the client expects to receive a single reply in the following termination signature:
result(s um, product, am, gm, hm). However each member of the computational group sends
part of the reply, namely the result(sum), result(product), result(am),
result(g m), and result(hm). Therefore these partial replies must be assembled together into a
single reply in the client’s termination signature format, using linear mode collation. Moreover replies from
all the members of the computational group must be received, otherwise the reply cannot be constructed
(and an exception termination has to be sent to the client by the GSM). The client wants the complete reply
to be delivered to it within, say 5 minutes, of the corresponding operation invocation, (otherwise an excep-
tion termination is sent to the client by the GSM).The following policy specification captures the above
mentioned requirements for the collation of replies received from the computational group. The C-Agent in
the GSM of the client is programmed with this policy.

 Fig. 7.9 Reply collation and d elivery po licy of a single group termination (linear-mode)

7.6.3.2 Transparency & Policy Interpretation
The policy specifies to collate the partial instances of the termination signature “result(sum, prod-
uct, am, g m, hm) ” which are received from the computational group, within 5 minutes of the issu-
ing of the corresponding operation message “compute ” , in the linear mode, only if all i nputs are received
from all members of the computational group, otherwise an exception termination must be constructed by
the C-Agent and delivered to the client object.

The client is unaware of the existence of the multiple servers involved in the provision of the compu-
tational service and of the need to combine partial replies sent by each member of the group.

7.6.4 Unordered Delivery of Sing leton Terminations of a Reply Type
In some cases the client wants the replies from the server group to be delivered to it as soon as they are

terminati on_collation_policy
for comput e

[
deliver r esult(sum, product, am, gm, hm)
from computational_Group
within 5 minutes
collation _cardinality ATLEAST(ALL)
collation _mode LINEAR

]
end_polic y

Group-Based Distributed Computing 89

Group Coordination Models: Platform Support and Policy Specification

received by the GSM in order to avoid the delay associated with the reception of the group reply, particu-
larly when the members of the server group are prone to sending late replies or when the client has imme-
diate reply requirements. So singleton replies need to be delivered to the client separately in the order in
which they arrive. In such cases the client is not necessarily interested in receiving all the replies. In partic-
ular, when the replies already delivered are suff icient for it to proceed, the client may request the reply
delivery to be terminated (i.e., terminable reply delivery semantics). In order to control the delivery of
replies, the client may use the ‘polled reply delivery scheme’ , so that the GSM will deliver the reply only
when client explicitly requests it, provided that the reply is available.

7.6.4.1 Unordered Reply Delivery Requirement and Policy Specification
In group application-3, the suppliers give their replies (i.e., merchandise availabil ity information) to the
inventory manager’s query only when they have the product currently available, otherwise they delay their
reply. The suppliers may also delay their replies due to some other considerations. However the inventory
manager is interested in finding out the product availabil ity as soon as possible (so that it can place an
order). So the inventory manager is interested in receiving the replies from the supplier group as soon as
they are received by its GSM. Once the inventory manager can obtain the required quantity of the merchan-
dise from the suppliers whose replies it has analysed, it may request the delivery of other replies to be ter-
minated. The inventory manager queries the supplier group periodically. The inventory manager puts a
certain time limit on the receipt of replies, after which it wil l place an order with the suppliers who have
responded to its query within the time limit. The following policy specification captures the above men-
tioned requirements for reply collation and delivery. The C-Agent of the inventory manager’s GSM is pro-
grammed with this policy.

 Fig. 7.10 Unordered delivery of sing leton terminations of a reply type

7.6.4.2 Transparency & Policy Interpretation
The policy specifies the delivery of the instances of reply
“merchandise_availabil i ty(merchandise_id,quantity) ” , as singleton termination
messages, to the inventory manager object in the order in which they are received from the supplier group,
within 60 minutes of the corresponding operation invocation.

7.6.5 Ordered Delivery of Sing leton Terminations of a Reply Type
The order of delivery of singleton replies to the client object is an important criterion in some applications.
The client not only wants to receive individual replies, but it also wants some replies to be delivered before
others, based upon the sender of the reply. This allows the client to pick and process the replies from some
of its favored servers before others. When the replies already delivered are sufficient for it to proceed, the
client may request the delivery of the replies from the rest of the servers to be abandoned.

termination_ collation_policy
for query_me r chandise_availability

[
deliver merchandise_availability(merch andise_id,quantity)
from supplier_Group
within 60 minutes
collation_cardinality UNSPECIFIED
collation_mode SINGLETON(ANY-ORDER)

]
end_policy

Group-Based Distributed Computing 90

Group Coordination Models: Platform Support and Policy Specification

7.6.5.1 Ordered Reply Delivery Requirement & Policy Specification
Consider the following variation in the requirement of group application-3. The suppliers of a given mer-
chandise are distributed and located at different places. If the inventory manager wants to order the mer-
chandise from the suppliers nearer to it than those farther from it, in order to reduce transportation cost or
delivery times, then it would like to receive the replies (merchandise availabil ity information) from the
nearest vendors first. As soon as the required quantity of the product is available from the nearest suppliers,
the inventory manager may not be interested in hearing from other suppliers. The following policy specifi-
cation captures the above mentioned requirements for reply collation and delivery. The C-Agent of the
inventory manager’s GSM is programmed with this policy.

 Fig. 7.11 Ordered delivery of sing leton terminations of a reply type

7.6.5.2 Transparency & Policy Interpretation
The policy specifies to the C-Agent to deliver the instances of reply
“merchandise_availabil i ty(merchandise_id,quantity) ” , received from the suppliers
listed in the “from ” clause, as singleton termination messages, in the order in which the suppliers are
listed in the “ fro m” clause, within 60 minutes of the corresponding operation invocation.

7.6.6 Unordered Delivery of Multiple Reply Types as Sing leton Terminations
When a client object invokes a heterogeneous server group, it not only receives multiple replies, but the
received replies are of different types, i.e., instances of different termination signatures. A question that
arises in such a case is how to collate and deliver instances of multiple reply types to the client object. As
shown in the following examples, the client applications exhibit different requirements with respect to
these options. One such option is the unordered delivery of multiple reply types as singleton terminations.
In such a case the client application is characterised by the following requirements:
1. client is interested in receiving all reply types in any order
2. the client is interested in receiving instances of each reply type as singleton terminations so that they can

be delivered to it as soon as they are received by GSM and hence processed immediately; when suff i-
cient number of instances of a given reply type are received, the client may ignore the rest of the
instances of that type.

3. the client may require the instances of a given reply type to be delivered to it in certain order in order to
process the replies from its preferred servers earlier than the rest.

7.6.6.1 Reply Collation & Delivery Requirements and Policy Specification
Consider a specific example of stock inventory system (group application-3) in retail grocery business. In
this case the inventory manager deals with different supplier groups, for example there is a dairy group,
bakery group, meat group, fruits group, etc. If the policy of the grocery store is to order the required quan-
tities of merchandise periodically, say every two days (in order to get the fresh supplies), then the inventory
manager invokes the following service request (operation message):
“query_merchandise_ava i lability(my_store_id) ”on all the suppliers groups to find out

terminati on_collation_polic
y

for query _merchandise_availability
[
deliver merchandise_availability(merchandise_id, quantity)
from supplier-3, supplier-2, suppli er-5, supplier-1,supplier-4
within 60 minutes
collation_cardinality UNSPECIFIED
collation_mode SINGLETON(ORDERED)

]
end_policy

Group-Based Distributed Computing 91

Group Coordination Models: Platform Support and Policy Specification

the quantity of merchandise in the respective domains each supplier can provide. The members of the sup-
plier groups respond to this generic service request with the following different reply types, indicating the
quantity of each product that they can supply:
Dairy group: diary_availability(milk,ch eese,butter,yougurt)
Bakery group: bakery_availability(white_br ead,brown_bread,muffins)
Meat group: meat_availability(l amb,beef,chicken)
Fruit group: fruit_availability(a pple, banana, orange, strawberry)

The inventory manager has a requirement of specific quantities of each merchandise type and is inter-
ested in placing the purchase order with the nearest suppliers. Therefore the inventory manager wants the
replies from each supplier group to be delivered to it sequentially starting with the nearest supplier to the
farthest one, and as soon as the required quantity of product is achievable from the nearest suppliers whose
replies it has processed first, the inventory manager is not interested in replies from the rest of the suppliers
in that group and may ignore those replies.

 Fig. 7.12 Policy Specification for interleaved delivery of instances of multiple reply types
In this example, the inventory manager is interested in receiving all the reply types. Moreover it want

replies from a given supplier group delivered to it in a certain order (in the order of the proximity of the
supplier). However replies from different supplier groups can be interleaved in any order. The inventory
manager can accept the replies received within 50 minutes of corresponding query for merchandise avail -

terminati on_collation_policy
for query _merchandise_availability

[
deliver diary_availability(milk, ch eese, butter, yogurt)
from diar y_Supplier-3,diary_Supplier-2,diary_Supp l ier-4,

diary_Supplier-1,diary_ Supplier-4
within 50 minutes
collation _cardinality UNSPECIFIED
collation_mode SINGLETON(ORDERED)

]
interleav ed_with
[
deliver bakery_availability(white_b r ead, brown_bread, muffins)
from bakery_Supplier-3,bakery_Suppli er-2,bakery_Supplier-5,

bakery_Supplier-1,bakery_Supplier-4, bakery_Supplier-6
within 50 minutes
collation_cardinality UNSPECIFIED
collation_mode SINGLETON(ORDERED)

]
interleaved_with
[
deliver meat_availabil i ty(lamb, beef, chicken)
from meat_Supplier-3,meat_Supplier-2 , meat_Supplier-1
within 50 minutes
collation_cardinality UNSPECIFIED
collation_mode SINGLETON(ORDERED)

]
interleaved_with
[
deliver fruit_availability(apple, b anana, orange, strawberry)
from fruit_Supplier-3, f ruit_Supplier-2,fruit_Supplier-4,fruit_ Supplier-1
within 50 minutes
collation _cardinality UNSPECIFIED
collation _mode SINGLETON(ORDERED)

]
end_policy

Group-Based Distributed Computing 92

Group Coordination Models: Platform Support and Policy Specification

abil ity. The policy specification shown in figure 7.12 captures the above mentioned requirements. The
C-Agent of the inventory manager’s GSM is programmed with this policy.

7.6.6.2 Transparency & Policy Interpretation
The policy specifies the delivery of the instances of each reply type as singleton termination messages, to
the client (inventory manager) object in the order in which the suppliers are listed in the corresponding
“ from ” clause, within 50 minutes of the corresponding operation invocation. The suppliers are listed in
the “from ” in the order of their proximity to the grocery store. The instances of different reply types may
be interleaved and delivered in any order.

7.6.7 Unordered Delivery of Multiple Reply Types as Group Terminations
In some ‘multiple reply type’ client applications, the client cannot make an application-specific decision
(i.e., it cannot proceed further) until i t has received all i nstances of each reply type. In such cases it is better
to collate instances of each reply type into group terminations and to deliver multiple group terminations,
one for each reply type, to the client object. These group terminations can be delivered to the client in any
order, as soon as the all the instances of a reply type are received by the GSM, because the client applica-
tion wants to receive all the reply types and is unaffected by the order of delivery of those reply types.

 Fig. 7.13 Policy specification for Unordered Delivery of Multiple Reply Types as Group Terminations

terminati on_collation_policy
for query _merchandise_availability

[

from diary_Supplier_Gr oup
within 50 minutes
collation _cardinality UNSPECIFIED
collation _mode MATRIX

]
interleaved_with
[
deliver bakery_availab i lity(white_bread_quantity,white_bread_ price,

from bake r y_Supplier_Group
within 50 minutes
collation_cardinality UNSPECIFIED
collation_mode MATRIX

]
interleaved_with
[
deliver meat_availability(lamb_quantity,lamb_pri ce,beef_quantity,beef_price)
from meat_Supplier_Group
within 50 minutes
collation_cardinality UNSPECIFIED
collation_mode MATRIX

]
interleaved_with
[
deliver fruit_availabi l ity(apple_quantity,apple_price,orange_ quantity,

from fruit_Supplier_Group
within 50 minutes
collation_cardinality UNSPECIFIED
collation_mode MATRIX

]
end_policy

muffins_quantity,muffins _price)

orangeprice,banana_quant i ty,banana_price)

deliver dairy_availability(milk_qua ntity,milk_price,cheese_quantity,
cheese_price,butter_q uantity,butter_price)

Group-Based Distributed Computing 93

Group Coordination Models: Platform Support and Policy Specification

7.6.7.1 Reply Collation & Delivery Requirement and Policy Specification
Consider a slight variation in requirement of the previous example. If the inventory manager makes a pur-
chase decision based upon the cost of the product rather than the proximity of the product supplier, then the
inventory manager must receive all the replies from a supplier group to find out which supplier sells a given
product at the lowest price. In this case, as soon as all the replies from a given supplier group are received
by the GSM, a group termination must be constructed and delivered to the inventory manager. Here it is
convenient for the inventory manager to process a single group reply. The group terminations from differ-
ent supplier groups can be delivered in any order. In this case each supplier not only provides the informa-
tion about the quantity of the product that it can supply, but also the price of the product in its reply to
the inventory manager’s query for product availabil ity. The policy specification shown in figure7.13
captures the above mentioned requirements for reply collation and delivery. The C-Agent of the inven-
tory manager’s GSM is programmed with this policy.

7.6.7.2 Transparency & Policy Interpretation
The policy in figure 7.13 specifies to the C-Agent to deliver all instances of each reply type as group
termination messages as soon as all replies from a given supplier group are received. The instances of
different reply types may be interleaved and delivered in any order.

7.6.8 Ordered Delivery Multiple Reply Types as Sing leton Terminations
In some ‘multiple reply type’ client applications, the clients have preference for certain types of replies.
They wish to receive certain reply types before others and when suff icient number of the desired reply
types are received, they may terminate the flow of rest of the replies. In such applications the order of reply
delivery is based upon the ‘ type of the reply’ . In some applications, the client also knows how many
instances of a given reply type to expect and who sends those reply types.

7.6.8.1 Reply Collation & Delivery Requirement and Policy Specification
Consider another instance of a stock inventory system (group application-3) in a department store. We
illustrate the requirement of ordered delivery of multiple reply types as singleton terminations through a
simple example. A department store, amongst many other merchandise, carries winter jackets. These jack-
ets come in different colors. The customers show a certain preference for the color, say green, blue, and red
in the order.

So the inventory manager wishes to keep as many green (and then blue) jackets in stock as available
from the suppliers. There are multiple suppliers of winter jackets and each supplier provides a specific-col-
ored jacket. During the winter season, the inventory manager wishes to keep his stock of jackets at a certain
threshold level, so it periodically sends the following query to the supplier group to find out the type (color)
of the jacket and the quantities available from each of the supplier:
“query_merchandise_ava i lability(my_store_id) ” .
On receipt of this query, the jacket suppliers respond with one of the following replies:
green_ja cket(supplier_id,quantity,date_av ailable,cost_per_piece)
blue_jac ket(supplier_id,quantity,date_ava i lable,cost_per_piece)
red_jack et(supplier_id,quantity,date_avai l able,cost_per_piece)

If the inventory manager can get the required quantities of green jackets, then it is not interested in
receiving other types of replies. If the required quantity of green jackets is not available, the it wishes to
receive the replies of the blue jacket suppliers, etc. Moreover, the inventory manager has a certain time
limit associated with receiving the replies, after which it wil l order what ever is available from the suppliers
who have responded to its query. The following policy specification captures these requirements.

Group-Based Distributed Computing 94

Group Coordination Models: Platform Support and Policy Specification

 Fig. 7.14 Policy Specification for Ordered Delivery of Multiple Reply Types as Sing leton Terminations

7.6.8.2 Transparency & Policy Interpretation
The policy in figure7.14 specifies to the C-Agent to deliver instances of each reply type as singleton
terminations. The instances of the reply “blue_jacket() ” are delivered to the client only when all
the instances of the reply “green_ j acket() ” are received from its supplier group or after the expiry
of its time out period, whichever occurs first. Similarly, the instances of the reply “ red_jacket() ”
are delivered only when all the instances of the reply “bl ue_jacket() ” are received from its sup-
plier group or after the expiry of its time out period.

7.6.9 Disabling the Delivery of Other Reply Types by a Preferred Reply Type
Although a client object may receive multiple reply types from the server group, in some applications, the
client is interested in only one specific reply type and if this reply type is generated by any one member of
the server group, all other reply types are of no significance to the client. If this desired (or preferred) reply
type is received, then all other reply types need to be discarded and only the desired reply type delivered to
the client. In the absence of the receipt of the desired reply type the client may be interested in receiving the
other replies. The following example demonstrates this requirement.

7.6.9.1 Group Application-4: Mobile Telecommunications
Mobile telecommunications gives the subscriber the freedom of mobility. It gives the subscriber the ability
to receive and initiate phone calls on his or her terminal anywhere in the ‘mobili ty domain’ and be charged
to his home phone account. The subscriber (or terminal) is registered in one administrative domain (a
country or a telecommunications company). The subscriber (terminal) registration service within an
administrative domain is usually implemented as a distributed name service in which the global name
space (subscriber identification information) is partitioned, and a different name server maintains each par-
tition. In case of mobile telecommunications, the terminal registration service is distributed between multi -

terminati on_collation_policy
for query _merchandise_availability

[

from green_jacket_supp l ier_Group
within 60 minutes
collation_cardinality UNSPECIFIED
collation_mode SINGLETON

]
followed_by
[
deliver blue_jacket(su pplier_id,quantity,date_available,cost_ per_piece)
from blue_jacket_Suppl i er_Group
within 60 minutes
collation_cardinality UNSPECIFIED
collation_mode SINGLETON

]
followed_by
[
deliver red_jacket (supplier_id,quantity,date_ava i lable,cost_per_piece)
from red_jacket_Supplier_Group
within 60 minutes
collation_cardinality UNSPECIFIED
collation_mode SINGLETON

]
end_policy

deliver green_jacket(s upplier_id,quantity,date_available,cost _per_piece)

Group-Based Distributed Computing 95

Group Coordination Models: Platform Support and Policy Specification

ple Home Location Registers (HLRs) located in different cities and organised as a single logical service,
called an ‘HLR Group’ . A subscriber (terminal) is registered in one of the HLRs.

 Fig. 7.15 Group Interrogation in Mobile Telecommunications
When the user visits a foreign administrative domain and wishes to initiate or receive calls, he must

register with the Visitor Location Register (VLR) of the visited domain. The VLR groupcasts an authenti-
cation request, authenticate _terminal(terminal_id) , to the HLR Group of the users
domain. If the user is registered, only one of the members of the HLR group responds positively with the
reply registered_t erminal(terminal_id) , while all others respond negatively with the reply
unregist ered_terminal(terminal_id) . If the user is unregistered, then all HLRs respond
with unregistered_terminal(terminal_ i d) .

7.6.9.2 Reply Collation & Deliver Requirement and Policy Specification
In group application-4, the VLR is interested in receiving a registered_ t erminal() reply from
any one of the members of the HLR group. If this reply is received from any one of the HLRs, then all
other replies are of no significance to the VLR (client). If the terminal is not registered in any HLR, then
one unregistered_ t erminal() reply is sufficient, say the most recent one. Since the VLR cannot
wait indefinitely, a time limit has to be imposed for the acceptance of replies. If reply from any one of the
HLR group members is not received within the specified time limit, then the VLR should receive an excep-
tion from its GSM indicating the receipt of insuff icient replies within the specified time limit.
It is irrelevant to the client (VLR) which name server (HLR) responds. The policy specification in
figure7.16 captures the above mentioned reply collation and delivery requirements. The C-Agent of the
VLR’s GSM is programmed with this policy.

7.6.9.3 Transparency & Policy Interpretation
It may be noted that if the “registered_terminal(terminal_id) ” reply is received from any one mem-
ber of the HLR group, then delivery of the rest of the replies is disabled, and this reply is delivered to the
client. However in order to deliver the “unr egistered_terminal(terminal_id) ” reply, the GSM must
wait until the receipt of this type of reply from all members of the HLR group. Since one reply of this type
is sufficient, only one reply (the most recent one) is picked out of the many
“unregistered_terminal(ter minal_id) ” replies for delivery to the client (VLR).

HLR-1

HLR-2

HLR-n

GSMVLR

H
L

R
 G

ro
u

p

Group-Based Distributed Computing 96

Group Coordination Models: Platform Support and Policy Specification

 Fig. 7.16 Policy Specification for Disabling the Delivery of Other Reply Types by a Preferred Reply Type

7.6.10 Choice between Multiple Reply Types
In some applications, the clients may show choice between reply types based upon some criterion such as
the number of the received reply instances, for example to know what do the majority of the interrogants
say. In other cases this choice is based upon the source of the reply type, for example to know what do spe-
cific members of the interrogated group have to say. The following example demonstrates this requirement.

7.6.10.1 Group Application-5: Group Survey
Group survey is a common practice in many application domains. A surveyor object wishes to collect the
opinion of the members of the surveyed group on a particular subject or topic. The surveyor object broad-
casts a “query(topic) ” message to the surveyed group and waits for their reply. In such applications a
binary reply is expected from the surveyed group. It could be a Yes() or No() reply or an approved() or
unapproved _reply() , etc. In the simplest case the surveyor object is interested in the reply returned by
the majority of the surveyed group members. In some other cases, the surveyor object is interested in all the
received reply types and the number of instances of those reply types.

 Fig. 7.17 Policy Specification for Choo sing b etween reply types based upon cardinality requ irements

terminati on_collation_policy
for authe nticate_terminal

[
deliver unregistered_t erminal(terminal_id)
from HLR_Group
within 900 msec
collation _cardinality ATLEAST(ALL)
collation _mode MATRIX(RECENT)

]
disabled_by
[
deliver registered_ter minal(terminal_id)
from HLR_Group
within 900 msec
collation_cardinality ATMOST(1)
collation _mode SINGLETON

]
end_policy

terminati on_collation_policy
for query

[
deliver Yes(member_id)
from Surv eyed_Group
within 1 day
collation _cardinality ATLEAST(MAJORITY),ATMOST(ALL)
collation _mode MATRIX

]
choice
[
deliver No(member_id)
from Surveyed_Group
within 1 day
collation _cardinality ATLEAST(MAJORITY),ATMOST(ALL)
collation _mode MATRIX

]
end_policy

Group-Based Distributed Computing 97

Group Coordination Models: Platform Support and Policy Specification

7.6.10.2 Reply Collation & Deliver Requirement and Policy Specification
In group application-5, the surveyor object is interested in receiving only the reply type which is returned
by majority of the surveyed group members. Moreover, it wants to know the identities of these members.
The other reply types should be discarded. The policy specification figure7.17 captures the above men-
tioned reply collation and delivery requirements. The C-Agent of the surveyor’s GSM is programmed
with this policy.

7.6.10.3 Transparency & Policy Interpretation
The choice operator in figure 7.17 explores both the sides simultaneously and delivers only one of the
message for which the ‘cardinality’ (or collation time out) clause is satisfied first and drops the other.

7.6.10.4 Group Application-6: Scheduling Group Meeting
Scheduling group meetings is another common requirement in many organisations. A secretary is respon-
sible for scheduling these meetings. The secretary sends a query “are_you_available(d ay,time) ” to
the members of the group to find out their availability on a particular day and time. The members respond
with “Yes(member _id) ” or “No(member_id) ” replies. Usually there are some minimum membership
requirements for scheduling meetings, such as a meeting cannot be scheduled without the presence of at
least three managers and at least five staff members.

7.6.10.5 Reply Collation & Deliver Requirement and Policy Specification
In group application-6, a meeting cannot be scheduled without the presence of at least three managers and
at least 5 staff members. Moreover, the secretary wants to know the identities of all members who are will -
ing to attend the meeting. If this condition cannot be satisfied, the secretary wants to get a single ‘No’
reply.

The following policy specification captures the above mentioned reply collation and delivery require-
ments. The C-Agent of the secretary’s GSM is programmed with this policy.

 Fig. 7.18 Policy Specification for Choo sing b etween reply types based upon sender identity

7.6.10.6 Transparency & Policy Interpretation
This policy specification delivers one of the two reply types to the client based upon the above mentioned
rule. Moreover a single “No” reply (the most recent one) is sent if the above condition is not satisfied.

terminati on_collation_policy
for are_y ou_available

[
deliver No()
from MANAGER_Group, STAFF_Group
within 1 day
collation_cardinality UNSPECIFIED
collation_mode MATRIX(RECENT)

]
disabled_by
[
deliver Yes(member_id)
from MANAGER_Group, STAFF_Group
within 1 day
collation_cardinality ATLEAST(ANY(3,MANAGER),ANY(5,STAFF)),

ATMOST(ALL)
collation_mode MATRIX

]
end_polic y

Group-Based Distributed Computing 98

Group Coordination Models: Platform Support and Policy Specification

7.7 ‘Group -Service’ Request Models: Service Request Collation Models

The basic client-server model is a ‘single request - single reply’ model. Some group-based applications
give rise to ‘group-service request - multiple reply models’ , as shown in the examples below. These type of
applications are examples of “client group - singleton server” coordination models in which a set of clients
which are related to each other in an application-specific manner and which require the same type of ser-
vice are organised as a client group and are placed under the supervision or management or service of a
single (supervisor or manager or) server object. Such coordination models are typically characterized by
the following properties (see section 2.2.2.4):
1. Multiple instances of the same service request (operation signature) or instances of different parts of the

same service request are invoked from client group to server object.
2. Service requests are invoked periodically from client group to server object.
3. Server’s reply is based upon the group-input (group service request).

These type of applications require that the individual service requests of the same type from the
members of the client group be combined together into a single “group-service request” which is invoked
on the server object. The server object now has access to the total group service request through a single
operation invocation. The server object can then analyse or process the total group input together and give
its reply (or replies) to the client group members based upon the group input. The subsequent activities (or
behavior) of the client group members is modified upon the receipt of the reply from the server object.
Hence these types of coordination models are characterised by the following additional property: “ the sub-
sequent activities (or behavior) of each client is dependent upon and | or biased by the previous activities
(or behavior) of the rest of the members of the client group” .

This type of group coordination model involves the collation of clients service requests into a
group service request which is invoked on the server object and the distribution of multiple replies gen-
erated by the server object (in response to the group service request) to the members of the client group.
There are many applications which exhibit this type of group coordination model, such as network
management systems, land or mobile traffic control systems, process control applications, etc.

7.7.1 Group Application-7: Network Management Application
Client groups offer a convenient solution to the problem of organising a set of related objects under the
management (or control) of a manager object and for disseminating monitoring and management informa-
tion in distributed applications. Network management systems exhibit two prominent characteristics of cli -
ent group-based applications:
1. Client group models: The two main entities of the network management systems are the manager objects

and the managed objects. A group of related managed objects in a certain geographic area or in a partic-
ular administrative domain are organised together as a single logical entity which is managed by a man-
ager object. Each managed object sends its partial (and local) status information to the manager object
and expects to receive a management signal from it based upon the total group input. Here we have a
case of “client group” interacting with a single server object.

2. Global decision models: Network management systems are based upon global decision models which
rely on network-wide status information for management function. Examples of global decision mecha-
nisms include routing algorithms that compute routes based upon network-wide traff ic conditions such
as link failures, congestion conditions, etc. Network managers require global network input before they
can make any management decisions in order to optimise network-wide performance characteristics.

Consider a simple example of telecommunication network management. A telecommunication network

Group-Based Distributed Computing 99

Group Coordination Models: Platform Support and Policy Specification

consists of a set of switches connected together by communication lines. A set of switches in a particular
geographic area (such as a city) are placed under the management of a traffic manager which is responsible
for managing switches and for maintaining balanced traff ic conditions on the network links.
The set of switches is organised as a managed-object group under the management of the traffic manager
object. As shown in figure7.19, each switch is represented by a managed object (MO), a software
entity, which periodically reports its status information to the traff ic manager (in the form of an opera-
tion message) and expects a reply, a management command, from the traff ic manager. The managed
object group represents a client group of the traff ic manager object which acts as a server object.
The traffic manager object expects to receive the combined status reports of all the switches (MOs) in its
domain in order to evaluate the overall network condition. It is expected to give a management command,
in response to the group status report, to the individual MOs in the form of replies to the MOs. The reply of
the traff ic manager is based upon the group input and could be different for individual switches. The replies
suggest a change in the traff ic routing plan or no modification to the existing routing table. Each switch
periodically sends the following operation message to the traff ic manager:
my_statu s(buffer_space,throughput,delay,l i nk_condition), and expects to
receive one of the following termination messages from it:
route_tr affic (in_link, out_link)
status_O K()

 Fig. 7.19 Group Interrogation in Telecommunications Network Management

7.7.2 Constructing a ‘Group -Service’ Request: Matrix-Mode Collation & Policy Specification
The next question is how to combine individual service requests (operation message) from the client group
into a group-service request (group operation message). In section 3.6, we have described two basic
collation schemes: the matrix-mode and the linear-mode collation schemes, as simple and straightfor-
ward message grouping mechanisms. The matrix-mode collation scheme is applicable in cases in which
each member of the client group sends a complete instance of the operation signature. In group applica-
tion-7, each member of the managed-object group sends a complete instance of the
“my_status(buffer_spac e,throughput,delay,link_condition)” operation. Now let
us examine the other requirements of message collation.

MO-1

MO-2

MO-n

GSM Traffic
Manager

Swi tch-1

Swi tch-2

Swi tch-n

Te
le

co
m

m
un

ic
at

io
n

N
et

w
or

k

Group-Based Distributed Computing 100

Group Coordination Models: Platform Support and Policy Specification

In group application-3, the managed-object group sends status report to the traff ic manager object
every 60 minutes. The traff ic manager wants to receive the combined status report from all the MOs as a
single group operation invocation. In this example, the managed object group consists of 11 members. The
traff ic manager wants status inputs from at least 7 managed objects, otherwise the group input is not suff i-
cient for the traff ic manager to make any decision about the global network traff ic condition. If multiple
status reports are received from the managed object during a collation period, then the traff ic manager
wants the most recent input to be included in the group operation message, because it conveys the latest
status information. The following policy specification, captures these requirements. The C-Agent in the
GSM of the traff ic manager is programmed with this policy.

 Fig. 7.20 Operation Collation Policy Specification

7.7.3 Transparency & Policy Interpretation
The above policy specification programs the C-Agent to collect the instances of the message specified in
the “deliver-clause ” which are received from the sources specified in the “from-clause ” during
the time duration specified in the “every-clause ” . If the required minimum number of messages are
received within the specified collation period, then the C-Agent constructs the group message in the speci-
fied collation mode, otherwise an exception termination is constructed and sent to the client group mem-
bers. The group operation message is invoked on the traff ic manager (server) object at the end of the
collation period.

7.7.4 Group Application-8: Target Location Acquisition Sonar System
The military sonar system, which is used to locate underwater targets such as submarines, etc., is another
variation of above mentioned group coordination model in which related client objects, organised as a cli -
ent group, send their inputs, as operation messages, to the server object, and each of them is dependent
upon the cumulative server’s reply (which is based upon group input) to position their ‘firing stations’ on
the target. The difference in this case being that each member of the group sends partial input (partial oper-
ation signature) to the server object, but each of them is interested in the complete reply (the complete ter-
mination signature) from it. The following is a simplified version of the sonar system.

The sonar system consists of a set of sonar stations which are placed at strategic locations on the sea
surface or on the sea shore, so as to scan a wide-volume of sea water. Each sonar station is equipped with a
‘ firing device’ , which when given the location of the target can point and fire at it. The sonar stations oper-
ate using the sound-waves technology. They are capable of giving the distance of the target object from the
sonar and an approximate direction, but not the actual location (i.e., the ‘x’ , ‘y’ , and ‘z’ coordinates) of the
target. Obviously a single sonar is not sufficient for target location acquisition. Hence a minimum of three
sonars are employed to obtain suff icient information (i.e., target distance from each of them) to calculate
the target location (target’s coordinates) in the sea.

As shown in figure7.21, the set of sonar stations is organised as a client group under the guidance
of an off-shore ‘ target tracking system’ . Each sonar station sends the distance of the target from itself to
the tracking system, in the form of an operation message: “ target_distanc e(D) ” . The existence

operation _collation_policy
for my_st atus

deliver my_status(buffer_space,thro ughput,delay,link_condition)
from switch_Group
every 60 minutes
collation_cardinality ATLEAST(7), ATMOST(11)
collation _mode MATRIX(RECENT)

end_policy

[

]

Group-Based Distributed Computing 101

Group Coordination Models: Platform Support and Policy Specification

of the sonar group is transparent to the tracking system. The tracking system expects to receive the fol-
lowing input, as an operation message from the sonar group: target_distanc e(D1, D2, D3).

 Fig. 7.21 Group Interrogation in Sonar System

The tracking system functions as a server object, because it computes the location (i.e., coordinates)
of the target based upon the client group input and its own knowledge about the location of the individual
sonars and sends the target coordinates back to each sonar in the form of a termination message:
“ target_location(X-coo r d,Y-coord,Z-coord) ” . The sonars feed this information to their
local firing devices, which use it to point at the target and fire at it.

This application represents a tightly-coupled and non-scalable application. The tracking system is
tightly coupled to the three member sonar station group. The tracking system can only accept inputs from
these three members. Any change in the client group membership cannot be accommodated by the server
object. Moreover the client inputs, although of the same type, must be bound to the corresponding parame-
ters of the server’s operation signature.

7.7.5 Constructing a Service Request from Partial Service Requests: Linear-Mode Collation & Policy
Specification

Group Application-8 is an example of client-group-based application in which each client gives partial
input (partial service request) to the server object. The complete service request is constructed, on the
server side, by combining the partial service requests using the linear-mode collation scheme. Moreover
inputs from all the sonar stations are required, otherwise the target coordinates cannot be calculated. If
each sonar station sends the target distance, say every 3 minutes, then the following policy specification
captures these requirements. The C-Agent in the GSM of the tracking system is programmed with this pol-
icy.

 Fig. 7.22 Linear-Mode Collation o f partial service requests

Sonar-1

Sonar-2

Sonar-3

Tracking
SystemGSM

target_distance(D1, D2, D3)
: :target_location(X-coord, Y-coord, Z-coord)

target_distance(D1)
: :target_location(X-coord, Y-coord, Z-coord)

target_distance(D2)
: : target_location(X-coord, Y-coord, Z-coord)

target_distance(D3)
: : target_location(X-coord, Y-coord, Z-coord)

operation _collation_policy
for targe t _distance

deliver t arget_distance(D1, D2, D3)
from sonar_station_Group
every 3 minutes
collation_cardinality ATLEAST(ALL)
collation _mode LINEAR

end_policy

[

]

Group-Based Distributed Computing 102

Group Coordination Models: Platform Support and Policy Specification

7.8 Replies to Group -Service Request: Reply Distribution Models

As mentioned in section 4.2.3, the group-oriented server may generate either a single reply or multiple
replies, one for each member of the client group, in response to the group-service request (i.e., group oper-
ation message). In case of a single reply, it is meant for all the members of the client group and hence, a
copy of it is sent to each member of the group. In case of multiple replies, the order of reply generation is
based upon a local protocol between the server and its GSM. Hence the GSM (or the D-Agent) knows
which reply is to be sent to which client.

7.8.1 Multiple Replies to Group -Service Request
In group application-7, the traff ic manager object, which is a group-oriented server object, gives multiple
replies, one for each managed object, in response to the group operation message. These replies are gener-
ated by the traffic manager in the order in which the component operation messages, of each managed
object, were arranged in the corresponding group operation message. The D-Agent must send the replies
only to those managed objects whose component operation messages were included in the corresponding
group operation message (i.e., only to those clients who have actually requested the service and not to all
members of the client group). The following distribution policy specification programs the D-Agent to
send the nth reply received from the traff ic manager to the managed object whose operation message was
placed in the nth row in the corresponding group operation message.

 Fig. 7.23 Multiple Replies Distribution Policy

7.8.2 Transparency & Policy Interpretation
The above policy specifies that the replies received in response to the group operation specified in the
“ for clause” be distributed to the senders of the component messages of the group operation. The ‘nth’
reply is sent to the sender of the ‘nth’ component of the group operation message.

7.8.3 Sing le Reply to Group -Service Request
In group application-8, a single reply, “ target_loc ation(X-coord,Y-coord,Z-coord) ” , is
received from the tracking system in response to the group operation message,
“ target_distance(D1,D2 , D3) ” .This reply is to be sent to all the sonar stations, because their
component operation messages were included in the corresponding group operation message. The follow-
ing policy specification programs the D-Agent of the tracking system to send a copy of the reply to all the
‘senders’ of the component operation messages of the corresponding group operation message.

 Fig. 7.24 Sing le Reply Distribution Policy

terminati on_distribution_policy
for my_st atus

distribute _REPLIES_
to SENDERS_IN_ROW_ORDER
using UNORDERED_MULTICAST

end_policy

terminat i on_distribution_policy
for targ et_distance

distribute _REPLY_
to SENDERS
using UNORDERED_MULTICAST

end_poli cy

Group-Based Distributed Computing 103

Group Coordination Models: Platform Support and Policy Specification

7.9 Synchronised Invocation Model

The most general group coordination model is the binding of a client group to a server group. Many coor-
dination behaviors can be seen in this coordination model. In this section we discuss a specific class of
coordination behavior which is the characteristic feature of applications in which a group of clients interro-
gates a server group in a synchronised manner.

Whenever a client group, instead of a singleton client, interrogates a server group, a basic question
that arises is how to coordinate the invocation of multiple service requests (operation messages) from the
members of the client group. In section 7.7, we described one method of synchronising the invocation
of multiple service requests from a client group on a server object. In this case, each member of the cli -
ent group periodically invokes (operation | notification) messages of the same type (i.e., instances of the
same message signature), and the synchronisation is achieved by collating the message instances of the
same type, invoked during a given periodic interval, into a group service request. In this section we
describe another method of synchronising the invocation of multiple service requests from a client
group. In this case, each member of the client group invokes (operation | notification) messages of dif-
ferent type, and the synchronisation is achieved by scheduling these messages in a certain sequential or
parallel order in order to give a mutually exclusive access of the server group to the client group mem-
bers, so as to bring a desired state change in the members of the server group. In this case the distribu-
tion of messages from the members of the client group are coordinated based upon some
synchronisation policy.

The invocation of (operation | notification) messages from the client group in an arbitrary order on
the server group can lead to inconsistent or otherwise undesirable state changes in the members of the
server group. Synchronised invocation of messages from the client group is the solution. There are numer-
ous invocation synchronisation behaviors corresponding to different application requirements resulting in a
wide variety of synchronisation policies.

7.9.1 Why Synchron ised Invocation in the Client Group
The distribution of (operation | notification) messages from the client group members is synchronised in
“coordinated client group applications” due to many application requirements. In this section we list the
major ones:
1. To obtain quorum (permission) of superior roles before message distribution: In some client-group

based applications, the group members have different roles, and subordinate roles are required to seek
the quorum or permission of superior roles before they send their service requests or information notifi-
cations to the server group. The quorum is provided based upon the contents of the message or the
source and destination of the message or a combination of all of them.

2. To grant fair access to the server group to the client group members: In some applications the clients
want a mutually exclusive access to the services of the server group. In such cases a round robin or a pri-
oritised access policy may be employed in order to schedule the distribution of the service requests from
the members of the client group.

3. To bring a desired state change in the server group members through synchronised message invocations:
In some client-group based applications, members of the client group need to invoke messages on the
server group in some synchronised way in order to
a. gain mutually exclusive access to the server group, and to
b. bring certain application-specific state change in the server group, through the coordinated invocation

(or distribution) of messages from the client group members.

Group-Based Distributed Computing 104

Group Coordination Models: Platform Support and Policy Specification

In such applications, a client cannot invoke an (operation | notification) message on the server group
until some previous message(s) have been invoked by some specific member(s) of the client group,
and a confirmation received by them that the desired state change has occurred in the server group.
Hence a message is not scheduled for distribution by the GSM until a ‘synchronisation message’ is
received from other GSM(s), signalling successful delivery and | or execution of the previous mes-
sages.

There are many aspects of synchronisation policy that need to be programmed in the S-Agent of the
GSM in order to specify the different message synchronisation requirements of the applications. An exam-
ple of synchronisation policy is shown in section 7.9.6.

7.9.2 What are Synchronisation Events in Client Group s
In a synchronised invocation model, an (operation | notification) message invoked by a client on its GSM is
not distributed to the server group by the GSM until the GSM either explicitl y seeks the permission of
other members of the client group or it (i.e., the GSM) is implicitly informed when an event of some signif-
icance to the application occurs in other members of the client group (i.e., given the permission to invoke
the message). In the latter case, the event of significance is called a synchronisation event, and the message
that conveys the occurrence of this event to other members of the group is called a synchronisation mes-
sage.

The objective of the synchronised invocation model is to give a coordinated or mutually exclusive
access of the server group to the client group members. This means that whenever a client relinquishes its
use of the server group, it (or its GSM) must inform the other members (or their GSMs) so that the next
message can be invoked (distributed) on the server group. The question that arises is what information is
required by the client (or its GSM) to know that its message has been delivered to the server group and the
state of the server group has been appropriately modified. The receipt of this information constitutes the
synchronisation event which triggers a synchronisation message. This information is application specific
and the nature of this information varies with application requirements. In the following section we list
some events which are considered as synchronisation events by the “coordinated client group applica-
tions” :
1. Receipt of message delivery confirmation from the GSM: In some applications it is sufficient to know

that a (operation | notification) message has been delivered to all the server group members. As soon as
this confirmation is received, a synchronisation message may be sent to the other members of the client
group (so that messages can be scheduled for distribution from those sites). This confirmation can be
obtained from the underlying multicasting protocols, such as an atomic ordered broadcast protocol. As
soon as the D-Agent receives this confirmation from the underlying multicast protocol object, it informs
the local S-Agent in the client’s GSM. The S-Agent then constructs the appropriate synchronisation
message and sends it to the other members of the client group (i.e., to the S-Agents in their GSMs), as
specified in the synchronisation policy.

2. Receipt of message delivery confirmation from the servers: In some other applications, a simple message
delivery notification from the underlying multicast protocol object is insuff icient to establish that the
desired state change has occurred in the server group members. The requirement is to issue the synchro-
nisation message only when replies are received from the server group members. These replies are con-
firmation that an action has been performed by the servers. As soon as the required number of replies are
received by the C-Agent, it informs the local S-Agent in the client’s GSM. The S-Agent then constructs
the appropriate synchronisation message and sends it to the other members of the client group (i.e., to
the S-Agents in their GSMs), as specified in the synchronisation policy.

Group-Based Distributed Computing 105

Group Coordination Models: Platform Support and Policy Specification

3. Receipt of desired state change notification from the previous client: In some other synchronised invoca-
tion models, such as the example in section 7.9.5, a (operation) message can be invoked only on
those server group members which have successfully executed the previous messages invoked by
other clients, according to some application-specific criterion. In such applications the mere receipt
of replies from the server group members is insuff icient to establish that the desired state change has
occurred in the servers or a successful execution of the client’s message was performed by the serv-
ers. This requirement arises in applications in which the server group members are of the same type
(possess similar capabilities or functionalities), but are not replicas, such as a group of robots, or a
group of students which perform the same requested operation with different levels of precision or
correctness. In such applications it is required to analyse (or process) the replies to determine that the
desired state change has occurred in the servers or the results of the message execution returned by
the servers, in their replies, conform to the desired level of acceptance.

Therefore when all the replies are received from the server group, the C-Agent collates them into a
group termination message and delivers it to the client object. The client object analyses each reply to
determine which members of the server group have successfully executed its (operation) message and /
or which of them have undergone the desired state change, according to some application-specific crite-
rion. The client, then informs the GSM (the S-Agent) which members of the server group have success-
fully executed its message and which of them have not. This communication between the client
object and the GSM occurs through the Group Management Interface (GMI), as described in detail in
section 6.2.1. When the S-Agent receives this notification from the client, it constructs the appropri-
ate synchronisation message and sends it to the other members of the client group (i.e., to the S-
Agents in their GSMs), as specified in the synchronisation policy.
This type of synchronisation is not based upon the number of acknowledgments received from the server
group, but rather on the contents of the replies sent by the server group members.

7.9.3 What are Synchronisation Messages
The synchronisation process involves seeking the permission of other members of the client group before
the distribution of the message and / or receiving notifications from other members of the client group
which grant permission for the distribution of the message to the server group. The client (or its S-Agent)
which seeks the permission of other members of the group, in order to distribute a message, is called the
synchronisation seeker while the group members which give (or deny) such a permission are called syn-
chronisation providers.
A synchronisation message is constructed and sent by the S-Agent to solicit the permission to distribute a
member message or to grant a permission to distribute the message. There are three types of synchronisa-
tion messages which are exchanged between the S-Agents. They are:
1. Synchronisation soliciting message: This message is constructed by the synchronisation seeker S-Agent

and sent to the synchronisation provider S-Agents, to solicit the permission to distribute the message.
This message is constructed by the S-Agent when an (operation | notification) message is received from
the client object for distribution to the server group.

2. Synchronisation response message: This message is returned in response to the synchronisation solicit-
ing message by the synchronisation provider S-Agents to the synchronisation seeker S-Agent, to convey
the result of the synchronisation soliciting request.

3. Synchronisation notification message: This is an unsolicited message which is constructed by the syn-
chronisation provider S-Agent and sent to the synchronisation seeker S-Agents to inform them that a
pending message at their site can be distributed and the identities of the server group members to whom

Group-Based Distributed Computing 106

Group Coordination Models: Platform Support and Policy Specification

the message can be distributed. This message is issued by the synchronisation provider S-Agent as soon
as the confirmation of the message delivery and / or successful state change is received from the local D-
Agent or the C-Agent or the client object, as discussed in section 7.9.2. This synchronisation mes-
sage says to its recipients: “ it’s now your turn to distribute the message” and “distribute the message
to these members” (see example in section 7.9.5).

The information contained in these synchronisation messages is application-specific and is interpreted by
the S-Agents which are programmed to interpret a limited set of information content. The format of these
and the information contained in them is discussed in chapter 9.

7.9.4 Communication between the Client Object and the S-Agent
When a synchronisation soliciting message is received by an S-Agent, it is required to decide the type of
response (for e.g., authorisation or denial to distribute a message) to give in a synchronisation response
message and when to send that response. In some cases, the S-Agent can decide locally what response to
return and when to return that response based upon some synchronisation policy (such as a round-robin or
prioritised message scheduling algorithm) that has been pre-specified to the S-Agent. However in some
other cases, the subordinate roles are required to take the permission of superior roles before distributing
the message. In such cases the permission to distribute a message is granted based upon the contents of the
message. The members in the superior role need to analyse the message contents before deciding the type
of response (such as an authorisation or denial to distribute a message) to give. In such cases the S-Agent
needs to contact its member object to give it the message contents and the information about the source and
destinations of the message. This communication between the S-Agent and the member object occurs
through the synchroniser management interface (SMI) of the S-Agent and the group management interface
(gmi) of the member object (see also section 6.2.1).

Similarly in applications, such as described in section 7.9.5, in which a desired state change is to
be brought in the server group through the coordinated message invocations from the client group, the
permission to distribute the next message from successor group members is given after the analysis of
the replies (received from the server group) by the current token holder (client). The current token
holder (client) is required to inform the local S-Agent which members of the server group have success-
fully executed its message and which of them have not, so that next message from the successor group
members is distributed only to those server group members which have successfully executed the previ-
ous message. Hence there is a need to communicate some application-specific information to the GSM
in order to enable the synchronised message distribution. This information could be a simple “pass |
fail ” information together with the identities of the server group members who have “passed | failed”
the operation message execution, as is the case in the example in section 7.9.5. The interpretation of this
information by the S-Agent is defined by the application. Again this communication between the client
and the S-Agent occurs through the synchroniser management interface (SMI) of the S-Agent and the
group management interface (gmi) of the member object. On receiving this information from the client,
the S-Agent constructs the appropriate synchronisation notification message and sends it to successor
group members.

7.9.5 Group Application-9: Coordinated Testing Application
In this section we describe a generic example of a coordinated client group application in order to il lustrate
the principles and requirements of synchronised message distribution from client group members. Our
intention is not to describe any particular application, but to give an example which covers a broad range of
applications of this kind. Applications in the product testing domain and product manufacturing domain

Group-Based Distributed Computing 107

Group Coordination Models: Platform Support and Policy Specification

are some of the examples that fall in this category. These applications require the coordinated actions of
many agents (testers or builders) in order to carry out the testing or manufacturing function. In the follow-
ing we consider a generic example from a testing domain. This application is characterised by the follow-
ing features:
1. Components of a testing application: The testing activity involves different types of tests which are con-

ducted on objects-under-test (OUTs) by different tester agents (TAs) which are specialised in giving
those tests and in evaluating the results of those tests. In an automated testing environment these tests are
conducted on a group of OUTs in a certain sequential (or parallel) order in order to conform to the appli -
cation-specific testing logic. For example, some tests must be performed before others in order to bring
the OUTs to the desired state or to discard those OUTs which fail the preliminary tests from the rest of
the testing activities.
The TAs represent any software or hardware entities which contain domain-specific testing logic includ-
ing human agents such as professors specialised in specific subjects. The OUTs represent software or
hardware or mechanical or human entities which are of the same type (i.e., possess similar capabilities
and functionalities), but are not replicas, such as a group of robots or a group of students which perform
the same (testing) function with different levels of precision and correctness.

2. Organisation of testing application as a client group and server group: The coordinated testing applica-
tion consists of a group of TAs organised as a client group and the group of OUTs organised as a server
group, as shown in figure7.25. The TAs are categorized as clients and OUTs as server objects
because the TAs invoke testing operations (operation message) on the OUTs, and the OUTs execute
those testing operations and return the result of their test execution in the form of replies (termination
messages) to the TAs. In some applications, the replies of the OUTs depend upon their previous invo-
cation history.
The TAs analyse the replies received from the OUTs to determine which of them conform to their
required level of acceptance and which of them do not. Once the TA determines which of the OUTs have
passed its test and which of them have not, it must communicate this information to its successor TA(s)
so that it (they) can invoke its (their) testing operations on those OUTs which have passed the previous
tests.

3. Separation of testing logic from test coordination logic: As shown in the example below, the test coordi-
nation (and sequencing) logic could be very complex. Moreover the test coordination logic changes with
different application testing requirements. Hence it is desirable to keep this logic external to the applica-
tion elements (i.e., tester agents), so that tester agents do not have to be modified for different testing
requirements. In our model the test invocation synchronisation logic and the identities of the client and
server group members are made transparent to the tester agents and they reside in the GSM (S-Agent) as
programmable synchronisation policy. The TAs only communicate their pass or fail verdict of their test
operations to the GSM (S-Agent) via their gmi (see section 6.2.1) and leave the test coordination and
test progress (i.e. sending the synchronisation notification message to successor members) functions
to the GSM (S-Agent).

4. Testing Cycles: In an automated testing environment, there are many items which come from production
environment to testing environment, but there is only a limited number of ‘ testing faciliti es’ . Hence the
tests are conducted in cycles. A fixed number of objects are tested during each cycle. A testing cycle
consists of different types of tests, administered by different TAs, which are invoked one after the other
according to the specific test coordination logic.
The test operation (operation messages) for the next cycle is invoked by the tester agents on their local
GSM at the GII , as soon as they give the ‘pass’ or ‘ fail ’ verdict of their previous operation message to

Group-Based Distributed Computing 108

Group Coordination Models: Platform Support and Policy Specification

the GSM at its GMI (see also section 7.9.7). However, the new test operation is not scheduled for dis-
tribution until a synchronisation message is received from the predecessor clients (i.e., their GSMs).

5. Protocol between Client and GSM: The client is required to invoke the test on the GII and to communi-
cate the results of the test to the GSM (S-Agent) on the GMI. The client is obliged to inform the GSM
about the outcome of the current test operation. It implies that the synchronised activity in a client group
requires that the group members are capable of (and obliged to) inputting certain application-specific
information which is required for the progress of the synchronised activity, such as the one above, to the
GSM. It is the understanding (protocol) between the member and the GSM that the member invokes the
next operation on the GII after giving the verdict of the previous operation on the GMI. The following
activities are performed by the client object in every testing cycle:
a. Invoke the test message (operation message) at the GII.
b. Evaluate the replies (delivered through the GII).
c. Convey the result of the test evaluation to the GSM (S-Agent) at the GMI.

Example: Let us consider a specific testing example in order to ill ustrate the requirements of test coordina-
tion. Consider a group of TAs, each specialised to perform a specific testing task on a group of OUTs. The
following types of tests are performed:
1. Initialisation procedure at the beginning of a testing cycle: i nit_test() ,
2. ‘Type-A’ test: test - A(a 1, a 2, a 3),
3. ‘Type-B’ test: test-B(b 1, b 2)
4. ‘Type-C’ test: test-C(c 1, c 2, c 3, c 4)
5. ‘Type-D’ test: test-D(d1, d 2)
6. ‘Type-E’ test: test-E(e 1, e 2, e 3, e 4, e 5), where a 1, a 2, b 1, c 1, c 2, etc.
are test parameters.
Each of these tests are performed by different TAs. In the most general case, there are multiple TAs
assigned to perform a test of a given type, and in the extreme case there is a single TA per test type. In the
general case of multiple TAs per test type, each TA performs the same type of test, but not necessarily iden-
tical tests, i.e., tests with identical parameter values. Moreover their test assessment and evaluation crite-
rion is different. In such cases, the application is interested in obtaining an opinion of different testers of a
given type before declaring a ‘pass’ or ‘ fail ’ outcome.
In our example the TA group consists of the following members:
1. A test administrator: TAdmin , which initialises the testing activity
2. One agent which performs ‘Type-A’ test: TA-1
3. Two agents which perform ‘Type-B’ test: TB-1, TB-2
4. One agent which performs ‘Type-C’ test: TC-1
5. One agent which performs ‘Type-D’ test: TD-1
6. One agents which performs ‘Type-E’ test: T E-1
After evaluating the results of the testing operation, each tester agent communicates the ‘pass’ or the ‘f ail ’
verdict of the corresponding test operation to its local S-Agent through the following message invocation
on the GMI:
sync_ena bling_info(successful_member_list , failed_member_list) .
The following are the application-specific test coordination requirements:
1. “Type-A” test can be offered only to those OUTs who have passed init_test().
2. “Type-B” test can be offered only to those OUTs who have passed “Type-A” test.

Group-Based Distributed Computing 109

Group Coordination Models: Platform Support and Policy Specification

 Fig. 7.25 Coordinated Testing Application

3. “Type-C” and “Type-D” tests can be offered in parallel, i.e., the execution of these tests can be inter-
leaved at OUTs, however they can be offered only to those OUTs who passed at least one (of the two)
“Type-B” test.

4. “Type-E” test can be offered only to those IUTs who have passed either “Type-C” or “Type-D” test.
5. The test administrator, TAdmin, is notified by the other test agents about the outcome of the test. A

member of the OUT group may either pass the test or fail the test or not respond to the test (i.e., its reply
is not received within the specified time limit). After the completion of the “Type-E” test, the TAdmin
must send the final pass or failure notifications, with appropriate grades if required by the application
(for product certification, etc.), to the OUTs. So the TAdmin is required to send a:

5.1 “Grade-A()” notification to those OUTs who have passed “Type-E” test.
5.2 “Grade-B()” notification to those OUTS who have passed “Type-C” or “Type-D” test but not “Type-E”

test.
5.3 “Grade-C()” notification to those OUTs who have passed “Type-B” test but not “Type-C” or “Type-D”

test.
5.4 “Grade-D()” notification to those OUTs who have not passed “Type-A” test.
5.5 “Object_Partially_Tested()” notification to those OUTs who have not responded to any one of the tests.

GSMTAdmin

GSMTA-1

GSMTB-1

GSMTB-2

GSMTC-1

GSMTD-1

GSMTE-1

init_test()

test-A(a1,a2,a3)

T
e

s
t

-
A

g
e

n
t

G

r
o

u
p

test-B(b1,b 2}

test-B(b1,b 2}

test-C(c1,c 2,c 3,c 4)

test-E(e1,e 2,e 3,e 4,e 5)

test-D(d1,d 2)

OUT-1

OUT-2

OUT-n

: Group castLegend:

C
lie

n
t

G
ro

u
p

S
er

ve
r

G
ro

u
p

Group-Based Distributed Computing 110

Group Coordination Models: Platform Support and Policy Specification

These notifications are sent as operation messages to the OUTs. When the TAdmin receives the con-
firmation of the receipt of these notifications from the OUTs in the form of replies (or when the C-Agent
sends an exception termination message to it when the replies are not received within a certain time limit),
it starts the next testing cycle.

7.9.6 Synchronisation Requirements & Policy Specification
The test messages are distributed to the OUTs when a specified synchronisation condition is satisfied. The
synchronisation condition is specified in the S-Agent in GPSL as a synchronisation policy specification.
The synchronisation condition represents the test coordination logic. In this section we describe the test
synchronisation requirements and the test outcome notification requirements of the tester agents in group
application-9 and the corresponding synchronisation policy specification.
1. Test Initialisation: The test administrator, TAdmi n, initialises the OUTs and prepares them for the sub-

sequent testing activity, at the beginning of every testing cycle. There is no precondition to the distribu-
tion of the init_test() operation invoked by the test administrator. However, only those OUTs who
have successfully initialised themselves should be included in the subsequent testing activity. Hence the
result (pass or fail) of the init_test() should be notified to the next tester agent, i.e., TA-1. The
following policy specification captures the “ init_ t est() ” synchronisation requirements. It is speci-
fied to the S-Agent associated with TAdmi n.

 Fig. 7.26 Synchron isation Policy Specification for the S-Agent of TAdmin

2. Sequencing “ Type-A” test after test initialisation: The “Type-A” test can only be scheduled for distribu-
tion after the completion of test initialisation process by the test administrator. Moreover, only those
OUTs who have successfully initialised themselves are offered the “Type-A” test. The outcome of the
“Type-A” test must be notified to tester agents of “Type-B”. The outcome of all the tests is notified to
the test administrator. The following policy captures these requirements. It is specified to the S-Agent
associated with TA-1.

 Fig. 7.27 Synchron isation Policy Specification for the S-Agent of TA-1

synchroni sation_policy
sync init _test()
with
[nil]
notify
[
sync_events passed(),failed(),reply_ not_received(),test_not_scheduled()
to TA-1,TAdmin

]
end_polic y

synchroni sation_policy
sync test - A(a1, a2, a3)
with

[
unsolicited_reception_of passed(mem ber_list)
from TAdmin
within Time_Limit_1
sync_card i nality ATLEAST(ALL)]

notify
 [

sync_events passed(),failed(),reply_not_received (),test_not_scheduled()
to TB-1, TB-2, TAdmin

]
end_policy

Group-Based Distributed Computing 111

Group Coordination Models: Platform Support and Policy Specification

Policy Interpretation: In the above policy specification, we introduce a few new language primitives.
These are explained in detail in chapter 8. Intuitively, the semantics of this policy specification is to
synchronise the distribution of the message specified in the ‘sync’ clause with the (unsolicited)
reception of a synchronisation notification message, “passed()” , from the TAdmin within a certain
time of the invocation of the message, test-A(a 1,a 2,a 3) , by TA-1. If the synchronisation notifi-
cation message is not received within the specified time period, then the message is not distributed
and an exception termination is returned to the member (TA-1) along with the appropriate exception
information. The synchronisation notification message contains the list of the members who have
successfully executed the previous message invoked by TAdmin. The message is required to be dis-
tributed only to these members. If the list is empty, then the message is not distributed and an excep-
tion termination is sent to the member (TA-1) along with the appropriate exception information.
Moreover, the S-Agent sends a synchronisation notification message,
“ test_not_scheduled() ” , to the members specified in the ‘notify’ clause to inform them that
none of the members could qualify for my test. This enables the progress of the other testing activi-
ties within the testing cycle and brings the testing cycle to its termination.
As mentioned in section 7.9.4, the S-Agent expects to receive a notification from the associated
member (TA-1), via the SMI, which contains the identities of the reply messages which are declared
‘pass’ and ‘ fail’ by the member. These identities are mapped onto the corresponding member identi-
ties by the S-Agent (see section 7.9.7). The S-Agent then constructs a synchronisation notification
message which contains identifiers of the server group members who have passed, failed, and not
responded to the test, and sends it to the members specified in the ‘notify’ clause.
At any given site, the S-Agent is required to notify the following events, through the S-NTF-GPDU
(see section 9.7.2), to the other S-Agents associated with the members specified in the ‘notify’ clause
These events may be generated by the group member (test agent), the local C-Agent, or due to a
time-out condition in the S-Agent.
1. The list of the members who have passed the test: passed(member_list) . This event is gener-

ated by the group member (test agent).
2. The list of members who have failed the test: failed(membe r _list) . This event is generated

by the group member (test agent).
3. The list of members who have not responded to the test, i.e., whose replies were not received by the

C-Agent within the specified reply collation period: reply_not_rec eived(member_list) .
This is generated by the local C-Agent.

4. If the above mentioned synchronisation related information is not received by any S-Agent within the
specified ‘synchronisation interval’ , then the test (operation message) cannot be distributed to server
group, an exception termination is returned to the client (test agent), and the following message is
sent to all the members specified in the ‘notify’ clause, in order to avoid any deadlock:
test_not_ scheduled() . This event is generated due to synchronisation time-out.

5. If “ test_not_scheduled () ” is received from any one of the S-Agent in the S-NTF-GPDU,
then the S-Agent which receives this message sends an exception termination to its local client (test
agent), and sends the “ test_not_scheduled() ” message to the other S-Agents specified in
the ‘notify’ clause.

3. Sequencing “ Type-B” test after the completion of “ Type-A” test: “Type-B” test can only be offered to
those OUTs who have passed the “Type-A” test. “Type-C” and “Type-D” testers require a notification of
the completion of “Type-B” test and the identities of the members who have passed this test.

Group-Based Distributed Computing 112

Group Coordination Models: Platform Support and Policy Specification

.

 Fig. 7.28 Synchron isation Policy Specification for the S-Agent of TB-1, TB-2

4. Parallel Scheduling of “ Type-C” and “ Type-D” test after the completion of “ Type-B” test: “Type-C”
and “Type-D” tests can be scheduled in parallel only on those IUTs who have passed at least on of the
two “Type-B” tests conducted by TB-1 and TB-2. “Type-E” tester agent requires a notification of the
completion of “Type-C” and “Type-D” tests and the identities of the members who have passed this test.

 Fig. 7.29 Synchron isation Policy Specification for the S-Agent of TC-1
5. Sequencing “ Type-E” test after the completion of “ Type-C” and “ Type-D” test: “Type-E” test can be

offered only to those IUTs who have passed either “Type-C” or “Type-D” test.

synchroni sation_policy
for test- B()
sync test - B(b1, b 2}
with

[
unsolicited_reception_of passed(mem ber_list)
from TA-1
within Time_Limit_2
sync_cardinality ATLEAST(ALL)

]
notify

[
sync_events passed(),fa i led(),reply_not_received(),test_not_sc heduled()
to TC-1, TD-1, TAdmin

]
end_policy

synchroni sation_policy
for test- C()
sync test - C(c1, c 2, c 3, c 4)
with

[
unsolicited_reception_of passed(mem ber_list)
from TB-1, TB-2
within Time_Limit_3
sync_cardinality ATLEAST(1)

]
notify

[
sync_events passed(),failed(),reply _not_received(),test_not_scheduled()
to TE-1, TAdmin

]
end_polic y

Group-Based Distributed Computing 113

Group Coordination Models: Platform Support and Policy Specification

 Fig. 7.30 Synchron isation Policy Specification for the S-Agent of TE-1

6. Sequencing final test outcome notifications after the completion of testing activity: Let’s take two
requirements of this final testing activity.

6.1 Grade-B()” notifications are sent to those OUTs who have passed “Type-C” or “Type-D” test but not
“Type-E” test.

 Fig. 7.31 Synchron isation Policy Specification for the S-Agent of TAdmin - (for Grade-B() message)

synchroni sation_policy
for test- E()
sync test - E(e1, e 2, e 3, e 4, e 5)
with
(

[
unsolicited_reception_ of passed(member_list)
from TC-1
within Time_Limit_4
sync_cardinality ATLEAST(ALL)

]
or
[
unsolicited_reception_of passed(memb er_list)
from TD-1
within Tim e_Limit_4
sync_cardinality ATLEAST(ALL)

]
)
notify

[
sync_events passed(),failed(),reply_not_received (),test_not_scheduled()
to TAdmin

]
end_policy

synchroni sation_policy
for Grade - B()
sync Grad e-B()
with
(

([
unsolici t ed_reception_of passed(member_list)
fro m TC1
within Tim e_Limit_5
sync_cardinality ATLEAST(ALL)]

or
[
unsolicited_reception_of passed(memb er_list)
from TD-1
within Tim e_Limit_5
sync_cardi nality ATLEAST(ALL)

])
and
[
unsolicited_reception_of failed(memb er_list)
from TE-1
within Time_Limit_5
sync_cardinality ATLEAST(ALL)
]

)
notify

[
sync_events _ NONE_
to _ NONE_

end_policy

Group-Based Distributed Computing 114

Group Coordination Models: Platform Support and Policy Specification

Policy Interpretation: The “_NONE_” in the “sync_events” clause means that no synchronisation events
are generated. The “_NONE_” in the “to” clause means that there is no need to send a S-NTF-GPDU” to
any one in the group.

6.2 The TAdmin must send “Object_Partially_Tested()” message to those OUTs who have not responded
to any one of the tests or if a test is not scheduled (performed) by any one of the test agents.

 Fig. 7.32 Synchronisation Policy Specification for the S-Agent of TAdmin (for Object_Partially_Tested()
message)

7.9.7 Interaction b etween GSM Agents to Support Synchron ised Message Distribution from Client
The synchronisation of message distribution from client group members is achieved through the coop-
eration of multiple GSM agents, such as, the S-Agent, the D-Agent, and the C-Agent, as shown in
figure7.34. These agents interact with each other locally via the inter-agent interfaces and remotely
through the inter-GSM protocol, for the support of synchronised message distribution.

The G-Agent intercepts the (operation | notification) messages received from the client object. In
applications involving synchronised message distribution, the G-Agent gives this message not only to the
D-Agent (arrow 1 in figure7.34), but also to the S-Agent (arrow 2 in figure 7.34), because the latter
must inform the former when and whom to distribute the message to after receiving the appropriate syn-
chronisation notification messages and processing the synchronisation policy associated with the mes-
sage (specified as S-Policy Script, as shown in figure6.2).
1. Interaction between S-Agent and D-Agent: (Synchronise before distribution). When an operation mes-

sage is received from the client for distribution to the server group, the D-Agent does not distribute the
message until a synchronisation message is received from the local S-Agent. This message is issued by
the S-Agent when the synchronisation condition specified by the client in the S-Policy Script is satisfied.
The message contains the identifier of the operation message for which the required synchronisation has
been achieved and the identities of the server group members (for example OUTs in figure7.25) to
whom it can be distributed. This is shown in arrow 3 in figure7.34.

sd_distrib ute_message_to(inv_instance_id: inv_inst ance_id_type,
membership_l i st: member_id_list_type)

synchroni sation_policy
for Objec t _Partially_Tested()
sync Obje ct_Partially_Tested()
with
[
unsolicit ed_reception_of reply_not_received(membe r _list)
from TAdmi n,TA-1,TB-1,TB-2,TC-1,TD-1,TE-1
within Ti me_Limit_5
sync_card i nality ATLEAST(1), ATMOST(ALL)]
or
[
unsolicit ed_reception_of test_not_scheduled()
from TAdmi n,TA-1,TB-1,TB-2,TC-1,TD-1,TE-1
within Ti me_Limit_5
sync_card i nality ATLEAST(1), ATMOST(ALL)
]
notify
[
sync_even t s _NONE_
to _ NONE_
]
end_polic y

Group-Based Distributed Computing 115

Group Coordination Models: Platform Support and Policy Specification

As shown in figure7.33, the distribution policy of the D-Agent contains an indication in the ‘ to’
clause (i.e., “NOTIFIED_MEMBERS”) that the message distribution requires a notification from
the S-Agent, and that it can be distributed only to those server group members identified (in the
“membership_list”) by the S-Agent. Therefore the D-Agent delays the distribution until notified by
the S-Agent.

 Fig. 7.33 Synchron ised Message Distribution Policy
2. Interaction between D-Agent and C-Agent: (Expect replies from these members). After the D-Agent dis-

tributes the message to the ‘notified members’ , it informs the C-Agent to expect replies from those
members, as shown in arrow 4. The D-Agent gives the identities of these members to the C-Agent.
dc_collate _replies_from(OPR_inv_instance_id: inv_i nstance_id_type,

membership_l i st: member_id_list_type)

 Fig. 7.34 Coordination b etween GSM Agents to Suppo rt Synchronised Message Distribution from Client

operation _distribution_policy
for test- A

distribut e test-A(a1, a2, a3)
to NOTIFIED_MEMBERS
using SOURCE_ORDERED_MULTICAST

end_polic y

SYNC-NTF-message

to and from other S-Agents

GII

SMI

gii

OPR-msg

G-Agent

distribute_message(OPR-msg)
sync_message(OPR-msg)

2

D-Agent C-AgentS-Agent

CLIENTgmi

send OPR-msg to
these members

1

3

Expect REP-messages from
these members

4

GRP-REP-msg

give_reply_to_client(GRP-REP-msg)

REP-message received from these members +
correspondence between REP-msg identifiers and
their sender identifiers

5

6

T
he

 fo
llo

w
in

g
re

pl
ie

s
ar

e
(O

K
 |

N
O

T-
O

K
)

(r
ep

ly
_i

de
nt

ifi
er

_l
is

t,
st

at
us

_l
is

t)

7

GSM

To P-Agent
(via the P-Agent)

From P-Agent

Group-Based Distributed Computing 116

Group Coordination Models: Platform Support and Policy Specification

3. Interaction between C-Agent and G-Agent: (Replies received from these members). The C-Agent expects
to receive the replies from the ‘notified members’ (for example OUTs in figure 7.25). It collects the
replies received within the collation period, as specified in the collation policy, and gives them to the
client object, via the G-Agent as shown in arrow 5 in figure7.34. These replies may be returned sep-
arately or they may be collated into a single group termination message which is returned to the cli -
ent. In many applications, the replies are locally identified (for example by their offset in the group
termination message) between the C-Agent and the client; the identifiers of the servers which have
sent these replies are not explicitly given to the client (unless such a parameter exists in the termina-
tion message itself).

4. Interaction between C-Agent and S-Agent: On receiving the replies from the local GSM (G-Agent), the
client (for example the tester agent in figure 7.25) analyses these replies and gives a “pass/fail ” ver-
dict to the local S-Agent (see arrow 7 in figure7.34) for each of the received reply, by identifying the
replies with their local identifiers (for example by their offset in the group termination message).
However, the S-Agent must know the identities of the servers (for example OUTs in figure 7.25)
which have passed/failed the test (i.e., the operation message sent by client), so that it can include
this information in the synchronisation notification message (S-NTF-GPDU) to other S-Agents in the
client group (test agent group in figure 7.25). Therefore, the C-Agent must inform the S-Agent the
local reply identifiers and their corresponding sender identifiers, as shown in arrow 6 in figure 7.34.
cs__replie s_received_from(reply_identifier_list, s erver_identifier_list)

This enables the S-Agent to know which servers have not sent their replies, so that appropriate informa-
tion (such as “ reply_not_received()”) is included in the synchronisation notification message (S-NTF-
GPDU) that are sent to other S-Agents in the client group. The correspondence between the reply identi-
fiers and the server identifiers also enables the S-Agent to know which servers have successfully exe-
cuted the client’s operation message and which ones have not, as explained in the next bullet.

5. Interaction between client object and S-Agent: (Receive synchronisation related information from the
client). In some applications, such as in group application-9, the S-Agent receives a message from the
client object (test agent), through its synchronisation management interface (SMI), which contains the
identities of the replies (for example their offset in the group termination message) which are satisfac-
tory and unsatisfactory (or passed and failed) according to the client’s application-specific criterion
(such as the test result evaluation criterion in group application-9). This is shown in arrow 7 in
figure7.34. Based upon this information and the correspondence between the reply-ids and the
server-ids received from the C-Agent, the S-Agent can decide which server group members have
passed or failed the test (operation message) sent by the client. The client invokes the following mes-
sage on the S-Agent via the SMI (arrow 7):
reply_eval uation_results(reply_identifier_list, st atus_list)

6. Inter-GSM communication between S-Agents: (Notify synchronisation events to other S-Agents) When
the S-Agent determines the identities of the server group members who have passed, failed, and not
responded to the test, it must communicate this information to the synchronisation seeker S-Agents in
the client group through the inter-GSM protocol, so that the synchronised message distribution activity
can proceed in the group. For example, in group application-9, when the replies of the operation mes-
sage, test-A(a 1, a 2, a 3) , are received, analysed, and communicated to the local S-Agent by TA-
1 (client), the S-Agent of TA-1 (synchronisation provider) sends the identities of the OUTs who have
passed, failed, and not responded to the test, to the synchronisation seeker S-Agents associated with TB-
1 and TB-2, in the synchronisation notification message (S-NTF-GPDU).

Group-Based Distributed Computing 117

Group Coordination Models: Platform Support and Policy Specification

7.9.8 Transparent & External Suppo rt for Synchron ised Invocation in the GSM
As shown in the previous example, the logic for the synchronised distribution of messages from the client
group members could be very complex. Moreover this logic changes with different message synchronisa-
tion requirements of an application, such as different test message coordination logic in group application-
9. Hence it is desirable to keep this logic external to the application elements (client objects), so that the
application elements do not have to be modified for different message synchronisation requirements.

In our model the message synchronisation logic and the identities of the client and server group
members are made transparent to the application elements and this information resides in the GSM (S-
Agent) as programmable synchronisation policy. The application elements only communicate certain
application-specific information which is required for the synchronisation, such as the pass or fail verdict
of the test operation in group application-9, to the GSM (S-Agent) through the “gmi” and SMI and leave
the rest of the message synchronisation functions to the GSM. The GSM transparently performs the fol-
lowing synchronisation functions for the application elements:
1. Synchronisation constraint (policy) evaluation: The constraints on the distribution of message from the

client objects, specified as synchronisation policies, are evaluated by the S-Agents, and when these con-
straints are satisfied, the D-Agents are notified to distribute the message.

2. Progress of the synchronised activity in the client group: The synchronisation events, such as the receipt
of all replies from the server group or the successful execution of operation messages in the server
group, are notified to other synchronisation seeker S-Agents via the synchronisation notification mes-
sages, in order to progress the synchronised message distribution activity in the client group.

7.10 Filtered Message Delivery Model

Filtering of (operation | notification) messages in a server group before delivery to the server objects is a
common requirement in group-based applications, in which a message groupcast by a client object to the
server group is delivered to a sub set of server group members based upon some message fil tering criterion
specified either by the client or the server or both.

Typical examples of “ filtered message delivery in server groups” include a wide range of applications
from traditional ‘service group’ applications to some non-traditional network management applications,
such as
1. requesting services from a group of service providers based upon cost or some performance criterion, or
2. a manager object (acting as a client) wishes to selectively address the managed objects in a managed

object group (acting as a server group) based upon their diverse attributes such as location, device char-
acteristics, etc.

7.10.1 Why Fil tered Message Delivery in the Server Group
Although each member of a (homogeneous) service group provides the same type of service, but the qual-
ity of the provision of the service may differ from member to member due to the difference in the non-
functional attributes associated with the service. The quali ty of service is characterised by these non-func-
tional attributes such as the queue length of the print server, load or other performance metrics of a server
object, cost of service provision, etc.

In many applications, the selection of the sub set of servers from an organised service group, to han-
dle a given service request, is based upon these “quality of service” related attributes. A sub set of servers
are selected, for service request handling, from the server group, based upon their quality of service
attributes. Hence these attributes are called filter attributes. A filtering criterion is a boolean expression

Group-Based Distributed Computing 118

Group Coordination Models: Platform Support and Policy Specification

composed of filtering clauses joined with boolean operators. A filtering clause is a filter attribute compared
with a constant value or a function using relationship operators.

The filtering of messages, before delivery to the servers, is performed in the server group for the fol-
lowing reasons:
1. To give the client the ability to choose the servers to execute its service request based upon client’s fil ter-

ing criterion: In some applications the clients wish to select specific servers from the server group, for
execution of its service request, based upon its filtering criterion. So the client specifies its filtering crite-
rion as a boolean expression of server’s fil ter attributes, which is groupcast along with the (operation |
notification) message. In some cases the client also specifies the number of servers required. The client’s
fil tering criterion is evaluated on the server side by each GSM (F-Agent) in order to find if the server
object satisfies the client’s filtering criterion. All those servers (i.e., their GSMs) who satisfy the client’s
fil tering criterion enter into an m-out of-n selection process (see section 9.8) in order to select the
fixed number of servers to whom the message will be finally delivered.

2. To give the server the ability to choose the clients it wishes to service based upon server’s filtering crite-
rion: The server objects in the server group may not necessarily wish to accept service requests from all
possible clients. In such a case they specify their requirements for ‘service offer’ which the clients must
satisfy in order to obtain the service. This is specified as server’s filtering criterion which is a boolean
expression of client’s filter attributes, such as the geographic location of the client or the cost of service
offer. The server’s filtering criterion is specified to its local GSM (F-Agent). In these applications the cli -
ent specifies the value of its filtering attributes which are group cast along with the message. The GSM
(or F-Agents) on the server side uses the client’s filtering attributes to evaluate the server’s filtering crite-
rion. The message is delivered to those servers at which the server’s filtering criterion is satisfied by the
client’s filter attributes.

7.10.2 Communication between the Server Object and F-Agent
Filtering is done by the F-Agent based upon the values of the fil ter attributes. These attributes are applica-
tion-specific. They can be static or dynamic. The values of static attributes do not change with time
whereas the values of the dynamic attributes change with the execution history of the server objects, such
as the ‘queue length of the printer object’ or the ‘ load’ and the ‘resource availability’ of a server object, etc.
Hence the values of the dynamic attributes must be communicated to the GSM (i.e., its F-Agent) whenever
there is a change in its value, in order to filter the messages based upon the current values of the filter
attributes.

Therefore the GSM needs some application-specific information for the correct functioning of the
message fil tering process. As described in section 6.2.1, this information is communicated from the
member object to the GSM through the group management interface (gmi) of the member and GSM
Management Interface (GMI) of the GSM. The F-Agent receives this information through its Filter
Management Interface (FMI). The server object can also notify its ready or busy status via its gmi, so
that the messages are filtered in only when the server signals a ready status. The content and the format
of the messages exchanged between the member object and the GSM is application-specific and corre-
sponds to the local ‘member-GSM’ protocol. For example, the values of the filter attributes can be noti-
fied through the modify_attribute(attribute_name, a t tribute_value) message, from the client
to the F-Agent.

Group-Based Distributed Computing 119

Group Coordination Models: Platform Support and Policy Specification

7.10.3 Group Application-10: A Printer-Pool
A set of printers with an associated print server is an example of homogeneous service group. The printer
group is composed of different types of printers such as a dot-matrix printer, a laser (black and white)
printer, color printer, etc. Although each printer provides the same service type, i.e., printing of text, there
is a difference in the quality of service attributes such as the delay in handling the print request due to dif-
ferent queue lengths and printer speeds, and different quality of prints such as coarse and fine, etc.

The client broadcasts its print request “print_request(data)” to all print-servers, which are orga-
nised as a printer group. However, this request should be queued (or delivered) at the print server which
satisfies the following client’s specifications:
1. smallest job queue,
2. color, laser print,
3. cost of printing less than 5 cents per page, and
4. printer speed greater than 5 pages per minute.

The print servers require that the users (clients) identify themselves with their user-ids, location, and
their account numbers. Only the “print requests” of those users who are registered with them and who have
sufficient funds available in their accounts are fil tered in. Hence the attributes such as printer queue length,
funds available in a user’s account are dynamic attributes which are communicated to the F-Agent by the
print server whenever there is a change in their values, via the gmi and FMI (see figure 7.37).

Since the “print request” should be queued at only one print server, all the print servers (i.e., their F-
Agents) who satisfy the client’s requirements and where the client also satisfies the print server’s require-
ments (i.e., registered as a user and have suff icient funds available) enter into an “m-out of-n selection”
process (section 9.8). The selection process chooses the print server which best satisfies the client’s cri-
terion and in case of a tie the printer closest to the client is selected. The selected print server informs
the client where it is located and the number of pages that are printed, through a reply message to the
client’s print request, such as “collect_o utput(printer_id, number_of_pages_printe d) ” .

7.10.4 Fil tering Requirements & Policy Specification
The client’s requirements are specified as a boolean fil tering criteria. The client’s attributes, such as
‘user_id’ , ‘user_location’ , etc. are specified as filtering attributes. The client’s filtering criterion is evalu-
ated using the values of the server’s attributes and the server’s filtering criterion is evaluated using the val-
ues of client’s attributes, by the F-Agent associated with the server object. The number of servers required
by the client to execute its service request is specified as filtering cardinali ty. If “m-out of-n selection” pro-
cess is required, then identities of the members amongst whom this is to be carried out is specified in the
‘amongst’ clause. The following is the client’s filtering policy specification.

 Fig. 7.35 Client’s Filtering Policy Specification

filtering_ policy
for print_ r equest()
amongst Pr i nter_Group
filtering_ cardinality ATLEAST(1),ATMOST(1)
filtering_ criterion ((printer_type = laser) and (min (queue_length))

and (printer_quality = c olor) and
(cost_per_page <5 cents) and
(printer_speed > 5ppm))

filtering_ properties (user_id = jim, user_locatio n=computer_science_dept,
user_account=Ac11029)

end_policy

Group-Based Distributed Computing 120

Group Coordination Models: Platform Support and Policy Specification

The print servers specify the value of their attributes and their filtering criterion in their fil ter pol-
icy specification, as shown below.

 Fig. 7.36 Server’s Filtering Policy Specification

7.10.5 Interaction b etween GSM Agents to Support Fil tered Message delivery to Server Object
The filtered delivery of messages to the server object is achieved through the cooperation of multiple GSM
agents, such as the F-Agent, the D-Agent, and the C-Agent. These agents interact with each other locally
via the inter-agent interfaces and remotely through the inter-GSM protocol, for the support of filtered mes-
sage delivery, as explained below. We explain the interaction between these agents on the client (figure not
given) and server side (figure7.37) GSM.
1. Interaction between G-Agent, D-Agent, and F-Agent (client side): In the filtered message delivery appli -

cations, whenever an (operation | notification) message is received from the client, the G-Agent not only
gives the message to the D-Agent, but also to the F-Agent, so that the latter can send the filtering con-
straints to be associated with the message to the D-Agent.

2. Interaction between F-Agent and D-Agent (client side):The client’s filter attributes, filter criteria, and fil -
ter cardinality must be sent to the server side GSM along with the (operation | notification) message.
These filter constraints are stored in the F-Policy Script (figure7.35) in the F-Agent, as shown in
figure6.2. When a message is received from the client for distribution to the server group, the D-
Agent does not distribute the message until the fil tering constraints, which are to be included in the
(OPR | NTF) GPDU are received from the local F-Agent. The F-Agent sends the fil tering constraints
to the D-Agent, as soon as the (operation | notification) message is received from the G-Agent.

3. Interaction between D-Agent and C-Agent (client side): After the D-Agent distributes the operation mes-
sage to the server group members, as specified in the distribution policy, it informs the C-Agent to
expect replies from those members. The D-Agent gives the identities of these members to the C-Agent.
However, because of the filtering of these messages in the server group, only a sub set of the specified
server group members receive the message and consequently only a sub set of them send the replies. In
lieu of replies from the servers that were fil tered out, the C-Agent receives “ fil ter exception messages”
from their C-Agents (see section 9.6.3), thereby avoiding any problem caused by the receipt of fewer
than expected replies.

4. Interaction between P-Agent, F-Agent, and C-Agent (server side): The P-Agent always intercepts the
GPDUs received from the network. Whenever an D-(OPR | NTF) GPDU (see section 9.6) is
received with filtering constraints associated with it, the P-Agent extracts the filter constraints field
from the GPDU and gives it to the F-Agent. The rest of the GPDU is given to the C-Agent. This is
shown by arrows 1 and 2 in figure7.37.

5. Interaction between F-Agent and C-Agent (server side): When an (operation | notification) message is
received from the P-Agent for delivery to the server object, the C-Agent does not deliver the message
until a filtering message is received from the F-Agent, authorizing it to deliver the message. The F-Agent

filtering _policy
for print _request()
filtering _criterion ((user_id in registered_user_ l ist) and

user_account has sufficient_fund))
filtering _properties (printer_type = laser,

queue_length = 175 pages ,
printer_quality = color,
cost_per_page=3 cents,
printer_speed=7ppm)

end_policy

Group-Based Distributed Computing 121

Group Coordination Models: Platform Support and Policy Specification

gives this authorisation only when the server satisfies the client’s filtering criterion and the client satis-
fies the server’s fil tering criteria and if the server is finally selected in an “m-out of-n selection” process.
This interaction is shown by arrow 4 in figure7.37.

 Fig. 7.37 Coordination b etween GSM Agents to Suppo rt Fil tered Message Delivery (Server Side)

4. Inter-GSM communication between F-Agents (server side): When the client’s fil tering criterion and filter
attributes are received by the F-Agent on the server side, it evaluates both the client’s and the server’s fil -
tering criterion using the server’s and client’s fil ter attributes respectively. When both the boolean condi-
tions are evaluated as ‘ true’ , then the F-Agent enters into an “m-out of-n selection” process (arrow 3)
with other such F-Agents through the inter-GSM communication protocol (see section 9.8).

5. Interaction between C-Agent and D-Agent (server side): When the C-Agent receives the permission to
deliver the operation message from the F-Agent (arrow 4), it delivers the message to the server object via
the G-Agent (arrow 5 in figure7.37). The reply returned by the server object in response to this mes-
sage must be sent to the correct client. The C-Agent has the knowledge of the identity of the client
which is received in the D-OPR-GPDU. So, the C-Agent informs the client’s identity to the D-Agent,
as shown in arrow 6, so that the reply (arrow 7) is sent to the correct client.

F-PAR and F-RES GPDUs

to and from other F-Agents

GII

FMI

gii

G-Agent

C-Agent D-AgentF-Agent

gmi

collect_output()n

GSM

P-Agent

collate_message(OPR-GPDU)

filter_message(attributes, criterion)

1
2

deliver or discard
message

4

d
el

iv
er

m
es

sa
g

e
5

send reply to this client
6

distribute reply7

m
od

ify
_a

ttr
ib

ut
e(

at
tr

ib
ut

e_
na

m
e,

 a
ttr

ib
ut

e_
va

lu
e)

SERVERPRINT

print_request(data)

To P-Agent
(via P-Agent)

3

Group-Based Distributed Computing 122

Group Coordination Models: Platform Support and Policy Specification

6. Interaction between server and F-Agent (server side): In some applications, such as in group applica-
tion-10, the server object (such as the print server) must inform the current values of the dynamically
changing fil ter attributes (such as the queue length of the print server) to the F-Agent, so that filtering of
the received messages is performed based upon the current values of the fil ter attributes. This informa-
tion is communicated to the F-Agent, via its filter management interface (FMI), whenever there is any
change in the values of the filter attributes (queue length of printer). Since this information can be
received at any time, this interaction shown by an arrow labelled ‘n’ in figure7.37.

7.10.6 Transparent & External Suppo rt for Filtered Invocation
As shown in the example above, the attributes and the criterion for filtered message delivery could be very
complex. Moreover this criterion changes with different application requirements for the filtering of the
same message in the server group. Hence it is desirable to keep the filter attributes and filtering criterion
external to the application elements (client and server objects), so that the application elements do not have
to be modified for different message filtering requirements.

In our model the message filtering constraints and the identities of the client and server group mem-
bers are made transparent to the application elements and this information resides in the GSM (F-Agent) as
programmable message filtering policy. The application elements only communicate certain application-
specific information which is required for the filtering, such as the values of the dynamic filter attributes, to
the GSM (F-Agent) and leave the rest of the message filtering functions to the GSM. The GSM transpar-
ently performs the following fil tering functions for the application elements:
1. Filtering constraint (policy) evaluation: The F-Agent evaluates the client’s filtering criteria using the

server’s filter attributes and the server’s filtering criteria using the client’s fil tering attributes.
2. m-out of-n selection: When both the client’s and the server’s filtering criterion are evaluated as ‘ true’ , the

F-Agent enters into an “m -out of-n selection” process to select the final winner(s) to whom the (opera-
tion | notification) message can be delivered.

7.11 Conclusion

The group support platform (GSP) provides the support for different group coordination patterns (or
behaviors) between client and server group members. These coordination patterns can be realised through
a combination of basic group support services, such as message distribution service, message collation ser-
vice, message synchronisation service, and message filtering service. In our model, these coordination pat-
terns can be programmed in the GSP by specifying appropriate message distribution policy, collation
policy, synchronisation policy, and fil tering policy in GPSL.

In this model, the GSAs manage the group communication and coordination patterns on behalf of the
user applications, who influence the behavior of these agents by means of policy specifications. The idea is
to describe the functionality required of the group support platform (GSP) in a declarative language, the
group policy specification language (GPSL), in order to specify a rich set of application requirements with
respect to different group support services such as message distribution, collation, synchronisation, filter-
ing, etc. Therefore the GSP offers selective group transparency by allowing applications to specify group
support policies.

Group-Based Distributed Computing 123

Group Policy Specification Language: An Introduction

CHAPTER 8 Group Policy Specification Language:
An Introduction

Abstract
We have developed a language for the specification of message distribution, colla-
tion, synchronisation, and filtering requirements of an application, at a high-level
independent of the mechanisms or protocols needed to implement them. This chap-
ter describes the syntax and the semantics of the language.

8.1 Introdu ction

In existing group support systems, such as ISIS, Horus, Electra, etc., interactions between group members
are expressed in terms of explicit communication protocols such as different types of multicast protocols.
The inabili ty to abstract over interaction between group members results in low-level specification and rea-
soning. As a consequence, it is not possible to describe and compose the interaction patterns between
group members at a high-level without worrying about the low-level message multicasting protocols.
Moreover, it is diff icult to modify the interaction patterns between group members because the involved
group support mechanisms are hardwired into applications.

Our approach is to express group coordination patterns as a combination of message distribution, col-
lation, synchronisation and filtering constraints. They are specified abstractly as corresponding group sup-
port policies. We have developed a language framework for the specification of these group support
policies. It is called Group Policy Specification Language (GPSL). In this chapter we describe the syntax
and semantics of GPSL. The Backus Normal Form (BNF) of GPSL is given in appendix. Numerous exam-
ples of the use of this language were given in chapter 7.

8.2 Why Group Policy Specification Langu age

The GPSL is a special purpose language for the high-level specification of message distribution, collation,
synchronisation and filtering requirements of an application. These group support requirements can also be
viewed as group interaction constraints, such as message distribution constraints, collation constraints, etc.
The design of GPSL is motivated by the following considerations:
1. Separation of application concerns from group-coordination concerns: There is a need to separate

objects from inter-object interaction issues in an object group environment. The GPSL permits the sepa-
ration of application logic from group-interaction issues. Group interaction constraints can be specified
separately in policy scripts. The policy scripts are stored in the GSM and are interpreted by GSAs.
Changes to group coordination behaviors are possible by modifying the relevant group support policies,
without modifying the application. This enables a better description and modification of group coordina-

Group-Based Distributed Computing 124

Group Policy Specification Language: An Introduction

tion behaviors external to the applications. Moreover coordination patterns can be changed dynamically
during an application session, without re-compili ng the application.

2. High-level specification of group interaction constraints: GPSL permits a high-level and declarative
specification of group-interaction constraints, independent of the engineering mechanisms or protocols
needed to implement them. The high-level language abstracts away from any detailed behavior of group
support agents.

3. Policy-driven mechanisms: Policies should be explicitl y expressed rather than implicitl y defined, in
order to be able to represent and manipulate them within a computer system. Policies are specified using
a policy definition notation. This notation is interpreted by the mechanisms which are required to exe-
cute the policies. The group communication and coordination is transparent to the programmer who
specifies these aspects in a high-level and abstract way in the GSM using GPSL. The group interaction
constraints are evaluated prior to the distribution or the delivery of each message.

8.3 Basic Elements of GPSL

The message distribution, collation, synchronisation and fil tering functions have many aspects associated
with them (section 4.4). These aspects show certain commonality over these group support functions.
This commonality can be expressed clearly through a common language framework. The elements of
the GPSL are based upon these fundamental aspects or issues. The relationship of the language ele-
ments to the group support services is summarized in table 8.1 .
1. Message Specification: Message specification is a basic requirement of a group policy specification lan-

guage. We need to specify the message signature (see section 1.5.2) the instances of which are to be
distributed, collated, synchronised, and filtered.

2. Membership Specification: We need to specify the members of the group to whom a message is to be
distributed or from whom it is to be collated or from whom the synchronisation messages are required
before the distribution or delivery of the message in consideration.

3. Time Specification: Collation and synchronisation functions are usually bounded by a time-limit in order
to avoid an indefinite delay in the receipt of messages that are to be collated or of the receipt of synchro-
nisation messages.

4. Cardinali ty Specification: We need to specify how many messages to include in the collation process for
the construction of group (operation | termination | notification) message or how many messages are
required for synchronisation or how many of the filtered servers should be finally selected to perform
message processing.

5. Combination-mode Specification: In case of collation, the received messages need to be combined into a
single group message, before invoking on the group member. Some basic message collation schemes are
described in section 3.6.

6. Ordering Specification: The messages have to be distributed or delivered in a certain order to the group
members.

7. Attribute Specification: The received messages are filtered based upon criterion of the client or of the
server or of both, specified as a boolean attribute expression.

The message distribution, collation, synchronisation, and fil tering policies are specified using a combina-
tion of these basic language elements. The combination of these elements associated with a message type is
called a group policy primitive (GPP). Every message type, the instances of which are to be distributed,
collated, synchronised, or filtered, is associated with one or multiple GPPs.

Group-Based Distributed Computing 125

Group Policy Specification Language: An Introduction

8.4 Syntax and Semantics of Group Policy Primitives

A group policy specification consists of one or more GPPs. In the following we present the syntax and the
associated semantics of the basic GPPs used in the specification of distribution policy, collation policy,
synchronisation policy, and filtering policy.

8.4.1 Distribution Policy Primitive
The GPP used in a distribution policy specification is called a distribution policy primitive (DPP). The fol-
lowing is the syntax and semantics of a DPP. The examples of DPPs are given in section 7.4.

8.4.1.1 DPP Syntax
distribut i on_policy
for message name

[
distribut e message specification
to membership specification
distribut i on_cardinality cardinality speci f ication
using ord ering specification

]
end_polic y

Table 8.1: Relationship between Basic issues of Group Support Services and Elements of GPSL

Distribution Collation Synchronisation Fil tering

Message
Specification

instances of what
message type to dis-
tribute

instances of what
message type to col-
late

instances of what
message type to syn-
chronise

instances of what mes-
sage type to filter

Membership Spec-
ification

to whom to distrib-
ute the message

whose messages to
collate

with whom to syn-
chronise

whose messages to filter

Time
Specification

NA how long to wait to
receive message
before starting colla-
tion

how long to wait to
receive synchronisa-
tion messages.

NA

Cardinality Speci-
fication

the minimum num-
ber of messages that
must be delivered

how many
 messages to
collate

how many synchroni-
sation messages need
to be received in order
to schedule the mes-
sage distribution

how many of the filtered
server objects should be
selected for message
processing

Collation mode
Specification

NA how to combine
received messages

NA NA

Message Ordering
Specification

what ordering guar-
antees are required
for the distribution

in what order to
deliver received
messages

disabling of synchro-
nisation

NA

Attribute
Specification

NA NA NA on what basis to filter the
received messages

Group-Based Distributed Computing 126

Group Policy Specification Language: An Introduction

8.4.1.2 DPP Semantics
Instances of the message specified in the distribute clause
are to be distributed to the members specified in the to clause
using the appropriate multicasting protocol which provides the ordering guarantees speci-
fied in the using clause;
in case of atomic ordered multicasting protocol, the message must be distributed to atleast
the number of members specified in the distribution_cardinality clause or to
none of them.

The ordering specif i cation consists of ‘UNORDERED’ , ‘SOURCE_ORDERED’ ,
‘DESTINATION_ORDERED’ , ‘ATOMIC_ORDERED’ message ordering requirements.

8.4.2 Collation Policy Primitive
The GPP used in a collation policy specification is called a collation policy primitive (CPP). The following
is the syntax and semantics of a CPP. The examples of CPPs are given in section 7.6 and in section 7.7.

8.4.2.1 CPP Syntax
collation _policy
for message name

[
deliver message specification
from membership specification
within | every time specification
collation _cardinality cardinality specific ation
collation _mode collation mode specificatio n

]
end_polic y

8.4.2.2 CPP Semantics
Instances of the message specified in the deliver clause
which are received from members specified in the from clause
within the time period specified in the within | every clause
are to be combined into a group message using the collation scheme specified in the
collation _mode clause
only when their total number satisfies the collation_cardinality clause.

The CPP is composed of multiple GPSL elements enclosed within square brackets. As shown in
examples in section 7.6, a reply collation policy may contain multiple CPPs which are joined together
through message ordering specifiers described in section 8.5.7. The order in which (group) messages
are delivered to the sink object is specified by these message ordering specifiers.

8.4.3 Synchronisation Policy Primitive
The GPP used in a synchronisation policy is called a synchronisation policy primitive (SPP). The following
is the syntax and semantics of SPP. The examples of SPPs are given in section 7.9.

8.4.3.1 SPP Syntax
synchroni sation_policy
for message name

Group-Based Distributed Computing 127

Group Policy Specification Language: An Introduction

sync message specification
with

[
(un |) so l icited_reception_of message spec i fication
from membership specification
within ti ming specification
synchroni sation_cardinality cardinality sp ecification

]
notify

[
sync_even t s message specification
to membership specification

]
end_polic y

8.4.3.2 SPP Semantics
Synchronise the (distribution | delivery) of the message specified in the sync clause
(from | to) the group member
with the (un)solicited reception of the instances of synchronisation message specified in the
(un |) so l icited_reception_of clause,
from the group members specified in the from clause,
only when the required number of synchronisation messages as specified in the
synchroni sation_cardinality clause are received within the time period speci-
fied in the within clause,
and notify the occurrence of the local synchronisation events specified in the
“sync_events ” clause to the group members specified in the to clause.

The SPP is composed of multiple GPSL elements enclosed within square brackets. As shown in examples
in section 7.9, a synchronisation policy may contain multiple SPPs (one for each synchronisation mes-
sage) which are joined together through boolean operators such as ‘and ’ , ‘or ’ , ‘not ’ , ‘xo r , etc.

8.4.4 Fil tering Policy Primitive
The GPP used in the filtering policy specification is called the filtering policy primitive (FPP). The follow-
ing is syntax and the semantics of the FPP. The examples of FPPs are given in section 7.10.

8.4.4.1 FPP Syntax
filtering _policy
for message name

[
filter message specification
amongst membership specification
filtering _cardinality cardinality specific ation
filtering _criterion attribute expression
filtering _properties attribute list

]
end_polic y

Group-Based Distributed Computing 128

Group Policy Specification Language: An Introduction

8.4.4.2 FPP Semantics
Filter in the message specified in the f ilter clause
at m (specified in the client’s filter_cardinality clause)
out of n (specified in the client’s amongst clause) servers
1. which satisfy the client’s filtering criterion (specified in the client’s

filtering _criterion clause) by their attributes (specified in the server’s
filtering _properties clause), at the time of evaluation
(I satisfy your criterion), and

2. in which their own filtering criterion, if any (specified in the server’s
filter_cr i terion clause), is satisfied by the client’s attributes (specified in the
client’s f ilter_properties clause),
(you satisfy my criterion), and

if the required minimum number of servers (as specified in the
filtering _cardinality clause) are not available, then do not filter in the message
at any server.

8.5 Syntax and Semantics Of GPSL Elements

A policy specification in GPSL is a combination of basic language elements identified in section 8.3.
The basic language elements are the message specifier, membership specifier, time specifier, cardinality
specifier, combination mode specifier, attribute combination operators, and message ordering operators.
In this section we present the syntax and the semantics of these language elements.

8.5.1 Message Specifier Elements
Message specification consist of the message signature. Every GPP specifies the (operation | notification |
termination) signature, the instances of which are to be distributed, collated, synchronised or filtered.

8.5.2 Membership Specifier Elements
Membership specification is done in GPSL either by specifying member name, member role or group iden-
tifier. Member names, member roles and group identifiers are registered in the GSM. In case of termination
distribution, the membership specification is done by the following specifiers:
a. SENDERS: If a single reply is generated by the server in response to a group operation, then this reply

must be sent to those clients whose operation messages were included in the group operation.
b. SENDERS-IN-ROW-ORDER: If multiple replies are generated by the server object in response to a

group operation, then the order in which the replies are generated is the same as the order in which the
corresponding client operation messages were packed in the group message, hence the replies must be
sent to the corresponding clients, in that order.

8.5.3 Cardinality Specifier Elements
The following cardinality specifiers are available in the GPSL for the specification of distribution cardinal-
ity, collation cardinality, synchronisation cardinality, and fil tering cardinali ty:
a. ATLEAST(cardinal_exp r ession) : This specifier means:

- distribution cardinality: that the message be distributed to the specified minimum number of members
or to none of the members of the sink group,

- collation cardinality: that the instances of the message be received from specified minimum number

Group-Based Distributed Computing 129

Group Policy Specification Language: An Introduction

members before it can be collated into the group message for delivery to the sink object or the message
be not delivered at all ,

- synchronisation cardinali ty: that the instances of the message be received from the specified minimum
number members before the message under synchronisation can be sent from the source object or
delivered to the sink object.

- filtering cardinality: that the message be filtered in at the specified minimum number of members or be
fil tered at none of the members of the server group.

2. ATMOST(cardinal_expression) : This specifier means:
a. distribution cardinality: that the message be distributed to as many members as specified, but not

exceeding the maximum specified.
b. collation cardinality: that the group message be collated from instances of the message received from as

many members as specified, but not exceeding the maximum specified.
c. synchronisation cardinali ty: Not Applicable
d. fil tering cardinali ty: that the message be filtered in at as many members as specified, but not exceeding

the maximum specified.
where the,
cardinal_expression:= integer | POS(integer_list) | ANY(integer, rol e_name) |
ANY(integ er, POS(integer_list)), where
POS(integ er_list) := Pick the member(s) at the specified positions(s) in membership list speci-
fied in the (to | from) clause.
ANY(integ er, role_name) := Pick any ‘n’ members in the specified role.
ANY(integ er, POS(inte ger_list)) := Pick any ‘n’ members from the specified positions.

3. UNSPECIFIED: The semantics of this specifier is equivalent to ATMOST(ALL), i.e., wait for the
receipt of messages until the expiry of time specified in the “within” or “every” clause.

8.5.4 Time Specifier Elements
The following time specifiers are available in the GPSL for the specification of collation and synchronisa-
tion duration.

a. within : This specifier is used for specifying a maximum time limit for the receipt of termination
messages in response to the operation message and for the receipt of synchronisation response mes-
sages in response to the synchronisation soliciting message. In case of termination collation, the time-
out period starts after the sending of the corresponding operation message, and in case of synchroni-
sation, it starts after the sending of the corresponding synchronisation soliciting message. The termi-
nation messages are delivered to the client object in the desired collation mode as soon as the required
number of them as specified in the collation cardinality clause have been received, within the speci-
fied time limit.

2. every : This specifier is used for specifying the ‘periodic’ nature of collation of operation and notifi-
cation messages required at the server object. The collation process starts and ends at the beginning
and end of the collation period. The group (operation | notification) message is delivered to the
server object only at the end of the collation period. Clocks are assumed synchronised to the preci-
sion required by the application.

The amount of time the C-Agent is required to wait before the delivery of the message to the sink object is
based upon collation time and collation cardinali ty. This relationship is described in table8.3 .

Group-Based Distributed Computing 130

Group Policy Specification Language: An Introduction

8.5.5 Combination Mode Specification Elements
The following collation operators are available in the GPSL corresponding to the collation schemes pro-
posed in section 3.6. The “SINGLETON” mode corresponds to the delivery of individual messages
without any collation. The semantics of these operators is specified in table8.2 .

1. MATRIX(SEQUENTIAL|ANY-ORDER, FIRST|RECENT|ALL)
2. LINEAR(FIRST|RECENT|ALL)
3. SINGLETON(SEQUENTIAL|ANY-ORDER, FIRST|RE CENT|ALL)
These operators specify the following aspects of the collation:
a. How to construct a group message from the component messages,
b. In what order to arrange the component messages in a group message, and
c. If multiple inputs are received from the same source object during a collation period, then how to han-

dle the multiple inputs. The sink object may wish to include:
- All inputs received from a given source during the collation period in the group message.
- First input from a given source in the collated group message, and the subsequent inputs from
that source are included in the subsequent collation periods for the construction of subsequent group
messages.

- Recent input received from a given source during the collation period in the group message, while
the earlier inputs are discarded. Other schemes are possible; they are not included.

8.5.6 Attribute Combination Specification Elements
The message filtering criterion is specified as an attribute expression, which is a boolean expression. The
boolean operators, such as ‘and ’ , ‘or ’ , ‘xor ’ , etc. are used in attribute expressions. The usual compari-
son operators such as ‘<‘ , ‘>’ , ‘==’ , etc. are used for comparison between attributes. The boolean opera-
tors are also used for the conjunction of synchronisation policy primitives (see examples in section 7.9)
in order to specify multiple synchronisation or alternative synchronisation requirements.

8.5.7 Message Ordering Specification Elements
Message ordering is a requirement in the distribution and delivery of messages. The distribution ordering
requirements are specified as un-ordering, source ordering, atomic ordering, etc. They are satisfied by the
choice of appropriate multicast protocols. The message delivery ordering requirements are specified using
the following message ordering operators available in the GPSL to specify application-specific ordering of
the delivery of received messages to the sink object.

a. followed_by : previous message followed _by successor message: The delivery of previous
message is followed by the delivery of successor message, as soon as the required instances of the pre-
vious message is received from the specified source objects in the specified collation interval.

b. interleaved_with : message-1 interleaved_with message-2: Two messages can be
delivered in any order to the sink object as soon as they are scheduled for delivery (by the collation
mode, collation cardinality or collation duration semantics).

c. disab l ed_by : regular message disabled_by exception message: The delivery of a regular
message is disabled by the receipt of exception message once the required number of exception mes-
sages are received from the specified source objects in the specified collation interval, at which time
only the exception message is delivered to the sink object, while the regular message discarded.

d. choice : alternate-1 choice alternate-2: The alternate-1 or alternate-2 message is delivered to the
sink object, whichever is scheduled first for delivery (using the collation mode, collation

Group-Based Distributed Computing 131

Group Policy Specification Language: An Introduction

Table 8.2: Semantics of Collation Operators

Collation
mode

Component
ordering

Number of
components
from a given

source

Semantics

MATRIX

SEQUENTIAL FIRST |
RECENT |
ALL

Collate the component messages in the matrix-mode in the order in which
their respective source objects are specified in the from clause and include
the (first|recent|all) message(s) from a given source object received during
the collation period in the group message. In case of ‘ ALL’ constructor, all
messages from a given source are combined in adjacent locations of the
group message.

ANY-ORDER FIRST |
RECENT |
ALL

Collate the component messages from the source objects (specified in the
from clause) in the order in which they are received, in the matrix-mode,
and include the (first|recent|all) message(s) from a given source object
received during the collation period in the group message.

LINEAR
Not Applicable

FIRST |
RECENT

Collate the component messages from the source object (specified in the
from clause) in the linear mode and include the (first|recent) message
from a given source object received during the collation period in the group
message.
In linear collation scheme, the tuple parameters are arranged as specified in
the message signature.
‘ALL’ is an invalid constructor in the linear collation scheme.

SINGLE-
TON

SEQUENTIAL
FIRST |
RECENT |
ALL

Do not combine the received messages. Deliver the (first| recent| all) mes-
sage(s) received during a collation period from a given source object indi-
vidually to the sink object, as singleton messages, in the order in which
their respective source objects are specified in the from clause.
In case of ‘ ALL’ and ‘RECENT’ constructors, the message delivery to the
sink object is delayed until the collation_cardinality clause is satisfied or
until the collation duration expires (because the C-Agent does not know if
more messages will arrive from a given source object while it is waiting
for messages from other sources). In case of ‘ ALL’ constructor, all mes-
sages received from a given source object during a collation period are
delivered sequentially to the sink object before starting the delivery of
other messages from other source objects specified in the from clause.

ANY-ORDER
FIRST |
RECENT |
ALL

Do not combine the received messages. Deliver the (first| all) message(s)
received from a given source object individually to the sink object as soon
as it is received.
In case of ‘RECENT’ constructor, the message delivery to the sink object
is delayed until the collation_cardinality clause is satisfied or until the
collation duration expires (because the C-Agent does not know if more
messages will arrive from a given source object while it is waiting for
messages from other sources). Once the collation_cardinality clause is
satisfied or the collation duration expires, the most recent message
received from each source object is delivered separately to the sink object
in the order in which it arrived.

Group-Based Distributed Computing 132

Group Policy Specification Language: An Introduction

cardinality and collation time semantics). In case of singleton delivery mode, the alternate message
whose instance is received first is retained for delivery, while the other is dropped.

These operators are used to order the delivery of collated reply types to the client object, when multiple
reply types or multiple instances of a given reply type are received in response to an operation invocation
on the server group. A reply collation policy is composed of one or multiple collation policy primitives
(CPPs) connected by these message ordering operators (see examples in section 7.6).

8.6 Conclusion

In this chapter we have introduced a language for expressing a broad family of group support policies. The
language supports the specification of the requirements of message distribution, collation, synchronisation,
and filtering.

Table 8.3: Combined Semantics of Collation Time, Collation Cardinality, and Collation Mode

ATLEAST ATMOST
ATLEAST

+
 ATMOST

within
(used
on the
client
side)

Wait until the receipt of specified
minimum number of TER-messages
or until the end of the collation
period, whichever occurs first.
If the specified minimum messages
are not received during the collation
period, give an exception message to
the client object, otherwise give the
specified minimum messages to the
client object in the specified colla-
tion mode, as soon as they are
received.
Discard other messages.
In case of SINGLETON delivery
mode, the delivery of termination
messages is delayed until the receipt
of the specified minimum messages.

Wait until the receipt of specified
maximum number of termination
messages or until the end of the
specified collation period, which-
ever occurs first.
Give all messages received within
the collation period to the client
object in the specified collation
mode.
Discard other messages.

Wait until the specified minimum
number of termination messages
have been received, and if more
collation period exists, then wait
until the receipt of specified max-
imum number of messages or
until the end of the collation
period, whichever occurs first.
If the required minimum mes-
sages are not received during the
collation period, give an excep-
tion message to the client object,
otherwise give the specified mini-
mum and as many as received
specified maximum messages to
the client object in the specified
collation mode.
Discard other messages.

every
(used
on the
server
side)

Wait until the end of the specified
collation period.
If the specified minimum (OPR|NTF)
messages are not received during the
collation period, send an exception
messagea to the client objects from
whom the messages were received,
otherwise give all the received mes-
sages to the server object in the
specified collation mode.

Wait until the end of the specified
collation period,
and give as many as received
(OPR|NTF) messages to the
server object in the specified col-
lation mode.
Discard other messages.

Wait until the end of the specified
collation period.
If the required minimum
(OPR|NTF) messages are not
received during the collation
period, send an exception mes-
sage to the client objects, other-
wise give all messages received
within the collation period to the
server object in the specified col-
lation mode.

a. An exception message is not required if the received message is a notification.

Group-Based Distributed Computing 133

Inter-GSM Protocol

CHAPTER 9 Inter-GSM Protocol

Abstract
The Group Support Machine (GSM) is a configuration of Group Support Agents (GSAs)
which interact with each other locally via the inter-GSA interfaces and remotely through
inter-GSM protocol for the provision of group support service. This chapter describes
the remote communication between the peer GSAs located in different GSMs - the infor-
mation that is exchanged between the GSAs, the format in which this information is
exchanged, and the handshaking involved between the GSAs.

9.1 Introdu ction

The Group Support Machine (GSM) is a multi -agent machine. The Group Support Agents (GSAs) cannot
offer their services independently in isolation. Instead, these agents need to communicate locally with other
agents in the GSM, as well as remotely with their peers in other GSMs, in order to provide the required
group support services to the application (client | server) components. In chapter 6, we have described
the local interaction between the GSAs via the inter-GSA interfaces. This chapter describes the inter-
GSM communication between the GSAs located in different machines using the Inter-GSM Protocol
(IGP).

9.2 Why Protocol between GSMs

The first question that arises is why do we need a communication protocol between GSMs. The answer to
this question is quite straight forward. The GSM is composed of different types of GSAs which perform
specialised group support functions. The GSAs need to exchange their service specific information with
their peer GSAs in order to perform their functions. The type of information that is exchanged between the
GSAs depends upon the service offered by the GSAs, for example the filtering attributes and filtering crite-
rion need to be exchanged between the F-Agents, the service-specific synchronisation signals need to be
exchanged between the S-Agents, etc. Since this information is generated and consumed by the peer GSAs
(and is not conveyed to the member), there is the need for standardised interpretation of information that is
exchanged between them. A standardised syntax of the information and the associated semantics gives the
standardised interpretation. Moreover the peer GSAs must have a consistent understanding of what infor-
mation to expect in response to the information they have sent to their peers. This can be achieved by stan-
dardising the handshake procedure. These are the issues of a formal protocol between the GSMs.

Group-Based Distributed Computing 134

Inter-GSM Protocol

9.3 Peer GSAs in Inter-GSM Protocol

Before we proceed to the description of the IGP, we need to identify which agent talks to which other
agents through the IGP, in order to establish peer relationship between them.
1. Peer of D-Agent and C-Agent: The D-Agent performs the function of distributing (operation, notification

| termination) messages on the (client | server) side, while the C-Agent performs the function of collect-
ing these messages on the (server | client) side. Hence the C-Agent receives the messages sent by the D-
Agent.

2. Peer of S-Agent: The S-Agents communicate with other S-Agents in the same group. The S-Agent plays
one of two roles: the synchronisation-seeker or the synchronisation-provider. There is an exchange of
message synchronisation related information between these two roles.

3. Peer of F-Agent: The F-Agent communicates with other F-Agents in the server group. The F-Agent
plays one of two roles: the contestant or the arbitrator. There is an exchange of message fil tering related
information between these two roles.

4. Peer of MM-Agent: The MM-Agent communicates with other MM-Agents in the client and server
groups. There is an exchange of group membership and member monitoring related information
between the MM-Agents.

9.4 A General Format of the Inter-GSM Protocol Data Unit

The peer GSAs communicate with each other through the exchange of GSM protocol data units (GPDUs).
Different types of information are exchanged between the peer agents. Before giving the details of the
inter-GSM protocol, we start with identifying the type of information that needs to be exchanged
between the peer GSAs in order to identify a general format of the GSM protocol data unit (GPDU),
shown in figure 9.1.
Some types of information are always present in all GPDUs such as the:
1. GPDU-type: Every GPDU must be properly identified so that the P-Agent on the receiving side can give

it to the appropriate GSA for processing.
2. Sender-id: The recipient GSA must know the identity of the sender of the GPDU in all peer-agent com-

munication. The name of the sender of the GPDU is included in this field.
3. Source-group-id: The sender of the GPDU must also identify the group that it belongs to in order to

uniquely identify a member in the client group and the server group.
4. Message identifier: Every operation and notification message invoked by the client object is uniquely

identified locally by an invocation instance identifier, which is generated by the G-Agent. Every GPDU
that carries an application message or the synchronisation and the filtering related information about that
message carries the invocation instance identifier, as explained in following sections.

Some information types are exchanged in specific peer agent communication, such as:
1. Information exchanged between D-Agent and C-Agent: The D-Agent on the client side sends operation

or notification messages and optionally filtering constraints associated with those messages. Optionally,
the application-specific role of the sender of the GPDU is also sent to the recipient. Hence there is a need
for a “payload” field, “group interaction constraints” field, and “membership-descriptor” field in the
GPDUs exchanged between the D-Agent and the C-Agent.

2. Information exchanged between S-Agents: As shown in the example in section 7.9, the S-Agent either
sends the message for which the synchronisation (permission) is being sought or the synchronisation-
related information (in the form of a message) about that message which is identified by its invocation

Group-Based Distributed Computing 135

Inter-GSM Protocol

instance identifier. In some cases, the members to whom the message can be distributed is also identified
by the S-Agent. Hence there is a need for “payload” field to carry the message or the synchronisation-
related information about that message, and “membership descriptor” field in the GPDUs exchanged
between the S-Agents.

 Fig. 9.1 A General Format of GSM Protocol Data Unit (GPDU)
3. Information exchanged between F-Agents: The contestant F-Agents send the fil tering attributes and fil -

tering criterion to the arbitrator F-Agent and the arbitrator F-Agent sends the outcome of the “m -out of-
n selection process” in the form of a message (such as selected() | not-selected()) to the contestant
agents. Hence there is a need for “payload” field to carry the result of selection process and “group con-
straints” field to carry filtering constraints in the GPDU.

9.5 Encoding o f GPDUs

The GPDU is a place holder for the identification of information types that must be exchanged between the
peer GSAs in the remote GSMs. The focus of the IGP is in the identification of the information types and
the handshaking involved between the peer GSAs, and not on any specific encoding schemes for the rea-
sons mentioned below. There are numerous encoding possible for the GPDU fields. One such scheme is
employed in our Java implementation of IGP, and is described in section 10.2.4.

The first and the most important step in any protocol design is the identification of information types
that need to be exchanged between the protocol partners and the handshaking (message exchanges)
involved between them. The next step is the encoding of the information in the protocol data units. The
type of encoding scheme to be employed for the coding of any protocol data unit is left open for bi-lateral
agreements between the protocol partners and a specific choice to be made by protocol implementations.
Moreover any explicit choice of the encoding scheme also restricts the usage of the IGP. For example, the
“sender-id” field could be encoded as “octet” or an “ integer” or a “fixed-size character string” , etc. The
choice of one octet encoding would restrict the sender group size to 256. Hence, the choice of encoding
scheme is left open for bi-lateral agreement between protocol partners.

The entire GPDU is essentially an application-level “complex data structure” consisting of multiple
fields (just like a programming language data structure). The principles employed for the encoding of low-
level protocol data units such as those of X.25 or ATM Frames, etc. with “byte-level” considerations and
boundary alignments, etc. are not used at the application-level PDUs. The application-level protocol data
units, such as X.400 messages, Corba Request Message, Reply Message, or the proposed GPDUs are spec-
ified using a high-level notation such as ASN.1, OMG Interface Definition Language (IDL), etc. There are
compilers which translate the IDL specification of these high-level messages to “on the wire format” such
as Common Data Representation (CDR) and then recover (unmarshal) the original message from the CDR
format. These compilers take care of coding and de-coding issues such as byte alignments, variable field
lengths, etc.

Here are some possible choices of IDL encoding that can be used for the GPDU fields:
1. GPDU Type: The GPDU type can be encoded as an IDL “octet” or “char” or an “enum” (i.e., enumer-

ated data type.

GPDU-Type
Sender-
Group -
Identifier

Sender-
Identifier

Message
Identifier PAYLOAD

Group-
Membership-
Descriptor

Group -Constraints

Group-Based Distributed Computing 136

Inter-GSM Protocol

2. Sender Group Identifier: This field can be encoded as IDL “octet” , “unsigned short” , or even as an
“enum” (which will allow user defined restrictions on the choice of group identifiers).

3. Sender Identifier: The same choices as for “sender group identifier” field” . All the above mentioned
fields are of fixed length.

4. Payload: This is a variable length field which contains application messages such as OPR-message,
REP-message, etc. The first “ l” bytes of this field define the total length of the rest of the GPDU and the
next “p” bytes define the length of the rest of the payload field. The length of “p” and “ l” is negotiated
between protocol partners to accommodate the maximum possible required sizes of payload and of the
GPDU. The payload itself contains programming language specific parameter data types such as bool-
ean, integer, float, char, string, etc. They are encoded in the corresponding IDL types and are embedded
in this field.

5. Group Membership Descriptor: describes the any “application-specific” role of the client or server group
members, such as a group administrator, etc. This is again a variable length field, the first “m” bytes of
the field define the length of the rest of this field. The length of “m” is negotiated between protocol part-
ners to accommodate the maximum required size of this field. The role of client and server group mem-
bers can be most naturally mapped into an IDL “enum” type or other possibilities such as an “octet” or
“short” may also be used to represent a role.

6. Group Constraints: are described as a set of attribute-value pairs and/or a combination of those pairs.
They are used as filter-constraints. Again, this is a variable length field; however, the length of this field
can be deduced from the length of the previous fields. Each attribute is typed, such as an “ integer” value
attribute, a “ float” value attribute, “boolean” value attribute, etc. They are encoded in the corresponding
IDL types and are embedded in this field.
The entire IDL specification of the GPDU is then compiled or marshalled into “Common Data Repre-

sentation” , which is the “on-the wire format” , and the individual fields are recovered into the original form
at the receiving end using unmarshall ing routines.

9.6 Inter-GSM Protocol between D-Agent and C-Agent

The D-Agent on the (client | server) side is responsible for the distribution of (operation, notification | ter-
mination) messages received from the (client | server) object. There is a unidirectional transfer of (opera-
tion, notification | termination) messages from the D-Agent on the (client | server) side to the C-Agent on
the (server | client) side.

9.6.1 Application Message Communication b etween D-Agent & C-Agent
The G-Agent receives (operation, notification | termination) messages from the local (client | server)
object. It adds “ invocation instance identifier” to these messages in order to uniquely identify them. Then it
gives the message and its identifier to the D-Agent. The D-Agent constructs the D-OPR-GPDU, the D-
NTF-GPDU and the D-REP-GPDU, one each for the distribution of operation, notification, and termina-
tion message respectively (see figure 9.2). These GPDUs contain the respective message (in the pay-
load field) and the invocation instance identifier associated with the message (in the message identifier
field). The invocation instance identifier helps in the association of the reply messages with the corre-
sponding operation messages, so that the C-Agent on the client side can separate the replies received in
response to different operation messages from the server group.

The D-Agent also adds the (client | server) identifier in the “sender identifier” field and its group
identifier in the “sender group identifier” field. If the (client | server) has an “application-specific” role, it is

Group-Based Distributed Computing 137

Inter-GSM Protocol

placed in the “group membership descriptor” field of the GPDU.

 Fig. 9.2 Inter-GSM Protocol between D-Agent & C-Agent
The D-Agent on the client side also encapsulates the filtering attributes, the filtering criterion, and the

fil ter cardinality, if any, in the D-(OPR | NTF)-GPDU. These fil tering constraints are included in the GPDU
in order to send both the message and the filtering constraints associated with it in the same GPDU. The fil -
tering constraints are obtained from the local F-Agent, and are placed in the “group constraints” field of the
GPDU. When filtering constraints are included, then these GPDUs are identified as “DF-OPR-GPDU” and
“DF-NTF-GPDU”, in order to identify the presence of “group-interaction constraints” in the GPDU to the
P-Agent on the server side. When this GPDU is received by the P-Agent on the server side, it strips the
group constraint field, and gives the information contained in this field to the local F-Agent, along with a
copy of the “message identifier” field. The rest of the GPDU is given to the local C-Agent for the unmar-
shall ing of the encapsulated message and its subsequent collation.

9.6.2 Marshall ing of Application Messages in GPDUs
The D-Agent receives (operation, notification | termination) messages from the local (client | server) object
(via the G-Agent) as the message name followed by a series of zero or more parameter values. The D-
Agent associates the received parameter values to their corresponding parameter names according to the
message signature specified in the D-policy script, thereby constructing the <parameter name, parameter
value> tuples. The message name along with these parameter tuples are carried in the “payload” field of
the GPDU.

The application messages are marshalled (or encoded) as <parameter name, parameter value> tuples
in order to handle the possible difference in message signatures on the client and server sides, and also to
enable linear mode collation by the C-Agent on the other side. The C-Agent performs the unmarshalling of
GPDUs sent by the D-Agent. The presence of <parameter name, parameter value> tuples in the GPDU
allows the C-Agent on the receiving side to associate the parameter values to the corresponding parameter
names before collating and invoking the message on the local (client | server) object.

9.6.3 Group Exception Handling Protocol Between C-Agents
The distribution of an (operation | notification) message from the client to the server group involves the
activation of various GSAs on the client side and on the server side, in order to process the group-interac-
tion constraints (such as distribution, collation, synchronisation, and filtering constraints), before the deliv-

GSM
G-Agent

D-Agent C-Agent

GSM
G-Agent

D-Agent C-Agent

Client Server

D-OPR-GPDU
D-NTF-GPDU D-REP-GPDU

C-EXP-GPDU
D-REP-GPDU

C-EXP-GPDU
D-OPR-GPDU
D-NTF-GPDU

OPR-msg
NTF-msg GRP-REP-msg

REP-msg GRP-OPR-msg
GRP-NTF-msg

Group-Based Distributed Computing 138

Inter-GSM Protocol

ery of the message to the server objects. If the operation message is finally delivered to the server objects
after successful group constraint processing by the GSAs, then multiple replies are received by the C-
Agent on the client side from the D-Agents in the server group.

However when exception conditions arise in group constraint processing by the GSAs on the client
side or on the server side, the message either cannot be distributed from the client’s side or it cannot be
delivered to the server objects. In case of group constraint processing exceptions on the client side such as
synchronisation (or permission) to send a message not received, then the message is not distributed and a
local exception termination message is returned to the client object by the involved GSA.

In case of group constraint processing exceptions on the server side, the operation message is not
delivered to the server object and the appropriate group exception termination message is constructed by
the C-Agent on the server side and it is sent to the C-Agent on the client side via the C-EXP-GPDU. The
following group constraint processing exceptions are reported to the C-Agent on the client side by the C-
Agents on the server side in the C-EXP-GPDU.
1. Collation exceptions: Many exceptions may be encountered during an operation collation process, such

as an operation name or its parameter names are not recognised by the C-Agent, a minimum number of
operation messages not received within the specified collation period, etc. The C-Agent on the server
side constructs an exception termination message with appropriate reason parameters and sends it to the
C-Agent on client side.

2. Synchronisation exceptions: If the synchronisation (or permission) to deliver a message is not received
within the specified time interval from the specified group members, then the message cannot be deliv-
ered to the server object. The S-Agent on the server side informs the local C-Agent of the result of the
synchronisation processing. The C-Agent discards the operation message and constructs an exception
termination message with appropriate reason parameters and sends it to the C-Agent on client side. The
reason parameters may convey application-specific details such as reason for disapproval, the identities
of the group members who disapproved the delivery of the message, etc.

3. Filtering exceptions: Filter processing may encounter many exceptions such as a fil tering criterion spec-
ified by the client or the server is not satisfied, client’s filter attributes not recognised or insuff icient on
the server side, the server is not selected for service provision in “m -out of- n selection process” , etc. In
such cases, the message cannot be delivered to the server object. The F-Agent on the server side informs
the local C-Agent of the result of the fil ter processing. The C-Agent discards the operation message and
constructs an exception termination message with appropriate reason parameters and sends it to the C-
Agent on client side.

The “payload” field of the C-EXP-GPDU contains the reason for the exception in the form of a message
with appropriate reason parameters. The “message identifier” field contains the invocation instance identi-
fier of the corresponding operation message, so that the C-Agent on the client side can associate the excep-
tion message with its corresponding operation message. All types of exceptions on the server side are
delivered to the C-Agent on the client side by the C-Agent on the server side. This ensures that the C-Agent
on the client side does not expect replies from the corresponding server objects.

9.7 Inter-GSM Protocol between Peer S-Agents

The S-Agents in the (client | server) group are responsible for synchronising the (distribution | delivery) of
the message (from | to) the (client | server) object, with respect to other events in the group. The S-Agents

Group-Based Distributed Computing 139

Inter-GSM Protocol

in a group communicate with each other in order to perform this function. The S-Agent plays one of two
roles: the synchronisation-seeker or the synchronisation-provider, as defined below.
1. Synchronisation-seeker S-Agent: It is the S-Agent associated with the (client | server) object which is

required to seek the synchronisation or permission from other members of the (client | server) group in
order to (send | receive) the message.

 Fig. 9.3 Inter-GSM Protocol between S-Agents
2. Synchronisation-provider S-Agent: It is the S-Agent associated with the (client | server) object which

provides the synchronisation-related information to the synchronisation (or permission) request from the
synchronisation seeker (client | server) objects.

There is an exchange of synchronisation related information between these two roles, as shown in
figure9.3. The synchronisation-seeker S-Agent may either explicitly seek synchronisation (or permis-
sion) to distribute or deliver the message from the synchronisation-provider S-Agents or it may receive
synchronisation-related information from the other synchronisation-provider S-Agents in an unsolicited
manner. These two modes of synchronisation process are explained below.

9.7.1 Solicited Synchron isation Protocol
In applications which require synchronised message distribution, when an operation or notification mes-
sage is received from the client object by the G-Agent, it gives the message both to the D-Agent and to the
S-Agent. The D-Agent does not distribute the message until an appropriate synchronisation signal (permis-
sion) is received from the local S-Agent. Similarly, in applications which require synchronised message
delivery, when a D-OPR-GPDU or a D-NTF-GPDU is received from the network by the P-Agent, it gives
the GPDU both to the C-Agent as well as to the S-Agent. The C-Agent does not deliver the message to the
server object, until an appropriate synchronisation signal (permission) is received from the local S-Agent.

In the solicited synchronisation protocol, the synchronisation-seeker S-Agent explicitly seeks the
permission of the synchronisation-provider S-Agents, in order to authorize the distribution or delivery of
the application message, by sending the S-SOL-GPDU to all the synchronisation provider S-Agents as
specified in its S-policy script, and then waits for a specified time period for the receipt of S-RES-GPDUs
from the synchronisation-provider S-Agents. On receipt of the S-SOL-GPDU, the synchronisation-pro-
vider S-Agents respond with their synchronisation-related information, such as the permission to (distrib-
uted | deliver) the message granted or denied, etc., by sending S-RES-GPDU to the synchronisation seeker
S-Agent. The synchronisation-provider S-Agent may give the response to the synchronisation request
based upon some policy or after consulting with the group member via the SMI and gmi, as shown in

GSM

S-Agent
(seeker)

Group
Member
(Synch-
seeker)

GMI GII

SMI

GSM

S-Agent
(provider)

Group
Member

(Synch-
provider)

GMI GII

SMI

S-NTF-GPDU

Solicited Protocol

Unsolicited Protocol

gmi gmi

S-SOL-GPDU

S-RES-GPDU

Group-Based Distributed Computing 140

Inter-GSM Protocol

figure9.3.
The S-SOL-GPDU contains the following information, apart from other sender identification infor-

mation:
1. payload-field: a copy of the operation or notification message which is to be (distributed | delivered),
2. message-identifier-field: the invocation instance identifier associated with the message, and
3. group-membership descriptor-field: sender’s application-specific role,
4. group constraint field: optionally, the identities of the (server group members | client object) (to | from)

whom the message is (to be distributed | received).
This information is used by the synchronisation-provider S-Agent to decide whether to grant the

requested synchronisation or not. The S-RES-GPDU contains the following information, apart from sender
identification information:
1. payload-field: a response to the synchronisation request in the form of a messages, such as

“synchronisation_request_approved()” , “synchronisation_request_denied()” , etc.
2. message-identifier-field: contains the invocation instance identifier which was present in the correspond-

ing S-SOL-GPDU,
3. group-membership-descriptor-field: sender’s application-specific role,
4. group constraint field: optionally, the identities of the server group members to whom the message can

be distributed, this field is a sub-set of the corresponding field in the S-SOL-GPDU.

9.7.2 Unsolicited Synchron isation Protocol
In the unsolicited protocol, the synchronisation seeker S-Agent does not explicitl y seek the permission of
the synchronisation-provider S-Agents, instead it implicitl y waits for the receipt of a synchronisation noti-
fication message from the synchronisation-provider S-Agents, in order to authorise the distribution of an
(operation | notification) message from a client site.

In this protocol, the S-Agent switches its role between synchronisation-seeker and synchronisation-
provider, depending upon whether it is required to wait for the receipt of synchronisation notification mes-
sages or whether it is eligible to send such messages.

An example of unsolicited synchronisation process in client group is given in the example in
section 7.9.5 and illustrated in figure7.25. In this application, the members of the client group (tester
agents) send messages to the server group in a synchronised manner. Let us consider a subset of this
application in order to demonstrate the unsolicited synchronisation protocol. The message “test-
A(a 1, a 2, a 3) ” from the tester agent TA-1 can be distributed to the server group, only when a per-
mission is received from the TAdmin. This permission is received through a S-NTF-GPDU. Moreover
this message should only be distributed to those server group members who have successfully passed
the test “ init_test() ” of the TAdmin. This information is also present in the S-NTF-GPDU. In this
instance, the S-Agent (in the GSM) associated with the TA-1 is the synchronisation seeker S-Agent
whereas the one associated with the TAdmin is the synchronisation provider S-Agent.

When the replies corresponding to the “ init_test() ” operation message are received, the TAd-
min analyses these replies and gives a “pass” or “ fail ” verdict for each reply, based upon its application-
specific criterion, to its local S-Agent via the “gmi” and “SMI” as shown in figure 9.3. The S-Agent
converts the reply identifiers into the corresponding server group member identifiers (see section 7.9.7)
and constructs two messages, “passed(member_list)” and “ failed(member_list)” . These messages are
sent in the “payload” field of the S-NTF-GPDU (see figure9.4) to the synchronisation-seeker S-Agents

Group-Based Distributed Computing 141

Inter-GSM Protocol

as specified in its S-policy script.

 Fig. 9.4 S-NTF-GPDU Format
When the S-Agent associated with the TA-1 receives this S-NTF-GPDU, it informs the local D-

Agent to distribute the message “ test-A(a 1, a 2, a 3) ” to the members who have passed the previous
test, and then it assumes the role of synchronisation provider S-Agent (to communicate the pass and fail
verdict from TA-1 to other members of the client group).

In general, the S-NTF-GPDU notifies the occurrence of certain synchronisation events at its sender,
such as the delivery of an operation message to the server group, or the receipt of all the replies from server
group, or the pass / fail verdict, to the synchronisation-seeker S-Agents. The notification of the occurrence
of these events may be received from the local D-Agent, or local C-Agent, or from the associated member
object, via the gmi and SMI as shown in figure9.3. The S-NTF-GPDU contains the following informa-
tion (apart from other standard fields):
1. payload-field: The payload field of the S-NTF-GPDU contains certain application specific synchronisa-

tion related information, such as “passed(member_list)” , “ failed(member_list)” ,
“ reply_not_received(member_list)” , etc. (see examples of these cases in section 7.9.6), which is
required by the synchronisation seeker S-Agents in the group.

2. message-identifier-field: This field contains the invocation instance identifier of the operation or notifi-
cation message which has been sent by the previous client (synchronisation provider). In the above
example, this field represents a “test cycle identifier” .

9.8 Inter-GSM Protocol between Peer F-Agents

The F-Agents in the server group are responsible for filtering the (operation or notification) messages and
performing “m- out of- n selection” of servers, before authorising the delivery of the message to the server
objects. Filtering of messages based upon client and server’s filter attributes and filter criterion occurs
locally, while “m- out of-n selection” requires inter-GSM protocol between F-Agents. It may be noted that
there is no need for filtering of the termination messages in the client group. The F-Agent plays one of the
two roles: the contestant or the arbitrator, as defined below.
1. Contestant F-Agent: It is the F-Agent associated with the server object which is required to satisfy the

fil tering criterion specified by the client object, before the delivery of message.
2. Arbitrator F-Agent: An arbitrator F-Agent may be chosen from amongst the contestant F-Agents or an

F-Agent associated with a special member of the group, such as a Group Administrator, may be desig-
nated as an arbitrator F-Agent. The function of the arbitrator F-Agent, in an “m -out of- n selection” pro-
cess is to select ‘m’ servers out of ‘ n’ according to certain filtering criteria.

An example of the fil tering process is given in section 7.10.3 and illustrated in figure7.37. In this

GPDU-Type
Sender-
Group -
Identifier

Sender
Identifier

Message
Identifier PAYLOAD

Group -
Membership-
Descriptor

Group -Constraints

S-NTF-GPDU

client group id

client-id
invocation instance-id
associated with the OPR-message
sent by the synchronisation provider

passed(),
failed(), etc. absent

client’s application
specific role

or the “test cycle identifier”.

Group-Based Distributed Computing 142

Inter-GSM Protocol

example a client sends it print request, “print_ r equest(data)” , to all print-servers, which are organ-
ised as a printer group. This request is distributed to all the members of the printer group through the D-
OPR-GPDU. The client’s filter criterion, filter attributes, and filter cardinality (specified in figure 7.35)
are stored in the “group constraints” field of D-OPR-GPDU. However the print request should be deliv-
ered to only one member of the group which best satisfies the client’s fil tering criterion.

When the P-Agents in the server group receive the D-OPR-GPDU, they strip the “group constraint”
field and give it to the local F-Agent along with a copy of the message identifier field and give the rest of
the GPDU to the local C-Agent. The C-Agent does not deliver the message in the payload field
(“print_request(data)”) until the filtering process is completed by the F-Agent and the permission to
deliver the message is received from it.

The filtering process consists of fil ter criterion evaluation which is performed locally and “m -out of
-n selection” process which requires the inter-GSM protocol between F-Agents. The filter criterion evalua-
tion ensures that the client’s fil ter criterion specified in figure7.35 (for example cost per page < 5 cents,
printer quali ty = color, etc.) is satisfied by the print server and the print server’s filter criterion specified
in figure 7.36 (client is a registered user, client has suff icient funds in his account) is satisfied by the cli -
ent.

 Fig. 9.5 F-PAR-GPDU Format
When both the client’s and server’s filter criterion are satisfied, the F-Agents enter into an “m -out of

-n selection” process in order to select a single best print server (the one with the minimum queue length,
which offers service at lowest cost, etc.). Even if a server cannot satisfy the client’s filter criterion, it enters
into an “m -out -of -n selection” process by sending a “non_participant()” message in the payload field of
F-PAR-GPDU (see figure9.5), in order to ensure that the arbitrator F-Agent receives bids from all the
members of the print server group before it starts the “m -out of - n selection” process. These F-Agents
are contestant F-Agents. A single F-Agent, usually associated with the (GSM of) Group Administrator
is assigned the role of an arbitrator F-Agent. The “m -out of- n selection” of servers is usually required
when a client specifies a certain (minimum or maximum) number of servers that must handle its service
request.

The contestant F-Agents explicitly seek the arbitration of the arbitrator F-Agent by submitting their
bids to it, in order to find if they are the losers or the winners in the “m -out of-n selection process” . So the
contestant F-Agents participate in the “m -out of- n selection” process by sending the client’s filtering cri-
terion and the associated server’s attributes in F-PAR-GPDU (see figure 9.5) to the arbitrator F-Agent.
The identities of the print server group members amongst which the “m -out of- n selection” is to be
done is also sent in the “group constraints” field of the F-PAR-GPDU. This information is obtained

GPDU-Type
Sender-
Group -
Identifier

Sender-
Identifier

Message-
Identifier PAYLOAD

Group -
Membership-
Descriptor

Group -Constraints

F-PAR-GPDU

Print-Server
Group-id

Prnt-Server-id

invocation-instance identifier
associated with print_request()
message in the D-OPR-GPDU

m_out_of_n_select()
server’s application-specific
role

Cleint’s filter criterion + server’s attributes +
id’s of print server group memberhip which is
 participating in the filtering process (as
specified in the amongst clause in figure 7.35

or non-participant()

Group-Based Distributed Computing 143

Inter-GSM Protocol

from the corresponding field in the D-OPR-GPDU in which the original “print_request()” was encapsu-
lated.

 Fig. 9.6 F-RES-GPDU Format

The arbitrator F-Agent waits for a certain specified period of time for the receipt of F-PAR-GPDUs
from all the F-Agents in the group (i.e., those specified in the “group constraint” field of the F-PAR-
GPDU). If it receives the F-PAR-GPDUs from all the contestants within the specified time interval, then it
starts the selection process immediately. It selects the ‘m’ servers that best satisfy the client’s fil tering crite-
rion, from amongst the bids that it has received, within a certain pre-specified time interval. Alternatively,
in case of a complex fil tering policy, the arbitrator F-Agent may consult its associated member, via the FMI
and gmi, as shown in figure 9.7, in order for the member to perform the selection. Finally, the F-Agent
informs the result of the selection process, such as “selected()” or “not_selected() to all the members of
the group by sending the F-RES-GPDU (see figure9.6). If an old F-PAR-GPDU is detected, it is
ignored by the arbitrator F-Agent. If ‘ m’ or no servers should do the job, then the F-RES-GPDU is sent
to the selected contestants using an atomic broadcast protocol.

 Fig. 9.7 Inter-GSM Protocol between F-Agents

9.9 Inter-GSM Protocol between Peer MM-Agents

An object group is a dynamic entity. New members may be added to the group, existing members may
leave the group, or there may be link failures or member failures, leading to a change in the membership of
the group. These events have an impact on the functioning of the GSAs, which depend upon the current

GPDU-Type
Sender-
Group -
Identifier

Sender
Identifier

Message
Identifier PAYLOAD

Group-
Membership-
Descriptor

Group Constraints

F-RES-GPDU

Arbitrator’s
Group-id

Arbitrator-id

invocation-instance identifier
in the corresponding F-PAR-GPDU

selected() or
not_selected() arbitrator Empty

GSM

F-Agent
(contestant)

Group
Member

GMI GII

FMI

GSM

F-Agent
(arbitrator)

Group
Member

GMI GII

FMI

gmi gmi(Filter-
Contestant)

(Filter-
arbitrator)

F-PAR-GPDU

F-RES-GPDU

Group-Based Distributed Computing 144

Inter-GSM Protocol

group membership information in order to perform their respective functions. For example, if there is an
addition to the membership of the server group, it should be notified to the D-Agents and C-Agents of the
client group so that (operation | notification) messages are also sent to the new member, and reply mes-
sages expected from new members. Similarly if there is a removal or failure of an existing member of the
server group, it should be notified to the C-Agent of the client group so that it does not expect replies from
a deleted member. Any change in the membership of the (client | server) group should also be notified to
the S-Agents of that group so that they may seek the synchronisation of the appropriate members of the
group.

The group management aspects are beyond the scope of the thesis. It is not the intention of the thesis
to present an elaborate membership management protocol. Such protocols have been extensively described
in the li terature, such as virtual synchrony [100 - 103], etc. Our aim is only to deal with those member-
ship management aspects which have an impact on the functioning of the GSAs. The MM-Agent intro-
duced in chapter 5, performs the minimum membership management functions required to support the
other GSAs, such as monitoring the membership of the group, notifying the member failures, and
receiving membership change notifications from other MM-Agents and the group administrator. The
MM-Agent then notifies these membership changes to the local GSAs.

9.9.1 Distributed Membership Monitoring
Group membership needs to be continually monitored in order to detect member failures due to node or
link failures. There are many schemes for monitoring the ‘ liveliness’ of group members. They range from
centralised monitoring schemes to distributed monitoring schemes. In centralised scheme, a special mem-
ber of the group, usually in the role of a group administrator, is responsible for membership monitoring.
The MM-Agent associated with the group administrator sends “probe messages” to the other MM-Agents
(associated with other group members) which respond to these probes with “ i am alive messages” . When a
response is not received within a specific time period (or after specific number of retries), the administra-
tor’s MM-Agent sends a “member failure(member_id)” notification to the rest of the MM-Agents. How-
ever, this scheme suffers the disadvantage of single point of failure. Hence we have adopted a distributed
monitoring scheme.

In distributed monitoring scheme, the management responsibil ity is distributed amongst all MM-
Agents. Each MM-Agent is responsible for sending the probe messages and notifying member failures to
others. There are many distributed monitoring protocols, one of them is explained below. The MM-Agents
of the object group are organised as a logical ring, with a predecessor and successor assigned to each mem-
ber. Each MM-Agent is responsible for monitoring its predecessor and informing its own ‘ liveness’ to its
successor. Hence each member periodically sends an “ i_am_alive()” message to its successor in the M-
NTF-GPDU. If this message is not received from a predecessor, within a specified time interval, the mem-
ber failure notification is sent to all the members of the group, including the suspected failed member using
M-NTF-GPDU, with the “member_failure(group_id, member_id)” message in the payload field. When a
member is restarted or receives its own failure notification, it seeks re-entry into the group through the
group administrator (see next section).

9.9.2 Membership Change Notification
In many groups, the member addition and member removal is coordinated through a special group member
in the role of a group administrator, which admits new members or gives permission to the existing mem-
bers for leaving the group based upon application-specific membership management policies. Once it
decides to join a new member to the group or to delete a member from the group, it notifies its local MM-

Group-Based Distributed Computing 145

Inter-GSM Protocol

Agent. The MM-Agent then broadcasts any membership change notifications to all the MM-Agents of the
group, through the MM-NTF-GPDU. The payload field of this message contains the
“add_member(group_id, member_id, member_role, member_address, predecessor, successor)” or the
“delete_member(group_id, member_id)” message, as appropriate. When a new member is added, its suc-
cessor and predecessor are also assigned, so that membership monitoring can proceed, as discussed above.

The MM-Agent plays the role of monitoring, disseminating and receiving the management informa-
tion pertaining to the group through M-NTF-GPDUs, and of informing any membership changes to the
local GSAs. The M-NTF-GPDU contains the following information:
1. message-identifier field: This field identifies the number of invocation of the message of a given type, for

example, “ this is the 5th “ i_am_alive()” message from me” or “ this is the 7th “add_member()” message
from me so that an MM-Agent knows if it has missed any message.

2. payload field: This field contains the message which is to be sent to other MM-Agent(s), such as
a. i_am_alive(),
b. member_failure(group_id, member_id),
c. add_member(group_id, member_id, member_role, member_address, predecessor, successor)
d. delete_member(group_id, member_id)

3. membership-descriptor field: This field contains the senders application specific role.
4. group-constraints field: This field is absent.
A summary of the GPDUs is given in table9.1

Table 9.1: A Catalogue of GPDUs

GPDU Type Sender Receiver(s
) PAYLOAD

Membersh
ip

Descriptor

Group
Constraints

D-OPR-GPDU D-Agent
on client
side

C-Agents in
server group

OPR-message
(received from client)

Client’s appli -
cation-specific
role

client’s filter attributes,
criterion, and cardinality

D-NTF-GPDU D-Agent
on client
side

C-Agents in
server group

NTF-message
(received from client)

Client’s appli -
cation specific
role

client’s filter attributes,
criterion, and cardinality

D-REP-GPDU D-Agent
on server
side

C-Agents in
client group

REP-message
(received from server)

Server’s appli -
cation specific
role

absent

C-EXP-GPDU C-Agent on
server side

C--Agent(s) in
client group

Exception message Server’s appli -
cation specific
role

absent

S-SOL-GPDU Synchroni-
sation
seeker
S-Agent

Synchronisa-
tion provider
S-Agents

OPR | NTF-message Sender’s appli -
cation specific
role

optional (see
section 9.7.1)

S-RES-GPDU Synchroni-
sation pro-
vider
S-Agent

Synchronisa-
tion seeker
S-Agent

sync-request-approved
or
sync-request-denied

Sender’s appli -
cation specific
role

optional (see
section 9.7.1)

Group-Based Distributed Computing 146

Inter-GSM Protocol

9.10 Inter-GSM Protocol over Multicasting Protocol

The Inter-GSM protocol (IGP) enables the peer GSAs to communicate with each other using standard-
ised exchange formats, and it defines the handshaking between the peer GSAs. However, as shown in
figure9.8, the IGP is supported by the underlying multicasting protocols in the Group Communication
Layer (GCL), i.e., the GPDUs that are exchanged between the GSAs are actually carried by the under-
lying multicasting protocols. These GPDUs are encapsulated in the “payload” field of the multicast pro-
tocols and transparently carried to the other GSMs.

9.10.1 Group Communication L ayer
As shown in figure9.8, the GSM is supported by Group Communication Layer (GCL). The GCL

is composed of different types of Multicast Protocol-Objects or MP-Objects. Each MP-Object supports
a different class of multicast protocol, such as unordered multicast protocol, source-ordered multicast
protocol, causal-ordered multicast protocol, atomic-ordered multicast protocol, etc. The GCL provides
the following services to the IGP:
1. Message delivery service: The multicast protocols provide the low-level message delivery services and

takes care of failure handling, retransmissions, etc.
2. Message ordering service: The multicast protocols provides different types of message delivery ordering

such as source-ordering, destination-ordering, casual-ordering, etc.
3. Resilience guarantees: The multicast protocols provide message delivery guarantees such as atomic

delivery (including same ordered delivery) at all destinations.

S-NTF-GPDU Synchroni-
sation pro-
vider
S-Agent

Synchronisa-
tion seeker
S-Agent(s)

synchronisation
events, such as
passed(member_list),
failed(member_list).

Sender’s appli -
cation specific
role

absent

F-PAR-GPDU Contestant
F-Agent

Arbitrator
F-Agent

m_out_of_n_select() Sender’s appli -
cation specific
role

client’s fil ter criterion +
server’s attributes + con-
testant id’s.

F-RES-GPDU Arbitrator
F-Agent

Contestant
F-Agents

selected() or
not_selected()

arbitrator absent

M-NTF-GPDU MM-Agent MM-Agent i_am_alive(),
member_failure(),
add_member(), etc.

Sender’s appli -
cation specific
role

absent

Table 9.1: A Catalogue of GPDUs

GPDU Type Sender Receiver(s
) PAYLOAD

Membersh
ip

Descriptor

Group
Constraints

Group-Based Distributed Computing 147

Inter-GSM Protocol

 Fig. 9.8 Inter-GSM Protocol over Multicast Protocol

9.10.2 GSM - GCL Interface
The P-Agent of the GSM interfaces with the GCL. The P-Agent receives the GPDUs from the local GSAs
and gives them to the appropriate MP-Objects for delivery to other GSMs. Similarly it receives the GPDUs
from the MP-Objects and gives them to the appropriate local GSA based upon the information in the
“GPDU type” field.

The P-Agent gives the GPDU and the list of its recipients to the appropriate MP-Object, by invoking
a standardised service primitive: “multicast(this_GPDU, t o_these_members) ” . Similarly,
the MP-Object delivers the GPDU to the P-Agent by invoking a standardised primitive on the local P-
Agent: “ receive(this_GPDU) ” .

9.11 Conclusion

This chapter has described the Inter-GSM protocol (IGP) between the peer GSAs. This protocol enables
the communication between the peer GSAs using a standardised format. The information content of the
GPDUs and the handshaking involved between the peer GSAs in order to perform their respective func-
tions is described. Some possible encoding schemes for GPDU fields are outlined. The IGP is supported by
a set of underlying multicast protocols which provide different message delivery and ordering guarantees.

GSM

GCL

member

GSM

GCL

member

Inter-GSM
Protocol

Multicast
Protocol

(OPR|NTF|REP) message

Group-Based Distributed Computing 148

Inter-GSM Protocol

Group-Based Distributed Computing 149

Group Support Platform: Implementation and Performance

CHAPTER 10 Group Support Platform:
Implementation and Performance

Abstract
This chapter describes the implementation details and performance aspects of the Group
Support Platform. A partial model of the Group Support Machine involving the G-Agent, D-
Agent, C-Agent, and P-Agent was implemented in the Java programming language. The aim
of this implementation exercise is to validate the abstract model and the protocol, proposed
in the previous chapters, experimentally and to gain insight into the performance aspects of
the model.

10.1 Introdu ction

The proposed model of the Group Support Machine (GSM) is implemented in the object-oriented pro-
gramming language Java. The object-oriented features of Java map naturally into the object-oriented basis
of the proposed model. The language also supports some of the advanced object-oriented features such as,
classes, inheritance, exceptions, method overloading, multi-threaded programming, object serialization,
remote method invocation, thread synchronization and buffered input/output facili ties, required for the
straightforward implementation of the model.

The aim of this exercise is to widen the scope of the thesis in order to implement the abstract models
presented previously.

10.2 Implementation Details

The implementation reported in this chapter is carried out in Symantec’s VisualCafe Professional Java
Development Environment (Ver. 3.0) running on Microsoft Windows 95. VisualCafe supports JDK 1.1.

We have implemented the G-Agent, D-Agent, C-Agent, and P-Agent of the GSM, as highlighted in
figure10.1. The implementation consists of approximately 1400 lines of Java code. In the following
sub-sections we describe in detail the implementation of each aspect of the model. We describe imple-
mentation requirements for each aspect, the corresponding Java language features, and how the require-
ments can be supported by one or a combination of Java features.

10.2.1 Implementation o f GSM Agents
Each GSM Agent, such as the D-Agent, C-Agent, etc., encapsulates a distinct functionality and as such
corresponds to a separate “functional module” or an “object” in an object-oriented paradigm. Hence the
GSM agents are implemented as an instance of a separate Java class. Therefore, the GSM consists of a
G_Agent class, D-Agent class, C_Agent class and a P_Agent class, as shown in figure10.2.

Group-Based Distributed Computing 150

Group Support Platform: Implementation and Performance

10.2.1.1 GSM Class
The GSM class serves as a GSM agents instantiation and initialization class. It creates the instances of
GSM Agent classes such as the D_Agent class, G_Agent class, etc. It contains the Java main() method, the
starting point of any program execution.

 Fig. 10.1 Which Agents are implemented
The GSM agents need to communicate with each other in order to perform their respective functions.

Hence they should know the identity of other local GSM agent in order to invoke methods on them. The
GSM class passes the object reference of the instance of each GSM agent to every GSM agent. This is done
by invoking the method gsmObje ctRefs(G_Agent, D_Agent, C_Agent, P_Agent) on
each GSM agent.

The GSM class inputs the group-id and member-id of the associated group member (yet another class)
and unitizes the local GSM agents with this information.

The GSM class also invokes the policy programming interfaces of the D-Agent and the C-Agent, by
invoking init() method on them, in order to input the respective distribution and collation policy from
the user.

10.2.1.2 G_Agent Class
The G_Agent class implements the equivalent of the client-side stubs and the server side skeletons found in
the conventional middleware platforms such as Corba. In the current implementation, these stubs and skel-
eton are hard-coded with the appropriate invocation handlers to handle a selected set of application mes-
sages, due to the lack of automatic stub and skeleton generation capabili ty.

S-Agent D-Agent C-Agent F-Agent

P-Agent

G- Agent

Group
member

Group Support Machine
GII

GMI Legend:
GII: Group Invocation Interface
GMI: Group Management Interface
MP: Multicast Protocol

Legend:
Shaded Agents
are implemented
in Java.

Group-Based Distributed Computing 151

Group Support Platform: Implementation and Performance

On the client side, the G_Agent class contains a hard coded stub for each application message (an
OPR-message). The stub accepts the OPR-message invocations from local client application, generates a
unique invocation instance identifier, and gives the message along with the invocation instance identifier to
the D_Agent class for distribution, by invoking gd_distribute_mess age(message, mes-
sageId) on D_Agent. If the G_Agent is programmed for solicited reply delivery, the stub returns a reply
handle immediately to the client, thereby unblocking the client. (The client can then issue poll_reply() later
on whenever a reply is required, see section 10.2.6). If the G_Agent is programmed for an unsolicited
reply delivery, the stub executes a java thread synchronization method, wait(), thereby blocking the cli -
ent until the receipt of a group reply from the C_Agent class.

On the server side, the cg_deliver_message() method of the G_Agent class acts as a skeleton.
It contains the appropriate invocation handlers for each OPR-message supported by the local server object.
These invocation handlers receive the OPR-message and the associated invocation instance identifier from
the local C_Agent class. They withhold the invocation instance identifier and deliver the OPR-message to
the local server application and are blocked until the receipt of the reply from the application. When a reply
is received from the server application, the invocation handlers send the reply along with the corresponding
invocation instance identifier to the D_Agent class for distribution to the appropriate client(s), by invoking
gd_distr i bute_message(message, messageId) on D_Agent.

The G_Agent class supports the GSM Invocation Interface (GII) and hence supports a group inter-
rogation API with solicited, unsolicited, and terminable reply delivery semantics. This is discussed in
detail i n section 10.2.6.

10.2.1.3 D_Agent Class
The D_Agent class implements the policy-based distribution of the OPR and REP-messages received from
the G_Agent class. It contains methods to input and store the message distribution policy from the user, to
perform GPDU coding and construction, and its delivery to the P_Agent class for distribution using an
appropriate low-level protocol. As mentioned in section 10.2.3, we use Java RMI to transport the
GPDU payload between the GSMs.

Group-Based Distributed Computing 152

Group Support Platform: Implementation and Performance

 Fig. 10.2 GSM Implementation: GSM Agents and their Interaction

Stub-1 Stub-2 Stub-n

cg_deliver_message()

G_Agent class

D_Agent class C_Agent class

P_Agent class

init()

DPPI

init()

CPPI

notifyAll ()

Legend:
DPPI: Distribution Policy Programming
Interface

CPPI: Collation Policy Programming
Interface.

gd_distribute_message() cd_send_replies_to() dc_oPR_message_sent_to() pc_collate_message()

dp_multicast_GPDU() multicast()

To Network From Network

Group-Based Distributed Computing 153

Group Support Platform: Implementation and Performance

The D_Agent class contains an important method, gd_distribu t e_message(message,
messageI d) , which is invoked by the stubs and the skeletons of the G_Agent class to request the distri-
bution of OPR and REP-messages respectively. This method performs application message marshalling,
GPDU coding and construction. A detailed description of these functions is given in section 10.2.4.
Message marshall ing is done based upon the message signature, hence there is a separate marshalling
routine for each message type. Once a GPDU is constructed, this method reads the distribution policy
from the “distributionPolicyObject ” to find out the destination group membership and the
protocol to be used for message distribution. The GPDU, the destination group membership and the
protocol information is given to the P_Agent class by invoking
dp_multi cast_GPDU(thid_GPDU, to_these_members, u sing_this_protocol)
on it. Finally, on the client side, it invokes a method, dc_oPR_messa ge_sent_to(oPRName,
oPRId, sentToList) on the local C_Agent class to inform it about the invocation instance identi-
fier that will be associated with the corresponding REP-messages (only those REP-messages which are
identified properly and are sent by the members in the “sentTO List ” are accepted for collation by C-
Agent).

10.2.1.4 C_Agent Class
The C_Agent class implements the policy-based collation of the OPR and REP-messages which are encap-
sulated in the corresponding GPDUs received from the P_Agent class. It contains methods to input and
store the message collation policy from the user, to perform GPDU de-coding, application message un-
marshalli ng (message reconstruction), message collation and its delivery to the G_Agent class for final
delivery to the client or server application using the appropriate delivery semantics (solicited, unsolicited,
terminable).

The C_Agent class contains an important method, pc_collate_message(GPDU) , which is
invoked by the P_Agent class to request the collation of OPR and REP-messages contained in the corre-
sponding GPDUs. This method performs GPDU decoding, payload un-marshalli ng to recover the original
message, and message collation. A detailed description of these functions is given in section 10.2.4.
Message un-marshalling is done based upon the message signature, hence there is a separate un-mar-
shall ing routine for each message type. Before performing collation on the recovered message, this
method checks if the received (OPR | REP) message is acceptable to the (server | client) application
(i.e., if the message type is included in the message specification of the “collationPolicyOb-
ject ”), if the message sender is authorized (i.e., if the message sender is included in the membership
specification of the “collationPolicyObject ”), and in case of a REP-message, if the invocation
instance identifier associated with the message is valid (i.e., whether an OPR-message with an identical
invocation instance identifier was sent by the D-Agent).

Once the above mentioned steps are performed, the pc_collate_message(GPDU) method col-
lates the recovered message based upon the collation policy specified for the corresponding message in the
“collationPolicyObject ” . When the required number of messages of a given type are received
(i.e., collation cardinality is satisfied), a group message is constructed based on the specified collation
mode (matrix or linear or singleton) and delivered to the G_Agent class by invoking
cg_deliver_message(message, messageId) on it. On the server-side, when a group-OPR message is deliv-
ered to the G_Agent class, a cd_send_replies_ t o(messageId, componentIIIds,
replyRec eivers) method is invoked on the D_Agent class, so that the reply received from the server
in response to the group OPR-message is sent by the D-Agent to only those members of the client group
from whom the component OPR-messages were received.

Group-Based Distributed Computing 154

Group Support Platform: Implementation and Performance

10.2.1.5 P_Agent Class
The P_Agent class performs the inter-GSM communication. This is described in detail in
section 10.2.3. The P_Agent class contains a dp_multic ast_GPDU(this_GPDU,
to_these _members, using_this_protocol) method which is invoked by the D_Agent
class to transport the GPDUs from the D-Agent to the C-Agent. This method transports the GPDUs to
the peer P-Agents associated with the GSMs of the specified group members using the Java RMI proto-
col. When a GPDU is received, the P-Agent gives it to the local C-Agent by invoking
pc_collate_message(GPDU) on it.

10.2.2 Implementation o f Inter-Agent Invocations
The GSM agents communicate by invoking methods on each other. In Java, as in any other programming
language, the method invocations are blocking, i.e., the caller is blocked until the receipt of the reply (or the
completion of method, if the result is void). The use of this type of caller-blocking communication mecha-
nism poses certain performance and architectural problems in a multi -agent software such as Group Sup-
port Platform (GSP) which consists of multiple GSMs (and their component agents) communicating with
each other.

In the realization of the Group Support Platform (GSP), this type of blocking overhead is extremely
serious. It results in a chain of blocked methods. For example, when a client’s OPR-message is invoked on
a GSM (i.e., its G-Agent), this message is invoked by the G-Agent on the D-Agent which in turn invokes
the corresponding OPR-GPDU on the P-Agent. The source P-Agent invokes the GPDU on the destination
P-Agents in the server group. The destination P-Agent invokes the received GPDU on the local C-Agent
which in turn invokes the collated group message on the local G-Agent and finally on the server objects in
the server group. Due to the blocking nature of method invocations, the first method invoker is not released
until all the successor invokers are released (i.e., have received their replies). This results in all the agents in
the GSM being tied up to handle a single client request.

There is another architectural requirement in the GSM, the path traced by the reply is not the same as
the one traced by the original client’s request. The replies are distributed by the D-Agent on the server side,
and collated by the C-Agent on the client side. Hence there is a need to de-couple the request and reply
path and to unblock the method call chain.

A simple and elegant solution to the problem mentioned above exists in Java. This is offered by the
Java threads. The thread gives a way to implement concurrency or, in the case of a single processor envi-
ronment, interleaved execution. The abili ty to create multiple threads and to embed the inter-agent method
invocations within the body of the threads is the key to the solution. In our implementation whenever a
class (or a method) needs to invoke another class (or a method) it instantiates an instance of a Java thread
referred to as a NonBlockingInvo ker , using a thread’s start() method. The body of the NonBlock-
ingInvok er thread contains a single method called run() which contains the appropriate inter-agent
method invocation. So a method invocation is handled by an independent and concurrent thread of execu-
tion, thereby unblocking the original thread, the caller. Using this mechanism we have realized a non-
blocking invocation mechanism, thereby avoiding the chain of blocked invocations. We now have a parallel
architecture for Group Support Platform in which each GSM (and the component agents within the GSM)
can execute concurrently with other GSMs.

In our implementation, the inter-agent invocations follow a certain naming convention. For example,
the method called gd_distribute_message() is invoked (in an independent thread) by the G-
Agent on the D-Agent to request the distribution of the message.

Group-Based Distributed Computing 155

Group Support Platform: Implementation and Performance

10.2.3 Implementation o f Inter-GSM Communication
Inter-GSM communication occurs via the P-Agent. In a real environment, the P-Agent uses an appro-

priate multicast protocol to distribute the GPDUs to the (P-Agents of the) destination GSMs. Our imple-
mentation is carried out in a simulated environment on a single machine. We have implemented a four
member group, each of them supported by an individual instance of GSM, identified as GSM1, GSM2,
GSM3, and GSM4. All these GSMs run in separate address spaces on a single machine. So we chose Java’s
native inter-process communication protocol to transport the GPDUs between the GSMs. In our implemen-
tation P-Agents communicate with each other via Java’s Remote Method Invocation (RMI) protocol.

After the instantiation of GSM agents, each P-Agent is registered in the Java RMI registry using the
Java’s bind() or rebind() method. Before making an invocation, the P_Agent is located using the “ lookup()”
operation of the Java RMI registry. These invocations between P-Agents are also executed in Java’s thread
and hence are non-blocking.

10.2.4 Implementation o f Inter-GSM Protocol
The Inter-GSM Protocol (IGP) is described in chapter 9. This protocol consists of a set of GPDUs
which describe how an agent within a GSM communicates with its peer agent in a remote GSM. The
emphasis of that chapter is on the identification of the different fields required for inter GSM communi-
cation and their information content. There are several aspects of the protocol that are not defined in
that chapter, such as marshalli ng of the message parameters and the detailed coding of the GPDU fields.
These aspects pertain to the implementation of the protocol, and are decided based upon bi-lateral
agreement between protocol partners. They are described in this section.

As mentioned in section 9.5, there are many possibil ities with respect to the format and the coding
of the GPDU fields. In our Java implementation of IGP, we have chosen a simple and straightforward
coding for the GPDU fields. This is described below for each of the GPDU fields.

The GPDU Type field identifies the type of the GPDU. This field takes a limited set of values, such as
“D-OPR-GPDU”, “D-REP-GPDU”, etc. There are numerous encodings possible for this field, such as a
“byte” , “ integer” , “enumerated types” , “character strings” , etc. In our implementation this is encoded as a
character String in Java.

The Sender Group Identifier and the Sender Identifier fields of the GPDU identify the source group
and the sender of the GPDU. Again there are many possibilities for the encoding of these fields, as outlined
in section 9.5. The simplest being the representation of these fields as character String which we have
chosen in our implementation.

The Message Identifier field contains the “invocation instance identifier” associated with an OPR,
REP, or an NTF-message. It is a unique identifier and it could be represented as an integer, character string,
or some combination thereof. In our implementation we encoded it as an integer. The Group Membership
Descriptor and Group Constraints fields are not used in our implementation.

The encoding (or marshalling) of the Payload field of the GPDU deserves careful attention. This field
contains the application message (i.e., an OPR, REP, or an NTF message) and its parameters. In high-level
programming languages, such as Java, C++, C, etc., these messages have their corresponding message sig-
natures and they are typed. Each message contains zero or more parameters and each parameter is an
instance of a basic language type such as an integer, boolean, character, float, etc. or of a constructed type.
There are many encoding schemes possible for these typed messages. In Corba’s General Inter-Orb Proto-
col (GIOP), these typed messages are encoded using a Common Data Representation (CDR).

In our implementation we have chosen a simple message encoding scheme which is native to the Java
language. All basic and constructed types in Java are an extension of the Object class. The Object class is

Group-Based Distributed Computing 156

Group Support Platform: Implementation and Performance

at the root of the Java class hierarchy. Moreover, an Object class is serializable, a requirement for Java RMI
protocol which is used to transport the GPDUs between the GSMs. The Payload field of the GPDU is
implemented as an array of Object class. This allows all basic and constructed Java types to be marshalled
as an Object type, the base type.

The marshalli ng of the OPR and REP messages is carried out based upon the message specification
(message signature) in the distr i butionPolicyObject . Each message parameter is marshalled
into its base type, the Object type, using an appropriate marshall ing function for that type. The payload
consists of a sequence of parameter names, implemented as a string, and the corresponding marshalled
parameter value.

10.2.5 Implementation Distribution and Collation Policies
The Group Policy Specification Language (GPSL), introduced in chapter 8, is essentially a frame-

work which identifies the basic elements of message distribution policy, collation policy, etc. The
emphasis of GPSL is to give a language framework rather than any specific notation. Being a language
framework, it can be implemented in a variety of mechanisms.

In our implementation, the distribution policy and the collation policy are realized as Java classes iden-
tified as DistributionPolicy and CollationPolicy respectively. These classes contain the
corresponding elements of the policy such as message specification, membership specification, cardinality
specification, etc. The message specification consists of the message name, followed by a sequence of
parameter name and parameter type specification. This is implemented as a character String. The member-
ship specification consists of a comma separated list of group member names. This is again a String. The
time specification specifies the maximum collation waiting period. This is implemented as an integer. The
cardinali ty specification specifies the minimum or maximum number of messages required for collation.
This is naturally mapped into an integer. The collation mode could be “matrix” , “ linear” or “singleton” . It
can be represented either as an enumerated type or as a string. The latter is chosen.

Distribution policy and collation policy are programmed in the distr i butionPolicyObject
and the co l lationPolicyObject respectively. These objects are implemented as an array of Dis-
tributio nPolicy class and CollationPol i cy classes respectively. The size of the array is equal
to the number of message types supported by the group members.

The distribution and collation policies are solicited from the user in the init() method of the
D_Agent class and C_Agent class respectively. This method serves as the Group Policy Programming
Interface of the GSM (see figure10.2).

10.2.6 Implementation o f an API for Group Interrogation Primitive
The group interrogation primitive proposed in chapter 3 essentially defines an application-level

API which is offered by the GSM and used by client components of a group-based application (see def-
inition in section 3.10) for invoking OPR-messages on the server group and for receiving multiple
replies in a solicited or unsolicited manner from the server group. This communication primitive is
offered as an API to the application components by the G-Agent of the GSM and it is referred to as
Group Interrogation Interface (GII) in section 6.2.1.1.

The group interrogation primitive gives the client the capabil ity to receive a single group reply or mul-
tiple individual replies in a solicited or an unsolicited manner. In the following sub-sections we describe
how these capabilities are supported in our API implementation using the Java’s thread synchronization
primitives, wait() and notifyAll () which are used by the G-Agent to wait for the replies and to be notified
when the replies arrive.

Group-Based Distributed Computing 157

Group Support Platform: Implementation and Performance

10.2.6.1 Implementation o f Unsolicited Group Reply Delivery - API
This API supports the most simple semantics of the group interrogation, i.e., the client invokes an OPR-
message on the GII and it is blocked until the receipt of a single group reply.

The client’s request (OPR-message) invocation is intercepted by the G_Agent class and is handled by
the appropriate stub. The stub generates a new invocation instance identifier (iii d) and sends the message
along with its iii d to the D-Agent for distribution to the server group. The stub then waits for the group
reply to be received from the C-Agent by executing the wait() Java synchronization primitive.

Due to the non-blocking nature of inter-agent invocations (as discussed in section 10.2.2), and due
to the replies following a path different from the one followed by the request message, the stubs have to
execute a wait() method.

When the C-Agent has received all the expected replies from the server group members, as specified in
the reply collation policy, it gives a single group reply to the G-Agent by invoking
cg_deliv er_message() on the G-Agent. The cg_deliver_message() method of the G-
Agent stores the received group reply in a local buffer and sends a notification to the waiting stub by exe-
cuting another Java synchronization primitive, the notifyAll (). The stub then fetches the group reply from
the buffer and returns it to the client, thereby unblocking it.

10.2.6.2 Implementation o f Solicited Multiple Reply Delivery - API
The solicited reply delivery semantics of the group interrogation imply that the individual replies
received from the server group in response to an OPR-message are delivered to the client by the GSM
only when explicitly requested by the client, the client is unblocked immediately after invoking the
OPR-message.

As in the previous case, the client’s request (OPR-message) invocation is intercepted by the
G_Agent class and is handled by the appropriate stub. The stub generates a new invocation instance
identifier (iii d) and gives the message along with its iii d to the D-Agent (using the non blocking invoca-
tion, described in section 10.2.2) for distribution to the server group. However, in this case, the stub
returns the invocation instance identifier to the client as a reply handle, thereby unblocking the client
immediately. The client may now engage in other processing. The iii d is also locally stored in the G-
Agent as an index for reply storage (when it is received) and retrieval (when requested by client).

Incoming replies are identified with the ii ids that were associated with the corresponding OPR-mes-
sage. In case of singleton and solicited reply delivery, the C-Agent sends the individual replies along with
their invocation instance identifiers to the G-Agent as soon as they are received from the server group
(without collation). These replies are buffered within the G-Agent and indexed with the corresponding
invocation instance identifier.

Whenever a new reply is required, the client invokes a poll_reply(reply_handle) on the GII of the
G-Agent. This invocation is handled by the stub for the poll_reply. If the reply corresponding to the
reply handle is available in the local buffer, the stub returns the oldest reply in the buffer. If no reply is
available, the stub may either block the client, waiting for the receipt of a new reply or it may give a
“reply not available” reply and unblock the client (the client may try later). In our implementation the
former option is chosen. In the former case, the stub executes a wait() primitive waiting for the receipt
of reply available notification from the cg_delive r _message() method. When a reply is received
from the C-Agent, the cg_deliver_me ssage() method executes the Java synchronization primi-
tive notifyAll () to notify the waiting stub about the receipt of the reply. The stub then returns this reply
to the client, thereby unblocking it. This API can be further enhanced to handle the delivery of different
types of replies by including a reply type argument in the poll_reply(reply_handle).

Group-Based Distributed Computing 158

Group Support Platform: Implementation and Performance

10.2.6.3 Implementation o f Unsolicited, Multiple and Terminable Reply Delivery - API
This type of reply delivery semantics imply that the individual replies from the server group are delivered
to the client by the GSM in an unsolicited manner as soon as they are received from the server group. The
terminable reply delivery capability gives the client the control to terminate the delivery of subsequent
replies when it does not want them any more. The terminable reply delivery capabili ty can also be com-
bined with the solicited reply semantics, although it adds little advantage.

In Java, as in any other programming language, the clients are unblocked after the delivery of the first
reply, whether it is a singleton reply or a group reply or a reply handle as in the previous case. The imple-
mentation of unsolicited delivery of multiple replies individually (as and when they are received) using
existing languages requires the client to support a call back interface to receive individual and unsolicited
replies from the GSM. The clients register their callback interface with their local GSM. The clients may
either support a single callback interface or multiple call back interfaces in order to support the receipt of
different types of replies. So, the GSM knows which client’s interface(s) to invoke to deliver the replies.

As in the previous case, the client’s request (OPR-message) invocation is intercepted by the G_Agent
class and is handled by the appropriate stub. The stub generates a new invocation instance identifier (iii d)
and sends the message along with its iiid to the D-Agent (using the non blocking invocation) for distribu-
tion to the server group. Then the stub returns the invocation instance identifier to the client as a reply han-
dle, thereby unblocking the client immediately. The client may now engage in other processing. In this case
each reply handle (ii id) is associated with a corresponding reply delivery flag which is set true by the stub
before returning the reply handle to the client.

When individual replies are received from the local C-Agent, the G-Agent invokes these replies on the
appropriate callback interface of the client if the reply delivery flag associated with the reply handle is set
to true, otherwise the reply is discarded. (The client is internally notified of the reply receipt by their call -
back methods).

When the client wants to terminate the reply delivery for a particular OPR-message, it invokes a spe-
cial message terminate_replies(reply_handle) on the Group Invocation Interface (GII) of the G-Agent.
This message is handled by the corresponding stub, which turns off the corresponding reply delivery flag,
thereby disabling the delivery of subsequent replies.

10.3 Performance Aspects

Middleware is an entity that lies between the applications and the low-level communication infrastructure.
Therefore the performance of middleware platform is an important aspect to the applications that use it.
Middleware platforms perform some useful functions in order to make distributed computing transparent
to the applications that use them. Hence, in general, there is some performance overhead associated with
these platforms.

In this section we discuss performance of the Group Support Platform (GSP), a middleware for the
support of group-based distributed applications. It makes group-based distributed communication aspects
transparent to the applications.

Some of the desirable properties of the middleware platforms are high throughput, low latency, flexi-
bility, scalabil ity, reliabili ty, and ease of use. In a group-based distributed environment, there are many fac-
tors that have an effect on these desirable properties. In the following sub-sections we examine these
factors and evaluate the performance of GSP using the performance metrics [149 - 153] used for the
evaluation of middleware platforms.

Group-Based Distributed Computing 159

Group Support Platform: Implementation and Performance

10.3.1 Message coun t
The number of messages exchanged between the middleware entities is a basic performance metric. It has
a direct effect on the network load and the application throughput and reply-reception latency. In case of
GSP, the basic data unit that is exchanged between the middleware entities (i.e., the GSMs) is the Group
Protocol Data Unit (GPDU). As shown below, this message count is directly proportional to the size of the
group, i.e., number of group members. For example, an OPR-GPDU has to be distributed to all the server
group members and the originating GSM has to wait for the reception of all the REP-GPDUs before a
group reply can be sent to the client. Hence group size increases the message count.

The reply reception latency, ideally, is not a function of message count (or rather the group size). In a
environment composed of concurrent server group and communication links, it takes the same amount of
time to receive a “single” reply or “n” number of replies from the group (given a negligible collation pro-
cessing time to construct a group reply in the client’s GSM). This is due to the fact that the REP-GPDUs
from all the server group members are received simultaneously by the client’s GSM in response to an OPR-
GPDU (because all OPR-messages are processed and the corresponding REP-GPDUs are generated simul-
taneously because of the concurrency in the server group). However the distribution of the members of the
server group from the client object and the characteristics of the communication links between them (and
the dynamic network load) affects the latency of the reception of replies (REP-GPDUs) from the individual
members of the server group.

Here is a quantitative evaluation of the message count. Consider a client object interacting with a
server group of size “n” . The client’s GSM sends “n” number of OPR-GPDUs, one to each member of the
server group. Similarly, it receives “n” number of REP-GPDUs, one from each member of the server
group. Therefore the total message count is “2n” .

Now let’s evaluate the message count if a “ fil tering requirement” (see example in section 7.10) is
imposed in the server group. This means that “m out of n” servers in the server group are filtered
(selected) to perform (execute) the client’s request (OPR-message)1. Again, the client’s GSM sends “n”
number of OPR-GPDUs, one to each member of the server group. The OPR-GPDUs contain the filter-
ing constraints specified by the client. An OPR-message can only be given to “m” members of the
server group which satisfy the client’s filtering criterion. In order to do this, the contestant F-Agent in
each GSM sends an F-PAR-GPDU (see section 9.8) to an arbitrator F-Agent, a total of “n” messages. In
response to this, the arbitrator F-Agent sends its “selected” or “not selected” reply in F-RES-GPDUs,
one to each member of the server group, another “n” messages. The set of “m” filtered (selected) serv-
ers send their replies in REP-GPDUs. Therefore the total message count in this case is “3n + m” .

10.3.2 Message Complexity
The size of the messages exchanged between the middleware entities is another performance metric. It is
usually measured in “bytes” . It depends upon the amount of control information carried in the GPDUs (in
addition to the usual payload size) and the type of encoding scheme employed. As described in chapter
9, the GSMs need a minimal control information to be exchanged between them in order to communi-
cate with each other and to perform their function.

Here’s a quantitative evaluation of the size of the GPDUs which carry application messages, such as

1. It may be noted that filtering does not always imply “m out of n” selection. If a client wants all servers in the group
that satisfy the client’s filtering criterion to be selected, then only local filtering is done, “m out of n” selection is
not required.

Group-Based Distributed Computing 160

Group Support Platform: Implementation and Performance

D-OPR-GPDU, D-REP-GPDU and D-NTF-GPDU. The size of any PDU depends upon the encoding
scheme. Here we illustrate the size using most simplest scheme. The minimum size of the GPDU fields
are:
1. GPDU Type: using an “octet” IDL encoding = 1 byte,
2. Sender Group Id: using an “octet” IDL encoding = 1 byte,
3. Sender Id: using an “octet” IDL encoding = 1 byte,
4. Message Identifier: using a “short” IDL encoding = 2 bytes,
5. Payload: This a variable length field which contains application message. The first 2 bytes of this field

specify the rest of the payload length. This field is encoded as parameter name and parameter value
tuples. The parameter names are required in a GPDU to support the “linear-mode message collation” on
the receiver side. The inclusion of parameter names increases the payload size. The parameter names are
“ IDL stings” . Therefore the encoding of an OPR-message (with a variable number of parameters)
requires “q” bytes to encode parameter names and “p” bytes to encode the actual parameter values.

Therefore the total message size is “p + q + 7” bytes. The overhead is q+7 bytes. If only matrix mode
collation is supported, then there is no need to encode parameter names in the payload field. In this case
message size shrinks to “p + 7” bytes. One possibility of minimizing the payload complexity is to use opti-
mal coding techniques, which generates the least number of bytes.

Apart from message counts and message complexity, we present some other factors that also have an
impact on the performance of a “middleware” system.

10.3.3 Communication Network Speed
The response time or the reply reception delay is primarily dependent upon the characteristics of the com-
munication network and individual links that connect the client object to the server group, and on the phys-
ical distribution of individual group members from the client. The speed of the individual communication
links between the client and the server group members, is the primary factor that affect the response time.

Moreover, the response time is also affected by such varying and dynamically changing network traf-
fic conditions arising due to congestion, link failures, re-routing, etc.

10.3.4 Message Marshall ing and Un-marshalli ng Overhead
The encoding and decoding of the GPDU on the sender and receiver side also adversely affect the overall
performance of the GSP. It decreases the throughput and increases the latency of reply reception by the cli -
ent. The encoding of all the GPDU fields, except the payload, incurs a fixed amount of processing over-
head. The marshalling and un-marshalling of the payload field involves variable processing overhead. The
payload consists of variable number and types of parameters. The use of complex data structures for
parameter types requires excessive marshall ing and un-marshalli ng overhead. Latency also increases lin-
early with the size of the request.

In general long operations with many parameters and complex parameter types take longer for mar-
shall ing and un-marshalli ng. This is due to the fact that marshalling routines convert the complex data
types into most basic data representation forms (flattening). These transformation functions, such as mes-
sage marshall ing, buffering, data copying, etc. are the primary areas that must be optimized to achieve
higher throughputs.

10.3.5 Intra-GSM Invocations Overhead
Conventional middleware platforms such as Corba, DCOM, etc. suffer from excessive intra-ORB function
calls. One of the reasons for latency in these platforms is the long chain of intra-ORB function calls. These

Group-Based Distributed Computing 161

Group Support Platform: Implementation and Performance

intra-ORB invocations and the internal data copying between buffers consumes a significant amount of
CPU, memory and I/O bus resources and they affect the eff iciency of the model.

In our implementation of GSMs we make special consideration to minimize this overhead. Due to the
use of non-blocking invocations (see section 10.2.2) for inter-agent invocation within the GSM, this
type of delay is almost non-existent in our implementation. In particular, this type of architecture avoids
the long chain of inter-agent calls. After making an invocation on another agent, the calling agents are
released immediately to accept another request (either from the client or another agent) because inter-
agent invocations are performed in an independent and newly spawned thread. Also the design of the
GSM minimizes the need for invocations between the GSM agents.

10.3.6 Internal Buffer Sizes and Queue Lengths Considerations
Any implementation of middleware platform requires the use of internal buffers and queues to store and
process messages until they are ready for delivery to the client or server applications. The size and the allo-
cation of these system resources is also a performance consideration. A small number (and size) of these
buffers would result in the user requests being queued, thereby affecting throughput, and a large number of
them would result in waste of system resources. An optimal and dynamic allocation strategy is always a
requirement.

In our implementation, the most prominent buffers are the collation buffers required to store messages
(OPR or REP) until a group message is constructed. The size of each collation buffer is known because the
group size and message size are known. It is the number of these buffers that are needed that is unknown.
However this is not a problem in Java because Java permits dynamic allocation of buffers.

10.3.7 Concurrency and Multi-threaded architecture aspects
The concurrency in middleware is dependent upon the use of multi-threaded design techniques. Multi -
threading is in general a good design performance optimization technique. It minimizes latency, increases
throughput and ensures predictabilit y in middleware platforms.

The proposed GSM model, can be implemented in many ways and by using any combination of multi -
threading techniques [154] such as thread-per-request architecture, thread-per-connection architecture,
thread-per-object architecture, thread-pool architecture, etc. The choice of one or the other architecture
depends upon the nature of applications supported. It is a trade-off between concurrency and the host sys-
tem resources that are consumed. For example the thread-per-request architecture is very costly in terms of
consuming system resources, but is useful to handle long duration requests such as database queries. In our
sample GSM implementation we use multi-threading mainly to avoid performance bottlenecks such as in
inter-agent invocations (which may result in long-chain of inter-agent calls within GSM) and to avoid cli -
ent requests starvation.

Multi-threading allows requests to execute simultaneously without impeding the progress of other
requests. If properly used, it can ensure that client requests can be handled quickly enough and new
requests are not starved or unduly delayed. With multiple threads, each request can be serviced in its own
thread, independent of other requests. Likewise system resources are are also conserved, since creating a
new thread is typically much less expensive than creating a new process. Moreover the thread dies after the
completion of the request, thereby releasing the resources. However, even with multi -threaded architec-
tures, it may be noted that the performance is dependent upon the number of CPUs and the thread schedul-
ing policies employed by the native host environment.

10.3.8 Timers
The use of timers in the middleware platforms allows users to impose a maximum upper bound on the time

Group-Based Distributed Computing 162

Group Support Platform: Implementation and Performance

spent waiting for the receipt of replies. Timers are an integral part of middleware platforms. In the GSP, the
the upper limit on the reply reception delay is determined by the collation timers (which are programmed
as part of the reply collation policy).

10.3.9 Collation Processing Overhead
So far we have evaluated the GSP based upon the metrics that are relevant both to the “single client - single
server” middleware platform such as Corba and to the group-support middleware such as GSP. In this and
in the subsequent sub-section we will evaluate GSP based upon the considerations that are specific to the
group support middleware.

In a group-based environment, there are many factors that contribute to the latency and delays in
receiving responses. One of them is the requirement for delivery of group reply to the client. The construc-
tion of the group reply involves message collation mechanisms. Reply collation can only be completed and
a group reply constructed when all the replies are received from the server group. Hence collation intro-
duces its own reply reception delay.

10.3.10 Other Group Processing Overhead
Other group processing functions such as synchronization and filtering discussed in chapter 4, also
have a major impact on the throughput and latency of the GSP. The synchronization of client’s (OPR-
message) invocations in the client group requires the execution of a solicited or an unsolicited synchro-
nization protocol as described in section 9.7. This protocol involves the exchange of S-GPDUs which
introduces further delay in the distribution of OPR-message to the server group, and consequently the
reply reception latency.

Similarly, the filtered delivery of client’s invocation in the server group requires the execution of an
“m-out of-n selection” protocol as described in section 9.8. This protocol involves the exchange of F-
GPDUs which introduces further delay in the delivery of OPR-message to the server group, and conse-
quently the reply reception latency.

10.3.11 Reliabili ty and Robustness
So far we have focussed our attention on the throughput and latency characteristics of the GSP. In this and
the following sub-sections we evaluate the other performance aspects of the GSP.

The GSP is a replicated architecture. Due to the presence of GSM entity at every member node, the
failures are localized. Failure of one node or GSM does not affect the overall performance of the rest of the
GSP (except for example the unavailability of reply from one group member). Moreover the management
protocol discussed in section 9.9, detects failures and provides failure notifications to the rest of the
GSMs in the GSP.

Robustness of the middleware platform is determined by the upper limits of the entities handled, e.g.,
the maximum size of the request, the maximum number of client and server objects, etc. In a multi -
threaded implementation of GSP, each client request is handled by a separately spawned thread. Hence the
robustness of the GSP is limited by the availabili ty of the underlying system resources such as the maxi-
mum number of threads, buffers, etc. that can be obtained from the host system.

10.3.12 Scalability
Scalabili ty is the abili ty to handle the increasing number of objects in the end systems and in the distributed
system. Scalability is important for large scale applications that handle large number of objects on each
network node as well as large number of nodes throughout a distributed computing environment.

There are two aspects to the scalabil ity of the GSP, the scalability of the GSMs and the scalability of

Group-Based Distributed Computing 163

Group Support Platform: Implementation and Performance

the Inter GSM Protocol (IGP). The former determines the abili ty to handle the increasing number of
requests in the end systems and the latter determines the abil ity to add more nodes in the distributed sys-
tem.

In a multi-threaded GSM implementation, each client’s request is handled by a separate thread. The
abil ity of the GSM to handle an increasing number of clients and their requests in the end systems is lim-
ited by the maximum number of threads and the buffers that can be obtained from the host. Therefore, the
maximum limit on the scalability is set by the underlying host resources.

The scalability of the IGP is determined by the scalabil ity of the GPDU fields. The fields that have a
direct impact on the scalability are the “Sender-Group-Id” , “Sender-Id” , and the “Message-Id” . The encod-
ing of these fields affects the scalabilit y. For example, if “Sender-Id” field is encoded as a “byte” , then a
maximum of 256 objects can be supported by the GSP. However, if this field is encoded as a variable length
“String” (as is done in our Java implementation), then an arbitrarily large number of objects can be sup-
ported by GSP. None of the GPDU fields constraint the expansion of the group size. The IGP itself does
not limit the scalabili ty of the middleware. A similar consideration applies to the scalability of the underly-
ing multicast protocols which transport the GPDUs between the GSMs.

10.3.13 Ease of Use
The ease of use of a middleware platform is an important criterion for the applications. In this sub-section
we discuss how easy it is for the client and server components of the group-based application to use the
GSP. As mentioned in the previous chapters, the GSM offers two interfaces to the user application. These
are the GSM Invocation Interface (GII) and GSM Policy Programming Interface (GPPI). These are the
only interfaces that are accessible to the applications and we will describe in the following sub-sections the
ease of use of these interfaces. These interfaces are available as high-level APIs in our Java implementation
of GSM.

10.3.13.1 Ease of use of GSM Invocation (GII) Interface and Group Interrogation p rimitive
The GII is used by the group-oriented client and server components. It’s an API that supports group inter-
rogation primitive and its associated semantics, such as solicited reply delivery, terminable reply delivery,
etc.

This is a simple and easy to use interface. In the simplest case, the client invokes request (OPR-mes-
sage) on the GII, as it would on any other middleware such as Corba, and is blocked until the receipt of a
single group reply. All aspects involved in giving a group reply, such as request distribution, reply colla-
tion, etc. are handled transparently by the GSM.

The GII also supports sophisticated reply delivery semantics. The GII supports some simple primitives
to enable clients to control the reply delivery. The client is given the control to receive individual replies as
when they are required and to terminate the reply delivery when they are no longer required (in an unsolic-
ited delivery semantics). This control is again simple. The client simply has to invoke “poll_reply()” in
order to solicit a reply and “ terminate_replies()” in order to stop the flow of reply delivery.

Similarly, the group-oriented server object receives the “group request” from the client group via a sin-
gle invocation from the GII, as a “single request” is delivered to a singleton server by Corba. The request
collation is done transparently by the GSM. Similarly, the group-oriented server returns either a single
reply or group reply in a single invocation of GII . The dis-aggregation of group reply and the reply distri-
bution, collation, etc., is all handled transparently by the GSM.

The group oriented clients and server use the GII with almost the same flexibilit y and ease of use as
the singleton clients and server use the Corba invocation interface. GSM allows all the group coordination

Group-Based Distributed Computing 164

Group Support Platform: Implementation and Performance

aspects to be modeled and executed external to the applications.

10.3.13.2 Ease of use of Group Policy Programming Interface
Unlike in conventional middleware platforms such as Corba, there are many aspects in a group support
middleware which must be programmed by the user. As discussed in detail in the previous chapters, these
aspects describe how to distribute the messages, how to collate and deliver the replies, how are client
requests synchronized, how are they filtered before delivery to the server group. These pertain to the mes-
sage distribution, collation, synchronization, and filtering policies. The GPPI offers an interface for the
programming of these policies. As shown in our implementation, the GPPI can be realized as a simple user
interface through which all aspects of distribution, collation, etc. policies are input from the user. In a more
sophisticated implementation, the GPPI can be realized as a Graphical User Interface.

10.4 Comparison o f Group Suppo rt Platform with CORBA Middleware

The GSP is an enhancement of the currently available middleware solutions in order to provide support to
a special category of distributed applications, the group-based distributed applications, which are com-
posed of a client group interacting with a server group. In this section we compare the support of the group-
based applications in GSP with the support of same applications in the currently available middleware
solutions such as CORBA. The idea is to compare
1. the ease of use of the proposed group interrogation primitive with the traditional interrogation (or

remote procedure call), and
2. the group support platform with traditional middleware approaches such as Corba.
A detailed comparison between Corba and GSP w.r.t. the performance metrics such as message count,
message complexity, response times, and a discussion of trade-offs is given in table 10.1 and table10.2

10.4.1 Comparison at Programming-Level
In this section we will evaluate the programming effort required by the client application in invoking a
server group and receiving the replies using both the traditional Corba approach and the proposed GSP
approach. Similar effort on the server side using both these approaches is also compared.

10.4.1.1 Group Interrogation vs. Remote Procedure Call
Using the traditional remote procedure call mechanism of Corba, the client has to invoke each server in the
server group separately and due to the blocking semantics of the remote procedure call , it has to wait until
the reply is received before it can invoke the next server. This introduces considerable latency and also puts
the responsibilit y of knowing the server group membership and any changes in the membership on the cli -
ent application. The proposed group interrogation primitive along with the underlying GSP gives the client
the capabili ty to invoke multiple servers simultaneously and to receive a single group reply without know-
ing the membership of the server group.

Group-Based Distributed Computing 165

Group Support Platform: Implementation and Performance

Group-Based Distributed Computing 166

Group Support Platform: Implementation and Performance

Table 10.1: Corba vs . GSP: How do they compare w.r.t. Crucial Performance Metrics

GSP Corba

Message Count
A detailed analysis of the mes-
sage count in GSP is given in
section 10.3.1. As shown, the
message count is directly pro-
portional to the size of the
group, and to be precise it is
equal to twice the size of the
group.
Message count = 2n, where,
“n” is the size of the server
group, with which the client is
interacting.

Message Count
In case of Corba, the basic data unit that carries the request / replies between the middle-
ware entities (i.e., the ORBs) is the “Request Message / “Reply Message”. Because corba
does not provide “group support” , the client has to separately invoke each member of the
server group, one after another (see discussion in row 3 of this table). For each invocation
a “Request Message” is sent from client ORB to the server ORB and a “Reply Message”
is sent in the reverse direction. Thus 2 messages are exchanged between ORBs for each
invocation. Therefore for a server group of size “n” , a total of 2n messages are exchanged
between the client object and the server group.
Conclusion: The message count in both the platforms is identical. The GSP does not incur
any extra overhead over Corba with respect to this metric. Moreover, the GSP gives a lot
more functionality and group support to the applications, than is available in Corba, such
as collation of replies, solicited delivery of replies, and other functions described earlier in
the thesis.

Group-Based Distributed Computing 167

Group Support Platform: Implementation and Performance

Message Complexity:
The IGP is the Inter-GSM com-
munication protocol in GSP.
The request/replies are carried
in the D-OPR-GPDU/D-REP-
GPDU. A detailed analysis of
the message complexity in GSP
is given in section 10.3.2. It
was found that the message
size is (7 + q + p) bytes long,
where q is the number of bytes
required to encode parameter
names, and p is the number of
bytes required to encode the
parameter values.
If only matrix-mode collation is
required, then there is no need
to send parameter names in the
payload field, so the total mes-
sage size in this case is 7 + p
bytes.

Message Complexity:
The GIOP is the General Inter-ORB communication protocol in Corba. The application
messages (request/replies) are carried in the GIOP “Request Message”/ “Reply mes-
sagea” . As described below, there is some additional complexity in Corba “Request
Messages” due to different types of control information that are carried in this message.

Apart from the usual “Message Type” field (1 byte long) and the “Message Size” field
(4 bytes long), the Corba “Request Message” also contains the following control informa-
tion in its header:
1. magic: This field identifies the “GIOP” protocol itself. This field is used to identify the

GIOP from other possible inter-ORB communication protocols. It is 1 byte long.
2. GIOP-version: contains the version number of the GIOP protocol being used. This is

used to ensure inter-operabilit y between ORBs. This field is 2 bytes long.
3. Request-Id: This is similar in function to the “Message-Id” field in GPDUs. It is used to

associate reply messages with the corresponding request messages. This field is 4 bytes
long.

4. Response Expected: This field is used to indicate if a reply is expected to the enclosed
request message. This field is unnecessary in our case, because notification messages
(which do not have a reply) are sent in a separate GPDU, the D-NTF-GPDU. This field
is 1 byte long.

5. Object_key: This field identifies the target object. It is identified as a “sequence of
octets” . It’s length is negotiated between protocol partners, and is usually between 4 to
16 bytes. However, this field is redundant and actually not required. A message need
only identify its sender (such as “Sender-Id” in GPDU) . The target object reference
need only be given to the lower layer protocol which carries the message to the target
object.

6. Requesting_principal: This field identifies the message sender. This is similar in func-
tion to the “Sender-Id” field in GPDU. Again its length is not specified, it is negotiated
between protocol partners and varies from 4 to 16 bytes.

7. Operation: Identifies the name of the operation being invoked. It is identified as a
string. It is a variable length field. The operation name is included as part of payload in
GPDU and not in a separate field.

8. Request body: This is the payload field. Its length is variable, say “p” bytes.
So, the total size of the Corba “Request Message” (taking only minimal field length,

wherever unspecified) = “21 + p” bytes
Conclusion: In general the Corba Request message carries a lot of control information
than that required in GPDUs. The control information in the corresponding GPDU is min-
imal. In any protocol design, it is always desired to keep the control information minimal
in the protocol data unit.
However, in the OPR-GPDU the payload field is much longer than the corresponding field
in Corba due to the need to carry parameter names along with parameter values. The
parameter names are required to assist the linear-mode collation on the receiver side. If
only matrix-mode collation is supported, then parameter names are no more required in
the GPDU payload and the payload fields in both GSM and Corba are identical in length
(i.e., p bytes).

Table 10.1: Corba vs . GSP: How do they compare w.r.t. Crucial Performance Metrics

GSP Corba

Group-Based Distributed Computing 168

Group Support Platform: Implementation and Performance

10.4.1.2 Ease of group request invocation
Using the remote procedure call mechanism of Corba, there is no way for the server to receive multiple
requests (OPR-messages) from the client group as a single “group request” via a single invocation on the
server. In order to receive and process a “group request” , the server application has to receive individual
client requests from the client group. Moreover the server has to do all the housekeeping of tracking the
individual received requests. It must also know the membership of the client group and also changes in the
group membership. The proposed group interrogation primitive along with the support of GSP solves this
problem. It gives the server the facilit y to receive the multiple client requests in a single invocation and to
respond to the group request with single or multiple replies. Moreover the GSP takes the responsibil ity of
sending the replies to the appropriate clients.

10.4.1.3 Suppo rt for Advanced Programming-level facili ties in GSP vs. Corba
The support for advanced programming-level facilit ies such as multiple and variable reply delivery to the
client (in response to a request invocation on the server group), solicited reply delivery, terminable reply
delivery, is non-existent in the current remote procedure call mechanism of Corba. The proposed group
interrogation primitive with the support of the GSP gives the client the capabili ty to receive multiple and
variable number of replies in a solicited or unsolicited manner and the abil ity to request the termination of
reply delivery, when they are no more required. For example to support the solicited reply delivery, the
GSP stores the replies and gives them to the client on an explicit request. Such as support is non-existent in
Corba.

Response Time
In case of GSP, the client
invokes a single OPR-message
on the local GSM which is
then simultaneously distrib-
uted (multicast) by the GSM
to the server group and hence
the server group members are
invoked simultaneously.
Therefore, the servers respond
with their replies simulta-
neously and the client receives
multiple replies (as a single
group reply) in one “invoca-
tion time delay” , say “d” units
of time.

Response Time (Reply Reception Delay)
In case of Corba, the client has to invoke a remote procedure call on each member of the
server group separately, and due to the blocking semantics of the remote procedure call , it
has to wait until the reply is received before it can invoke the next server in the group. If
“d” is the single “invocation time delay” or the round trip delay in receiving a single reply,
then to invoke a server group of size “n” and get back their replies requires “nd” units of
time.
Response Time = (nd) units of time, where, “d” is the single invocation round trip delay
and “n” is the size of the server group.
Conclusion: The response time is far better in GSP compared to Corba. This is because
the GSP is designed exclusively for the support of group-based applications. So it is capa-
ble of simultaneous distribution OPR-messages and of collating the received replies into a
group reply. The group-based application experience a much lower reply reception delay
when used on GSP. They receive all the replies from the server group in a single round trip
delay. Corba is not well suited for use by group-based applications.

a. PDUs are referred to as Messages in GIOP.

Table 10.1: Corba vs . GSP: How do they compare w.r.t. Crucial Performance Metrics

GSP Corba

Group-Based Distributed Computing 169

Group Support Platform: Implementation and Performance

10.4.2 Comparison at Platform-Level
A comparison of the Corba and the GSP at the platform-level reveals the difference in the scope of these
platforms. They address different types of distributed applications and as such encapsulate different sets of
functionalit ies.

10.4.2.1 Middleware functions of GSP vs. Corba
The Corba and the GSP cater to different types of distributed applications. While Corba supports single cli -
ent and single server type interactions, the GSP is targeted exclusively at the support of group-based dis-
tributed applications. Hence at the platform-level we see different sets of “middleware functions” in Corba
and GSP. Corba automates common distributed computing tasks such as object registration, location, and
activation; request de-multiplexing; parameter marshall ing and un-marshalli ng; and operation dispatching.
The GSP automates common group communication tasks such as message distribution, collation, synchro-
nization, filtering etc. It also provides a framework for identification and placement of other group support
services.

10.4.2.2 Platform programmabili ty Capabili ty in GSP vs. Corba
Corba, like other middleware platforms does not define APIs that allow applications to specify their end-
to-end QoS requirements. Similarly it does not provide support for end-to-end QoS enforcement between

Table 10.2: GSP vs. Corba: What are the Other Trade-Offs

GSP Corba

Need for
sophisticated
Client and
server appli-
cations

While there are major gains achieved by the use of GSP
(see section 5.6) and its group interrogation capabilit y
(see section 3.3) as outlined previously, they also
require some amount of sophistication in the (client |
server) applications that use them. Essentially this com-
plexity arises due to the need for clients and servers to
be partially group-aware.

The clients should be capable of handling not only
multiple and variable number of replies, but also capable
of processing group replies, and of invoking
“poll_reply()” and “ terminate_reply()” .

Similarly, the servers should be capable of processing
group operation messages.
So, there is an underlying requirement for the client and
server applications to be designed “group-aware” . How-
ever, this is also the underlying basis of any group-based
application.

 Corba applications are based upon “single-
ton client” and “singleton server” communi-
cation assumption. Hence they cannot be
used as components of the “group-based
applications” without at least being
designed partially group-aware.

Code
Complexity

In case of GSP, there is a need for some sophisticated
programming language facilities such as multi-threading,
thread synchronisation faciliti es, etc. to implement
advanced features such as non-blocking invocation, solic-
ited reply delivery semantics, etc.
Code complexity also increases with the addition of other
group support functions such as Synchronisation and Fil -
tering, which are required in some group-based applica-
tions.

Simple client-server based applications of
Corba do not demand the sophistication
required for the support of group based
applications. So the code for the basic Corba
infrastructure is quite straightforward. How-
ever, the addition of other Corba Services
such as Naming Service, Transaction Ser-
vice, Security Service, etc. increases the
code complexity.

Group-Based Distributed Computing 170

Group Support Platform: Implementation and Performance

applications across a network. For instance, Corba provides no standard way for clients to indicate the rel-
ative priorities of their requests to an ORB. The GSP is a programmable and policy driven middleware plat-
form. It provides an explicit API and language framework for the programming of the middleware
functions according to the user requirements.

10.5 Case Studies

In our Java implementation of Group Support Platform, we used four case studies to demonstrate some of
the key capabilities of the GSP, such as
1. Group Reply Delivery, Matrix mode collation (Singleton client interacting with a server group),
2. Group Reply Delivery, Linear mode collation (Singleton client interacting with server group),
3. Solicited Reply Delivery (Singleton client interacting with a server group),
4. Group Request Delivery and Reply Distribution (Client group interacting with a singleton server)

The case studies were chosen from the examples given in chapter 7. In the following subsections
we describe briefly each case study that was chosen for the demonstration of the above mentioned capa-
bilities. Simple examples were chosen in order to demonstrate the concepts. The reader is referred to
the corresponding examples in chapter 7 for details about those examples.

Each case study involved either a client object interacting with a server group or a client group inter-
acting with a server object. The size of the (client | server) group is chosen to be three members. Each
member of the (client | server) group is supported by the GSM. Hence the execution of each case study
involved four GSMs, identified as GSM1, GSM2, GSM3, and GSM4. The case studies were carried out in
a single machine. Each client and server object is resident in a separate Java process, and supported by its
own GSM.

10.5.1 Case Study-1: Group Reply Delivery, Matrix-Mode Collation
This case study is based upon the example given in section 7.6.2. This example is developed to demon-
strate the distribution of operation message by the client’s GSM to the GSMs in the server group and
the matrix-mode collation of replies by the client’s GSM into a single group reply before its delivery to
the client object.

In this example, the client object sends a “query_sale_status()” operation to the members of the server
group (consumer group in the example), each of which responds with a “sale_status(reatiler_id,
merchandise_1, ..., merchandise_5)1 reply. A single group reply is constructed by the client’s GSM
based upon reply collation policy as specified by the client.

Our implementation supports the specification of message distribution and reply collation policies by
the user before the client and server applications are triggered.

10.5.2 Case Study-2: Group Reply Delivery, Linear-Mode Collation
This case study is based upon the example given in section 7.6.3. This example is developed to demon-
strate the linear-mode collation of replies. Each server sends part of the reply expected by the client, and
the client’s GSM constructs a total reply using linear-mode collation principle, before its delivery to the cli -
ent object.

In this example, the client object sends a “compute(p1, p1, ..., p5)” request to the server group (an

1. Assuming each server sells 5 types of merchandise).

Group-Based Distributed Computing 171

Group Support Platform: Implementation and Performance

arithmetic group), each member of the server group does part of the computation, i.e., addition, multiplica-
tion, and arithmetic mean, and therefore sends part of the reply as result(sum), result(product), result(am).
The client’s GSM performs a linear mode collation of these replies, and then gives the total reply, i.e.,
result(sum, product, am), to the client. With the linear mode collation process, the client is unaware if it is
interacting with a singleton server or a server group.

10.5.3 Case Study-3: Solicited Reply Delivery
This case study is based upon the example given in section 7.6.4. This case study is developed to dem-
onstrate the “Solicited Reply Delivery API” of group interrogation. This API gives the client the capa-
bility to receive replies only when it explicitly asks for them from the local GSM, using “poll_reply()” .
This allows the client to control the reply delivery from underlying GSM and not to be overwhelmed by
a flow of replies from the server group. The client gets the replies as and when it needs them

In this example, the client object sends a “query_merchandise_availabilit y()” request to the the server
group (the merchandise supplier group) through its GSM. Each member of server group responds to this
request with its reply, “merchandise_availabili ty(supplier_id, merchandise_id1, quantity_1,
merchandise_id2, quantity_2).

When the “query_merchandise_availabil ity()” request is received from the client, the local GSM
immediately unblocks the client by returning it an “ invocation instance identifier” (see section 3.12.1)
which serves as a reply handle. The client can now perform other computation or processing. When it
needs a reply from the server group, it invokes “poll_reply(reply_handle)” on the local GSM. If a reply is
available corresponding to the reply handle, the GSM returns this reply, otherwise the client is blocked
until the receipt of a reply from a member of the server group.

10.5.4 Case Study-4: Group Request Deliver and Reply Distribution
This case study is based upon the example given in section 7.7.4. This case study involves a client
group (sonar group) interacting with a server object (tracking object). This case study demonstrates the
construction of group service request from the partial service requests sent by the individual members
of the client group, which is invoked on the server object, and the distribution of replies to the client
group.

In this example the client group consists of three members. Each member of the client group sends a
partial service request “ target_distance(di)” , which is the distance of a “ target object” from the client, and
expects to receive the “x” , “y” , and “z” coordinates of the target (so that it can fire that target). The server
object (i.e., the tracking system) cannot compute the coordinates of the target until it receives the distance
of that target from three different locations, which is the location of the clients in the client group. The
GSM on the server side collates the partial service requests, i.e., target_distance(di), into a complete ser-
vice request, i.e., target_distance(d1, d2, d3), which is then invoked on the server object. The reply received
from the server, “ target_location(x_coord, y_coord, z_coord)” , is then distributed by the GSM to all the
members of the client group.

Group-Based Distributed Computing 172

Group Support Platform: Implementation and Performance

Group-Based Distributed Computing 173

Conclusions and Directions for Future Work

CHAPTER 11 Conclusions and Directions for Future
Work

Abstract
In this chapter we summarize the work presented in the thesis and highlight its main
contributions. Some suggestions for future work are also given.

11.1 Conclusion and Contribution o f Thesis

To date most of the research in this area was focussed on low-level aspects of group communication, such
as various types of message multicasting protocols and membership management protocols. Our thesis has
extended the benefits of group communication to the application level. We have identified a new paradigm
of distributed computing - the group-based distributed computing paradigm. This paradigm is a synergy of
group communication model and other distributed object models such as the client-server model and object
group model.

Consequently, this thesis represents a shift of research focus from low-level issues of group commu-
nication to the high-level issues of an overall distributed environment required for the support of group-
based distributed computing applications. Our thesis fil ls a void that exists at this high-level. The thesis
addresses dual levels of support for group-based distributed computing applications. These are the distrib-
uted programming-level support (computational support) and the distributed platform level support (engi-
neering support).

11.1.1 Contribution at the Programming-Level
A major contribution of the thesis towards the programming-level support for group-based distributed
applications is the notion of group interrogation and its associated semantics. This communication primi-
tive takes into consideration the most general requirements of group communication, at the application
level, between the client and server components of a group-based application. It is analogous to the remote
procedure call primitive which is used for communication between a singleton client and a singleton
server.

The proposed group interrogation primitive enables one-to-many and many-to-one communication
between the client group and the server group. It allows a singleton client to access a server group in one
call, through the mediation of the group proxy object (i.e., the Group Support Machine), and to receive
multiple and variable number of replies in a controlled manner in response to that call. Similarly, it allows
a singleton server to receive multiple service requests from the client group as a single group service
request and to issue multiple replies, one for each client, in response to the group service request. There-
fore, interrogating (or remote invoking) an object group is as natural as interrogating a singleton object.

Our work is notable particularly with respect to giving generality to the group communication primi-

Group-Based Distributed Computing 174

Conclusions and Directions for Future Work

tive. It goes beyond the requirements of communicating with the replicated server groups, in which all
replies returned from the group are identical, and hence a single reply can be returned to the client. We also
take into consideration the general requirements of communicating with homogeneous and heterogeneous
server groups, in which multiple, variable, and different types of replies need to be returned to the client, in
a controlled manner either as singleton replies or group replies (see chapter 2). Similarly, we also take
into consideration the requirements of client group invoking a group service request on a singleton
server object. Hence the proposed group communication primitive possesses single request - multiple
reply (client side), group request - single reply (server side), and group request - multiple reply (server
side) semantics, apart from other features outlined below.

Our work recognizes that reply handling transparency is sometimes impossible, and in many cases
undesirable by the client applications. So clients must have access to multiple and different types of replies
in a controlled manner.

The proposed group interrogation primitive is versatile and useful in a variety of application
domains. The flexibilit y and the power of group interrogation is obtained through the following features
(see chapter 3).
1. multiple reply delivery capability, which allows the same or different types of replies to be delivered to

the client one after another,
2. variable reply delivery capability, which allows the client to receive an end of reply notification from the

underlying group support platform,
3. group reply delivery capabili ty, which permits both the generic signature-based reply collation seman-

tics as well as the application-specific content-based reply collation semantics,
4. controlled reply delivery capabil ity, which allows the client to explicitly solicit the replies as and when

required by the client,
5. terminable reply delivery capabili ty, which allows the client to terminate the delivery of the rest of the

replies if it has received a suff icient number of them or the desired ones.
6. ordered reply delivery capabili ty, which allows the client to receive replies of different types or replies

from different sources in a desired order; reply delivery ordering is specified in our model as part of col-
lation policy.

Transparency is an important aspect of a programming primitive. Our model allows the programmer
to configure the level of group transparency by specifying different message distribution and collation pol-
icies (see section 7.4 to section 7.8). A notable feature of our model is that we have proposed a generic
message collation scheme, which we call signature-based collation scheme (see section 3.6). This
scheme allows a (client | server) object to receive a group (reply | service request) without modification
of its contents. Hence, the client applications can process the group message in an application-specific
manner.

The semantics of the group interrogation primitive has an impact on the message invocation, recep-
tion, and processing requirements of the client and server objects. We describe the characteristics of the
group-oriented client and server objects which are capable of invoking, receiving and processing group
interrogation messages (see chapter 4).
The proposed group interrogation primitive is a powerful and flexible programming language level com-
munication primitive which supports ‘ request-response’ style communication between client group and
server group.

11.1.2 Contribution at the Platform-Level
The focus of our thesis is on middleware-level support for group-based distributed applications. This mid-

Group-Based Distributed Computing 175

Conclusions and Directions for Future Work

dleware resides on top of the existing low-level group communication protocols. The main contribution of
the thesis at the distributed platform level is the software architecture of an agent-based and policy-driven
group support middleware platform. This is an extensible, configurable and programmable architecture
which permits the separation of group coordination aspects from application issues. The group support
platform is composed of many components. These are summarised below.
1. Group support agents: We have identified a set of middleware-level group support services (GSSs),

required by many applications (see chapter 4). Some of the commonly required group support ser-
vices are message distribution service, message collation service, message filtering service, message
invocation and delivery synchronisation service, etc. These services are offered by the corresponding
group support agents (GSAs). We identify the different aspects of each group support service which
form the basis of the design of the group policy specification language.

2. Group support machine: Group-based applications usually need a combination of group support ser-
vices, rather than individual ones. These services need to interact with each other in order to support
diverse application requirements. An important contribution of this thesis is the design of an architec-
tural framework for the organisation and configuration of these group support services in the group sup-
port platform (see chapter 5). This framework is called the group support machine (GSM). GSM is
composed of a configuration of GSAs which interact with each other locally via the inter-agent inter-
faces. We describe how the components of this software machine work together in the provision of
group support services to the applications (see chapter 6). Each member (or component) of the
group-based application is supported by a GSM. The set of GSMs communicating with each other
through an inter-GSM protocol (IGP) constitutes a group support platform (GSP).

3. Inter-GSM Protocol: The GSM is a multi-agent machine. The GSAs cannot offer their services indepen-
dently or in isolation. Instead these agents need to communicate locally with other agents in the GSM, as
well as remotely with their peers in other remote GSMs, in order to provide the required group support
services to the applications. The remote communication between the peer GSAs in different GSMs
occurs through the inter-GSM protocol (IGP) (see chapter 9). The IGP describes the information that
is exchanged between the peer GSAs, the format in which this information is exchanged, and the
handshaking involved between the GSAs.

4. Programmable and Policy-Driven Group Support Platform: We distinguish agents from policies which
determine what those agents will do (see chapter 6). The GSP is composed of generic and policy-neutral
GSAs, which can be programmed to offer their services according to application requirements for mes-
sage distribution, collation, synchronisation, filtering, etc. (see chapter 7). These requirements are
specified using group policy specification language. The GSP is driven by these policies which are
specified as policy scripts and stored in the GSM.

5. Group Policy Specification language: Each group support service has different aspects to it. These
aspects correspond to different application requirements with respect to that service. They have a certain
commonali ty over different group support services. They can be modeled as elements of a group policy
specification language. We have developed a language framework, based upon these elements, for the
specification of group support policies (see chapter 8). The language permits the high-level and
declarative specification of message distribution, collation, synchronisation and filtering require-
ments of an application, in an abstract manner independent of the mechanisms or protocols needed to
implement them. It permits the separation of application concerns from group coordination concerns
which are specified external to the applications, i.e., inside the GSM. Changes to group coordination
behaviors are possible by modifying relevant group support policies in the GSM, without any change
to the application code.

Group-Based Distributed Computing 176

Conclusions and Directions for Future Work

6. Group coordination models: Many existing distributed applications, in different domains, consist of
multiple client and server components, which interact with one another on a one-to-one basis, thereby
sacrificing the parallelism and performance inherent in these applications. One of the main contributions
of our work is the visualization of these applications as group-based applications and casting (or model-
ing) them as a client group interacting with a server group. The intra-group and the inter-group interac-
tions between the members of the client and server group can be viewed at a high-level as group
coordination patterns or group coordination behavior. A group coordination model is a combination of
group coordination behavior within a given group organisation. In this thesis we have shown how dif-
ferent group coordination patterns (or behaviors) can be obtained by composing the basic group support
services, such as message distribution, collation, synchronisation, filtering service, etc., in different
combinations (see chapter 7). The combination of these basic services in different group organisa-
tions yields different group coordination models. We have represented group coordination patterns as
programmable coordination behaviors which can be specified as message distribution, collation, syn-
chronisation, and filtering policies.

7. Performance: The performance of the proposed group support platform is comparable to and in some
aspects better than the performance of conventional client-server based middleware platforms such as
Corba. The implementation of the proposed model and an evaluation of the performance characteristics
of the model reveal that the message count is the same in both the platforms. The message complexity is
much less in GSP. The messages (i.e., the GPDUs) exchanged between the GSMs have fewer control
information than the messages exchanged between the ORBs in the Corba platform. The response time
is much better in GSP because the client gets a group reply from the server group in a single “invocation
round trip time delay” . Additionally, the implementation of the model was carried out using advance
Java multi -threading and thread synchronisation techniques, thereby allowing the support of non-block-
ing invocations and solicited reply delivery semantics.

11.2 Directions for Future Work

The work presented in this thesis provides a basis for many future research and development activities. As
the new group-based distributed applications emerge in different application domains and proli ferate in the
commercial arena, the need to provide a programming-level support and platform-level support in commer-
cially available distributed systems wil l be increasingly recognised. We believe that the model we have pre-
sented in the thesis for the programming-level and distributed platform level support for group-based
distributed applications provides a good starting point for the design of such systems.

11.2.1 Research on Group -Oriented Programming L angu ages & Systems
The group communication primitive, group interrogation, proposed in the thesis is a candidate for imple-
mentation in programming languages for use in real applications. The semantics of this primitive has an
impact on the client and server applications, as well as on the programming languages used in the develop-
ment of these applications. Both the applications and the programming languages need to be group-ori-
ented. This can be very easily seen as explained below.

When a client invokes a group interrogation on the server group, the client application and hence the
programming language should be capable of handling multiple replies, group replies, and of receiving end
of reply notifications from the underlying group support platform. Similarly when the server receives a
group interrogation from the client group, it should be capable of handling group service requests and of
generating multiple replies. These and other aspects of group interrogation, as explained below, require

Group-Based Distributed Computing 177

Conclusions and Directions for Future Work

enhancements to the current programming languages. This represents a fertile area of research in program-
ming languages.
1. Multiple reply semantics: The programming languages need to be capable of handling multiple and dif-

ferent types of replies in response to group interrogation. Current programming languages return the
thread of control to the client as soon as a single reply is received. In server applications, the server
objects should be capable of generating multiple and different types of replies in response to a group ser-
vice request. Current server applications return a single reply only.

2. Non-blocking semantics: The non-blocking invocation semantics imply that a client can invoke multiple
group interrogations without waiting for replies of the previous invocation. This calls for multi -threaded
clients and need for multiple termination (or reply) handlers corresponding to different types of expected
replies. This semantics also imply that the invocation mechanism must be capable of accepting an “ invo-
cation instance identifier” in response to the invocation of a group interrogation.

3. Controlled reply semantics: This semantics imply that the programming languages provide a handle,
such as “poll_reply()” , as suggested in the thesis or employ some other mechanism to give the client
the control to receive the replies as and when it wants them, at the desired pace.

4. Terminable reply semantics: This semantics imply that the programming languages provide a handle,
such as “ terminate_replies()” , as suggested in the thesis to give the client the control to terminate the
replies when it does not want any more replies.

5. Variable reply semantics: This implies that the programming languages provide a special termination
signature, such as “end_of_reply()” , or some other mechanism to indicate the last reply.

6. Group reply or group request semantics: This semantics has very lit tle impact on existing client and
server applications. A group message (reply or request) can be constructed using existing programming
language structures such as an array or a linked list.

11.2.2 Integration o f GSM Model in CORBA
An important future activity is the integration of the proposed model of GSM in popular distributed plat-
forms such as CORBA. Adding GSM support in a CORBA environment is a challenging task that requires
various considerations. Whether the GSM can be integrated within the Object Request Broker (ORB) or
placed outside the ORB as an external object service is an issue which requires further consideration.

The D-Agent and the C-Agent of the GSM model perform, amongst other functions, the message
marshalli ng (encoding) and unmarshalli ng (decoding) functions. They also encode and decode the group
protocol data units (GPDUs) which are the units of exchange in the inter-GSM protocol (IGP). Similar
functions are performed by the stubs and skeletons of the CORBA model. The integration of the GSM
model in CORBA need to take into consideration these common issues.

While IIOP is an inter-ORB protocol, the IGP is an inter-GSM protocol. Therefore, the synergy of
these protocols depends upon whether the GSM is integrated within the ORB or outside of it. The proposed
model of group support platform is intended to enhance the middleware support available from currently
available distributed platforms, such as CORBA, in order to support an important class of distributed appli -
cations - the group-based distributed applications.

11.2.3 Extension o f GSM Model
We have proposed a model of GSM which contains a sub-set of group support services commonly required
by many group-based applications. However the GSM serves as a framework within which new group sup-
port services can be identified and their interaction with the existing ones defined. Group support services

Group-Based Distributed Computing 178

Conclusions and Directions for Future Work

tend to be domain-specific and hence new services may be identified as new application domains are con-
sidered. In such cases, it is required to identify the relationship of the new services with the existing ones
and to define a new configuration of group support services. This also has an impact on the existing inter-
GSM protocol.

11.2.4 Extension to Group Policy Specification L angu age
The group policy specification language (GPSL), as defined in the thesis, is capable of specifying message
distribution policy, collation policy, synchronisation policy, and filtering policy. In other words, the lan-
guage is capable of specifying the application’s requirements with respect to a limited set of group support
services. It will be interesting to explore other group support services and find out the different issues
involved in the provision of these services, as well as to see if the existing GPSL language framework can
specify the new service’s requirements or if an extension to the language framework is required.

Group-Based Distributed Computing 179

List of References

[1] International Standard ITU-T X.901 / ISO 10746-1: Basic Reference Model of Open Distributed
Processing - Part-1: Overview.

[2] International Standard ITU-T X.902 / ISO 10746-2: Basic Reference Model of Open Distributed
Processing - Part-2: Descriptive Model

[3] International Standard ITU-T X.903 / ISO 10746-3: Basic Reference Model of Open Distributed
Processing - Part-3: Prescriptive Model

[4] Draft International Standard ITU-T X.904 / ISO 10746-4: Basic Reference Model of Open
Distributed Processing - Part-4: Architectural Semantics

[5] Farooqui, K., Logrippo, L., and de Meer, J. The ISO Reference Model for Open Distributed
Processing: An Introduction. Computer Networks and ISDN Systems, Vol. 27, 1995, 1215-1229.

[6] Farooqui, K., and Logrippo, L. Architecture for Open Distributed Software Systems. In Zomaya,
A.Y.H. eds. Parallel and Distributed Computing Handbook, McGraw-Hill , 1996, 303-329.

[7] Linington, P.F., Introduction to the Open Distributed Processing Basic Reference Model,
Proceedings of the IFIP International Workshop on Open Distributed Processing, Berlin October
1991, North-Holland, (1992), 3 - 14.

[8] Herbert, A. The Challenge of ODP, Proceedings of the IFIP International Workshop on Open
Distributed Processing, Berlin October 1991, North-Holland, (1992), 15 - 28.

[9] ANSA Reference Manual, Volume A, B, C., Release 01.01, Architecture Projects Management
Limited, Cambridge, U.K., July 1989.

[10] ANSA Computational Model, AR.001.01, Architecture Projects Management Limited, Cambridge,
U.K., February 1993.

[11] ANSA: An Application Programmer’s Introduction to the Architecture, TR.017.00, Architecture
Projects Management Limited, Cambridge, U.K., November 1991.

[12] ANSA: An Engineer’s Introduction to the Architecture. TR.03.02, Architecture Projects
Management Limited, Cambridge, U.K., November 1989.

[13] ANSA: A System Designer’s Introduction to the Architecture. RC.253.00, Architecture Projects
Management Limited, Cambridge, U.K., April 1991.

[14] ANSA Technical Report, Management in Object-Based Federated Distributed Systems, TR.39.00,
Architecture Projects Management Limited, Cambridge, U.K., February 1993.

[15] Edwards, N. Open Dependable Distributed Systems, ANSA Phase 3 Technical Report APM.
1145.01, Architecture Projects Management Limited, Cambridge, U.K., March 1994.

[16] RACE Open Service Architecture, 13th Deliverable, The ROSA Handbook, Release 2, RACE
Project R1093. December 1992.

[17] Schoo, P., and Tonnby, I. The ROSA Object Model, Proceedings of the IFIP International
Workshop on Open Distributed Processing, Berlin October 1991, North-Holland, (1992), 291-300.

[18] Object Management Group, “The Common Object Request Broker: Architecture and
Specification” , Rev. 2.0, 1995.

Group-Based Distributed Computing 180

[19] Open Software Foundation. (1994) OSF DCE Application Development Guide. Open Software
Foundation, revision 1.0, edition 1994.

[20] The Component Object Model Specification Microsoft (1995).
[21] Open Services Architecture within Integrated Services Engineering, CASSIOPEIA RACE Ref:

R2049, External Deliverable, R2049/CRA/SAR/DS/P/014/b1, February 1994.
[22] Iggulden, D., Rees, O., and van der Linden, R. Architecture & Frameworks, ANSA Phase 3

Technical Report, APM.1017.00.03, Architecture Projects Management Limited, Cambridge, U.K.,
June 1993.

[23] Taylor, C.J. Object-Oriented Concepts in Distributed Systems, Computer Standards and Interfaces,
Vol. 15, No. 2/3, 1993.

[24] Jul, E. Separation of Distribution and Objects, Proceedings of the Workshop on Object-Based
Distributed Programming in conjunction with 7th ECOOP’93 in Lecture Notes in Computer
Science 791, Springer-Verlag, 1994, 47-54.

[25] TINA-C Deliverable, Overall Concepts and Principles of TINA, Version 1.0, Document Label:
TB_MDC.018_1.0_94, Telecommunication Information Networking Architecture Consortium,
February 1995.

[26] TINA-C Deliverable, Service Architecture Version 2.0, Document Label: TB_MDC.012_2.0_95,
Telecommunication Information Networking Architecture Consortium, March 1995.

[27] TINA-C Deliverable, TINA-C Service Design Guidelines, Version 1.0, Document Label:
TP_JS_001_0.1_95, Telecommunication Information Networking Architecture Consortium, March
1995.

[28] TINA-C Deliverable, Computational Modeling Concepts, Version 2.0, Document Label:
TB_A2.HC.012_1.2_94, February 1995.

[29] TINA-C Deliverable, Engineering Modeling Concepts (DPE Architecture), Version 2.0, Document
Label: TB_NS.005_2.0_94, December 1994.

[30] TINA-C Deliverable, Management Architecture, Version 2.0, Document Label:
TB_GN.010_2.0_94, Telecommunication Information Networking Architecture Consortium,
December 1994.

[31] TINA-C Deliverable, Connection Management Architecture, Document Label:
TB_JJB.005_1.5_94, Telecommunication Information Networking Architecture Consortium,
March 1995.

[32] TINA-C Deliverable, TINA Object Definition Language (TINA-ODL) Manual, Version 1.3,
Archiving Label: TR_NM.002_1.3_95, Telecommunication Information Networking Architecture
Consortium, June 1995.

[33] ISO/IEC 13244 / ITU-T Draft Rec. X.703, Open Distributed Management Architecture, 1997.
[34] Oskiewicz, E., and Edwards, N. A Model for Interface Groups. ANSA Phase 3 Technical Report,

APM. 1002.01, APM Limited, Cambridge, U.K., May 1994.
[35] Achmatowicz, R. Object Groups For Groupware Applications: Application Requirements and

Design Issues. Technical Report No. 685, Queen Mary and Westfield College, Department of
Computer Science, London, U.K., September 1994.

[36] Watanabe, T., and Yonezawa, A. An actor-based meta-level architecture for group-wide reflection.
In Proceedings of the REX School/Workshop on Foundations of Object-Oriented Languages,
Noordwijkerhout, Netherlands, May 1990, Lecture Notes in Computer Science 489, Springer-
Verlag, 1991, 405-425.

Group-Based Distributed Computing 181

[37] Matsuoka, S., Watnabe, T., and Yonezawa, A. Hybrid group reflective architecture for object-
oriented concurrent reflective programming. European Conference on Object Oriented
Programming, 1991, 231-250.

[38] Zweiacker, M. The Persistent Object Group Service-An approach to fault tolerance of open
distributed applications. Proceedings of the IFIP/IEEE International Conference on Open
Distributed Processing and Distributed Platforms, May 1997, Toronto, Chapman & Hall (1997),
224-235.

[39] Pardyak, P. Group Communication in an Object-Based Environment. Proceedings of the 2nd
International Workshop on Object-Orientation in Operating Systems IWOOS’92, September 1992,
106-116.

[40] Murata, S., Shionozaki, A., Tokoro, M. A Network Architecture for Relaible Process Group
Communication. Proceedings of the 14th International Conference on Distributed Computing
Systems, 1994, 66-73.

[41] Glade, B.B., Birman, K.P., Cooper, R.C., and van Renesse, R. Lightweight process groups.
Proceedings of the OpenForum’92 Technical Conference, Utrecht, The Netherlands, November
1992, 323-336.

[42] Maffeis, S. The Object Group Design Pattern. Proceedings of the 1996 USENIX Conference on
Object-Oriented Technologies, Toronto, Canada, June 1996.

[43] Versimmo, P. and Rodrigues, L. Group Orientation: A Paradigm for Distributed Systems of the
Nineties. In Proceedings of the 3rd Workshop on Future Trends of Distributed Computing Systems,
IEEE Computer Society Press, April 1992, 57-63.

[44] Powell , D., ed. Delta-4: A Generic Architecture for Dependable Distributed Computing (1991)
Springer-Verlag, Berlin.

[45] Birman, K.P. The process group approach to reliable distributed computing. Communication of
ACM (December 1993), Vol. 36, No. 12, 36-53.

[46] Liang, L, Chanson, S.T., and Neufeld, G.W. Process groups and group communications:
classification and requirements. IEEE Computer, Vol. 23, No. 2, (February 1990), 56-66.

[47] Achmatowicz, R. Object Groups For Groupware Applications: Application Requirements and
Design Issues. Technical Report No. 685, Queen Mary and Westfield College, Department of
Computer Science, London, U.K., September 1994.

[48] Benford, S. and Palme, J. A Standard for OSI Group Communication. Computer Networks and
ISDN Systems, Vol. 25, (1993), 933-946.

[49] Cosquer, F.J.N. and Versimmo, P. The Impact of Group Communication Paradigms on Groupware
Support. In Proceedings of the 6th Workshop on Future Trends of Distributed Computing Systems,
Korea, IEEE Computer Society Press, 1995, 207-214.

[50] Rodrigues, L., and Versimmo, P. Replicated Object Management using Group Technology, In
Proceedings of the 4th Workshop on Future Trends of Distributed Computing Systems, Lisbon,
Portugal, September 1993, IEEE Computer Society Press, 54-61.

[51] Babaoglu, O., and Schiper, A. On Group Communication in Large-Scale Distributed Systems. In
ACM SIGOPS Operating Systems Review, July 1993, 62-67.

[52] Prinz, W. Survey of Group Communication Models and Systems. In Computer Based Group
Communication, the AMIGO Activity Model, Ellis Horwood, 1989.

[53] Szyperski, C., and Ventre, G. Efficient Group Communication with Guaranteed Quali ty of Service.
Proceedings of the 4th Workshop on Future Trends of Distributed Computing Systems, Lisbon,
Portugal, September 1993, IEEE Computer Society Press, 150-156.

Group-Based Distributed Computing 182

[54] Chanson, S.T., Neufeldm G.W., and Liang, L. A Bibliography on Multicast and Group
Communication. Operating Systems Review, Vol. 23, No. 4, October 1989, 20-25.

[55] Navarathnam, S., Chanson, S., and Neufeld, G. Reliable Group Communication in Distributed
Systems. Proceedings of the 8th International Conference on Distributed Computing Systems, San
Jose, California, June 1988, 439-446.

[56] Birrel, A.D., and Nelson, B.J. Implementing remote procedure calls, ACM Transactions on
Computer Systems, Vol. 2, No. 1, February 1984, 39-59.

[57] Ananda, A.L., and Tay, B.H. An Asynchronous Remote Procedure Call Facility. Proceedings of
11th International Conference on Distributed Computing Systems, May 1991, 172-179.

[58] Bershad, B.N., Anderson, T. E., Lazowska, E.D., and Levy, H. Lightweight remote procedure call .
ACM Transactions on Computer Systems, 1990, 37-55.

[59] Martin, B., Bergan, C., and Russ, B. Parpc: A system for parallel procedure calls. ICPP, 1988, 449-
452.

[60] Wilbur, S. and Bacarisse, B. Building distributed systems with remote procedure calls. Software
engineering journal, September 1987, 148-159.

[61] Yap, K.S., Jalote, P., and Tripathi, S. Fault tolerant remote procedure call . International Conference
on Distributed Computing Systems, 1988, 48-54.

[62] Johnson, D., and Zwaenepoel, W. The Peregrine high-performance RPC system. Software Practice
& Experience, Vol. 23, No. 2, 1993, 201-222.

[63] Liskov, B., and Shrira, L. Promises: Linguistic Support for Eff icient Asynchronous Procedure Calls
in Distributed Systems. ACM SIGPLAN Notices, Vol. 23, No. 7, July 1988.

[64] Birman, K.P., and van Renesse, R. RPC Considered Inadequate. In Birman, K. and van Renesse, R.
eds. Reliable Distributed Computing with ISIS Toolkit, IEEE Computer Society Press, 1994, 68-78.

[65] Ramakrishna, S., Prasad, B., Thenmozhi, A., Samdarshi, S., Velaga, K., Shah, K., and Ravindran,
K. Design of broadcast programming primitives for distributed systems. Computer
Communications, Vol. 16, No. 9, September 1993, 557-567.

[66] Hughes, L. A Multicast Response-Handling Taxonomy, Computer Communications, Vol. 12, No. 1,
February 1989, 39-46.

[67] Maffeis, S. Distributed Programming Using Object Groups, IFI TR 93.38, Department of Computer
Science, University of Zurich, Zurich, Switzerland, September 1993.

[68] Maffeis, S. A Flexible System Design to Support Object-Groups and Object-Oriented Distributed
Programming. Proceedings of the ECOOP’93 Workshop on Object-Based Distributed
Programming, Lecture Notes in Computer Science 791, Springer-Verlag 1994, 213-224.

[69] Birman, K.P., Cooper, R., Gresman, B. Programming with Process Groups: Group and Multicast
Semantics. TR-91-1185, Cornell University, Ithaca, USA, January 1991.

[70] Cheriton, D.R. Request-response and multicast interprocess communication in the V kernel.
Lecture Notes in Computer Science 248, Springer-Verlag, 1986.

[71] Hagsand, O., Herzog, H., Birman, K., and Cooper, R. Object-Oriented Relaible Distributed
Programming. IEEE Workshop on Object-Orientation in Operating Systems, September 1992.

[72] van Renesse, R., and Birman, K.P., Fault-Tolerant Programming using Process Groups. In F. Brazier
and D. Johansen, eds., Distributed Open Systems, IEEE Computer Society Press, 1994.

[73] Zhou, W. A Fault-Tolerant Remote Procedure Call System for Open Distributed Processing.
Proceedings of the International Conference on Open Distributed Processing, Brisbane, Australia,
February 1995.

Group-Based Distributed Computing 183

[74] Wood, M.D. Replicated RPC using Amoeba closed group communication. Proceedings of the 13th
International Conference on Distributed Computing Systems, Pittsburgh, 1993.

[75] Cooper, E.C. Programming Language Support for Multicast Communication in Distributed
Systems. Proceedings of the International Conference on Distributed Computing Systems, 1990,
450-457.

[76] Welling, G., and Badrinath, B.R. An Architecture of a Threaded Many-to-Many Remote Procedure
Call. Proceedings of the 12th International Conference on Distributed Computing Systems. 1992,
504-511.

[77] Pardyak, P., and Bershad, B.N. A Group Structuring Mechanism for a Distributed Object-Oriented
Language. Proceedings of the 14th International Conference on DIstributed Computing Systems,
1994, 312-319.

[78] Hil tunen, M.A., and Schlichting, R.D. Constructing a Configurable Group RPC Service.
Proceedings of the 15th International Conference on Distributed Computing Systems, 1995, 288-
295.

[79] Wang, X., Zhao, H., and Zhu, J. GRPC: A Communication Cooperation Mechanism in Distributed
Systems. ACM SIGOPS, January 1995, 75-86.

[80] Farooqui, K., and Logrippo, L. Group Interrogation: A Group Programming Primitive. Proceedings
of the IFIP/IEEE International Conference on Open Distributed Processing and Distributed
Platforms, May 1997, Toronto, Chapman & Hall (1997), 34-47.

[81] Mell iar-Smith, P.M., Moser, L.E., and Agrawala, V. Broadcast protocols for distributed systems.
IEEE Transactions on Parallel and Distributed Systems, Vol. 1, No. 1, January 1990, 17-25.

[82] Reiter, M.K. Secure agreement protocols: Relaible and atomic group multicast in Rampart. In
Proceedings of 2nd ACM Conference on Computer and Communications Security (Fairfax,
November 1994), 68-80.

[83] Whetten, B. A reliable multicast protocol, In Theory and Practice of Distributed Systems. K.P.
Birman, F. Mattern, and A.Schiper, eds., Lecture Notes in Computer Science 938, Springer-Verlag.

[84] Birman, K., Schiper, A., and Stephenson, P. Lightweight causal and atomic group multicast. ACM
Transactions on Computer Systems, Vol. 9, No. 3, August 1991, 272-314.

[85] Hadzilacos, V., and Toueg, S. Fault-tolerant broadcasts and related problems. In S. Mullender, ed.,
Distributed Systems, Addison-Wesley, Reading, Mass., 1993.

[86] Birman, K., Schiper, A., and Sephenson, P. Lightweight causal and atomic group multicast. ACM
Transactions of the ACM, Vol. 36, No. 12, 37-53.

[87] Navaratnam, S., Chanson, S.T., and Neufeld, G. Reliable group communication in Distributed
Systems, In Proceedings of the 8th International Conference on Distributed Computing Systems,
June 1988, CS Press, Los Alamitos, Cali fornia, 439-446.

[88] Schiper, A. and Sandoz, A. Uniform Relaible Multicast in a Virtually Synchronous Environment. In
Proceedings of 13th International Conference on Distributed Computing Systems, May 1993, 501-
568.

[89] Nakamura, A., and Takizawa, M. Priority-Based Total and Semi-Total Ordering Broadcast
Protocols. Proceedings of the International Conference on Distributed Computing Systems, 1992,
178-185.

[90] Luan, S.W. and Gilgor, V.D. A Fault-Tolerant Protocol for Atomic Broadcast. IEEE Transactions on
Parallel and Distributed Systems, Vol. 1, No. 3, 1990, 271-285.

[91] Kaashoek, M.F., Tanenbaum, A.S., Hummel, S.F., and Bal, H.E. An Efficient Relaible Broadcast
Protocol, ACM Operating Systems Review, Vol. 23, No. 4, 1989, 5-19.

Group-Based Distributed Computing 184

[92] Ezhilchelvan, P.D., Macedo, R.A., and Shrivastava, S.K. Newtop: A Fault-Tolerant Group
Communication Protocol. Proceedings of the International Conference on Distributed Computing
Systems, 1995, 296-306.

[93] Nakamura, A., and Takizawa, M. Causally Ordering Broadcast Protocol. Proceedings of the
International Conference on Distributed Computing Systems, 1994, 48-55.

[94] Anceaume, E. A Comparison of Fault-Tolerant Atomic Broadcast Protocols. Proceedings of the 4th
Workshop on Future Trends of Distributed Computing Systems, Lisbon, Portugal, September 1993,
IEEE Computer Society Press, 1993, 166-172.

[95] Reiter, M.K. A secure group membership protocol. In IEEE Transactions on Software Engineering,
Vol. 22, No. 1, (January 1996), 31-42.

[96] Jahanian, F., Fakhouri, S., and Rajkumar, R. Processor group membership protocols: Specification,
design and implementation. In Proceedings of the 12th Symposium on Reliable Distributed Systems,
October 1993.

[97] Diaz, M. and Villemur, T. Membership services and protocols for cooperative frameworks of
processes. Computer Communications, Vol. 16, No. 9, September 1993, 548-556.

[98] Amir, Y., Dolev, D., Kramer, S., and Malki, D. Membership Algorithm for Multicast
Communication Groups. Proceedings of 6th International Workshop on Distributed Algorithms,
November 1992, 292-312.

[99] Mell iar-Smith, P.M., Moser, L.E., and Agarwala, V. Membership Algorithms for Asynchronous
Distributed Systems. Proceedings of International Conference on Distributed Computing Systems,
May 1991, 480-488.

[100] Birman, K.P. and Joseph, T.A. Exploiting Virtual Synchrony in Distributed Systems. In 11th
Symposium on Operating Systems Principles, November 1987, 123-138.

[101] Moser, L.E., Amir, Y., Melli ar-Smith, M., and Agarwal, D.A. Extended Virtual Synchrony.
Proceedings of 14th International Conference on Distributed Computing Systems, 1994, 56-65.

[102] Schiper, A., and Sandoz, A. Uniform Relaible Multicast in a Virtually Synchronous Environment.
Proceedings of the 13th International Conference on Distributed Computing Systems, 1993, 561-
568.

[103] Schiper, A. and Ricciardi, A. Virtually Synchronous Communication based on a weak failure
suspector. In Proceedings of the 23rd International Conference on Fault Tolerant Computing
Systems, June 1993.]

[104] Birman, K. and Cooper, R. The ISIS Project: Real Experience with a Fault-Tolerant Programming
System. ACM SIGOPS Operating Systems Review, Vol. 25, No. 2, April 1991, 103-107.

[105] Birman, K.P., and van Renesse, R. Reliable Distributed Computing with the ISIS Tool Kit. IEEE
Computer Society Press, Los Alamitos, California, ISBN 0-8186-5342-6, 1994.

[106] Orbix + ISIS Programmer’s Guide, Document D071-00, ISIS Distributed Systems Inc., IONA
Technologies Limited, 1995.

[107] van Renesse, R., Birman, K.P., and Maffeis, S. Horus: A flexible group communication system.
Communications of ACM, Vol. 39, No. 4, (April 1996), 76-83.

[108] van Renesse, R., Birman, K.P., Friedman, R., Hayden, M., and Karr, D.A. A framework for protocol
composition in Horus. In Proceedings of the 14th Symposium on the Principles of Distributed
Computing ACM (Ottawa, August 1995), 80-89.

[109] Maffeis, S. Adding group communication and fault-tolerance to CORBA. In Proceedings of the
1995 USENIX Conference on Object-Oriented Technologies (Monterey California, USA, June
1995).

Group-Based Distributed Computing 185

[110] Maffeis, S., and Schmidt, D.C. Constructing Reliable Distributed Communication Systems with
CORBA. IEEE Communications, Vol. 35, No. 2, February 1997, 56-61.

[111] Kaashoek, M.F., and Tanenbaum, A.S. Group communication in the Amoeba distributed operating
system. In Proceedings of the 11th IEEE International Conference on Distributed Computing
Systems, May 1991, 222-230.

[112] Mullender, S., van Rossum, G., Tannenbaum, A., van Renesse, R., van Staveren, H. Amoeba - A
Distributed Operating System for the 1990’s. IEEE Computer, May 1990.

[113] Dolev, D., and Malki, D. The Transis Approach to High Availabil ity Cluster Communication,
Communications of ACM, Vol. 39, No. 4, (April 1996), 64-70

[114] Amir, Y., Dolev, D., Kramer, S., and Malki, D. Transis: A communication sub-system for high
availability. In Proceedings of the 22nd Annual International Symposium on Fault-Tolerant
Computing (July 1992), 76-84.

[115] Reiter, M.K. Distributing Trust with Rampart Toolkit, Communications of ACM, Vol. 39, No. 4,
(April 1996), 71-74.

[116] Reiter, M.K. The Rampart toolkit for building high-integrity services. In K.P. Birman, F. Mattern,
and A. Schiper, eds., Theory and Practice in Distributed Systems (Lecture Notes in Computer
Science 938), 99-110. Springer-Verlag, 1995.

[117] Moser, L. E., Melli ar-Smith, P. M., Agarwal, D.A., Budhia, R.K., Langley-Papadopoulos, C.A.,
Totem: A Fault-Tolerant Multicast Group Communication System, Communications of the ACM,
April 1996, Vol.39, No. 4, 54-63.

[118] Babaoglu, O., Davoli, R., Giachini, L.A., and Baker, M.G. Relacs: A Communication Infrastructure
for Constructing Relaible Applications in Large-Scale Distributed Systems. In Proceedings of the
28th Hawaii International Conference on System Sciences, January 1995, 612-621.

[119] Cheriton, D.R., and Zwaenepoel. Distributed Process Groups in V Kernel. ACM Transactions on
Computing Systems, Vol. 3, No. 2, May 1985, 77-107.

[120] Mishra, S., Peterson, L., and Schlichting, T. Consul: A Communications Substrate for Fault-
Tolerant Distributed Programs, Distributed Systems Engineering, Vol. 1, 1993, 87-103.

[121] Powell , D., ed. Delta-4: A Generic Architecture for Dependable Distributed Computing (1991).
ESPIRIT Research Reports, Springer-Verlag, Berlin.

[122] Costa, F.M., and Madeira, E.R.M. An object group model and its implementation to support
cooperative applications on CORBA. In A. Schill, C. Mittasch, O. Spaniol, and C. Popien, eds.,
Distributed Platforms, Chapman & Hill (Publishers), Proceedings of the IFIP/IEEE International
COnference on Distributed Platforms, 213-229.

[123] Bakker, H., and ter Hofte, G.H. MORB, a Multicast Object Request Broker for a CSCW software
platform, Internal Paper, Telematics Research Centre, P.O. Box 589, 7500 AN Enschede, The
Netherlands, 1997.

[124] Farooqui, K. ODP-Based Distributed Platform: Policy-Driven Engineering Support for Mobile and
Group-Oriented Distributed Computing, Proceedings of the IFIP/IEEE International Conference on
Distributed Platforms - Industrial Session, Dresden 1996, 290-297.

[125] Farooqui, K. and Logrippo, L. Group Communication Models, Computer Communications, Vol. 19,
1996, 1276 - 1288.

[126] Farooqui, K. and Logrippo, L. Group Support Platform: Middleware Support for Group-Based
Distributed Applications, Submitted to Middleware’98 - IFIP International Conference on
Distributed Platforms and Open Distributed Processing, The Lake District, England, September
1998.

Group-Based Distributed Computing 186

[127] Moffet, J. and Sloman, M. Representation of Policies as System Objects. In Proceedings of the
Conference on Organizational Computer Systems, Atlanta, Georgia, November 1991. SIGOIS
Bulletin, Vol. 12, Nos. 2&3, 171-184.

[128] Dean, G., Rodden, T., Sommervill e, I., and Hutchinson, D. Distributed Systems Management as a
Group Activity, Technical Report, Department of Computing, Lancaster University, LA1 4YR,
U.K.

[129] Koch, T. Policy-Based Management of Distributed Systems. Internal Paper, FernUniversitat, 58084
Hagen, Germany, 1996.

[130] Sloman, M. Policy Driven Management for Distributed Systems, Journal of Network and Systems
Management, Plenum Press, Vol. 2, No. 4, 1994.

[131] Roos, J., Putter, P., and Bekker, C. Modeling Management Policy Using Enriched Managed
Objects. Integrated Network Management, Vol. 3, North-Holland, 1993, 207-215.

[132] Alpers, B. and Plansky, H. Domain and Policy Based Management: Concepts and Implementation
Architecture, IFIP/IEEE Workshop on Distributed Systems Operations and Management, Toulouse,
October 1994.

[133] Meyer, B., and Popien, C. Defining Policies for Performance Management in Open Distributed
Systems, IFIP/IEEE Workshop on Distributed Systems Operations and Management, Toulouse,
October 1994.

[134] Popien, C. and Meyer, B. Service Request Description Language, FORTE’95.
[135] Trevor, J., Rodden, T., and Blair, G. COLA: A Lightweight Platform for CSCW. In Proceedings of

the European Conference on Computer Supported Cooperative Work, September 1993, Milan, Italy,
15-30.

[136] Shenker, S., Weinrib, A., and Schooler, E. Managing Shared Ephemeral Teleconferencing State:
Policy and Mechanism. Lecture Notes in Computer Science, Springer Verlag, 69 - 88.

[137] Bentely, R., and Dourish, P. Medium versus mechanism: Supporting collaboration through
customisation. 4th European Conference on Computer Supported Cooperative Work, Kluwer-
Academic Publishers, 133-148.

[138] Coordination Languages and Models, Lecture Notes in Computer Science 1061, Springer-Verlag,
1996.

[139] Berry, A. and Kaplan, S. Language Support for Distribution in CSCW Systems. In Proceedings of
the International Workshop on Object Oriented Groupware Platforms, (Part of ECSCW’97),
Lancaster, U.K., September 1997, 61-67.

[140] Putter, P., and Roos, J.D. From Policy to Specification. Proceedings of the IFIP International
Workshop on Open Distributed Processing, Berlin October 1991, North-Holland, (1992), 441-448.

[141] Cortes, M. and Mishra, P. DWCPL: A programming language for describing collaboration. In ACM
1996 Conference on Computer Supported Cooperative Work, November 1996, ACM Press.

[142] Papazoglou, M.P., Delis, A., Haghjoo, M., Bouguettaya, A. Language Support for Long-lived
Concurrent Activities, International Conference on Distributed Systems.

[143] Frolund, S., and Agha, G. A Language Framework for Multi-Object Coordination. 7th European
Conference on Object-Oriented Programming (ECOOP’93) in Lecture Notes in Computer Science
707, Springer-Verlag, 1993, 346-359.

[144] Richard M. Adler, Distributed Coordination Models for Client/Server Computing, Computer, April
1995, Vol. 28, No. 4, 14-22.

[145] Nehmer, J., and Mattern, F. Framework for the organisation of cooperative services in distributed
client-server systems. Computer Communications, Vol. 15, No. 4, May 1992, 261-269.

Group-Based Distributed Computing 187

[146] Diaz, M. A logical model of cooperation. Proceedings of the 3rd IEEE Workshop on Future Trends
of Distributed Computing Systems, April 1992, 64-70.

[147] Kreifelts, T., Pankoke-Babatz, U., Victor, F. A Model for the Coordination of Cooperative
Activities. In Proceedings of the International Workshop on CSCW, Berlin 1991, 85-100.

[148] Kirsche, T., Lenz, R., Luhrsen, H., Meyer-Wegener, K., Wedekind, H., Bever, M., Schaffer, U., and
Schottmuller, C. Communication support for cooperative work. Computer Communications, Vol.
16, No. 9, September 1993, 594-602.

[149] Gokhale, A.S., and Schmidt, D.C. Measuring the Performance of Communication Middleware on
High-Speed Networks, ACM SIGCOMM Conference, 1996.

[150] Gokhale, A.S., and Schmidt, D.C. Measuring and Optimizing Corba Latency and Scalabili ty Over
High-Speed Networks, IEEE Transactions on Computers, Vol. 47, No.4, April 1998.

[151] Gokhale, A.S., and Schmidt, D.C. Optimizing a Corba Inter-ORB Protocol Engine for Minimal
Footprint Embedded Multimedia Systems, IEEE Journal on Selected Areas in Communications,
September 1999.

[152] Schmidt, D.C., Levine, D.L., Cleeland, C. Architectures and Patterns for High-Performance, Real-
time ORB Endsystems, Advances in Computers, Academic Press, Ed., Zelkowitz, M. (to appear).

[153] Schmidt, D.C. and Gokhale, A. Techniques for Optimizing Corba Middleware for Distributed
Embedded Systems, Proceedings of INFOCOM’99, March 1999.

[154] Schmidt, D.C. Evaluating Architectures for Mult-threaded Corba Object Request Brokers,
Communications of ACM, Special Issue on Corba, Vol.41, No.10, October 1998.

Group-Based Distributed Computing 188

Group-Based Distributed Computing 189

Glossary of Abbreviations
1. OPR-message: Operation message, section 1.5.2
2. REP-message: Reply (or termination) message, section 1.5.2
3. NTF-message: Notification message, section 1.5.2
4. GI: Group Interrogation, section 3.2.
5. GSS: Group Support Service, section 4.3
6. GSA: Group Support Agent, section 5.2
7. GSM: Group Support Machine, section 5.3
8. GSP: Group Support Platform, section 5.4
9. GII : GSM Invocation Interface, section 6.2.1.1
10. GMI: GSM Management Interface, section 6.2.1.2
11. GNI: GSM Network Interface, section 6.2.2
12. DMI: Distributor Management Interface, section 6.2.1.2
13. CMI: Collator Management Interface, section 6.2.1.2
14. SMI: Synchroniser Management Interface, section 6.2.1.2
15. FMI: Filter Management Interface, section 6.2.1.2
16. GPSL: Group Policy Specification Language, chapter 8
17. DPP: Distribution Policy Primitive, section 8.4.1,
18. CPP: Collation Policy Primitive, section 8.4.2
19. SPP: Synchronisation Policy Primitive, section 8.4.3
20. FPP: Filter Policy Primitive, section 8.4.4
21. IGP: Inter-GSM Protocol, chapter 9
22. GPDU: Group Protocol Data Unit, section 9.4.

Group-Based Distributed Computing 190

Group-Based Distributed Computing 191

APPENDIX BNF of Group Policy Specification
Language (GPSL)

Group_Support_Policy_Specification::= Distribution_Policy_Specification
| Collation_Policy_Specification
| Synchronisation_Policy_Specifcation
| Filtering_Policy_Specification

Distribution_Policy_Specifcation::= distribution_policy_specifcation_symbol
for_specification
distribution_policy
end_policy_symbol

Collation_Policy_Specifcation::= collation_policy_specifcation_symbol
for_specification
collation_policy
end_policy_symbol

Synchronisation_Policy_Specifcation::= synchronisation_policy_specification_symbol
for_specification
sync_specification
synchronisation_policy
event_notification_policy
end_policy_symbol

Filtering_Policy_Specifcation::= filtering_policy_specification_symbol
for_specification
fil tering_policy
end_policy_symbol

distribution_policy::= DPP (* Distribution Policy Primitive *)

collation_policy::= CPP (* Collation Policy Primitive *)
| “ (” collation_policy “ followed_by” collation_policy “)”
| “ (” collation_policy “ interleaved_with” collation_policy “)”
| “ (” collation_policy “disabled_by” collation_policy “)”
| “ (” collation_policy “choice” collation_policy “)”

Group-Based Distributed Computing 192

synchronisation_policy::= SPP (* Synchronisation Policy Primitive *)
| “ (” synchronisation_policy “and” synchronisation_policy “)”
| “ (” synchronisation_policy “or” synchronisation_policy “)”
| “ (” synchronisation_policy “xor” synchronisation_policy “)”

fil tering_policy::= FPP (* Filtering Policy Primitive *)

DPP::= “[”
“distribute” message_specification
“ to” membership_specification
“distribution_cardinality” cardinality_specification
“using” ordering_specification
“]”

CPP::= “ [”
“deliver” message_specification
“ from” membership_specification
“within” | “every” time_specification
“collation_cardinality” cardinality_specification
“collation_mode” collation_mode_specification
“]”

SPP::= “ [”
“solicited_reception_of” | “unsolicited_reception_of” message_specification
“ from” membership_specification
“within” time_specification
“sync_cardinality” cardinality_specification
“]”

FPP::= “ [”
“amongst” membership_specification
“ filtering_cardinality” cardinality_specification
“ filtering_criterion” filtering_criterion_specification
“ filtering_properties” filtering_properties_specification
“]”

sync_specification::= “sync” message_specification “with”

event_notification_policy::= “notify” NPP (* Notification Policy Primitive *)

NPP::= “[”
“sync_events” message_specification_list
“ to” membership_list
“]”

fil tering_properties_specification::= “ (” attribute_name_value_pair_list “)”

Group-Based Distributed Computing 193

attribute_name_value_pair_list::= attribute_name_value_pair
| attribute_name_value_pair “ ,” attribute_name_value_pair_list

attribute_name_value_pair::= attribute_name “=” attribute_value

fil tering_criterion_specification::=
fil ter_clause

| “ (” fil tering_criterion_specification “and” fil tering_criterion_specification “)”
| “ (” fil tering_criterion_specification “or” filtering_criterion_specification “)”
| “ (” filtering_criterion_specification “xor” filtering_criterion_specification “)”
| “ (” “not” filtering_criterion_specification “)”

fil ter_clause::= “ (” attribute_name comparison_operator attribute_value “)”

distribution_policy_specification_symbol::= “operation_distribution_policy”
| “notification_distribution_policy”
| “ termination_distribution_policy”

collation_policy_specification_symbol::= “operation_collation_policy”
| “notification_collation_policy”
| “ termination_collation_policy”

synchronisation_policy_specification_symbol::= “synchronisation_policy”

fil tering_policy_specification_symbol::= “ filtering_policy”

for_specification::= “for” message_name

message_specification::= message_signature
| “_REPLY_”
| “_REPLIES_”

membership_specification::= group_identifier
| member_name_list
| member_role_list

cardinality_specification::= “ATLEAST” “ (” cardinal_expression “)”
| “ATMOST” “ (” cardinal_expression “)”
| “UNSPECIFIED”

cardinal_expression::= integer
| “POS” “ (” integer_list “)”
| “ANY” “ (” integer, member_role “)”
| “ANY” “ (” integer, “POS” “ (” integer_list “)”

Group-Based Distributed Computing 194

ordering_specification::= “UNORDERED_MULTICAST”
| “SOURCE_ORDERED_MULTICAST”
| “DESTINATION_ORDERED_MULTICAST”
| “ATOMIC_ORDERED_MULTICAST”

time_specification::= time_units

collation_mode_specification::= “MATRIX” “ (” “ORDERED” | “ANY-ORDER” “ ,”
“FIRST” | “RECENT” | “ALL” “)”

| “LINEAR” “ (” “ FIRST” | “RECENT” | “ALL” “)”
| “SINGLETON” “ (” “ORDERED” | “ANY-ORDER” “ ,”

“FIRST” | “RECENT” | “ALL” “)”

comparison_operator::= “==” | “<” | “>” | “<=” | “>=”

end_policy_symbol::= “end_policy”

	List Of Contents
	CHAPTER 1 Introduction to the Problem Domain 1
	Part-1: Distributed Programming Model: A Group Communication Primitive
	CHAPTER 2 Requirements of Programming-Level Group Communication Primitive 20
	CHAPTER 3 Group Interrogation: A Group Programming Primitive 32
	Part-2: Distributed Platform Model: Middleware Support for Group-Based Applications
	CHAPTER 4 Group Support Services: Requirements of the Group Support Platform 51
	CHAPTER 5 Group Support Machine: An Organisation of Group Support Services 59
	CHAPTER 6 An Abstract Model of Group Support Machine 65
	CHAPTER 7 Group Coordination Models: Platform Support and Policy Specification 77
	CHAPTER 8 Group Policy Specification Language: An Introduction 123
	CHAPTER 9 Inter-GSM Protocol 133
	CHAPTER 10 Group Support Platform: Implementation and Performance 149
	CHAPTER 11 Conclusions and Directions for Future Work 173
	CHAPTER 1 Introduction to the Problem Domain
	1.1 Introduction
	1.2 Group-Based Distributed Computing: Emergence of a New Paradigm
	Fig. 1.1 Group-Based Distributed Computing Model: Synergy of Client-Server Model & Object-Group M...

	1.3 Relationship with Distributed Systems Architectures
	1.3.1 RM-ODP Viewpoint Model
	1.3.1.1 Enterprise Model
	1.3.1.2 Information Model
	1.3.1.3 Computational Model
	1.3.1.4 Engineering Model
	1.3.1.5 Technology Model
	1.3.2 Relationship to RM-ODP Viewpoint Models

	1.4 Review of Existing Object Group Models
	1.4.1 Object Group Terminology
	1.4.1.1 Object Group
	1.4.1.2 Interface Group
	1.4.1.3 Group Member
	1.4.1.4 Member Name
	1.4.1.5 Member Role
	1.4.1.6 Group Identifier
	1.4.1.7 Group Administrator
	1.4.2 Object Group Classification Schemes
	1.4.2.1 Client and Server Groups
	1.4.2.2 Open and Closed Groups
	1.4.2.3 Active and Passive Groups
	1.4.2.4 Transparent and Non-Transparent Groups
	1.4.2.5 Replica and Heterogeneous Groups
	1.4.2.6 Static and Dynamic Groups
	1.4.2.7 Anonymous and Explicit Groups
	1.4.2.8 Source and Sink Groups
	1.4.3 General Applications

	1.5 Review of ODP Client-Server Interaction Model
	1.5.1 ODP Computational Model Communication Primitives
	1.5.1.1 Interrogation
	1.5.1.2 Announcement
	1.5.2 Operation, Notification, and Termination Message Signatures

	1.6 Scope of Group-Based Distributed Computing: Application Domains
	Fig. 1.2 Modeling of Conventional Distributed Applications as Group-Based Distributed Application...
	Fig. 1.3 Group-Based Distributed Computing: Application Domains

	1.7 Group-Based Distributed Computing: Dual Levels of Support
	Fig. 1.4 Area of Research: Lightly Shaded Areas

	1.8 Scope and Aim of Thesis
	1.8.1 Programming-Level Support for Group-Based Distributed Computing
	1.8.2 Distributed Platform Support for Group-Based Distributed Computing

	1.9 Related Work and Differences
	1.9.1 Programming Level
	1.9.2 Distributed Platform Level

	1.10 Structure of Thesis

	CHAPTER 2 Requirements of Programming-Level Group Communication Primitive
	2.1 Introduction
	2.2 Client Group and Server Group: Definition & Properties
	2.2.1 Client and Server Interfaces
	2.2.1.1 Client Interface
	2.2.1.2 Server Interface
	2.2.2 Client and Server Groups
	2.2.2.1 Server Group
	2.2.2.2 Client Group
	2.2.2.3 How are Client Groups Formed
	Fig. 2.1 Homogeneous Client Group: Each member invokes instances of the same operation signature

	2.2.2.4 Client Group Invocation Properties
	Fig. 2.2 Heterogeneous Client Group: Each member invokes an instance of different operation signa...

	2.2.3 Categories of Client and Server Groups
	2.2.3.1 Replica Client Group
	2.2.3.2 Homogeneous Client Group
	2.2.3.3 Heterogeneous Client Group
	Table 2.1: Categories of Client Group

	2.2.3.4 Replica Server Group
	Table 2.2: Categories of Server Group

	2.2.3.5 Homogeneous Server Group
	2.2.3.6 Heterogeneous Server Group

	2.3 Programming-Level Communication Requirements of Group-Based Applications
	2.3.1 ‘Singleton-client’ and ‘Server-group’ interaction requirements
	Fig. 2.3 Client object interrogates a server group

	2.3.2 ‘Singleton-Server’ and ‘Client-Group’ interaction requirements
	Fig. 2.4 Client Group interrogates a server object

	2.4 Limitations of ODP Interrogation Primitive
	Table 2.3: Limitation of ODP Interrogation primitive

	2.5 Conclusion

	CHAPTER 3 Group Interrogation: A Group Programming Primitive
	3.1 Introduction
	3.2 ODP-Based Group Programming Primitives
	3.2.1 Group Interrogation
	3.2.2 Group Announcement
	3.2.3 Group (Operation | Termination) Message

	3.3 Semantics of Group Interrogation
	3.3.1 Multiple Invoker and Multiple Invokee semantics
	3.3.2 Group Invocation Semantics
	3.3.3 Message collation semantics
	3.3.4 Controlled Reply Delivery Semantics
	3.3.5 Terminable Reply Delivery Semantics
	3.3.6 Invocation Completion Reporting Semantics or Variable Reply Delivery Semantics

	3.4 Signature of Group Interrogation
	Fig. 3.1 Interrogation Signature

	3.5 Group Message Construction: Collation Schemes
	3.6 Basic Group Message Construction Schemes
	3.6.1 Matrix-mode message collation
	3.6.1.1 Group-Application-1: Managed Group - Manager Object Application
	Fig. 3.2 Matrix-mode message collation: An example of Manager Object and Managed Group Interaction

	3.6.1.2 Group Application-2: Modified Group Application-1
	3.6.1.3 Principles of Matrix-Mode Message Collation
	Fig. 3.3 Group Message Stub Using Matrix-Mode Collation: Array Structure Implementation

	3.6.1.4 Implementation of matrix-mode message collation
	3.6.2 Linear-mode message collation
	Fig. 3.4 Linear-mode message collation: An Example of Group Computing

	3.6.2.1 Group Application-3: Group Computing
	3.6.2.2 Group Application -4: Parallel Computing Group
	3.6.2.3 Principles of Linear-Mode Message Collation
	3.6.2.4 Observations of Linear-mode invocation collation

	3.7 Group Interrogation vs. Group Transparency
	Table 3.1: Comparison of Matrix and Linear mode Collation Schemes

	3.8 Comparison between Interrogation and Group Interrogation
	Table 3.2: Interrogation vs. Group Interrogation

	3.9 Need for Group-Oriented Objects
	3.10 What is a Group-Based Distributed Application
	3.11 What is a Group-Oriented (Client | Server)
	Fig. 3.5 Group-Based Distributed Application and the Group Support Platform.
	Table 3.3: Group-Oriented (Clients | servers)

	3.12 Identification of Group Invocations in Group-Oriented (Client | Server)
	3.12.1 Invocation Instance Identifier
	3.12.2 Unique Identifiers

	3.13 Communication between Group-Oriented (Clients | Servers) and Local Proxy
	3.13.1 Client Side
	3.13.2 Server Side
	3.13.2.1 Single reply to all the clients based upon the group input
	3.13.2.2 Individual reply to each client based upon the group input
	3.13.3 Reply Handling Protocol between the Server object and Proxy object
	Fig. 3.6 Protocol between group-oriented (client | server) and proxy

	3.14 Conclusion

	CHAPTER 4 Group Support Services: Requirements of the Group Support Platform
	4.1 Introduction
	4.2 Why Middleware Support for Group-Based Distributed Applications
	4.3 What Middleware Services in the Group Support Platform and Why
	Fig. 4.1 Group Support Platform: Middleware & Group Communication Services
	4.3.1 Basic Group Support Services
	4.3.2 Secondary Group Support Services
	4.3.3 Group Management Services:

	4.4 Basic Issues of Group Support Services: Elements of Group Support Policy
	4.4.1 Issues of Message Distribution: Elements of Distribution Policy
	4.4.2 Issues of Message Collation: Elements of Collation Policy
	4.4.3 Issues of Message Synchronisation: Elements of Synchronisation Policy
	4.4.4 Issues of Message Filtering: Elements of Filtering Policy

	4.5 Conclusion

	CHAPTER 5 Group Support Machine: An Organisation of Group Support Services
	5.1 Introduction
	5.2 Group Support Agents: Realisation of Group Support Services
	5.3 Group Support Machine: Configuration of Group Support Agents
	Table 5.1: Group Support Services Requirement on the Client and Server side
	5.3.1 Parallel Configuration of Group Support Agents
	Fig. 5.1 Group Support Machine (GSM): Configuration of Group Support Agents

	5.3.2 Functioning of Group Support Machine

	5.4 Group Support Platform: A Parallel Configuration of Inter-Communicating GSMs
	Fig. 5.2 Group Support Platform (GSP): A Distributed Agent Model

	5.5 Agent-Based Approach and Separation of Communication Functions
	5.6 Group Support Machine: An External, Configurable, and Programmable Architecture
	5.6.1 Separation of group-coordination aspects from application aspects
	5.6.2 Extensible and configurable architecture
	5.6.3 Programmable and policy-driven architecture
	5.6.4 Support for group transparency and group awareness

	5.7 Conclusion

	CHAPTER 6 An Abstract Model of Group Support Machine
	6.1 Introduction
	6.2 Middleware Box Between Group Member and Network: External Interfaces of GSM
	6.2.1 GSM - Group Member Interface
	6.2.1.1 GSM Invocation Interface (GII):
	6.2.1.2 GSM Management Interface (GMI)
	Fig. 6.1 A Model of Group Support Machine (GSM)

	6.2.2 GSM - Network Interface

	6.3 GSM Components
	6.3.1 G-Agent
	6.3.2 D-Agent
	6.3.3 C-Agent
	Fig. 6.2 A Model of Policy-Driven Group Support Machine

	6.3.4 S-Agent
	6.3.5 F-Agent
	6.3.6 MM-Agent
	6.3.7 P-Agent

	6.4 Interaction between GSAs in the GSM: Internal Interfaces of GSM
	6.4.1 Interaction between D-Agent and C-Agent: Coordination between basic group support functions
	6.4.2 Interaction between D-Agent and S-Agent: Synchronise before message distribution
	Table 6.1: Interaction of D-Agent with other Agents before & after message distribution

	6.4.3 Interaction between D-Agent and F-Agent: Insert the filtering constraints before message di...
	6.4.4 Interaction between C-Agent and S-Agent: Synchronise before message delivery
	Table 6.2: Interaction of C-Agent with other Agents before message delivery to (Client | Server)

	6.4.5 Interaction between C-Agent and F-Agent: Filter the received messages before delivery
	6.4.6 Interaction between MM-Agent and other GSAs: Communicate group membership information

	6.5 Conclusion

	CHAPTER 7 Group Coordination Models: Platform Support and Policy Specification
	7.1 Introduction
	Fig. 7.1 Group Coordination Model: Combination of coordination behavior and group organisation

	7.2 Basic Group Coordination Models
	7.3 Basic Issues in Group Coordination Models
	7.4 The Basic Message Distribution Model
	7.4.1 Group Application-1: Stock Exchange Application
	Fig. 7.2 Stock Exchange Application: A Group-Based Distributed Application

	7.4.2 Message Distribution Requirements & Policy Specification
	Fig. 7.3 Message Distribution Policy Specification

	7.5 Advanced Message Distribution Models: Smart D-Agents
	7.5.1 Splitting Transformation
	7.5.2 Message Splitting Requirements & Policy Specification
	Fig. 7.4 Splitting Policy Specification

	7.5.3 Renaming Transformation
	7.5.4 Group Application-2: Parallel Computational Group
	Fig. 7.5 A Parallel Computational Group

	7.5.5 Renaming Requirements & Policy Specification
	Fig. 7.6 Renaming Policy Specification

	7.6 Reply Collation and Delivery Models
	Table 7.1: Reply Collation and Delivery Schemes
	7.6.1 Group Application-3: Stock Inventory System
	Fig. 7.7 Stock Inventory System

	7.6.2 Delivery of Group Termination of a Single Reply Type: Matrix-Mode Collation
	7.6.2.1 Reply Collation Requirements & Policy Specification
	Fig. 7.8 Reply collation and delivery policy of a single group termination (matrix-mode)

	7.6.2.2 Transparency and Policy Interpretation
	7.6.3 Delivery of Group Termination of a Single Reply Type: Linear-Mode Collation
	7.6.3.1 Reply Collation Requirements & Policy Specification
	Fig. 7.9 Reply collation and delivery policy of a single group termination (linear-mode)

	7.6.3.2 Transparency & Policy Interpretation
	7.6.4 Unordered Delivery of Singleton Terminations of a Reply Type
	7.6.4.1 Unordered Reply Delivery Requirement and Policy Specification
	Fig. 7.10 Unordered delivery of singleton terminations of a reply type

	7.6.4.2 Transparency & Policy Interpretation
	7.6.5 Ordered Delivery of Singleton Terminations of a Reply Type
	7.6.5.1 Ordered Reply Delivery Requirement & Policy Specification
	Fig. 7.11 Ordered delivery of singleton terminations of a reply type

	7.6.5.2 Transparency & Policy Interpretation
	7.6.6 Unordered Delivery of Multiple Reply Types as Singleton Terminations
	7.6.6.1 Reply Collation & Delivery Requirements and Policy Specification
	Fig. 7.12 Policy Specification for interleaved delivery of instances of multiple reply types

	7.6.6.2 Transparency & Policy Interpretation
	7.6.7 Unordered Delivery of Multiple Reply Types as Group Terminations
	Fig. 7.13 Policy specification for Unordered Delivery of Multiple Reply Types as Group Terminations

	7.6.7.1 Reply Collation & Delivery Requirement and Policy Specification
	7.6.7.2 Transparency & Policy Interpretation
	7.6.8 Ordered Delivery Multiple Reply Types as Singleton Terminations
	7.6.8.1 Reply Collation & Delivery Requirement and Policy Specification
	Fig. 7.14 Policy Specification for Ordered Delivery of Multiple Reply Types as Singleton Terminat...

	7.6.8.2 Transparency & Policy Interpretation
	7.6.9 Disabling the Delivery of Other Reply Types by a Preferred Reply Type
	7.6.9.1 Group Application-4: Mobile Telecommunications
	Fig. 7.15 Group Interrogation in Mobile Telecommunications

	7.6.9.2 Reply Collation & Deliver Requirement and Policy Specification
	7.6.9.3 Transparency & Policy Interpretation
	Fig. 7.16 Policy Specification for Disabling the Delivery of Other Reply Types by a Preferred Rep...

	7.6.10 Choice between Multiple Reply Types
	7.6.10.1 Group Application-5: Group Survey
	Fig. 7.17 Policy Specification for Choosing between reply types based upon cardinality requirements

	7.6.10.2 Reply Collation & Deliver Requirement and Policy Specification
	7.6.10.3 Transparency & Policy Interpretation
	7.6.10.4 Group Application-6: Scheduling Group Meeting
	7.6.10.5 Reply Collation & Deliver Requirement and Policy Specification
	Fig. 7.18 Policy Specification for Choosing between reply types based upon sender identity

	7.6.10.6 Transparency & Policy Interpretation

	7.7 ‘Group-Service’ Request Models: Service Request Collation Models
	7.7.1 Group Application-7: Network Management Application
	Fig. 7.19 Group Interrogation in Telecommunications Network Management

	7.7.2 Constructing a ‘Group-Service’ Request: Matrix-Mode Collation & Policy Specification
	Fig. 7.20 Operation Collation Policy Specification

	7.7.3 Transparency & Policy Interpretation
	7.7.4 Group Application-8: Target Location Acquisition Sonar System
	Fig. 7.21 Group Interrogation in Sonar System

	7.7.5 Constructing a Service Request from Partial Service Requests: Linear-Mode Collation & Polic...
	Fig. 7.22 Linear-Mode Collation of partial service requests

	7.8 Replies to Group-Service Request: Reply Distribution Models
	7.8.1 Multiple Replies to Group-Service Request
	Fig. 7.23 Multiple Replies Distribution Policy

	7.8.2 Transparency & Policy Interpretation
	7.8.3 Single Reply to Group-Service Request
	Fig. 7.24 Single Reply Distribution Policy

	7.9 Synchronised Invocation Model
	7.9.1 Why Synchronised Invocation in the Client Group
	7.9.2 What are Synchronisation Events in Client Groups
	7.9.3 What are Synchronisation Messages
	7.9.4 Communication between the Client Object and the S-Agent
	7.9.5 Group Application-9: Coordinated Testing Application
	Fig. 7.25 Coordinated Testing Application

	7.9.6 Synchronisation Requirements & Policy Specification
	Fig. 7.26 Synchronisation Policy Specification for the S-Agent of TAdmin
	Fig. 7.27 Synchronisation Policy Specification for the S-Agent of TA-1
	Fig. 7.28 Synchronisation Policy Specification for the S-Agent of TB-1, TB-2
	Fig. 7.29 Synchronisation Policy Specification for the S-Agent of TC-1
	Fig. 7.30 Synchronisation Policy Specification for the S-Agent of TE-1
	Fig. 7.31 Synchronisation Policy Specification for the S-Agent of TAdmin - (for Grade-B() message)
	Fig. 7.32 Synchronisation Policy Specification for the S-Agent of TAdmin (for Object_Partially_Te...

	7.9.7 Interaction between GSM Agents to Support Synchronised Message Distribution from Client
	Fig. 7.33 Synchronised Message Distribution Policy
	Fig. 7.34 Coordination between GSM Agents to Support Synchronised Message Distribution from Client

	7.9.8 Transparent & External Support for Synchronised Invocation in the GSM

	7.10 Filtered Message Delivery Model
	7.10.1 Why Filtered Message Delivery in the Server Group
	7.10.2 Communication between the Server Object and F-Agent
	7.10.3 Group Application-10: A Printer-Pool
	7.10.4 Filtering Requirements & Policy Specification
	Fig. 7.35 Client’s Filtering Policy Specification
	Fig. 7.36 Server’s Filtering Policy Specification

	7.10.5 Interaction between GSM Agents to Support Filtered Message delivery to Server Object
	Fig. 7.37 Coordination between GSM Agents to Support Filtered Message Delivery (Server Side)

	7.10.6 Transparent & External Support for Filtered Invocation

	7.11 Conclusion

	CHAPTER 8 Group Policy Specification Language: An Introduction
	8.1 Introduction
	8.2 Why Group Policy Specification Language
	8.3 Basic Elements of GPSL
	Table 8.1: Relationship between Basic issues of Group Support Services and Elements of GPSL

	8.4 Syntax and Semantics of Group Policy Primitives
	8.4.1 Distribution Policy Primitive
	8.4.1.1 DPP Syntax
	8.4.1.2 DPP Semantics
	8.4.2 Collation Policy Primitive
	8.4.2.1 CPP Syntax
	8.4.2.2 CPP Semantics
	8.4.3 Synchronisation Policy Primitive
	8.4.3.1 SPP Syntax
	8.4.3.2 SPP Semantics
	8.4.4 Filtering Policy Primitive
	8.4.4.1 FPP Syntax
	8.4.4.2 FPP Semantics

	8.5 Syntax and Semantics Of GPSL Elements
	8.5.1 Message Specifier Elements
	8.5.2 Membership Specifier Elements
	8.5.3 Cardinality Specifier Elements
	8.5.4 Time Specifier Elements
	8.5.5 Combination Mode Specification Elements
	8.5.6 Attribute Combination Specification Elements
	8.5.7 Message Ordering Specification Elements
	Table 8.2: Semantics of Collation Operators
	Table 8.3: Combined Semantics of Collation Time, Collation Cardinality, and Collation Mode

	8.6 Conclusion

	CHAPTER 9 Inter-GSM Protocol
	9.1 Introduction
	9.2 Why Protocol between GSMs
	9.3 Peer GSAs in Inter-GSM Protocol
	9.4 A General Format of the Inter-GSM Protocol Data Unit
	Fig. 9.1 A General Format of GSM Protocol Data Unit (GPDU)

	9.5 Encoding of GPDUs
	9.6 Inter-GSM Protocol between D-Agent and C-Agent
	9.6.1 Application Message Communication between D-Agent & C-Agent
	Fig. 9.2 Inter-GSM Protocol between D-Agent & C-Agent

	9.6.2 Marshalling of Application Messages in GPDUs
	9.6.3 Group Exception Handling Protocol Between C-Agents

	9.7 Inter-GSM Protocol between Peer S-Agents
	Fig. 9.3 Inter-GSM Protocol between S-Agents
	9.7.1 Solicited Synchronisation Protocol
	9.7.2 Unsolicited Synchronisation Protocol
	Fig. 9.4 S-NTF-GPDU Format

	9.8 Inter-GSM Protocol between Peer F-Agents
	Fig. 9.5 F-PAR-GPDU Format
	Fig. 9.6 F-RES-GPDU Format
	Fig. 9.7 Inter-GSM Protocol between F-Agents

	9.9 Inter-GSM Protocol between Peer MM-Agents
	9.9.1 Distributed Membership Monitoring
	9.9.2 Membership Change Notification
	Table 9.1: A Catalogue of GPDUs

	9.10 Inter-GSM Protocol over Multicasting Protocol
	9.10.1 Group Communication Layer
	Fig. 9.8 Inter-GSM Protocol over Multicast Protocol

	9.10.2 GSM - GCL Interface

	9.11 Conclusion

	CHAPTER 10 Group Support Platform: Implementation and Performance
	10.1 Introduction
	10.2 Implementation Details
	10.2.1 Implementation of GSM Agents
	10.2.1.1 GSM Class
	Fig. 10.1 Which Agents are implemented

	10.2.1.2 G_Agent Class
	10.2.1.3 D_Agent Class
	Fig. 10.2 GSM Implementation: GSM Agents and their Interaction

	10.2.1.4 C_Agent Class
	10.2.1.5 P_Agent Class
	10.2.2 Implementation of Inter-Agent Invocations
	10.2.3 Implementation of Inter-GSM Communication
	10.2.4 Implementation of Inter-GSM Protocol
	10.2.5 Implementation Distribution and Collation Policies
	10.2.6 Implementation of an API for Group Interrogation Primitive
	10.2.6.1 Implementation of Unsolicited Group Reply Delivery - API
	10.2.6.2 Implementation of Solicited Multiple Reply Delivery - API
	10.2.6.3 Implementation of Unsolicited, Multiple and Terminable Reply Delivery - API

	10.3 Performance Aspects
	10.3.1 Message count
	10.3.2 Message Complexity
	10.3.3 Communication Network Speed
	10.3.4 Message Marshalling and Un-marshalling Overhead
	10.3.5 Intra-GSM Invocations Overhead
	10.3.6 Internal Buffer Sizes and Queue Lengths Considerations
	10.3.7 Concurrency and Multi-threaded architecture aspects
	10.3.8 Timers
	10.3.9 Collation Processing Overhead
	10.3.10 Other Group Processing Overhead
	10.3.11 Reliability and Robustness
	10.3.12 Scalability
	10.3.13 Ease of Use
	10.3.13.1 Ease of use of GSM Invocation (GII) Interface and Group Interrogation primitive
	10.3.13.2 Ease of use of Group Policy Programming Interface

	10.4 Comparison of Group Support Platform with CORBA Middleware
	10.4.1 Comparison at Programming-Level
	10.4.1.1 Group Interrogation vs. Remote Procedure Call
	Table 10.1: Corba vs. GSP: How do they compare w.r.t. Crucial Performance Metrics

	10.4.1.2 Ease of group request invocation
	10.4.1.3 Support for Advanced Programming-level facilities in GSP vs. Corba
	Table 10.2: GSP vs. Corba: What are the Other Trade-Offs

	10.4.2 Comparison at Platform-Level
	10.4.2.1 Middleware functions of GSP vs. Corba
	10.4.2.2 Platform programmability Capability in GSP vs. Corba

	10.5 Case Studies
	10.5.1 Case Study-1: Group Reply Delivery, Matrix-Mode Collation
	10.5.2 Case Study-2: Group Reply Delivery, Linear-Mode Collation
	10.5.3 Case Study-3: Solicited Reply Delivery
	10.5.4 Case Study-4: Group Request Deliver and Reply Distribution

	CHAPTER 11 Conclusions and Directions for Future Work
	11.1 Conclusion and Contribution of Thesis
	11.1.1 Contribution at the Programming-Level
	11.1.2 Contribution at the Platform-Level

	11.2 Directions for Future Work
	11.2.1 Research on Group-Oriented Programming Languages & Systems
	11.2.2 Integration of GSM Model in CORBA
	11.2.3 Extension of GSM Model
	11.2.4 Extension to Group Policy Specification Language

	List of References
	[1] International Standard ITU-T X.901 / ISO 10746-1: Basic Reference Model of Open Distributed P...
	[2] International Standard ITU-T X.902 / ISO 10746-2: Basic Reference Model of Open Distributed P...
	[3] International Standard ITU-T X.903 / ISO 10746-3: Basic Reference Model of Open Distributed P...
	[4] Draft International Standard ITU-T X.904 / ISO 10746-4: Basic Reference Model of Open Distrib...
	[5] Farooqui, K., Logrippo, L., and de Meer, J. The ISO Reference Model for Open Distributed Proc...
	[6] Farooqui, K., and Logrippo, L. Architecture for Open Distributed Software Systems. In Zomaya,...
	[7] Linington, P.F., Introduction to the Open Distributed Processing Basic Reference Model, Proce...
	[8] Herbert, A. The Challenge of ODP, Proceedings of the IFIP International Workshop on Open Dist...
	[9] ANSA Reference Manual, Volume A, B, C., Release 01.01, Architecture Projects Management Limit...
	[10] ANSA Computational Model, AR.001.01, Architecture Projects Management Limited, Cambridge, U....
	[11] ANSA: An Application Programmer’s Introduction to the Architecture, TR.017.00, Architecture ...
	[12] ANSA: An Engineer’s Introduction to the Architecture. TR.03.02, Architecture Projects Manage...
	[13] ANSA: A System Designer’s Introduction to the Architecture. RC.253.00, Architecture Projects...
	[14] ANSA Technical Report, Management in Object-Based Federated Distributed Systems, TR.39.00, A...
	[15] Edwards, N. Open Dependable Distributed Systems, ANSA Phase 3 Technical Report APM. 1145.01,...
	[16] RACE Open Service Architecture, 13th Deliverable, The ROSA Handbook, Release 2, RACE Project...
	[17] Schoo, P., and Tonnby, I. The ROSA Object Model, Proceedings of the IFIP International Works...
	[18] Object Management Group, “The Common Object Request Broker: Architecture and Specification”,...
	[19] Open Software Foundation. (1994) OSF DCE Application Development Guide. Open Software Founda...
	[20] The Component Object Model Specification Microsoft (1995).
	[21] Open Services Architecture within Integrated Services Engineering, CASSIOPEIA RACE Ref: R204...
	[22] Iggulden, D., Rees, O., and van der Linden, R. Architecture & Frameworks, ANSA Phase 3 Techn...
	[23] Taylor, C.J. Object-Oriented Concepts in Distributed Systems, Computer Standards and Interfa...
	[24] Jul, E. Separation of Distribution and Objects, Proceedings of the Workshop on Object-Based ...
	[25] TINA-C Deliverable, Overall Concepts and Principles of TINA, Version 1.0, Document Label: TB...
	[26] TINA-C Deliverable, Service Architecture Version 2.0, Document Label: TB_MDC.012_2.0_95, Tel...
	[27] TINA-C Deliverable, TINA-C Service Design Guidelines, Version 1.0, Document Label: TP_JS_001...
	[28] TINA-C Deliverable, Computational Modeling Concepts, Version 2.0, Document Label: TB_A2.HC.0...
	[29] TINA-C Deliverable, Engineering Modeling Concepts (DPE Architecture), Version 2.0, Document ...
	[30] TINA-C Deliverable, Management Architecture, Version 2.0, Document Label: TB_GN.010_2.0_94, ...
	[31] TINA-C Deliverable, Connection Management Architecture, Document Label: TB_JJB.005_1.5_94, T...
	[32] TINA-C Deliverable, TINA Object Definition Language (TINA-ODL) Manual, Version 1.3, Archivin...
	[33] ISO/IEC 13244 / ITU-T Draft Rec. X.703, Open Distributed Management Architecture, 1997.
	[34] Oskiewicz, E., and Edwards, N. A Model for Interface Groups. ANSA Phase 3 Technical Report, ...
	[35] Achmatowicz, R. Object Groups For Groupware Applications: Application Requirements and Desig...
	[36] Watanabe, T., and Yonezawa, A. An actor-based meta-level architecture for group-wide reflect...
	[37] Matsuoka, S., Watnabe, T., and Yonezawa, A. Hybrid group reflective architecture for object-...
	[38] Zweiacker, M. The Persistent Object Group Service-An approach to fault tolerance of open dis...
	[39] Pardyak, P. Group Communication in an Object-Based Environment. Proceedings of the 2nd Inter...
	[40] Murata, S., Shionozaki, A., Tokoro, M. A Network Architecture for Relaible Process Group Com...
	[41] Glade, B.B., Birman, K.P., Cooper, R.C., and van Renesse, R. Lightweight process groups. Pro...
	[42] Maffeis, S. The Object Group Design Pattern. Proceedings of the 1996 USENIX Conference on Ob...
	[43] Versimmo, P. and Rodrigues, L. Group Orientation: A Paradigm for Distributed Systems of the ...
	[44] Powell, D., ed. Delta-4: A Generic Architecture for Dependable Distributed Computing (1991) ...
	[45] Birman, K.P. The process group approach to reliable distributed computing. Communication of ...
	[46] Liang, L, Chanson, S.T., and Neufeld, G.W. Process groups and group communications: classifi...
	[47] Achmatowicz, R. Object Groups For Groupware Applications: Application Requirements and Desig...
	[48] Benford, S. and Palme, J. A Standard for OSI Group Communication. Computer Networks and ISDN...
	[49] Cosquer, F.J.N. and Versimmo, P. The Impact of Group Communication Paradigms on Groupware Su...
	[50] Rodrigues, L., and Versimmo, P. Replicated Object Management using Group Technology, In Proc...
	[51] Babaoglu, O., and Schiper, A. On Group Communication in Large-Scale Distributed Systems. In ...
	[52] Prinz, W. Survey of Group Communication Models and Systems. In Computer Based Group Communic...
	[53] Szyperski, C., and Ventre, G. Efficient Group Communication with Guaranteed Quality of Servi...
	[54] Chanson, S.T., Neufeldm G.W., and Liang, L. A Bibliography on Multicast and Group Communicat...
	[55] Navarathnam, S., Chanson, S., and Neufeld, G. Reliable Group Communication in Distributed Sy...
	[56] Birrel, A.D., and Nelson, B.J. Implementing remote procedure calls, ACM Transactions on Comp...
	[57] Ananda, A.L., and Tay, B.H. An Asynchronous Remote Procedure Call Facility. Proceedings of 1...
	[58] Bershad, B.N., Anderson, T. E., Lazowska, E.D., and Levy, H. Lightweight remote procedure ca...
	[59] Martin, B., Bergan, C., and Russ, B. Parpc: A system for parallel procedure calls. ICPP, 198...
	[60] Wilbur, S. and Bacarisse, B. Building distributed systems with remote procedure calls. Softw...
	[61] Yap, K.S., Jalote, P., and Tripathi, S. Fault tolerant remote procedure call. International ...
	[62] Johnson, D., and Zwaenepoel, W. The Peregrine high-performance RPC system. Software Practice...
	[63] Liskov, B., and Shrira, L. Promises: Linguistic Support for Efficient Asynchronous Procedure...
	[64] Birman, K.P., and van Renesse, R. RPC Considered Inadequate. In Birman, K. and van Renesse, ...
	[65] Ramakrishna, S., Prasad, B., Thenmozhi, A., Samdarshi, S., Velaga, K., Shah, K., and Ravindr...
	[66] Hughes, L. A Multicast Response-Handling Taxonomy, Computer Communications, Vol. 12, No. 1, ...
	[67] Maffeis, S. Distributed Programming Using Object Groups, IFI TR 93.38, Department of Compute...
	[68] Maffeis, S. A Flexible System Design to Support Object-Groups and Object-Oriented Distribute...
	[69] Birman, K.P., Cooper, R., Gresman, B. Programming with Process Groups: Group and Multicast S...
	[70] Cheriton, D.R. Request-response and multicast interprocess communication in the V kernel. Le...
	[71] Hagsand, O., Herzog, H., Birman, K., and Cooper, R. Object-Oriented Relaible Distributed Pro...
	[72] van Renesse, R., and Birman, K.P., Fault-Tolerant Programming using Process Groups. In F. Br...
	[73] Zhou, W. A Fault-Tolerant Remote Procedure Call System for Open Distributed Processing. Proc...
	[74] Wood, M.D. Replicated RPC using Amoeba closed group communication. Proceedings of the 13th I...
	[75] Cooper, E.C. Programming Language Support for Multicast Communication in Distributed Systems...
	[76] Welling, G., and Badrinath, B.R. An Architecture of a Threaded Many-to-Many Remote Procedure...
	[77] Pardyak, P., and Bershad, B.N. A Group Structuring Mechanism for a Distributed Object-Orient...
	[78] Hiltunen, M.A., and Schlichting, R.D. Constructing a Configurable Group RPC Service. Proceed...
	[79] Wang, X., Zhao, H., and Zhu, J. GRPC: A Communication Cooperation Mechanism in Distributed S...
	[80] Farooqui, K., and Logrippo, L. Group Interrogation: A Group Programming Primitive. Proceedin...
	[81] Melliar-Smith, P.M., Moser, L.E., and Agrawala, V. Broadcast protocols for distributed syste...
	[82] Reiter, M.K. Secure agreement protocols: Relaible and atomic group multicast in Rampart. In ...
	[83] Whetten, B. A reliable multicast protocol, In Theory and Practice of Distributed Systems. K....
	[84] Birman, K., Schiper, A., and Stephenson, P. Lightweight causal and atomic group multicast. A...
	[85] Hadzilacos, V., and Toueg, S. Fault-tolerant broadcasts and related problems. In S. Mullende...
	[86] Birman, K., Schiper, A., and Sephenson, P. Lightweight causal and atomic group multicast. AC...
	[87] Navaratnam, S., Chanson, S.T., and Neufeld, G. Reliable group communication in Distributed S...
	[88] Schiper, A. and Sandoz, A. Uniform Relaible Multicast in a Virtually Synchronous Environment...
	[89] Nakamura, A., and Takizawa, M. Priority-Based Total and Semi-Total Ordering Broadcast Protoc...
	[90] Luan, S.W. and Gilgor, V.D. A Fault-Tolerant Protocol for Atomic Broadcast. IEEE Transaction...
	[91] Kaashoek, M.F., Tanenbaum, A.S., Hummel, S.F., and Bal, H.E. An Efficient Relaible Broadcast...
	[92] Ezhilchelvan, P.D., Macedo, R.A., and Shrivastava, S.K. Newtop: A Fault-Tolerant Group Commu...
	[93] Nakamura, A., and Takizawa, M. Causally Ordering Broadcast Protocol. Proceedings of the Inte...
	[94] Anceaume, E. A Comparison of Fault-Tolerant Atomic Broadcast Protocols. Proceedings of the 4...
	[95] Reiter, M.K. A secure group membership protocol. In IEEE Transactions on Software Engineerin...
	[96] Jahanian, F., Fakhouri, S., and Rajkumar, R. Processor group membership protocols: Specifica...
	[97] Diaz, M. and Villemur, T. Membership services and protocols for cooperative frameworks of pr...
	[98] Amir, Y., Dolev, D., Kramer, S., and Malki, D. Membership Algorithm for Multicast Communicat...
	[99] Melliar-Smith, P.M., Moser, L.E., and Agarwala, V. Membership Algorithms for Asynchronous Di...
	[100] Birman, K.P. and Joseph, T.A. Exploiting Virtual Synchrony in Distributed Systems. In 11th ...
	[101] Moser, L.E., Amir, Y., Melliar-Smith, M., and Agarwal, D.A. Extended Virtual Synchrony. Pro...
	[102] Schiper, A., and Sandoz, A. Uniform Relaible Multicast in a Virtually Synchronous Environme...
	[103] Schiper, A. and Ricciardi, A. Virtually Synchronous Communication based on a weak failure s...
	[104] Birman, K. and Cooper, R. The ISIS Project: Real Experience with a Fault-Tolerant Programmi...
	[105] Birman, K.P., and van Renesse, R. Reliable Distributed Computing with the ISIS Tool Kit. IE...
	[106] Orbix + ISIS Programmer’s Guide, Document D071-00, ISIS Distributed Systems Inc., IONA Tech...
	[107] van Renesse, R., Birman, K.P., and Maffeis, S. Horus: A flexible group communication system...
	[108] van Renesse, R., Birman, K.P., Friedman, R., Hayden, M., and Karr, D.A. A framework for pro...
	[109] Maffeis, S. Adding group communication and fault-tolerance to CORBA. In Proceedings of the ...
	[110] Maffeis, S., and Schmidt, D.C. Constructing Reliable Distributed Communication Systems with...
	[111] Kaashoek, M.F., and Tanenbaum, A.S. Group communication in the Amoeba distributed operating...
	[112] Mullender, S., van Rossum, G., Tannenbaum, A., van Renesse, R., van Staveren, H. Amoeba - A...
	[113] Dolev, D., and Malki, D. The Transis Approach to High Availability Cluster Communication, C...
	[114] Amir, Y., Dolev, D., Kramer, S., and Malki, D. Transis: A communication sub-system for high...
	[115] Reiter, M.K. Distributing Trust with Rampart Toolkit, Communications of ACM, Vol. 39, No. 4...
	[116] Reiter, M.K. The Rampart toolkit for building high-integrity services. In K.P. Birman, F. M...
	[117] Moser, L. E., Melliar-Smith, P. M., Agarwal, D.A., Budhia, R.K., Langley-Papadopoulos, C.A....
	[118] Babaoglu, O., Davoli, R., Giachini, L.A., and Baker, M.G. Relacs: A Communication Infrastru...
	[119] Cheriton, D.R., and Zwaenepoel. Distributed Process Groups in V Kernel. ACM Transactions on...
	[120] Mishra, S., Peterson, L., and Schlichting, T. Consul: A Communications Substrate for Fault-...
	[121] Powell, D., ed. Delta-4: A Generic Architecture for Dependable Distributed Computing (1991)...
	[122] Costa, F.M., and Madeira, E.R.M. An object group model and its implementation to support co...
	[123] Bakker, H., and ter Hofte, G.H. MORB, a Multicast Object Request Broker for a CSCW software...
	[124] Farooqui, K. ODP-Based Distributed Platform: Policy-Driven Engineering Support for Mobile a...
	[125] Farooqui, K. and Logrippo, L. Group Communication Models, Computer Communications, Vol. 19,...
	[126] Farooqui, K. and Logrippo, L. Group Support Platform: Middleware Support for Group-Based Di...
	[127] Moffet, J. and Sloman, M. Representation of Policies as System Objects. In Proceedings of t...
	[128] Dean, G., Rodden, T., Sommerville, I., and Hutchinson, D. Distributed Systems Management as...
	[129] Koch, T. Policy-Based Management of Distributed Systems. Internal Paper, FernUniversitat, 5...
	[130] Sloman, M. Policy Driven Management for Distributed Systems, Journal of Network and Systems...
	[131] Roos, J., Putter, P., and Bekker, C. Modeling Management Policy Using Enriched Managed Obje...
	[132] Alpers, B. and Plansky, H. Domain and Policy Based Management: Concepts and Implementation ...
	[133] Meyer, B., and Popien, C. Defining Policies for Performance Management in Open Distributed ...
	[134] Popien, C. and Meyer, B. Service Request Description Language, FORTE’95.
	[135] Trevor, J., Rodden, T., and Blair, G. COLA: A Lightweight Platform for CSCW. In Proceedings...
	[136] Shenker, S., Weinrib, A., and Schooler, E. Managing Shared Ephemeral Teleconferencing State...
	[137] Bentely, R., and Dourish, P. Medium versus mechanism: Supporting collaboration through cust...
	[138] Coordination Languages and Models, Lecture Notes in Computer Science 1061, Springer-Verlag,...
	[139] Berry, A. and Kaplan, S. Language Support for Distribution in CSCW Systems. In Proceedings ...
	[140] Putter, P., and Roos, J.D. From Policy to Specification. Proceedings of the IFIP Internatio...
	[141] Cortes, M. and Mishra, P. DWCPL: A programming language for describing collaboration. In AC...
	[142] Papazoglou, M.P., Delis, A., Haghjoo, M., Bouguettaya, A. Language Support for Long-lived C...
	[143] Frolund, S., and Agha, G. A Language Framework for Multi-Object Coordination. 7th European ...
	[144] Richard M. Adler, Distributed Coordination Models for Client/Server Computing, Computer, Ap...
	[145] Nehmer, J., and Mattern, F. Framework for the organisation of cooperative services in distr...
	[146] Diaz, M. A logical model of cooperation. Proceedings of the 3rd IEEE Workshop on Future Tre...
	[147] Kreifelts, T., Pankoke-Babatz, U., Victor, F. A Model for the Coordination of Cooperative A...
	[148] Kirsche, T., Lenz, R., Luhrsen, H., Meyer-Wegener, K., Wedekind, H., Bever, M., Schaffer, U...
	[149] Gokhale, A.S., and Schmidt, D.C. Measuring the Performance of Communication Middleware on H...
	[150] Gokhale, A.S., and Schmidt, D.C. Measuring and Optimizing Corba Latency and Scalability Ove...
	[151] Gokhale, A.S., and Schmidt, D.C. Optimizing a Corba Inter-ORB Protocol Engine for Minimal F...
	[152] Schmidt, D.C., Levine, D.L., Cleeland, C. Architectures and Patterns for High-Performance, ...
	[153] Schmidt, D.C. and Gokhale, A. Techniques for Optimizing Corba Middleware for Distributed Em...
	[154] Schmidt, D.C. Evaluating Architectures for Mult-threaded Corba Object Request Brokers, Comm...

	APPENDIX BNF of Group Policy Specification Language (GPSL)

