Group-Based Distributed Computing
Programming & Distributed Platform Model

By

Kazi Farooqu

Thesis submitted to the
School of Graduate Studies and Reseach
in partial fulfillment of
the requirements of the degreeof

Doctor of Philosophy
in
Computer Science

under the auspices of

Ottawa Carleton Institute of Computer Science

University of Ottawa
Ottawa, Ontario,
Canada

February 2000

Copyright © 2000 Kazi Farooqui, Ottawa, Canada.

Acknowledgments

A number of people have, directly or indirectly, contributed to thisthesis. It ismy pleasure to have
the oppatunity to thank them. First of al, | would like to expressmy deepest gratitude to my the-
sis supervisor, Dr. Luigi Logrippo. His encouragement, suppat and gudance have been very
instrumental duringmy Ph.D studies. I' m thankful to him for the numerous discussons that | have
had with hm and for the suggestions that | received from him. His careful reading d the thesis
improved the cntent and its form. Luigi has not only been my supervisor, but also my friend. |
could knack his doar at any time and still be received with a friendly smile. Luigi, thanks very
much!

The weekly medings of the Telecommunications Software Engineering Research Group
isan excdlent place to test the ideas. | would like to thank all the members of this groupfor their
useful suggestions and petient li stening. Jacques Sincennes and Daniel Amyot were dways avail -
able for discusson. Many thanks to them for sharing uncourntable hours, ideas, and fruitful com-
ments.

| would like to thank the members of the 1ISO /ODP group- Andrew Herbert, Jean-Bernard
Stefani, Kerry Raymond, Peter Linington, Peter Schoo, Gerd Schrumann, and ahers, for the
numerous discussons that | had with them throughthe internet. | would like to thank them for
sharing their experience on distributed systems architectural principles.

A projed of this gale can seldom be accompli shed withou the mora suppat and affec-
tion from the family. The first picture that comes to my mindisthat of atall and elegant girl who
is gifted with a beautiful smile, my wife Shehla. She has been a constant source of affection for
me. | wish to thank her for her companionship duing my toughtimes and for tolerating my eve-
nings and weekends at the office. | would like to apaogize her for my occasional slippinginto my
‘thesisworld” whiletalkingto her. Our little daughter Juhi kept me dheerful with her innacent talk
and with her playful activities. My parents have dways been suppative of my intellectual pur-
suits. They have been a constant source of inspiration. I'm grateful to them for their encourage-
ment and remain indebted to them for their care. Thank youmummy and pappa. Finally, | wishto
remember my Dadimafor the love she gave me. To her, | dedicate thisthesis.

This work was made paossible by the financial suppat of National Science and Enginee-
ing Research Courcil (NSERC), Telemmmunicaions Research Institute of Ontario (TRIO),
Motorolaand Nortel.

Abstr act

Thesynergy o the dient-server computingmodel, the object groupmodel, and the groupcommunicaion
model | eadsto anew distributed computing paradigm - the group-based distributed computing paadigm.
Thisparadigm ischaracterised bytheextension d theexisting pant-to-paint client-server distributed com-
putingmodel toamodel that expli citly addresses one-to-many and many-to-oneclient-server interactions,
as well as other aspects of group-orientation such as synchronised message invocation, filtered message
delivery, etc. The group-based distributed computing applications are structured as acli ent groupinteract-
ingwith aserver group. The paradigm of next generation d informationsystemswill involve alargenum-
ber of distributed adbjects which are structured as object groups and which interact in a dient-server
manney.

Much research hasbeen doreinthe past inthe aeaof groupcommunication. However most of this
research existsin the low-level suppat for groupcommunication, such as different types of ordered and
reli ablemulti cast protocol s, membershipmanagement protocols, virtual synchrony, repli cationtechniques,
etc. Most of thisresearch providesonly low-level piecesof the mmpletepuzze. Thebig pictureinvolvesa
vison d group-based distributed computing. Thisvisioncall sfor ashift of focusfrom low-level i ssues of
groupcommunicationto thehigh-level issuesof anoverall distributed environment cgpabl e of suppating
group-based dstributed computing appications. Thisthesisisfocussed onthe dual model s of thedistrib-
uted environment - thedistributed programningmodel andthedistributed platform nodel, requiredfor the
suppat of group-based dstributed computing appli cations.

At the programming-level, we describe acommnunication primitive (analogousto theinterrogation
or remoteprocedure all of thebasicclient-server model), that expli citly addressesone-to-many andmany-
to-one interactions between a dient groupand server group. It is named groupinterrogation. It allows a
singletonclient to accessaserver groupin ore cdl, throughthe mediation d agroup proxy ojject, andto
receive multi ple and variable number of repliesin acontrolled manner in resporseto that cal. Similarly it
allowsasingletonserver torecavemultipleservicerequestsfrom the di ent groupasasinglegroupservice
request and to issue multiple replies, ore for each comporent request, in resporse to a group service
request.

The semantics of the propased groupinterrogation primitive suppats some of the sophisticated
groupcommunication requirements, such as multiple reply delivery, variable reply delivery, groupreply
delivery, controll edreply delivery, terminaldereply deli very, andorderedreply delivery. Transparency isan
important issuein aprogramming primitive. The propased model all owsthe programmer to configure the
level of group transparency by specifying dfferent message distribution and collation pdicies.

At thedistributed platform level, thefocusisessentially onthegroupsuppat middeware platform,
which resides ontop d the low-level groupcommunicaion grotocols. The thesis presents the software
architecture of an agent-based andpdli cy-driven groupsuppat platformin an implementation indepen-
dent manner. Thisis an extensible, configurable and programmable software architecture which permits
theseparation d group coordinationaspectsfrom theappli cationissues. Thegoal i sto enhancethelevel of
middeware suppat provided by the current generation o distributed platforms such as CORBA.

Thethesisidentifiesaset of “ middleware-level” groupsuppat services (GSSs), such as message
distributionservice, coll ationservice, synchronisationservice, filteringservice, etc. commonly required by
group-based appli cationsandthecorrespondinggroupsuppatagents(GSAS). Thethesispresentsaframe-
work for the organisation d these group suppat agents. This framework is cdled the group suppat
machine (GSM). The GSM servesasaframework for theidentification o new groupsuppat servicesand
for theidentification d interactionsthat take place between the correspondng GSAswithinthe GSM, in

Group-Based Distributed Computing i

order tosuppat different applicationrequirements. Each componrent of thegroup-based appli caionis up-
ported by GSM. Thegroupsuppat platform (GSP) isaset of inter-conneded GSM swhich communicate
with each ather throughan inter-GSM protocol (IGP). Thisprotocol definesthe natureandformat of inter-
action ketween the peer GSAs within the distributed GSMs.

In thismodel, the GSAs manage the groupcommunication and coordination patterns on behalf of
the user applicaions, whoinfluencethe behavior of these agents by means of pdlicy specificaions. The
ideaisto describethefunctionality required of thegroup suppat platform (GSP) inadedarativelanguage.
Thethesispresents sich adeclarative groupsuppat requirements goecificationlanguage, thegroup paicy
spedficationlanguage (GPSL), for the speafication d arich set of appli caionrequirementswith respect
to dfferent groupsuppat services sich as message distribution, coll ation, synchronisation, filt ering, etc.
Therefore the GSP offers sl ective grouptransparency by allowing appli cations to specify groupsuppat
palicies.

Finally, the thesis describes the different types of groupcoordinationmodelsthat are suppated by
the GSPand how the correspondnggroupcoordination patternscan be specified using GPSL by acombi-
nation d basic message distribution pdicy, collation pdicy, synchronisation pdicy, andfiltering pdicy.

Thisthesisis based uponthe architectural principles underlying object-based distributed systems
architectures such asRM-ODP, ANSA, ROSA, OMA, etc., andis soped within the ODP computational
andengineeringmodels. Thethesispresentsanintegration d diversedistributed oljed computingtechnd-
ogies such as the client-server model, object group model, distributed agent model, pali cy-driven agent
models, group coordination models into an advanced group-based distributed computing model.

Group-Based Distributed Computing ii

List Of Contents

CHAPTER 1 Introduction to the Problem Domain
1.1 Introduction
1.2 Group-Based Distributed Computing: Emergence of a New Paradigm
1.3 Relationship with Distributed Systems Architectures
1.3.1 RM-ODP Viewpoint Model
1311 Enterprise Model
1312 Information Model
1313 Computational Model
1314 Engineeing Model
1315 Tednology Model
1.3.2 Relationship to RM-ODP Viewpoint Models
1.4 Review of Existing Objed GroupModels
141 Objed Group Terminology
1411 Objed Group
1412 InterfaceGroup
1413 Group Member
1414 Member Name
14.15 Member Role
14.1.6 Group Identifier
1417 Group Administrator
1.4.2 Objed GroupClassfication Schemes
1421 Client and Server Groups
1422 Open and Closed Groups
14.2.3 Active and Passive Groups
1424 Transparent and Non-Transparent Groups
1425 Replica and Heterogeneous Groups
14.2.6 Static and Dynamic Groups
14.2.7 Anonymous and Explicit Groups
14.2.8 Source and Sink Groups
1.4.3 General Applications
15 Review of ODP Client-Server Interaction Model
1.5.1 ODP Computational Model Communicaion Primitives
1511 Interrogation
1512 Announcement
152 Operation, Notification, and Termination Message Signatures
1.6 Scope of Group-Based Distributed Computing: Application Domains
1.7 Group-Based Distributed Computing: Dual Levels of Suppat
1.8 Scope and Aim of Thesis
1.8.1 Programming-Level Suppat for Group-Based Distributed Computing
1.8.2 Distributed Platform Suppat for Group-Based Distributed Computing
1.9 Related Work and Differences
1.9.1 Programming Level
1.9.2 Distributed Platform Level
1.10 Structure of Thesis

O© ON~N~NN NOoOocoocoooocoonUl oo aadh AR DMRMOWWW WDN PR

11

Group-Based Distributed Computing

Part-1: Distributed Programming Model: A Group Communication Primitive

CHAPTER 2 Requirements of Programming-L evel Group Communication Primitive 20
2.1 Introduction 20
2.2 Client Groupand Server Group Definition & Properties 21
221 Client and Server Interfaces 21
2211 Client Interface 21
2212 Server Interface 21
2.2.2 Client and Server Groups 21
2221 Server Group 21
2222 Client Group 21
2223 How are Client Groups Formed 21
2224 Client Group Invocdion Properties 22
2.2.3 Categories of Client and Server Groups 23
2231 ReplicaClient Group 23
2232 Homogeneous Client Group 23
2233 Heterogeneous Client Group 24
2234 ReplicaServer Group 24
2235 Homogeneous Server Group 24
2.2.36 Heterogeneous Server Group 25
2.3 Programming-Level Communication Requirements of Group-Based Applicaions 25
2.3.1 ‘Singeton-client’ and‘ Server-groug interaction requirements 25
2.3.2 ‘Singleton-Server’ and‘ Client-Group interaction requirements 27
2.4 Limitations of ODP Interrogation Primitive 29
2.5 Conclusion 30
CHAPTER 3 Group Interrogation: A Group Programming Primitive 32
3.1 Introduction 32
3.2 ODP-Based Group Programming Primitives 33
3.2.1 Grouplnterrogation 33
3.2.2 Group Annourcement 33
3.2.3 Group(Operation | Termination) Message 33
3.3 Semantics of GroupInterrogation 34
3.3.1 Multiple Invoker and Multiple Invokee semantics 34
3.3.2 Grouplnvocation Semantics 34
3.3.3 Message collation semantics 34
3.3.4 Controlled Reply Delivery Semantics 35
3.3.5 Terminable Reply Delivery Semantics 35
3.3.6 Invocation Completion Reporting Semantics or Variable Reply Delivery Semantics
36
3.4 Signature of Group Interrogation 36
3.5 Group Message Construction: Collation Schemes 37
3.6 Basic Group Message Construction Schemes 37
3.6.1 Matrix-mode message coll ation 38
36.11 Group-Applicaion-1: Managed Group - Manager Objed Applicaion 38
36.12 Group Applicdion-2: Modified Group Applicaion-1 39

Group-Based Distributed Computing iv

3.7
3.8
3.9
3.10
3.11
3.12

3.13

3.14

36.1.3 Principles of Matrix-Mode Message Coll ation

36.14 Implementation of matrix-mode message llation
3.6.2 Linea-mode message coll ation

36.21 Group Applicaion-3: Group Computing

36.22 Group Applicdion -4: Parallel Computing Group

3.6.23 Principles of Linea-Mode Message Collation

36.24 Observations of Linea-mode invocation coll ation

GroupInterrogation vs. Group Transparency

Comparison between Interrogation and Group Interrogation

Need for Group-Oriented Objects

What is a Group-Based Distributed Application

What is a Group-Oriented (Client | Server)

Identification d Group Invocations in Group-Oriented (Client | Server)
3.12.1 Invocation Instance ldentifier

3.12.2 Unique Identifiers
Communication between Group-Oriented (Clients | Servers) and Locd Proxy

3.13.1 Client Side

3.13.2 Server Side
31321 Single reply to al the dients based upon the group input

31322 Individual reply to ead client based upon the group input

3.13.3 Reply Handing Protocol between the Server objed and Proxy olject
Conclusion

Part-2: Distributed Platform Model: Middleware Support for Group-Based Applications

CHAPTER 4 Group Support Services. Requirements of the Group Support Platform
4.1 Introduction
4.2 Why Middeware Support for Group-Based Distributed Applications
4.3 What Middleware Services in the Group Suppat Platform and Why
43.1 Basic Group Suppat Services
4.3.2 Secondary Group Suppat Services
4.3.3 GroupManagement Services:
4.4 Basic Isaues of Group Suppat Services: Elements of Group Suppat Policy
441 Issuesof Message Distribution: Elements of Distribution Policy
4.4.2 Isaues of Message Collation: Elements of Collation Policy
4.4.3 Isaues of Message Synchronisation: Elements of Synchronisation Policy
4.4.4 Isaues of Message Filtering: Elements of Filtering Policy
4.5 Conclusion
CHAPTER 5 Group Support Machine: An Organisation of Group Support Services
5.1 Introduction
5.2 Group Suppat Agents: Realisation d Group Support Services
5.3 Group Suppat Madine: Configuration o Group Suppat Agents

5.3.1 Parallel Configuration of Group Suppat Agents
5.3.2 Functioning d Group Suppat Machine

39
41

41

42
42
42

43
43
44
44
45
46

46
47
47

47
47

48
49

51
51
51
52

53
53
54
54
55
55
56
56
57

59
59
59
60

60
61

Group-Based Distributed Computing

5.4 Group Suppat Platform: A Parallel Configuration d Inter-Communicating GSMs 62

5.5 Agent-Based Approach and Separation of Communicaion Functions 63
5.6 Group Suppat Macdhine: An External, Configurable, and Programmable Architecture 64
5.6.1 Separation d group-coordination aspects from appli cation aspeds 64

5.6.2 Extensible and configurable architecture 64

5.6.3 Programmable and pdicy-driven architecture 64

564 Suppat for grouptransparency and group avareness 64

5.7 Conclusion 64
CHAPTER 6 An Abstract Model of Group Support Machine 65
6.1 Introduction 65
6.2 Middleware Box Between Group Member and Network: External Interfaces of GSM 65
6.2.1 GSM - GroupMember Interface 65

6.2.1.1 GSM Invocdion Interface(Gll): 65

6.2.1.2 GSM Management Interface(GMI) 66

6.2.2 GSM - Network Interface 67

6.3 GSM Comporents 68
6.3.1 G-Agent 68

6.3.2 D-Agent 68

6.3.3 C-Agent 69

6.3.4 SAgent 71

6.3.5 F-Agent 72

6.3.6 MM-Agent 72

6.3.7 P-Agent 72

6.4 Interaction between GSAs in the GSM: Internal Interfaces of GSM 73

6.4.1 Interadion ketween D-Agent and C-Agent: Coordination ketween basic groupsup-
port functions73

6.4.2 Interadion ketween D-Agent and S-Agent: Synchronise before message distribution
74

6.4.3 Interadion ketween D-Agent and F-Agent: Insert the filtering constraints before
message distribution at client side75

6.4.4 Interadion ketween C-Agent and S-Agent: Synchronise before message delivery75
6.4.5 Interadion between C-Agent andF-Agent: Filt er thereceived messagesbeforedelivery

76
6.4.6 InteradiometweaMM -AgenandtheGSA sCommuni catgroupnembershipnformation
76
6.5 Conclusion 76
CHAPTER 7 Group Coordination Models: Platform Support and Policy Specification 77
7.1 Introduction 77
7.2 Basic Group Coordination Models 78
7.3 Basic Issuesin Group Coordination Models 79
7.4 The Basic Message Distribution Model 80
7.4.1 GroupApplication-1: Stock Exchange Applicaion 80
7.4.2 Message Distribution Requirements & Policy Specificaion 81

Group-Based Distributed Computing Vi

7.5 Advanced Message Distribution Models: Smart D-Agents 81
751 Splitting Transformation 81
7.5.2 Message Splitting Requirements & Policy Specification 81
7.5.3 Renaming Transformation 82
7.5.4 GroupApplication-2: Parallel Computational Group 83
7.5.5 Renaming Requirements & Policy Specification 84

7.6 Reply Collation and Delivery Models 84
7.6.1 GroupApplication-3: Stock Inventory System 86
7.6.2 Delivery of Group Termination d a Single Reply Type: Matrix-Mode Coll ation87

76.2.1 Reply Coll ation Requirements & Policy Spedficaion 87
76.2.2 Transparency and Policy Interpretation 88
7.6.3 Delivery of Group Termination d a Single Reply Type: Linear-Mode Coll ation88
76.31 Reply Collation Requirements & Policy Spedficaion 88
7.6.3.2 Transparency & Policy Interpretation 88
7.6.4 Unordered Delivery of Singleton Terminations of a Reply Type 88
764.1 Unordered Reply Delivery Requirement and Policy Spedficaion 89
76.4.2 Transparency & Policy Interpretation 89
7.6.5 Ordered Delivery of Singleton Terminations of a Reply Type 89
7651 Ordered Reply Delivery Requirement & Policy Spedficaion 0
7652 Transparency & Policy Interpretation 0
7.6.6 Unordered Delivery of Multiple Reply Types as Singleton Terminations 90
7.6.6.1 Reply Collation & Delivery Requirements and Policy Spedfication 90
7.6.6.2 Transparency & Policy Interpretation 92
7.6.7 Unordered Delivery of Multiple Reply Types as Group Terminations 92
76.7.1 Reply Collation & Delivery Requirement and Policy Spedficdion 93
76.7.2 Transparency & Policy Interpretation 93
7.6.8 Ordered Delivery Multiple Reply Types as Singleton Terminations 93
7.6.8.1 Reply Collation & Delivery Requirement and Policy Spedficdion 93
7.6.8.2 Transparency & Policy Interpretation 94
7.6.9 Disabling the Delivery of Other Reply Types by a Preferred Reply Type 94
7.6.9.1 Group Applicaion-4: Mobile Telecommunications 94
7.6.9.2 Reply Collation & Deliver Requirement and Policy Spedfication 95
7.6.9.3 Transparency & Policy Interpretation 95
7.6.10 Choice between Multiple Reply Types 96
7.6.10.1 Group Applicdion-5: Group Survey 96
7.6.10.2 Reply Collation & Deliver Requirement and Policy Spedfication 97
7.6.10.3 Transparency & Policy Interpretation 97
7.6.104 Group Applicdion-6: Scheduling Group Meding 97
7.6.10.5 Reply Collation & Deliver Requirement and Policy Spedfication 97
7.6.10.6 Transparency & Policy Interpretation 97

7.7 ‘Group-Service Request Models: Service Request Collation Models 98
7.7.1 GroupApplication7: Network Management Application 98
7.7.2 Constructinga’ Group-Service Request:Matrix-ModeColl ation& Poli cy Specificaion

99
7.7.3 Transparency & Policy Interpretation 100
7.7.4 GroupApplication-8: Target Location Acquisition Sonar System 100
7.7.5 Constructing a Service Request from Partial Service Requests: Linear-Mode Colla

tion & Policy Specification101

Group-Based Distributed Computing

Vii

7.8 Replies to Group-Service Request: Reply Distribution Models 102
7.8.1 Multiple Replies to Group-Service Request 102
7.8.2 Transparency & Policy Interpretation 102
7.8.3 Singe Reply to Group-Service Request 102
7.9 Synchronised Invocation Model 103
7.9.1 Why Synchronised Invocationin the Client Group 103
7.9.2 What are Synchronisation Eventsin Client Groups 104
7.9.3 What are Synchronisation Messages 105
7.9.4 Communicdion ketween the Client Object and the S-Agent 106
7.9.5 GroupApplication-9: Coordinated Testing Application 106
7.9.6 Synchronisation Requirements & Policy Specificaion 110
7.9.7 Interadion ketween GSM Agents to Suppat Synchronised Message Distribution
from Client114
7.9.8 Transparent & External Support for Synchronised Invocationin the GSM 117
7.10 Filtered Message Delivery Model 117
7.10.1 Why Filtered Message Delivery in the Server Group 117
7.10.2 Communicdion ketween the Server Object and F-Agent 118
7.10.3 GroupApplication-10: A Printer-Pod 119
7.10.4 Filtering Requirements & Policy Spedfication 119
7.10.5 Interadion between GSM Agentsto SuppatFilt eredM essagedelivery to Server Object
120
7.10.6 Transparent & External Support for Filtered Invocation 122
7.11 Conclusion 122
CHAPTER 8 Group Policy Specification Language: An Introduction 123
8.1 Introduction 123
8.2 Why Group Policy Specification Languege 123
8.3 Basic Elements of GPSL 124
8.4 Syntax and Semantics of GroupPolicy Primitives 125
8.4.1 Distribution Policy Primitive 125
8.4.1.1 DPP S/ntax 125
8.4.1.2 DPP Smantics 126
8.4.2 Collation Policy Primitive 126
8.4.2.1 CPP S/ntax 126
8.4.2.2 CPP Smantics 126
8.4.3 Synchronisation Policy Primitive 126
8.4.3.1 SFP Syntax 126
8.4.3.2 SFP Semantics 127
8.44 Filtering Policy Primitive 127
8.4.4.1 FPP Syntax 127
84.4.2 FPP Semantics 128
8.5 Syntax and Semantics Of GPSL Elements 128
85.1 Message Specifier Elements 128
8.5.2 Membership Spedfier Elements 128
8.5.3 Cardinality Specifier Elements 128

Group-Based Distributed Computing viii

8.5.4 Time Specifier Elements 129

8.5.5 Combination Mode Spedfication Elements 130

8.5.6 Attribute Combination Specification Elements 130

8.5.7 Message Ordering Specification Elements 130

8.6 Conclusion 132
CHAPTER 9 Inter-GSM Protocol 133
9.1 Introduction 133
9.2 Why Protocol between GSMs 133
9.3 Peer GSAsin Inter-GSM Protocol 134
9.4 A Genera Format of the Inter-GSM Protocol Data Unit 134
9.5 Encoding d GPDUs 135
9.6 Inter-GSM Protocol between D-Agent and C-Agent 136
9.6.1 Application Message Communication between D-Agent & C-Agent 136

9.6.2 Marshalling d Application Messages in GPDUs 137

9.6.3 GroupException Handling Protocol Between C-Agents 137

9.7 Inter-GSM Protocol between Pea S-Agents 138
9.7.1 Solicited Synchronisation Protocol 139

9.7.2 Unsolicited Synchronisation Protocol 140

9.8 Inter-GSM Protocol between Pea F-Agents 141
9.9 Inter-GSM Protocol between Pee MM-Agents 143
9.9.1 Distributed Membership Monitoring 144

9.9.2 Membership Change Notification 144

9.10 Inter-GSM Protocol over Multi casting Protocol 146
9.10.1 GroupCommunication Layer 146

9.10.2 GSM - GCL Interface 147

9.11 Conclusion 147
CHAPTER 10 Group Support Platform: Implementation and Perfor mance 149
10.1 Introduction 149
10.2 Implementation Detail s 149
10.2.1 Implementation d GSM Agents 149

102.1.1 GSM Class 150

10.2.1.2 G_Agent Class 150

10.2.1.3 D_Agent Class 151

10.2.1.4 C_Agent Class 153

10.2.15 P_Agent Class 154

10.2.2 Implementation d Inter-Agent Invocations 154

10.2.3 Implementation d Inter-GSM Communication 155

10.2.4 Implementation d Inter-GSM Protocol 155

10.2.5 Implementation Distribution and Collation Policies 156

10.2.6 Implementation d an API for GroupInterrogation Primitive 156

10.2.6.1 Implementation of Unsolicited Group Reply Delivery - AP 157

10.2.6.2 Implementation of Solicited Multi ple Reply Delivery - API 157

10.2.6.3 Implementation of Unsolicited, Multiple and Terminable Reply Delivery - APl 158

Group-Based Distributed Computing

10.3 Performance A spects 158

10.3.1 Message court 159
10.3.2 Message Complexity 159
10.3.3 Communicaion Network Speed 160
10.3.4 Messge Marshalling and Un-marshalling Overhead 160
10.3.5 Intra-GSM Invocaions Overhead 160
10.3.6 Internal Buffer Sizes and Queue Lengths Considerations 161
10.3.7 Concurrency and Multi-threaded architecture aspects 161
10.3.8 Timers 161
10.3.9 Collation Processng Overhead 162
10.3.10 Other GroupProcessng Overhead 162
10.3.11 Reliability and Robustness 162
10.3.12 Scalability 162
10.3.13 Easeof Use 163
10.3.13.1 Ease of use of GSM Invocaion (Gll) I nterface &d Group Interrogation primitivel63
10.3.13.2 Ease of use of Group Policy Programming Interface 164
10.4 Comparison d Group Support Platform with CORBA Middleware 164
10.4.1 Comparison at Programming-L evel 164
104.1.1 Group Interrogation vs. Remote Procedure Call 164
104.1.2 Ease of group request invocation 168
10.4.1.3 Support for Advanced Programming-level fadlitiesin GSPvs. Corba 168
10.4.2 Comparison at Platform-Level 169
104.2.1 Middleware functions of GSP vs. Corba 169
10.4.2.2 Platform programmability Capability in GSPvs. Corba 169
10.5 Case Studies 170
10.5.1 Case Study-1: Group Reply Delivery, Matrix-Mode Collation 170
10.5.2 Case Study-2: Group Reply Delivery, Linea-Mode Collation 170
10.5.3 Case Study-3: Solicited Reply Delivery 171
10.5.4 Case Study-4: Group Request Deliver and Reply Distribution 171
CHAPTER 11 Conclusions and Directions for Future Work 173
11.1 Conclusionand Contribution o Thesis 173
11.1.1 Cortribution at the Programming-L evel 173
11.1.2 Contribution at the Platform-Level 174
11.2 Directions for Future Work 176
11.2.1 Reseach onGroup-Oriented Programming Languages & Systems 176
11.2.2 Integration d GSM Model in CORBA 177
11.2.3 Extension d GSM Model 177
11.2.4 Extensionto GroupPolicy Specification Language 178
List of References 179
APPENDI X BNF of Group Policy Specification Language (GPSL) 191

Group-Based Distributed Computing X

List Of Figures

Fig. 1.1
Fig. 1.2

Fig. 1.3
Fig. 1.4
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 4.1
Fig.5.1
Fig. 5.2
Fig. 6.1
Fig. 6.2
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6
Fig. 7.7
Fig. 7.8
Fig. 7.9
Fig. 7.10
Fig. 7.11
Fig. 7.12
Fig. 7.13
Fig. 7.14
Fig. 7.15
Fig. 7.16
Fig. 7.17
Fig. 7.18
Fig. 7.19
Fig. 7.20
Fig. 7.21

Group-Based Distributed Computing Model: Synergy of Client-Server Model & Objed-Group Model

2

Modeling of Conventional Distributed Applications as Group-Based Distributed Appli caions using Objed

Group Model and Client-Server Model
Group-Based Distributed Computing: Application Domains
Areaof Reseach: Lightly Shaded Areas
Homogeneous Client Group: Each member invokes instances of the same operation signature
Heterogeneous Client Group: Each member invokes an instance of different operation signature
Client objed interrogates a server group
Client Group interrogates a server objed
Interrogation Signature
Matrix-mode message mllation: An example of Manager Objed and Managed Group Interacion
Group Message Stub Using Matrix-Mode Coll ation: Array Structure |mplementation
Linea-mode message wllation: An Example of Group Computing
Group-Based Distributed Appli caion and the Group Support Platform.
Protocol between group-oriented (client | server) and proxy
Group Support Platform: Middleware & Group Communication Services
Group Support Machine (GSM): Configuration o Group Support Agents
Group Support Platform (GSP): A Distributed Agent Model
A Model of Group Support Machine (GSM)
A Model of Policy-Driven Group Support Madine
Group Coordination Model: Combination of coordination behavior and group organisation
Stock Exchange Application: A Group-Based Distributed Application
Message Distribution Policy Spedficaion
Splitting Policy Spedficaion
A Parallel Computational Group
Renaming Policy Spedfication
Stock Inventory System
Reply collation and delivery policy of asingle group termination (matrix-mode)
Reply collation and delivery policy of asingle group termination (linea-mode)
Unordered delivery of singleton terminations of areply type
Ordered delivery of singleton terminations of areply type
Policy Spedficaion for interleaved delivery of instances of multiple reply types
Policy spedfication for Unordered Delivery of Multiple Reply Types as Group Terminations
Policy Spedfication for Ordered Delivery of Multiple Reply Types as Singleton Terminations
Group Interrogation in Mobil e Telecommunications
Policy Spedfication for Disabling the Delivery of Other Reply Types by a Preferred Reply Type
Policy Spedfication for Choosing between reply types based upon cardinality requirements
Policy Spedfication for Choosing between reply types based upon sender identity
Group Interrogation in Telecommunications Network Management
Operation Collation Policy Spedfication
Group Interrogation in Sonar System

9

9
10
22
23
26
28
36
39

40
41
45
48
53

61
63
67
70
78
80
81
82
83
84
86
87
88
89
90
91
92
94
95
96
96
97
99
100
101

Group-Based Distributed Computing

Xi

Fig. 7.22 Linea-Mode Collation of partial servicerequests 101

Fig. 7.23 Multiple Replies Distribution Policy 102
Fig. 7.24 Single Reply Distribution Policy 102
Fig. 7.25 Coordinated Testing Applicaion 109
Fig. 7.26 Synchronisation Policy Spedfication for the S-Agent of TAdmin 110
Fig. 7.27 Synchronisation Policy Spedfication for the S-Agent of TA-1 110
Fig. 7.28 Synchronisation Policy Spedfication for the S-Agent of TB-1, TB-2 112
Fig. 7.29 Synchronisation Policy Spedfication for the S-Agent of TC-1 112
Fig. 7.30 Synchronisation Policy Spedfication for the S-Agent of TE-1 113
Fig. 7.31 Synchronisation Policy Spedfication for the S-Agent of TAdmin - (for Grade-B() message) 113
Fig. 7.32 Synchronisation Policy Spedfication for the S-Agent of TAdmin (for Objed_Partially Tested() message) 114
Fig. 7.33 Synchronised Message Distribution Policy 115
Fig. 7.34 Coordination between GSM Agents to Support Synchronised Message Distribution from Client 115
Fig. 7.35 Client'sFiltering Policy Spedfication 119
Fig. 7.36 Server’'sFiltering Policy Spedfication 120
Fig. 7.37 Coordination between GSM Agents to Support Filtered Message Delivery (Server Side) 121
Fig. 9.1 A General Format of GSM Protocol Data Unit (GPDU) 135
Fig. 9.2 Inter-GSM Protocol between D-Agent & C-Agent 137
Fig. 9.3 Inter-GSM Protocol between S-Agents 139
Fig.9.4 S NTF-GPDU Format 141
Fig.9.5 F-PAR-GPDU Format 142
Fig.9.6 F-RES-GPDU Format 143
Fig. 9.7 Inter-GSM Protocol between F-Agents 143
Fig. 9.8 Inter-GSM Protocol over Multicast Protocol 147
Fig. 101 Which Agents are implemented 150
Fig. 102 GSM Implementation: GSM Agents and their Interaction 152

Group-Based Distributed Computing Xii

List Of Tables

Table 2.1: Categories of Client Group 24
Table 2.2: Categories of Server Group 24
Table 2.3: Limitation o ODP Interrogation primitive 29
Table 3.1: Comparison of Matrix and Linea mode Coll ation Schemes 43
Table 3.2: Interrogation vs. Group Interrogation 44
Table 3.3: Group-Oriented (Clients | servers) 46
Table5.1: Group Support Services Requirement on the Client and Server side 60
Table 6.1: Interadion o D-Agent with other Agents before & after message distribution 75
Table 6.2: Interadion o C-Agent with other Agents before message delivery to (Client | Server) 76
Table 7.1: Reply Collation and Delivery Schemes 85
Table 8.1: Relationship between Basic issues of Group Support Services and Elements of GPS. 125
Table 8.2: Semantics of Collation Operators 131
Table 8.3: Combined Semantics of Collation Time, Collation Cardinality, and Coll ation Mode 132
Table 9.1: A Catalogue of GPDUs 145
Table 10.1: Corbavs. GSP: How dothey compare w.r.t. Crucial Performance Metrics 166
Table 10.2: GSP vs. Corba: What are the Other Trade-Offs 169

Group-Based Distributed Computing xiii

Group-Based Distributed Computing Xiv

Introduction to the Problem Domain

CHAPTER 1 |ntroduction to the Problem Domain

Abstract

Thischaper describesthesubject of thethesis, beginningwith thediscussion o the
background andmotivationthat led to the research and the material presented in
the thesis. The focus of the thesisis on anemerging dstributed computing paa-
digm - the “ group-based distributed computing”. We describe this paradigm. We
describetherelationship of our work withtheexisting dstributed systemsarchitec-
tures andintroduce some basic models which are the basis of the thesis. We delin-
eate and cefine the scope andthe aim of the thesis.

1.1 Introdu ction

Groupcommunicationisincreasingly becominganimportant communication paradigm of modern distrib-
uted systems. Much research hasbeen doreinthe past intheareaof groupcommunication,such asreliable
groupcommunication protocols, ordered multicast protocol s, membership management protocols, virtual
synchrony, oject-groupmodels, groupcommunication paradigms, etc. However most of thisresearch pro-
videsonly low-level pieces of the complete puzzle. Thebig pictureinvolvesavision d group-based ds-
tributed computing and d a distributed environment capable of suppating group-based dstributed
computing appi cations. Thisvisioncallsfor ashift of focusfrom low-level issuesof groupcomrunication
to the isaues of an overal distributed environment required for the suppat of group-based dstributed
apgdications, inwhichtheusersandappli caion programmershave easy andflexibleaccesstothe services
provided by the groupsuppat infrastructure.

We believe that the synergy of client-server computing model, the distributed oljed model, olject
groupmodel andthegroupcommunicationmodel |eadsto a ammpellingand powerful distributed compuit-
ing paradigm - the group-based dstributed computing paradigm (see figure 1.1). This paradigm is
characterised by the extension d the existing pant-to-point client-server distributed computing model
to amodel that explicitly addresses one-to-many and many-to-one client server interadions, as well as
other aspeds of group-orientation such as synchronised message invocation, filtered message delivery,
etc. This paradigm involves alarge number of distributed oljeds which are structured as object groups
andwhich interad in aclient-server manner.

Experiencewith theexistingcli ent-server distributed computing hesdemonstrated theimportanceof
“programning-level” and “distributed patform-level” suppat for distributed computing appli cations.
Such dual suppat greatly simplifiesthetask of building* client-server” distributed applications. Thedis-
tributed platform model providesthe “middeware services’ necessary to suppat remote “ client-server”
interactions. Thedistributed programmingmodel, amongst other things, providestheinter-object commu-
nication suppat, such as a“remote procedure all” which gves the programmer a powerful hande to
invoke aremoteobjed, asif it werealocal one, andtoreceivethereply. Such ahigh-level suppat ismiss

Group-Based Distributed Computing 1

Introduction to the Problem Domain

inginthecase of group-based distributed computingmodel . The successul andlarge-scal e depl oyment of
group-based distributed computing applicationsis heavily dependent uponthe avail abili ty of these two-
levels of suppat. Our thesis addresses these two aspects: the distributed programming-levd suppat and
thedistributed platformsuppat requiredfor thesuccessul andlarge-scal edepl oyment of group-based ds-
tributed computing applications.

1.2 Group-Based Distributed Computing: Emergence of a New Paradigm

We ae witnessng the anmergence of two new distributed computing paradigms. mobile computing and
group-based distributed computing. Althoughmobil e and group-based d stributed appli cations have been
aroundfor quite some time now, there has been an enormous increase in the demand and deployment of
these gopli cationsin therecent past. The major factorsresponsiblefor the growth of these distributed sys-
tem paradigms are inherent in the very nature of the businessenterprises we want to develop. The basic
comporents of our distributed enterprise ae the people or the application oljects (software antities) that
represent them. These objectsare mobile andthey work asagroupin client-server manner to achievetheir
enterprise-specific goals. The growing importance and the large-scd e deployment of these appli cations
callsfor asoundarchitectural framework for the suppat of these appli cations. Thisthesisis dedicated to
the development of such an architedural framework for the suppat of group-based d stributed computing
applicaions.

Client-Server

i i Single Serve
Computing Model Single Client | - Invokes L pe? service
Singletpn Client Singleﬁon Server

Multiple
Servers per Service:

1. Replicated Servers,

v Multiple Coordinated invokes
2. Collaborating Servers,or

Clients in some related

Group-Based
Distributed
Computing Model

. Parallel Heterogeneou
Servers

Fig. 1.1 Group-Based Distributed Computing Model: Synergy of Client-Server Mod el & Object-Group Model

A mgjor forceresporsiblefor the rapid growth of group-based dstributed computingisinherent in

the way in which dstributed appli cations are organised (seefigure 1.1). The mncept of a‘single server
per service' isbeing replaced in many domains by the concept of * multiple servers per service . One-to-
one arresponcdence between services and server is neither realistic nor desirable in dstributed environ
ments. Thereis a dear separation d concepts of services and servers. These services could be reali sed
by a set of replicated servers or a set of parallel heterogeneous rvers or a set of coll aborating servers.
Clients nead an interface to services rather than to individual servers. Similarly, the cncept of a‘single-
tonclient’ is being replaced in some domains by the concept of * multiple mordinated clients in some

Group-Based Distributed Computing 2

Introduction to the Problem Domain

related roles'. These distributed applicaions could either represent a set of replicated clients or they
could be a set of nonreplicated, but coordinated clients in some related roles. We addressthese issues
within the model of group-based dstributed computing.

1.3 Relationship with Distributed Systems Architectures

Our model of group-based dstributed computing is based uponthe achitectura principles underlying
distributed system architectures such as the Reference Model of Open Distributed Processing (RM-
ODP) [1 - 8], Advanced Networked Systems Architecture (ANSA) [9 - 15, RACE Open Services
Architecture (ROSA) [16 - 17], OMG’'s Common Object Request Broker Architedure (CORBA) [1§]
and aher related models[21 - 24]. In particular, our model is gructured within the achitectural frame-
work of RM-ODP and its predecessor, the ANSA. Here we present a brief review of RM-ODP and
explain how our work relates to a subset of its component models.

RM-ODPisageneric achitecture for the design o objed-based dstributed systems. It can be con-
sidered as a meta-standard to coordinate and gude the development of domain-specific ODP standards,
such as the Telecoommunications Information Networking Architecture (TINA) [25 - 32] in the telecom
domain and the Open Distributed Management Architecture (ODMA) [33] in the management domain.

1.3.1 RM-ODP Viewpoint Model

RM-ODP prescribesaset of abstractionsor projedionsonadistributed system call ed viewpoint models, in
order to deal with the full complexity of distributed systems. Each viewpoint model reveds different
aspectsof thesame system. A viewpoint isarepresentation o the systemwith emphasisonaspecific set of
concerns, andthe resulting representationis an abstraction o the system, i.e., adescription d the system
which highlights certain aspects of the system relevant to the viewpoint and abstracts others. Different
viewpaintsonthe systemsaddressdifferent aspectsor concernsof the system. The ODP prescribesthefive
viewpoint models. They arethe Enterprise Model, the Information Model, the Computationa Model, the
Engneaing Model, and the Techndogy Model.

1.3.1.1 Enterprise Model

The enterprise model is directed to the needs of the users of an information system. It describesthe (dis-
tributed) system in terms of answeringwhat it isrequired to dofor the enterprise. It isthe most abstrad of
the ODP framework of viewpoints gating high level enterprise requirements and palicies.

1.3.1.2 Information Model

The information model focuses on the information content of the enterprise. The information modeling
activity involvesidentifyinginfor mationelements of the system, manipulationsthat may be performed on
information elements, and the information flows in the system.

1.3.1.3 Computational Model

The computationa model isaframework for describing the structure of adistributed applicationin terms
of appli cation comporents (called computationd objeds) and the interadions that occur between them,
independent of any uncderlying“ distributed platform”. The computational model is a (distributed) object
world popuated with concurrent computational objectsinteractingwith each ather, inadistributiontrans-
parent manner, byinvoking messages at their interfaces (called computationd interfaces). An olject can
have multi ple interfaces and these interfaces define the interadionsthat are possble with the objed. The
computational model hidesfromtheappli cation designer/programmer thedetail sof theunderlying dstrib-

Group-Based Distributed Computing 3

Introduction to the Problem Domain

uted platformthat suppatsthe goplication. The computational model i sanalogousto the (distributed) pro-
grammning model. Hence we use the terms computational model and the programming model
interchangeably throughou the thesis. Similarly, the terms* application comporent” and “computational
objed” isused interchangeably.

1.3.1.4 Engineering Model

The engineeing model addresses the issues of the “distributed platform” required for the suppat of dis-
tributed applications. Thedistributed patformincludesthe end-systems(such asprocessors, storage, oper-
ating systems) that suppat the goplicaion comporents and the intervening communication suppat
mechanisms (such asnetworks, communication protocols, distributiontransparency suppat mechanisms)
required to suppat interadions between dstributed application comporents. The engineering model
definesaset of useful distribution transparency suppat mechanisms guch as accesstransparency suppat
medhanisms, locaion transparency suppat mechanisms, migration transparency suppat mecdhanisms,
grouptransparency suppat medanisms, etc. It can beviewed asan architecural framework of an olject-
based dstributed platform. The set of “distributionsuppat” services and mechanisms such as messaging
service, bindingservice, trading service, locationmanagement service, transactionsuppat service, secu-
rity related services, etc. are modeled as engineering oheds. A collection of interacting engineering
objedstogether providethe necessary engineeringsuppat for theredi sation d interadionsbetween ds-
tributed appli cation comporents (computational objects). Hencethe engineeringmodel animatesthe com-
putational model. The engineeringmodel isanalogousto thedistributed platform. Hencewe used theterm
engineering model and the distributed platform interchangeably.

1.3.1.5 Technology Model

The techndogy model identifies the technicd artifacts (i.e., the adua hardware and software) which
implement the engineering oljeds, computational objects, informationobjects, andthe enterpriseobjeds.
It focusesonthechaiceof technologyrequired for theimplementation d the systems, such asUnix operat-
ing system, ATMswitch, Java applets, CORBA distributed platform, etc.

1.3.2 Relationship to RM-ODP Viewpoint Models
Our work onthe group-based dstributed computing relates to the ODP computational and engineering
models. Thisisexplained in detail in section 1.7 and section 1.8.

1.4 Review of Existing Object Group Models

The basis of group-based distributed computing model is the object group model and the cli ent-server
model. Inthis sdionwe present abrief review of the existing oject groupmodel as a predeaessor to the
higher level groupconcepts which areintroduced later inthethesis. The next section presentsareview of
the dient server interaction model.

1.4.1 Object Group Terminology

The concept of “object groups’ proposed ealier by many researchers [34 - 42] is a nice architectural
solution for the design d group-based dstributed computing applications. It greatly simplifies the
structuring and the interadion issues associated with agroup d distributed oljects. The followingisthe
basic terminology used in the context of objed groups.

Group-Based Distributed Computing 4

Introduction to the Problem Domain

1.4.1.1 Object Group

Anobjed groupisa mllection d co-locaed o distributed oljedswhich can betreated asasinglelogical
entity. It formsanatural unit for performingcomputational tasks. Thebasic group abstradionistotrea the
colledion d objectsin an olject groupasif it were asingleton oljed.

However an olject may offer multipleinterfaces. An olject offersits srvice & aninterface andreceivesits
servicethroughan interface. Hence it isthe interfaces which are the members of agroup.Hence we have
the foll owing cefinition.

1.4.1.2 Interface Group

Aninterface groupisacollection o co-located or distributed olject interfaces which can betreated asa
singlelogicd entity for the purpose of invocation. It formsanatural unit of addressng andinvocation.An
objed may be amember of multi ple interface groups.

1.4.1.3 Group Member

An(objed |interface) groupiscomposed of oneor more (objects|interfaces) called thegroupmembers. If
each member of an olject group dfersasingle interface, then the objed groupandinterface groups are
Synonymous.

1.4.1.4 Member Name
Each member of thegroup lesauniquenameor identifier. Individual membersof thegroupare addressd
by their names.

1.4.15 Member Role
The groupmembers may play different rolesin the group depending uponthe services they offer. These
roles are gopli cation-specific, such as a‘manager role’, an ‘administrator role’, a“ subscriber role’, etc.

1.4.1.6 Group ldentifier
The members of agroupare coll edively identified byaname, call ed the group name or the groupidenti-
fier. Any invocation onthe group rame resultsin an invocation onindividual members of the group.

1.4.1.7 Group Administrator

In many groups, there is usually a special group member in the role of a group adninistrator which is
resporsiblefor al owingthe objedsor their interfacesto join or leave the group kased uponcertain group
membership pdices.

1.4.2 Object Group Classification Schemes

The literature on goup communications [34 - 55 has proposed dfferent kinds of clasdficaion
schemes for object groups. The schemes are based upondifferent aspects of the object groupwhich are
of interest from different perspedives.

1.4.2.1 Client and Server Groups

A primary classification usedinthe context of object groupsiswith respect totheir client and server roles.
Objed groups can be dassified asclient groupsor server groups depending uporwhether all the members
of thegroupareclientsor servers. Themembersof the client group dfer client interfaces(i.e., invoke ser-
vicerequests and expect replies) and the members of the server group dfer server interfaces(i.e., accept
service requests and gve replies). A precise and complete definition d the groups with respect to this
aspect is presented in section 2.2.

Group-Based Distributed Computing 5

Introduction to the Problem Domain

1.4.2.2 Open and Closed Groups

The object groups can also be classified as either open groups or closed groups. In open groups, anon
member of the groupcan make aninvocation onthe groupwhereasin closed groups, communicationwith
the group requires the membership of the group. Our client and server groups are open because clients
which are nat the members of the server group can communicate with the server groupand vice versa.

1.4.2.3 Active and Passive Groups

Similarly, thegroupsare dso classfied asactive groupsor passvegroups. All membersof an activegroup
receive and processthe invocation whereas in passve groups only one designated member receives and
procesestheinvocaionswhile dl other members act as sandbywho chedkpaoint their state periodically.
Our server groupsare activegroups. Similarly the dientsgroups are active groups because all members of
the group can send the invocation together.

1.4.2.4 Transparent and Non-Transparent Group s

Groups may betransparent or nontransparent depending uponwhether the interadionwith the groupis
indistingushable from the interaction with asingleton olject providing the same service Our client and
server groupcould either betransparent or nontransparent or semi-transparent depending uporthe gpli-
cation requirements.

1.4.25 Replicaand Heterogeneous Groups

Thegroupsare ategorised asrepli ca or heterogeneous groups. All membersof thereplicagroup povide
thesameservice andtheir stateisidentical all thetime. Themembersof the heterogeneousgrouparefunc-
tionally different and henceoffer different types of service. Our client and server groups could either be
repli ca groups or heterogeneous groups.

1.4.2.6 Static and Dynamic Groups

Groupsmay be dynamicor static depending uporwhether the membership of thegroupcan changeduring
itslifetime. Our client and server groups could either be static or dynamic depending uporthe applicaion
requirements.

1.4.2.7 Anonymous and Explicit Groups
Yet ancther clasgficationisbased uponwhether the groupmembershipisregulated or not. In anonymous
groups, any object can join or leave the groupat will and can receive data sent to the group. In explicit
groups, thereisusually aspecia groupmember intherole of agroup adninistrator which isresporsible
for allowingthe objectstojoin or leave the group based uponcertain groupmembership pdicies. Our cli-
ent and server groups are explicit groups.

1.4.2.8 Source and Sink Groups

We identify ancther classification based uponthe direction d message invocation. A group kecomes a
source group when messages are invoked from it and it becomes a sink group when messages are
invoked onit. A client groupisasourcegroup d operation and ndification messages and asink group
for termination messages (see section 1.5). Similarly, the server groupis asink groupfor operation and
natification messages and a source group d termination messages.

1.4.3 General Applications
Theobject groups arethe basis of multi-endpoint communication, remely the abili ty to invoke operations
ona llection d objectswithou the need to know the exad membership of the mllection a thelocaion

Group-Based Distributed Computing 6

Introduction to the Problem Domain

of the members. This capability providesthe basisfor distributing the implementation o aservice over a
set of objects. Generally objects are grouped for:
1. abstracting the common characteristics of the group members and the servicethey provide,
2. encapsulating the internal state and hiding interactions among goup members, so asto provide auni-
form interface and a single aldressng mechanismsto the external world,

3. using goups as building Hocks to construct larger system objeds.

Traditionally, olject groups have been used for |oad sharing, fault-tolerance, performanceimprove-
ment, andasasinglelogicd addressingmechanism. In thisthesiswe exploit the concept of object groups
together with the dient-server model in avariety of non-traditional application damains.

15 Review of ODP Client-Server Interaction Model

The client-server model is the most basic, widely understood, and much used interaction model which
needsnofurther introduction.However our aim istointroducethetwo cli ent-server styleinteradion prim-
itives that have been described in the ODP computational model and the associated concept of message
signature, which are probably nat widely known. These primitivesand conceptsare used later inthethesis
for the definition d higher-level group communication primitives.

1.5.1 ODP Computational Model Communication Primitives

The ODP computational model definestwo stylesof interactionsbetween computational objedsinthecli-
ent and server roles. These ae the interrogation and annourcement. Interrogation is a request-resporse
style coommunication between aclient andaserver object, andis smilar to the familiar remote procedure
call [56 - 63]. Annourcement is a request-only communication style between a dient and a server
obed.

1.5.1.1 Interrogation
Aninterrogationisdefined inthe ODP computational model asaninteradion betweenapair of client and
server object consisting o
« theinvocation d an operation message by the client object, resultingin the conveyance of infor-
mationfrom that cli ent object to aserver object, requestingafunction ke performed bythe server
objed, followed by

« theinvocaion d aterminationmessage by the server objed, resultingin the wnveyance of infor-
mation from the server object to the client object in resporse to the operation message.

1.5.1.2 Announcement
Anannourcement isdefined in the ODP computational model asoneway interadion between apair of cli-
ent and server ojed consisting of

« theinvocation d anatificationmessage by the cli ent object, resulting in the conveyance of infor-
mationfrom that cli ent object to aserver object, requestingafunction beperformed bythat server
objed.

1.5.2 Operation, Notification, and Termination Message Signatures

Inthe ODP computational model, thecli ent andserver objectscommuni cateby exchanging operationmes-
sage, termination message, and ndification message. In the remote procedure cll model, an operation
message crrespondstoa’ servicerequest’ andatermination message @rrespondstoa‘reply’. Hencethe

Group-Based Distributed Computing 7

Introduction to the Problem Domain

correspondngtermsare used interchangeably throughou thethesis. Moreover, intherest of thethesis, an
operation messageisalso identified as“ OPR-message’, aterminationmessage & “REP-message’, and
natification message as “NTF-message”.

The computational model uniquely definesamessageby itssignature. A message signature consists
of thename of themessagefoll owed byparameter specification. Theparameter specificationconsist of the
number, names andtypes of the parameters present in the message. Hence we have an operationmessage
signaure, a termination message signaure, and a natification message signature in the client-server
model. A message signature also defines the message type.

The computational model recognizesthat the invocation of an operation message onaserver object
may result in distinct outcomes (replies), each of which can convey different types of results. Each ou-
come (reply) isidentified byaunique nameand carriesits own set of parameters, hence eah oucome has
its own termination signature. A client object receives an instance of one of these termination signatures
fromtheserver object inresporsetotheinvocdion d anoperationmessage. Hence aninterrogationsigna
ture consists of an operationmessage signatureandafinite, nonrempty set of terminationmessagesigha
tures, ore for each passible outcome (reply) from the server objed (see figure 3.1). An annourcement
signaure consists of a natification message signature.

1.6 Scope of Group-Based Distributed Computing: Application Domains

Thepreviousresearch ongroupcommunication hasfocusseditseffortsontraditi onal group-based appli ca-
tions such as those used for replicaion, fault-tolerance, availability or load sharing. However an olject
groupmodel isapowerful appli cationstructuringmechani smandcli ent-server model isasimple, yet pow-
erful interactionmodel. The scope and appli cability of group-based dstributed computing paadigmcan
be enhanced by applyingthe object groupabstradionandthe dient-server model to the conventional dis-
tributed appli cations.

Many conventional distributed applications have multiple client and server comporents. Moreover
these applications have acertain degree of parall elism and independence between these components. The
client components of the conventional distributed applications have to deal with multi ple server compo-
nents on aseparate andindividual bas's, thus sacrificing the independence and parall élism inherent in the
application.

As down in figure 1.2, we use object group abstraction as a mechanism for structuring distrib-
uted applications, and client-server model as abasis of interaction model. When used in this way, con
ventional distributed applications, in many domains (see examples in chapter 7) can be transformed
into “group-structured andclient-server based distributed appgications’. Hence, we now have abroad
range of distributed applicaions which fall in the category of group-structured and cli ent-server based
distributed apgications, and hence under the scope of our work. For smplicity, we @ll these gplica-
tions the “group-based dstributed appications’ or in short “group-based appications’. The essntid
characteristics of these gplicaionsisthat they are organised as a client groupinteracting with a server
group. Such groups could either be replica groups or homogeneous groups or heterogeneous groups
(seesedion 2.2.3.

Group-Based Distributed Computing 8

Introduction to the Problem Domain

Conventional Distributed Application
(with multiple client and server compon ents

_ o decompositior interaction _
Object-Group s as an application %St;hg c %6}%%? g%cr)\?er Client-server model as an
i i ject Group F i i
structuring mechanism Model Mode] interaction model

Sroup -Structured and Client-Server Bz
Distributed Application
Client Group invoking a Server Group

Fig. 1.2 Modelingo f Conventional Distributed Applications as Group-Based Distributed Applications using
Object Group Model and Client-Server Model

As sown in chapter 7, there ae numerous rea-world applications in many domains that can be
modeled as group-based dstributed applicaions (see figure 1.3). These include gplications in awide
spedrum of domains spanning telecommunications, network management, parallel computing, collabo-
rative work groups, office automation, factory floor automation, processcontrol, aviation, manufactur-
ing, and in commercial domains such as stock exchange, banking, insurance, brokerage, etc.

elecommunlcatlon etwork Managemen Manufacturing Automation
Systems Systems Systems
Parallel Computlng Process Control Stock Exchange
Bankln
g Brokerage
Office Automation COIIaGb?OrﬁB\s’e Work ork Fé)w Management

Fig. 1.3 Group-Based Distributed Computing: Application Domains

1.7 Group-Based Distributed Computing: Dual Levels of Suppo rt

Thefocusof thethesisisonthedistributed environment required for the suppat of group-based distributed
applications, as identified by the lightly shaded areas in figure 1.4. In general, the distributed environ-
ment required for the suppat of distributed applications is composed o distributed programming and
the distributed platform model. These correspondto the ODP computationd and engineering models
respectively. The distributed platform is composed of low-level communication suppart services and
the middeware suppat services. The communication suppat services include communication proto-

Group-Based Distributed Computing 9

Introduction to the Problem Domain

cols which ensure the end-to-end reliable and adered message delivery between distributed applicaion
comporents. The middleware suppat services provide high-level and commonly required application
spedfic services. The type of the middleware services varies with the nature of applications that it is
required to suppat. The distributed programming model, amongst many other things, suppats an inter-
objed communicationfadlity to facilitate communication between distributed application comporents.

Inthecaseof client-server based distributed appli cations, themiddlewarelayer providesgeneral use-
ful servicesto suppat distribution-transparent interadions between client and server comporents. Exam-
ple of such services are object-discovery services (trading), olject-binding services, olject-locaion
services(location-transparencysuppa tmechan sms), mohili ty managementservices(migration-transpar-
ency suppat mechansms), transactionsuppat services, seaurity services, programming-language hetero-
geneity suppat services(accesstransparency suppat mechansms), etc. These servicesarean asst tothe
appli caion devel oper. Thequestiontheniswhat arethe correspondngmiddieware-level servicesrequired
for the suppat of group-based dstributed applications and how to configure these servicesin the group
suppat platform. The thesis is devoted to these aspects.

Similarly, theexisting distributed programmingmodel sfor client-server applicationsprovide ainter-
objed comnmunication grimitive, the remote procedure all or interrogation, to support application-level
communication ketween remote client and server comporents. In this thesis we focus on correspondng
communication grimitivesrequired to suppat one-to-many and many-to-one communicationstylesfound
in group-based applications and the semantics of such primitives.

Programming-Level
o o o = _
P%Sglrglrjrg?ndg Group Comn%}(iatlon Primitive oI) =1 Programming
Model = _*/ 0 Level
e Y= Support
T}
(X%
ke Middleware-level Middleware
s Group Support Platform| Level
o3 Support
52
A7
a
. Group
Reliable ; -
. Membership Communication
@and ordered multicas management Support
protocols protocols g
[| Heavily Researched Area [|Little or no existing work

Fig. 1.4 Area of Research: Lightly Shaded Areas

Group-Based Distributed Computing 10

Introduction to the Problem Domain

1.8 Scope and Aim of Thesis

Thethesisistargeted at the programming-level (ODP computational model) and dstributed platform level
(ODPengineeingmodel) suppatfor group-structured andclient-server based distributed appli cations(or
group-based distributed apgications, in short), which are discussed in section 1.6.

One of the mgjor source of problemsin group-based dstributed applications is related to the new
styles of interactions foundin these gpli cations. The most commonform of interactionin these gplica-
tionsinvolves a dient object invoking a server group and the dient group invoking a server object. The
former represents one-to-many invocationmodel andthelatter represents many-to-oneinvocationmodel.
Thisrequiresthe suppat of flexible message distributionand coll ation schemes, based uponappli cation's
requirements. More sophisticated i nteraction stylesinvol ve messageinvocation synchronisationand mes-
sage filtering schemes. The combination o these schemes results in complex coordination patterns
between client groupandserver group.Thequestionthen ariseshow to suppat theseinteractions between
client groupandserver groupat the programming-level andat the platform-level. Thisisthesubjed of the
thesis. The thesis investigates the isaues arising at both these levels.

1.8.1 Programming-Level Support for Group -Based Distributed Computing

The first part of the thesis (chapter 2 to chapter 4) describes the programming-level (computational)

suppat required for group-based dstributed applications. This is the upper lightly shaded area in

figure 1.4. At the programming-level, we describe acommunication primitive analogots to the interro-

gation (or remote procedure call) of the basic dient-server model, that explicitly addresses one-to-many

and many-to-one interactions between client and server groups. We dso dscuss ®me of the sophisti-

cated requirements of group communication suppat at the programming-level in arder to incorporate

appropriate semantics in the group communication grimitive. Some of the issues that are focussed are:

1. how multiple services are requested and how they are organised,

2. how much knowledge docli ents need to have about the server groupin order to invoke servicerequests
onthem and be able to handle multiple replies,

3. how multi plerepliesfrom the service groupare combined into agroupreply andthe order inwhich they
are delivered to the client in case of separate reply delivery requirement,

4. how to gve the client the control to receive multiple replies at the pace it wants,

5. how to gvethe dient the cntrol to terminate thereplieswhen it hasrecaeived sufficient number of them
or when it has received whatever it was interested in receiving,

6. how shoud the dient be informed of the end d repliesin case of transparent server groups,

7. how multi pleservicerequestsfromthe dient groupare mordinatedinto agroupservicerequest and how
the multiple dients are organised,

8. how much knowledge do servers need to have abou the dient groupin order to receive and process
group service requests from them,

9. how should the server respord to groupservicerequestsfrom the client groupandthe number of replies
generated byit,

10. how asinglereply or multiplereplies generated in resporse to agroupservicerequest is litand ds-
tributed to appropriate clients,

11. how invocations from multiple clientsin the client groupare coordinated to bring abou desired state
change in the server applications.

12. how servicerequests are seledively filtered in the servicegroupin order to satisfy specific dient and
server requirements for message delivery.

Group-Based Distributed Computing 11

Introduction to the Problem Domain

Possble answersto these questions have astrongimpact onthe degree of grouptransparency that is
avail ableto client and server appli cations. The solutionsto these issues must take into accourt individual
appli cation requirements for message distribution, coll ation, synchronisation, filtering, etc. As siownin
thethesis, these requirementstendto be varied and complex. A precise and urambiguous gecification o
these requirements can be given by asuitable palicy specification language. Thisthesis develops such a
language in order to express appli cation requirements for group communicationto the underlying goup
suppat engineeing mechanisms.

1.8.2 Distributed Platform Support for Group -Based Distributed Computing

The second art of the thesis (chapter 4 throughchapter 9) addresses the issues of distributed platform

(engineering) suppat required by group-based applications. This is the lower lightly shaded areain

figure 1.4. Most of the existing dstributed patforms, such as Corba and DCE do nd provide alequate

suppat for this new classof applications. This has forced applicaion developers and programmers to

deal with low-level issuesrelated to group communication that could be better provided as uniform and

standard mechanisms by the underlying dstributed platform. The aim of the thesisis to addressisaues

of group communication, such as message distribution, collation, synchronisation, etc., that arise at the

applicaion-level, but are common to awide range of applicaions and to pu these issues in the distrib-

uted platform. The provision d such a suppart at the platform level will not only enrich the existing ds-

tributed patforms such as CORBA, DCE, etc., but will also substantially smplify the design and

construction d group-based applications. The application designer can now focus on the gplicaion

aspects leaving the group communication andcoordination aspects to the underlying dstributed plat-

form. The group coordination aspects can be separately specified thus sparating the application logic

from group coordination logic. This aso enables the group coordination requirements to be changed

without recompiling the applicaion. With this objective, the focus of the thesis is on the foll owing

aspects of the distributed platform. We call such a platform the Group Suppat Platform (GSP).

1.what groupsuppat services are most commonly required bythe applications which could be provided
as eparate servicesinthedistributed platform, andwhat functionaitiesarerequired in the wrrespond
ing goupsupport engineaing ohects,

2. what is the relationship between these group suppat services and what are the possible interactions
between the correspondng goupsuppat engineering ohects,

3. how shoud these objects be organised or configured in the distributed platform,

4. how dothe groupsuppat objedsin the remote machines communicate with each ather andwhat isthe
protocol between them,

5.what groupcoordination petterns exist in group-based applications and how can they suppated bythe
combination of group suppat engineering oljectsin the distributed platform,

6. what requirements do applications place onindividual groupsuppat objects, and how to specify these
requirements,

7.what information do goupsuppat objects need to know from the appli cationsin order to performtheir
tasks, and how to specify thisinformation,

8.what isthe natationfor the precise representation d groupcommunicaionrequirementsandwhat it is
the syntax and semantics of the correspondng group paicy specificaion language,

9.what interface doesthegroupsuppat platform offer totheapplications, andwhat interactionstake place
at thisinterface,

10. how can grouptransparency be realised throughan autonamous, albeit requirements-driven middle-
ware layer between appli cation comporents and the low-level group communication protocols.

Group-Based Distributed Computing 12

Introduction to the Problem Domain

Our solutionto these questions defines an agent-based, configurable, extensible, and pdicy-driven
distributed platform for the suppat of group-based appli caions. Inthismodel, the groupsuppat objeds
manage the group communication and coordination petterns on kehalf of the user applications, which
influencethe behavior of the objectsby meansof palicy specifications. We present asoftware architecture
or aframework for the organisation d groupsuppat servicesin thedistributed platform. Thisframework
servesasabasic unit of thegroupsuppat platform within which new groupsuppat servicesmay beiden-
tified and their interadionwiththe existing oresdefined. Thisframework givesarchitectural elegance and
simplicity inthedesign d thegroupsuppat platform. Thegroupsuppat platform supportsdiverse gpli-
cationrequirementsand dfers sl ectivegrouptransparency byall owingapplicationsto specify groupcom-
muni cation requirements through goup suppat padlicies.

1.9 Related Work and Differences

As mentioned in sedion 1.1,the aeaof group communication has been a subject of extensive reseach
in the past, whereas group-based dstributed computing has received much lessattention. Our reseach
ison hgher-level suppat of group-based dstributed computing which use groupcommunication at the
lowest level. Thisisthe major difference.

Some attempts have been made in the past at the programming-level and the platform-levd suppat
for group-based applications, as cited below. However such attempts were focussed ona limited set of
applications. In particular, as discussed below, such attempts have ather been incomplete or partial with
respect to considering the overall requirements of group-based appli cations at the programming and the
distributed platform level. Infact, the very concept of group-structured and client-server based d stributed
computingthat we present in thisthesisandwhichisbasisof our work islackingin the previouswork. We
identify the requirements of group-based appli cations within a broader framework which recognizesthe
group-structured nature of these applicationsaswell client-server nature of interactionsin them. Wedis-
cuss ®menotableeffortsthat have been made eailier andtheir shortcomingsandexplain thedifferencesof
our work from the previous ones.

1.9.1 Programming Level

At the programming-level, previous work such as [64 - 79] has identified the need for one-to-many
communication ketween client objed and server group. Since much of the early work aimed at provid-
ing server groups for fault-tolerance and for repli cation management, server groups were assumed as
replicated groups in most of the @ases and hence the propased solutions are based uponsimplified
asumptions abou the nature of the server groups and kind d replies expected from them in resporse to
a service request. Most of the authors have dhasen to pick the first or the first ‘n’” matching replies and
discard the rest. Our work takes into consideration nd only replica server groups, but also the homoge-
neous and heterogeneous srver groups [80]. This allows us to take into accourt general requirements
of aone-to-many groupcommunication grimitive.

Animportant considerationin case of homogeneous srver groupsishow to hand e (or coll ate) mul-
tipleinstancesof repli escorrespondngto the sameterminationsignature. Theserepliesmay nat necessar-
ily beidentical (intheir parameter values) - an assumptionmadein the previouswork. The previouswork
has dealt with multiple replies using content-based coll ation schemes such as giving the average or the
maximum or the minimum of the replies. This s£heme is nat general enough.We propcse asignaure
based collation scheme which is genera enoughand which allows the dient to gain accessto al the
repli es, throughasinglereply message, andto processthemin appli cation-specific manner. Content-based

Group-Based Distributed Computing 13

Introduction to the Problem Domain

coll ation can also be suppated in our model because our reply coll ation mechanisms are generic and are
driven by appli cation-specific collation pdicies.

A mgjor difference between oursand previouswork isthe lack of agenera padlicy-driven collation
framework in all previous attempts. We propaose ageneral collation framework which takes into accourt
not only the all ationmechanism but al so the wllationtime, collation cardinality, andtheidentities of the
source groupmemberswhaose messagethesink ojed iswilli ngto accept, aswell asthe preferred order of
reply delivery.

Animportant distinction ketween ousand previouswork isthe manrer andtheformat in which the
repliesarereturned to the di ent andthe control theclient hasonthereceipt of thereplies. These aeimpor-
tant aspects of agroupcommunicaion gimitive.

Our work considersageneral reply format such asthe one proposed for existing client-server appli -
cations in the ODP computational model - the interrogation primitive, in which each reply that isunder-
stoodby the client isidentified byaname and carriesits own set of reply parameters. This, coupged with
thegeneral coll ationframework andthereply delivery control, resultsinapowerful groupcommunicaion
primitive.

In many group-based applications, clientsneed to handenaot only multiplereplies, but also different
types of replies individually and separately and in a controlled manner. Server group transparency is
impossble andin many cases undesirable for clientsin such applicaions.

Thepreviouswork completely neglectstheinteractionrequirementsof aheterogeneous srver group.
For examplewhat to dowhen dfferent typesof repli esarereturned from the server group.How to combine
thesedifferent typesof terminationsignatures. Thesignature-based coll ationschemespropasedinthethe-
sis present an el egant sol ution to these requirements. Moreover to deal with transparent server groups, the
client needsto know theend d replies. Thisaspect ismisgngin previouswork. Ancther aspect of agroup
communication gimitiveisthe order of delivery of repliesto the dient. As $own inlater chapters, many
clientsnot only need to processmulti plereplies, but have acertain preference with respect to the order of
delivery of replies. Thisasped isalso missng inthe previouswork. Our collationframework givesthecli-
ent appli cation the ability to specify the reply delivery ordering requirements.

Our work goesbeyondinidentifying more sophisticated requirements of group-based appli cations,
such as solicited versus unsolicited reply delivery, terminade reply delivery, etc. which gvesthe dient
desired-level of control on communicationwith dfferent types of server groups.

The existingwork has been mostly one-sided. It hasonly considered ore-to-many aspects of group
communication. Theother important groupinvocation paradigm which ded swith many-to-one wmmuni-
cationismissng.Thisinvolvesa dient groupinvoking aserver object. Thisparadigm isrequired bymany
applications as shownin chapter 7. Thenation d client groupexists but the notion d a wmbined invo-
cationfrom a dient group daes not exist. Similarly, the notion d combined reply from a server objectin
resporse to group servicerequest from a client group daes not exist in the existing work.

Some dient groups lead to a group service request invocaion semantics, wherein each member of
the dient group periodicdly makes a servicerequest of the same type, na necessarily identicd, onthe
server object. Moreover the server object needs to receive all the service requests from the client group
together beforeit givesthereplies. Thisreply isbased uponthe dient groupinpu. Such class of applica-
tionsaretotall y excluded from the existingwork. Our work gives a precise treatment to thistype of group
invocation paradigm by takinginto aacourt different aspects of many-to-onecommunicaionsuch asperi-
odicnatureof servicerequestsinvocationsfrom theclient group, goupservicerequest construction,multi -
plereply generation bythe server, reply splitting and dstribution, etc.

The level of transparency is an important issue in a programming-level communication grimitive.

Group-Based Distributed Computing 14

Introduction to the Problem Domain

Theisaueistowhat extent shoud the semantics of groupcommunication grimitive be cnfigurableby the
programmer. We aldressthisissueby gvingtheprogrammer the aili ty to specify different messagedistri-
bution and collation pdicies within the underlying goupsuppat platform.

Our work goesbeyondthepreviouswork in group programmingmodel inthat it providesavery gen-
eral andlogical enhancement of the existingremoteprocedure cl or interrogation paradigm which meds
the needs of one-to-many, and many-to-one groupcommunication. Our groupcommunication grimitives
represent asynergy o client-server interadion model and the group communication model.

1.9.2 Distributed Platform Level

At thedistributed platform level thereexistsabig voidin existingresearch, which hasmostly been dore &
the lowest level. There exists low level suppat for group communication, in terms of different types of
ordered multicast protocols [81 - 94], membership management protocol§[95 - 99|, virtual synchrony
[100- 103], etc. These low-level groupcommunication protocols have been used in dstributed systems
for group suppat, such as I1SIS [104 - 106, Horus [107 - 108, Eledra [109- 110, Amoeba, [111 -
112, Transis [113- 114, Rampart [115- 116, Totem [117], Relacs [11§], V Kernd [119, Consul
[12Q, Deta-4[121], and ahers[122- 123. In al these systems, the appli cations are directly tied to the
low-level group communication layer, withou the suppat of a middeware layer to separate goplica
tions from the low-level group communicaionisaues. In particular, there is no flexibility in specifying
different types of groupcommunications suppat required bythe gplications. Thisresultsin very low-
level reasoning abou the group communicationissues gill being part of the application.

As downin chapter 7, group-based appli cations exhibit awide variety of group coordination pat-
terns. These group coordination and cooperation aspects shoud be specified external to the appli cations
in arder to separate goplicationlogic from groupcoordinationlogic aswell asto be életo dyremicaly
modify the latter withou affecting the former. These pertain to the isaues of the middeware layer which
can be suppated at the lowest level by above mentioned group communication protocols.

As discussd in section 1.7, the middleware-level frees the gplication designer from worrying
abou the issues of group communicdion at the application level. The middleware-level needs to pro-
vide high-level group suppat services which can be tailored to application requirements. Hence the
programmability of middeware cmmporentsis an important requirement. The middleware layer shoud
also doffer auniform interfaceto the applicationsin accessing its services.

In case of group-based distributed appli cations, the middeware layer isalmost non-existent. Refer-
ence to some of the middeware level servicesin [34 - 35 is promising, but there exist no architecture
or framework for the organisation d those services. Our work [124 - 126 fill sa big gap at the middle-
ware-level.

Weidentify aset of groupsuppat serviceswhich arerequired byanumber of group-based appli ca-
tionsin dfferent domains. Then we present asoftware achitecture or aframework for the organisation o
these servicesin the groupsuppat platform. We identify the relationship between these services andthe
interactions that take place between the @rrespondng groupsupport objectsin arder to suppart applica-
tions. Finally, wepresent the protocol for communication between peer groupsuppat objectsin dstributed
nodes. This completes the design d the groupsuppat platform.

Programmability of the middleware servicesis an important requirement. Our work goesfurther in
identifyingthe variousissues of groupsuppat servicesand putting theseisauesin alanguage framework,
resultinginagroup paicy specificationlanguage. Thislanguage can be used bythe appli cationsto specify
their different group suppat requirements, such as message distribution, collation, etc.

Group-Based Distributed Computing 15

Introduction to the Problem Domain

1.10 Structure of Thesis

Thisthesisisstructured intwo parts. Part-1 dedswith distributed programming suppat and part-2 deds
with distributed platformsupport for group-based dstributed computing appli cations. Part-1 of thethesis
contains three dhapters, chapter 2 throughchapter 4, and part-2 contains seven chapters, chapter 4
throughchapter 9. The last chapter, chapter 11, contains some concluding remarks and drections for
future work. The followingis abrief description d the contents of each chapter.

Chapter-1isan introductionto the problem domain. It contains the scope and the aims of thethesis
andabrief description d theissuesof group-based distributed computingwhich arethefocusof therest of
the thesis. This chapter al'so compares our work with the previous work.

Chapter-2 isthefirst chapter of the part-1 of thethesis. It identifiesthe requirements of the program-
ming-level groupcommunication ketween appli cationcomporents. It also describesthelimitations of the
existing pogramming-level communication primitives such as remote procedure call or interrogation.

Chapter-3introducestheprogramming-level communication grimitiveswhich providesemanticsup-
port for multi-endpant interadion ketween aclient-groupandaserver-group. These primitivesare call ed
groupinterrogationandgroup annoacement. Message collationisthe basisfor the construction d group
communication primitives. Some generic signature-based message collation schemesare propased inthis
chapter. Theimpad of these primitiveson gouptransparency isdescribed. Thischapter also describesthe
impact of groupinterrogation grimitiveonthemessageinvocation,reception,and rocessngrequirements
of the client and server objects. Such clientsand serversare all ed group-oriented clientsand servers. The
communication between these objectsandthelocal groupsuppat proxy olject to whichthey areboundis
also explained.

Chapter-4 isthefirst chapter of the part-2 of the thesis. It identifies sme of the basic middeware-
level group suppat services, such as message distribution, collation, synchronisation, filtering, etc., that
arerequiredinthedistributed platform for the support of group-based distributed computing appli cations.
The different aspects and issues involved in the provision d these serviceare dso identified.

Chapter-5 describeshow the set of groupsuppat services, introduced in the previous chapter, can be
configured together insidean architectural framework called the groupsuppat machineand how the com-
porents of this machine work together in the provision d middeware-level service to the gplications.
Each member of the group-based distributed applicationissuppated byagroupsuppat machine. The set
of groupsuppat machinescommunicatingwith each ather throughan inter-machine protocol constitutesa
groupsuppat platform.

Chapter-6 describesin detail t heinternal componrentsof thegroupsuppat machine, thefunctionality
of these comporents, the interfaces between these comporents, and the interactions that occur at these
interfaces. Theinternal structureandthebehaviour of thegroupsuppat machineisdescribed inan abstract
andimplementationindependent manner. Thegroupsuppat machineoffers fandardisedinterfacesbothto
the gplication components and to the underlying goup communicéion layer. These interfaces are
described in detail .

Chapter-7 describesgroupcoordinationmodel simpli cit in group-based distributed appli caions. The
groupcoordinationmodel i scharacterised bythe structure of the gplicaionwhichisaconfiguration of a
client-groupand server-groupand the interactions that occur between the members of these groups. The
coordination behaviorsinherent inthesemodel s can be specified at ahigh-level usingagroup pdicy spec-
ificaionlanguage. Thislanguageisintroduced informally inthis chapter throughexamples. This chapter
contains the examples of various group-based applicaionsin dfferent enterprise domains ganningtele-
communications, network management, parallel computing, etc.

Group-Based Distributed Computing 16

Introduction to the Problem Domain

Chapter-8 is an introduction to the syntax and the semantics of the group pdicy specification lan-
guage which has been presented informally through examplesin the previous chapter. The language per-
mitsthe spedfication of message distribution, collation, synchronisation,andfiltering requirements of an
application,at ahigh-level independent of the mechanisms or protocols needed to implement them. These
palicy specificaions are asociated with individual message types and are stored as palicy scriptsin the
groupsuppat macine.

Chapter-9 is the last chapter of the part-2. The definition o groupsuppat platform is incomplete
without describing the communication ketween the basic component of the platform - the group suppat
madhine. This chapter describes the remote communication protocol between the pee group suppat
agents locaed in dfferent groupsuppat madines - theinformation that is exchanged between the peer
group suppat agents, the format in which this information is exchanged, and the handshake involved
between the group suppat agents.

Chapter-10 describes the implementation and performance aspeds of the proposed Group Suppat
Platform (GSP) andthegroupinterrogation grimitive. A partial model of GSPisimplementedinJava. This
chapter comparestheperformanceof GSPwiththat of a conventional midd ewareplatform, suchasCorba.

Chapter-11 highlights the contributions of the thesis and gves pointers to future work directions.

We suggest that the reader start with chapter-1in arder to find ou the scope andthe am of the work
andto gainaninsight into the general reseach area Thisallowsthereader to pu our work in perspective.
Chapter 7 contains numerous examples of group-based appli caions. The reader new to the subjed may
glancethroughthe examplesinthischapter beforestartingtherest of the chapters. Theremaining chapters
of the thesis are generally organised in the order in which it is suggested that they be read.

Group-Based Distributed Computing 17

Introduction to the Problem Domain

Group-Based Distributed Computing

18

PART-1

Distributed Programming Model:
A Programming-level Group Communication Primitive

Requirements of Programming-Level Group Communication Primitive

CHAPTER 2 Requ'rements of Progamming—Level
Group Communicaion Primitive

Abstract

Group-based distributed computing is becoming anincreasingly important computing
paradigm of modern dstributed systems, but programmning-level suppat for group
communicationis hitherto missng. Remote procedure call isa familiar programmng-
level abstraction to suppat “ request-resporse style’” communication in the point-to-
point client server computing model. This chapter investigates the requirements of the
correspondng abstraction for the suppat of multi-point comnunication in group-
based dstributed apgications.

2.1 Introdu ction

Experiencewith remote procedure all has demonstrated the importance of programming-level suppat
for point-to-point communication in client-server based dstributed systems. It greatly simplifies the
task of point-to-point communication between singleton client and singleton server at the programming
level. The programmer is given a powerful hande to invoke a remote object, as if it were alocal one,
andto receive the reply.

In the case of group-based applications, this high-level suppat is missng. Interestingly enough,
group communication is suppated by many kinds of local area networks, such as ethernet, token ring,
etc. and radio broadcast systems. The lowest level communication medium often supports the group
communication that the goplications need, it is the operating systems and the programming languages
that do nd provide suppat for groupcommunication at the appli cation-level.

There exists low level suppart for group communication, in terms of different types of ordered
multicast protocols [81 - 94], membership management protocols [95 - 99, virtual synchrony [100 -
103 in many distributed system platforms such as 1SIS [104- 106, Horus [107 - 108], Electra [109-
110, Amoeba [111- 117, Transis [113- 114], Rampart [115- 116, Totem [117], etc. However, no
facility is avail able to the application programmer to access and exploit group communication at the
applicationlevel. The middeware suppat and the programming-level suppat for group-based compuit-
ingis missngin these platforms. The middeware suppat is discussed in chapter 4 to chapter 9 and
the programming-level suppat isdiscussed in chapter 2 to chapter 4 of the thesis.

This chapter investigates the “programming-level” communication requirements of group-based
distributed applicaions. We dso evaluate the capabili ties of the aurrently available point-to-paint “pro-
gramming-level communication pimitives’ - the remote procedure all and interrogation, against the
requirements of group-based dstributed applications.

Group-Based Distributed Computing 20

Requirements of Programming-Level Group Communication Primitive

2.2 Client Group and Server Group: Definition & Properties

Before we start examining the requirements of group-based d stributed applications, we investigate the
basic properties of the client group and server groupwhich are the basis of these applications.

2.2.1 Client and Server Interfaces
As aprecursor to the definition d the dient and server groups, we start with the definition d client and
server interfaces. The client and server are the primary rolesin distributed computing.

2.2.1.1 Client Interface

A client interfaceis an olject interface which is characterised bythe following properties:

1. the objed invokes operation messages throughthis interface and expects to recelve atermination
message at this interface in resporse to the operation message.

2.the objea invokes natification messages through this interface

2.2.1.2 Server Interface
A server interfaceis an ojed interface which is characterised bythe following properties:
1. the object expects to receive an operation message at this interface and invokes a termination mes-
sage throughthisinterface in resporse to an operation message.
2.the objeda expects to receive anatification message at this interface.
An object offers multiple interfaces. These interfaces could be dient interfaces or server inter-
faces. The interfaces offered by an olject could be members of different interface groups.

2.2.2 Client and Server Group s
The basic definition d an olject groupand an interface group are given in section 1.4. We make use of
these concepts and d the ones introduced above in the definition of server groups and client group.

2.2.21 Server Group
A server groupis an interface group in which all member interfaces are server interfaces. These inter-
faces could be of the same or different types.

2.2.2.2 Client Group
A client groupis an interface group in which all member interfaces are client interfaces. These inter-
faces could be of the same or different types.

2.2.2.3 How are Client Groups Formed
The nature and the aedion d client groups is nat obvious. It deserves gpedal mention. It isimportant
to ndethat a dient groupisformed with resped to agiven server interface There ae two main cases of
the aeation d client groups. The existing literature on ohect group models [34 - 42] recognizes only
one case of the formation d a client group, the first one listed below. We identify the secondimportant
case of the aeation d client groups. The proposed group communication grimitive suppats both these
cases.

1. Fromreplicated server groups. Client groups are formed when the members of an actively repli cated
server group need to invoke ancther server object in order to perform their service This happens in
cases when a server object containing reference to ancther server objed is replicated thereby forming
areplicated server group. Any invocation onthe replicated server group which causes an invocaion
onthereferenced server objed by ore member will generate invocations by all other members. In this

Group-Based Distributed Computing 21

Requirements of Programming-Level Group Communication Primitive

kind of applicaion we neal ory give one operation invocation to the referenced server objed and
discard the other identical invocations. The replies must however be sent to all the members of the
replicagroup.

2. Object groups under the serviceprovision d a singleton server object: Client groups are also formed
when the dient componrents of adistributed application, which need na beidentical or replicated, but
are related to each ather in some appli cation-specific manner and which require the same type of ser-
vice, are organised as an oljed group and are placed under the service provison d the same server
interface A client groupis always formed with respect to a given server interface. An important char-
acteristic of these applicationsis that each member of the client groupinvokes

a. instances of the same service request, each of which is an instance of the same operation signature,
not necessarily identical (in their parameter values), such as siownin figure 2.1,

or

b. partial service requests, each of which is an instance of the different part of the same operation sig-
nature at the server side, such as siownin figure 2.2,

periodically (or at fixed timeintervals) onagiven server interface andthe server’sreply to each group

member is based uponthe total service request which isobtained by combining the individual service

requests from the dient group. The server may give the same reply or different replies to each mem-

ber of the client group.Examples of these type of client groups are given in section 7.7.In thiskind o

applicaions we need to gve dl operation invocations from the dient group to the server object

because the reply of the server is based uponthe total groupinput.

op-name(p4,P2,P3,P4,Ps)

Client/T

£

op-name(p1,P2,P3,P4.P5)

Client;2

op-name(p4,P2,P3,P4,Ps)
Client/3 Server

Client Group

op-name ’]] ’ . . .
P (PL.P2/P3,P4:Ps) peration signature on server side:

Client/4
op-name(Py:T1,P2:T2,P3:T3,P4:T4,P5:Ts)
op-name(pq,P2,P3,P4;

P (P1.P2.P3.P4.Ps) Each parameter p;, invoked by the client is an instance of

Client/5 the corresponding type T;, but not necessarily identical to
the corresponding parameter of the other client messages.

Fig. 2.1 Homogeneous Client Group: Each member invokes instances of the same operation signature

D

2.2.2.4 Client Group Invocation Properties

Based uponthe nature of the dient groups, we identify the following properties of the dient groups.

The message invocaions from the dient groupexhibit the following unque properties.:

1. Nature of service invocations. The members of the dient groupinvoke identicd operation messages
or instances of the same operation message signature or the instances of the different parts of the
same operation message signature, ona given server interface

Group-Based Distributed Computing 22

Requirements of Programming-Level Group Communication Primitive

2. Timing d service invocations: The message invocations from the dient group accur during a well -
defined time interval. The operation (or natificaion) messages are invoked by the group members
during afixed timeinterval or periodically.

3. Reply to service invocations: The server’s reply (or replies) is based upon the group operation mes-
sage which is obtained by combining the individual instances of the operation message from the
groupmembers. Therefore, a dient’s future state is dependent uponthe aurrent state of all the group
members.

op-name(p;)
Client-

op-name(p,)
2 (Client-
o
2 op-name(p3)
o Client-3 Server
O
op-name(py) o .
Client-4 eration signature on server side:
op-name(py:T1,P2:T2,P3:T3,P4:T4,P5:Ts)
op-name(ps)
Client-5 Each parameter p;, invoked by the client is an instance of
the corresponding type T;, but not necessarily identical.

Fig. 2.2 Heterogeneous Client Group: Each member invokes an instance of different operation
signature

2.2.3 Categories of Client and Server Groups

We ategorise the dient and server groups as replica groups or homogeneous groups or heterogeneous
groups based uponthe type of messages (i.e., operation, ndification, and termination message signa-
tures) offered or invoked by the members of the groups and the state of the group members. The mem-
bers of the replica group are identical or replicas of each aher at al times. The members of the
homogeneous group dfer or invoke the same service type (i.e., operation or natification message type)
but their state need na be identical. The members of the heterogeneous group dfer or invoke different
service types.

2.2.3.1 Replica Client Group

The members of the replica dient group invoke identical operation a notification messages, usualy
simultaneously or within afixed time interval. Examples of these type of groups aboundin existing lit-
erature.

2.2.3.2 Homogeneous Client Group

The members of the homogeneous client group invoke instances of the same operation a natificaion
message signature, usualy at regular periodic time intervals. These instances need na be identicd. An
example of thistype of groupisgivenin section 7.7.1.

Group-Based Distributed Computing 23

Requirements of Programming-Level Group Communication Primitive

2.2.3.3 Heterogeneous Client Group

The members of a heterogeneous client group invoke instances of different parts of the operation a
natification message signature suppated at the server interface, usualy at regular periodic time inter-
vals. Heterogeneous client groups are formed when each member of the group gves partia inpus (i.e.,
different parts of the same operation message), but isinterested in receiving atotal reply from the server
objed. These type of groups are termed heterogeneous, because each member of the groupinvokes an
instance of different operation a natification signature. An example of this type of groupis given in
sedion 7.7.4.

Table 2.1: Categories of Client Group

Nature of Service Timing of Service Replies to Service
Invocation Invocation Invocation

Replica identical operation messges invoked at the sametime | server’sreply based uponasin-
Client or within afixed time gle dient input, other inputs can
Group interval be discarded
Homoge- nonridenticd, but instances of the invoked periodicdly server'sreply based upontotal
neous same operation message signature client group input
Client
Group
Heteroge- instances of the different parts of the | invoked periodicaly server'sreply based upontotal
neous same operation message signature group input
Client
Group

2.2.3.4 Replica Server Group
The members of the replica server group respondwith identical termination messagesto an operation
message from the client objed. Examples of these type of groups aboundin existing literature.

Table 2.2: Categories of Server Group

Server Group

Nature of _Reply Repl_y Dellvt_ery to Transparency to Client
Invocation Client Object :
Object
Replica identical replies singereply possible
Server Group
Homogeneous || sametype of replies, not neces- | single group reply (replies may impossible
Server Group || sarily identicd also be delivered separately)
Heter oge- multiple types of replies multiple group replies, one for impossible
neous eadt reply type (repliesmay also
Server Group be delivered separately)

2.2.3.5 Homogeneous Server Group

The members of the homogeneous srver grouprespondwith instances of the same types of termination
message to an operation message from the client object. These instances need nad be identical. An
example of thistype of groupisgivenin section 7.6.2.

Group-Based Distributed Computing 24

Requirements of Programming-Level Group Communication Primitive

2.2.3.6 Heterogeneous Server Group

The members of the heterogeneous server group respondwith same or different types of termination
messages to an operation message from the dient object. An example of this type of groupis given in
sedion 7.6.6.The properties of these groups are summarized in table 2.1and table 2.2 .

2.3 Programming-Level Communication Requirements of Group-Based
Applications

Group-based appli cations are mmposed o a client groupinteracting with a server group. They have a
unique set of communication requirements which arise due to this multi ple-client and multi ple-server
characteristics of the application. In these gplications, each member of a dient groupinvokes a server
groupand/or each member of a server group receives an invocation from the client group.

We investigate the ‘programming-level’ (computational-level) inter-objed communicaion
requirements of group-based applicaions. Our focus is not restricted to the traditional group-based
appli cations, which come in the ategory of replicated groups, such as those used for fault-tolerance or
load sharing, where the compasition d the groupis, essentially, a set of replicated oljects. We dso ana-
lyze the programming-level communication requirements of a more general category of group-based
distributed appli cations which fall under the category of homogeneous and heterogeneous groups. We
present these requirements by analyzing the following basic interaction paradigms:

1.*Singleton-Client’ and ‘ Server-Group interaction paradigm
2. 'Client-Group and*Singeton-Server’ interaction paradigm

2.3.1 ‘Singleton-client’ and ‘Server-group’ interaction requirements

In this paradigm, asingleton client interrogates (or invokes) a server group (seefigure 2.3). The foll ow-

ing properties are required from the programming-level group communication gimitive. These proper-

ties also have some impli cations on the cpabili ties of group-oriented clients (see chapter 4).

1. Multiplereplies: When aclient interrogates a server group, it receives multi ple replies, ore from each
member of the server group,in resporse to its operation invocaion. Group-oriented clients (see defi-
nitionin section 3.11) need an invocation primitivewhich can handle multi ple replies from the server
group.

2. Variable number of replies: For some dients, the membership of the server groupis transparent. So
the dient does nat know how many replies to expect. Moreover, the number of received replies is
variable dso because the membership of the server group may change dynamically due to member
faillures and rew members joining the group. Similarly, the number of received repliesis variable due
to communicaion failures. This raises the question d how many replies dhall a dient applicaion
exped in resporse to its operation invocation and consequently how longshall the dient wait for the
replies. The groupinvocaion pimitive needs a special termination to convey “end-of-replies’ to the
client application. This termination would be locally generated by the underlying goupsuppat plat-
form which is aware of the group membership.

3. Multiple reply types. Clients often need to invoke aheterogeneous server group, and ke &le to col-
lea nat only multiple replies, but also different types of replies. The repliesreceved from a heteroge-
neous erver group,in resporse to an gperation invocation, have different termination signatures. A
termination signature corresponds to areply type and also denaotes the @ntext in which instances of
the @rrespondng reply type aeto be processed together. The group-oriented clients shroud be caa-

Group-Based Distributed Computing 25

Requirements of Programming-Level Group Communication Primitive

ble of receiving and processng multiple reply types.
4. Requirement to combining multiple instances of a reply type: In many group-based appli cations a cli-
ent receives multiple instances of replies correspondng to atermination signature (reply type) from
the server group,in resporse to its operation invocation. A termination type corresponds to an appli-
cation context in which the correspondng reply instances are to be processed. Often a client has a
requirement to processall i nstances of a given reply type together asasingle unit, but it isinefficient
for the client application to be interrupted to collect every individual reply instance and pocessit
separately. Yet in some other cases it isimpaossblefor the client to take any application-specific deci-
sion urtil al instances correspondng to a given reply type are recaved. And if the server groupis
transparent to the client, as in most cases, the client does not know how many replies to expect, and
consequently when to start analyzing the results. It is desirable that the group invocation grimitive
suppat a “grouptermination” facility, so that all i nstances of repli es corresponding to a given termi-
nation signature (reply type) can be combined together and handed over to the dient as a single unit
by the underlying engineering mechanisms. This in turn requires that the group-oriented clients be
capable of procesgng multi ple instances of replies contained in a‘grouptermination’.

requesy
-
reply-1

request
-

request

reply-1
reply-2
[J
[]

reply-n

Client’s reply deIiveerv ¥equirement’s :
1. give me multiple replies

2. give me an end-of-reply indication
3. give me multiple types of replies Server Group
4. give me group replies
5
6
7

-
reply-n

. give me individual reply instances as they keep coming
. give me replies only when | explicitly ask for them (solicited reply deliver mode)
. terminate the reply delivery when | don’t want them (unsolicited reply delivery mode)

Fig. 2.3 Client object interrogates a server group

5. Unsolicited andseparate delivery of individua reply instances: In some group-based appli cations,
the dients are on-line and they process the replies as soonas they are delivered. In such applications,
the dients want to receive the individual instances of replies, as they keep coming in. They do nd
want to wait until al of them have been received and combined into a single groupreply. The unso-
licited reply delivery means “give methereply as oon asit hasarrived”.

6. Sdicited reply delivery: In some cases, the client applications wish to have the cntrol to receive the
repli es as and when they are required by the dient. This prevents the cli ents from being overwhelmed

Group-Based Distributed Computing 26

Requirements of Programming-Level Group Communication Primitive

with huge number of replies, and also gives the dient the aility to receive the next reply only when
required byit. In such applications, the clients also specify a cetain arder of the reply delivery, based
either uponthe type of the reply or the sender of the reply. The controll ed reply delivery coupged with
ordered reply delivery gives the client the capability to processthe desired repliesfirst and to ignare
therest. This corresponds to the solicited reply delivery, i.e., “ give me the reply only when | want it” .

7. Terminale reply delivery: In certain client applicaions, each reply is processd at the moment of its
reception, withou waiting for the receipt of all the replies (seebullet 5). In such cases, the dients
wish to abandon @ terminate the groupinterrogation as sonas the replies already coll ected byit are
sufficient for it to proceed. Hence the dients neal the control or handle to stop the subsequent flow
of incoming replies. This alows the dient to dyramicaly control the number of replies, subsequent
to the operation invocation. Terminable reply delivery is most commonly required in combination
with unsolicited reply delivery.

8. Non-blocking invocation: When a dient makes an operation invocation ona server group, multiple
replies are expected. Thereis, aso, avaryingamount of delay involved in the reception d replies. In
many appli caions, the client does not want to be blocked urtil the receipt of all the replies. Moreover
aclient thread may need to make multiple operation invocations on a server group, withou waiting
for the replies of the previous invocations. Group-based client applications require the aility to per-
form other procesang whil e the replies are in transit.

2.3.2 'Singleton-Server’ and ‘Client-Group’ interaction requirements

In this paradigm, aclient groupinterrogates (or invokes) aserver objed (seefigure 2.4). Typically acli-

ent groupis formed when a set of client objeds, related to each other in some gpli cation-specific man-

ner, organise themselves as a groupin arder to be (managed o supervised or otherwise) serviced by a

single (manager or supervisor or) server object. The reader is referred to the examples of this type of

interaction paradigm in section 7.7. This type of interadion paradigm has the following characteristics,

which have implications on the cgpabiliti es of group-oriented servers (seechapter 4).

1. Multiple instances of same service request: The members of the client group have identicd service
requirements and hence they invoke either identical service requests or instances of the same service
request (i.e., instances of the same operation signaure, but with nonidenticd parameter values) on
the server object.

2. Periodic service requests (or natifications): Operation a natification message invocations from the
client group dten occur periodically or within a specific time interval. For example, agroup d man-
aged objects (client group) send their status reports along with the assciated status parameters, in
the form of an operation message, to the manager object (server) periodically, and exped to receive
the management command, in the form of a termination message, from the manager object.

3. Reply based uponclient group-inpu- need to combine multiple instances of a request type: In this
type of applications, the members of the dient group are related in an appli cation-specific manner.
Instances of the same servicerequest are invoked periodically by the members of the dient group on
the server object. These individual instances need to be analysed and processed together as a single
unit in order to generate the reply. Essentially, the final output or the decision d the server object
depends uponthe mmbined inpu from the dient group. The server cannat start processng the ser-
vicerequests (operation messages) until it has received the service requests from all the client group
members. After processng the group inpu, the server may either give the same reply or different
reply to each member of the client group.In either case the reply is dependent uponthe cumulative
groupinpu. Hence the server wants to receive a @mbined set of instances of a service request (cor-

Group-Based Distributed Computing 27

Requirements of Programming-Level Group Communication Primitive

respondng to an operation signaure) as a single group operation message so that it can efficiently

perform the processng d the combined group inpu. Additionaly, the server canna hande (or

receive) individual inputs from the client group because of:

(@). client grouptransparency: In many cases, the client group is transparent to the server object. A
guestion that arises in these @ases is how longshall the server keep waiti ng expeding inpus from
the client group kefore it can start processng. Moreover, the server does not know abou the
dynamic situations occurring in the client group such as member failures or communicaion fail -
ures.

(b). increased load m servers: Even if the dient groupis nat transparent, it is inefficient for the
server object to be continually interrupted to recave every individual inpu (OPR or NTF mes-
sage) from the client group, keep accumulating them and kegoing record of the number of inpus
that are received. Thiswould waste the server’s time and resources in coll ecting and combining the
inputs and it would require the server object to deal with the issues of a distributed client group.
Group-oriented servers (sedion 3.11) benefit by receiving a single groupinput, agroup ogeration
or a group ndification invocation, from the underlying engineering medanisms. However, in
order to achieve thisthe group pogramming primitive must have a‘groupinpu’ semantics.

Hence there is a requirement to coll ate the instances of operation messages or natification messages
correspondng to an operation signaure or natification signaure, so that a single collated group
input can be offered to the group-oriented server object. This collation must be performed by the
underlying goup suppat platform before message invocaion onthe server object. This fadlit ates
the server objed in processng the entire client grougs rvice requests in a single processng with-
out undwe waste of time and resources of the server.

request - ” . . .
_q» Note: “requests” are not identical, but are instances of

- the same “operation signature”.
reply-1

request
4>

Group request

4>
- I
reply-
reply-2
° ultiple replies
request °
. reply-
y \
reply-n { Server’s request delivery and reply generation requirements:

" 1. Give me a single ‘group request’ which is a combination of
individual service request instances.

2. My reply is based upon group service request.

3. I'll either give a single reply to be (split and) distributed to all
members of the client group or I'll give multiple replies, one for
each member of the client group.

Client Group

Fig. 2.4 Client Group interrogates a server object

Group-Based Distributed Computing 28

Requirements of Programming-Level Group Communication Primitive

2.4 Limitations of ODP Interrogation Primitive

The ODP interrogation primitive (seedefinition in section 1.5) or the remote procedure call primitive
suppat the basic point-to-point ‘single request - single reply’ communication semantics. They do nat
scde upto the requirements of the communication ketween client groupand server group.

These primitives accept a single request from the client and gve asingle reply to the dient. They
terminate with the return of asinge reply to the dient. It is passible to construct a single group reply
throughthe use of appropriate ollation medchanisms as described in the next chapter and to return the
multiple replies as a single group reply. But the requirement of receiving individual reply instances as
they keg comingin from the server group,in a controlled manner, is not supported by the interrogation
or the remote procedure call primitive.

On the server object side, these primitives give a single service request to the server and accept a
single reply from the server. They terminate with the receipt of a single reply from the server obect,
whereas the group-oriented servers need to give multiple replies, in resporse to agroup operationinvo-
cation.

Table 2.3: Limitation of ODP Interrogation primitive

Requirements of a group Support in ODP Interrogation
communication primitive Primitive

Multiple reply delivery requirement (client side) not supported

Group reply delivery requirement (client side) supported, through the use of appropriate

messge ollation medchanisms

Variable reply delivery requirement (client side) not supported

Separate delivery of individual reply instances (client not supported

side)

Solicited reply delivery requirement (client side) not supported

Terminable reply delivery requirement (client side) not supported

Multiple reply acceptance requirement (server side) not supported

non-blocking invocation semantics (client side) supported in some implementations

Therefore whil e the ‘group request’ and ‘group reply’ semantics can easily be integrated in the
ODP interrogation primitive through the use of appropriate collation mechanisms, the multiple and
variable reply delivery suppat isnot available in it. Also the cpabil ity to recelve and processmullti ple
reply types sparately is a key requirement of group-based applications. This enables the dient to
receive the desired reply types before the others and to terminate the reply delivery when it hasreceived
the required number or types of replies. As down in table 2.3 ,the ODP interrogation pimitive also
ladks other requirements of groupcommunication such as li cited reply delivery semantics, terminable
reply delivery semantics, and nonrblocking invocation semantics.

These semantics have an impact on the group message processng, invocation generation and
invocation reception cgpabiliti es of the client and server. Thisis described in chapter 4.

Group-Based Distributed Computing 29

Requirements of Programming-Level Group Communication Primitive

2.5 Conclusion

The programming-level communication requirements of group-based applicaions are fundamentally
different from those of singleton-client and singleton-server’ communication. It requires major exten-
sions to the semantics of the ODP interrogation gimitive. This support is crucia for the large-scale
development and deployment of group-based distributed applications.

Group-Based Distributed Computing 30

Requirements of Programming-Level Group Communication Primitive

Group-Based Distributed Computing

31

Group Interrogation: A Group Programming Primitive

CHAPTER 3 GroupInterrogation: A Group
Programming Primitive

Abstract

Group-based dstributed apgications, structured as a client-group andserver-group,
havedistinct “ programming-level” communicationrequirements. The* interrogation”
or the “ remote procedure @ll” is a familiar programming-level primitive to suppat
“ request-resporse style” communicationin pant-to-point client server computing. In
this chapter we present the correspondng communication grimitive for the suppat of
multi-endpant andcli ent-server style communication between aclient group andserver
group.This primitiveis called groupinterrogation. e present the semantics of group
interrogation.Messagecollationisakey requirement for the cnstruction o groupinter-
rogation.\epresent somegenericsignature-based coll ationschemeswhich preservethe
contentsof themessagesrece ved fromthe sourcegroup.The semanticsof groupinterro-
gation hashasanimpact onthe message invocation,reception, andprocessngrequire-
ments of appication oljects. We describe properties or capahlities required of such
group-oriented client and server objects.

3.1 Introdu ction

Many appli caionscan profit from the “programming-level” groupcommunicaionsuppat, but suchasup-
port islackingin currently avail able programming languages and oferating systems. In this chapter we
propcsegroup pogramming primitivesthat aregeneral enoughto cover therequirements of many typesof
group-based appli cationsandcan beintegratedin real programminglanguagesand systems. Wedefinethe
semantics of these primitives.

Thischapter introducesthe ODP-based “ programming-level” communication gimitiveswhich pro-
videsemantic suppat for multi end-pointinteraction between* client-group and’ server-group . These ae
the groupinterrogation and group announement.

Theproposed primitivesare alogical extension d the ODPinterrogationandannourcements primi-
tives. They extendthebasic point-to-paint cli ent-server interactionmodel in arder to addressone-to-many;,
many-to-one, and many-to-many client server interactionsrequired in an group-based applicaion. These
primitives provide partial grouptransparency to the client and server applications.

Theproposed group pogramming primitivesimply the use of some message coll ationmechansms
in order to construct ‘grouprequest’ and ‘groupreply’. We propase signhature-based message collation
schemes which construct a single group message from the comporent messages as well as preserve the
contents of these messages. They preserve the dient-server style cmmputingin agroup-based distributed
application.

Group-Based Distributed Computing 32

Group Interrogation: A Group Programming Primitive

3.2 ODP-Based Group Programming Primitives

Objed groupsgiveriseto new invocationsemanticswhich apply to thecollectionasawhoeandisknown
as groupinvocaion semantics. The synergy of the object groupmodel and the client-server model gives
rise to anew and avery powerful invocation semantics.

Our aim isto provide a general programming primitive for the support of group comnunication.
Espedally, we wish to integrate client-server style interactionin amulti-endpant objed groupenviron-
ment. We present ageneric definition d the proposed group-programming primitivesfoll owed bythesig-
nature and semantics of these primitives.

We adopt the programming-level interaction primitives of the ODP model, the interrogation and
annourtement, asthe basisfor the definition o the group programming primitives, for the suppat of the
group communication requirements listed in the previous chapter. Here we present asimple and logical
extension to the basic ODP-interaction styles.

3.2.1 Group Interrogation

A groupinterrogationisamulti-endpant interaction between the cli ent groupandthe server groupcon-

sisting o

a. oregroup oferationinvocation: one (or more) operationinvocation(s), which areinstances of the same
operationsignature or areinstances of different partsof the sameoperationsignaure, initiated byasin-
gle(or multiple) client(s) inaclient group, resulti ngin the conveyance of informationfrom theinvoking
client objed(s) to the invoked server group members, foll owed by

b. ore or more group termination invocations, received by each invoking member of the dient groupin
either solicited or unsolicited manner, in resporse to the group ogeration invocation, resulting in the
conveyance of information from the invoked members of the server groupto the invoking members of
theclient group; where e@h groupter minationinvocationiscomposed of oneor moreterminationinvo-
cations, which areinstances of the same terminationsignature or areinstances of different parts of the
sameterminationsignaure, initiated in response to the group ogerationinvocation bythe members of
the server group.

The construction d group ogeration and grouptermination invocations is described in section 3.6.

3.2.2 Group Announ cement

A group annougement isamulti-endpant interaction between aclient groupandaserver groupconsi st-

ing d:

a. one group ndificationinvocation: one (or more) natification invocation(s), which are instances of the
samenatificationsignatureor areinstancesof different partsof thesamendatificationsignature, initiated
by asingle (or multi ple) cli ent(s) intheclient group,resultinginthe mnveyance of informationfrom the
invoking client object(s) to the invoked server group members.

Group annourcement is a one-way communication, i.e. from client group to server group, while
groupinterrogationistwo-way. Thelatter subsumestheformer. Hencethe former isnat discussed hence-
forth.

3.2.3 Group (Operation | Termination) Message

A group operationisasingle message obtained througha combination d multi pleinstances of an opera-
tionsignature (or instances of different partsof an operationsignature) issued bythe membersof the dient
group.A group operationisinvoked as asing e operation oneach member of the server group.A group
operation corresponds to a‘group service request’ from the client group.

Group-Based Distributed Computing 33

Group Interrogation: A Group Programming Primitive

A groupterminationisasinge message obtained througha mwmbination d multiple instances of a
termination signature issued by the members of the server group in resporse to a dient’s (or a dient
group s) operationinvocation (or group ogerationinvocaion). A groupterminationisinvoked asasingle
termination oneach member of the dient group.A client may receive multiple groupterminations, ore
correspondngto each terminationsignature, in resporsetoitsoperationinvocation onthe server group.A
group termination corresponds to a ‘group reply’ from the server group. The message combination
scheme, also known as the collation scheme, is described in section 3.6.

3.3 Semantics of Group Interrogation

Thefundamental basisof groupinterrogation grimitiveisthedistributionof an operationmessagefrom the
client object to the server group, the coll ation of repli esreceived from the server groupinto agroupreply
before delivery to the dient object, andthe ability to deliver multiple repliesindividually in a controll ed
manner to the dient object. It involves multi ple (message) invokersandreceivers, groupinvocations, mes-
sage allation, reply soliciting and termination. These constitute the inherent characteristics of the pro-
posed groupinterrogation primitive. They are described below.

3.3.1 Multiple Invoker and Multiple Invokee semantics

There aemultiple dientsand multiple serversinvolved in agroupinterrogation. The groupinterrogation
providesthe basisfor appli cation-level multi-endpant interaction ketween asingleton client and a server
group, client groupand a singleton server, and client groupand a server group.

3.3.2 Group Invocation Semantics

Thegroupinterrogation primitive dlowsaserver to accessmulti ple service requestsfrom the dient group
throughthe receipt of asingle group ogerationinvocation. Similarly, it allows a client to accessmulti ple
replies from the server group throughthe receipt of asingle grouptermination invocation.

3.3.3 Message collation semantics

The*grouprequest’ and‘groupreply’ semanticsimply the existence of some (engineering) medanisms

which combineindividual (operation|termination) messagesinto correspondnggroup(operation|termi-

nation) messagesat the (server | client) side. Thefoll owingsemanticsareinherent inthemessage oll ation
process

a. Parameter collationsemartics: (Operation |termination) messages carry information,from the (client |
server) object to the (server | client) group, in the form of a set of parameters. Each parameter in the
(operation | termination) carries a certain type of information. The group (request | reply) semantics
imply that the information contained in the parameters of individual messages need to be combined in
order to construct group (operation |termination). How the information, i.e., parameter types, in the
(operation [termination) messagesiscombined to construct agroup(operation|termination) messageis
discussed in detail in section 3.6.

b. Coll ationcardinality semantics: A (server | client) object may receive multiple (operation [termination)
invocations from the (client | server) group.A question that arises in such casesis how longshall the
(server’s|client’s) infrastructure continueto accumul ate messages before startingthe coll ation process
Thegroupinterrogationsemanticsimpli esthe existenceof afinite ollationcardinality, for examplethe
size of the (client | server) group,the knowledge of which is available to the underlying engineering
mechanisms. Whentherequired number of (operation fermination) messagesarereceved, theunderly-

Group-Based Distributed Computing 34

Group Interrogation: A Group Programming Primitive

ing engineering mechanisms will collate these messages into asingle group (operation |termination)
message and invoke it onthe (server | client) object.

c. Collation duationsemantics. In some group-based appli cationsthe knowledge of the cardinality of the
(client | server) groupiseither unavailable or isof nosignificance. Instead it isrequired to coll ate mes-
sagesreceived duringa cetain period d time. In many cases, the wll ation durationrepresentsthe max-
imum time interval to accumulate messages, in arder to avoid indefinitely waiti ng for the reception d
messages. Messagesreceived duingthisperiodareinpu to the ll ationmechanisms, andtheresulting
group (operation |termination) message is invoked onthe (server | client) object.

d. Call ation membership semantics: Yet, some other group-based (server | client) appli cations are inter-
ested in receiving (operation |termination) messages from spedfic members of the (client | server)
group,for exampleto ignare some memberstemporarily or because of someother appli caioncriterion.

3.3.4 Controlled Reply Delivery Semantics

There ae two modes of reply delivery in agroupcommunicaion gimitive. These ae unsolicited reply
delivery and solicited reply delivery. Intheunsoli cited reply delivery mode, thereply isdelivered tothe di-
ent object as vonasit isreceived bytheunderlyinglocal groupsuppatinfrastructure. The soli cited or the
controll ed reply delivery mode givesthe client the cntrol to receivetherepliesasandwhenit isrequired.
Thisrequiresaspecial primitive, suchas”padl_reply()”, to beassociated with thegroupinterrogation. This
allows the client to dyremically control reply reception, subsequent to an operation invocaion onthe
server group.

The “pdl_reply()” hasloca semantics. It isintercepted and interpreted by the local groupsuppat
proxy mechanisms (see next chapter). Therefore the format or the signature of this primitiveis program-
ming-language specific or can be mutuall y agreed between a dient appli cation andthe underlying goup
suppat mechanismsin order to avoid any conflict with the client’s message signatures.

The“pdll_reply()” coud beimplemented aseither ablocking a nonblockingcall . Intheformer case,
the client is blocked urtil areply isrecaved bythe underlying goup suppat mechanisms. In the latter
case, either thereply, if avail able, isreturned to the dient or an appropriate noreply avail ability indicaion
isreturned to the client immediately.

In case of non-blocking invocation, multipleoperationmessages may beinvoked onthe server group
bythe dient object. Each groupinvocationisuniquely identified bytheinvocationinstanceidentifier (iii d).
Therefore, therequest for repliesisalso identified, such as“pall _reply(iid)”, in order to request the reply
correspondng to a spedfic groupinvocation.

3.3.5 Terminable Reply Delivery Semantics
Terminable reply delivery capability gives the dient the control to terminate the receipt of subsequent
replieswhen it does nat want them any more. Thisismostly required in conjunctionwith ursolicited reply
delivery. This manticscan berealized throughthe useof local primitive, such asaterminate _repli es(iid)
fromthe dient to the underlying goupsuppat engineering mecdanismswhich terminates the subsequent
flow of replies correspondng to the spedfied groupinvocation instance

The “terminate_replies()” also has locd semantics and is intercepted and interpreted by the local
groupsupport mechanisms. Itsformat or signature is programming language specific or can be mutually
agreed between a client appli cation and the underlying group suppat mechanismsin order to avoid any
conflict with the dient’s message signatures. It is non-blocking.

Group-Based Distributed Computing 35

Group Interrogation: A Group Programming Primitive

3.3.6 Invocation Completion Reporting Semantics or Variable Reply Delivery Semantics

In certain appli cations, the server groupistransparent to the dient andtheclient canna processthereplies
until all of them have been recaved. Even if the replies can be processed as soonasthey arereceived, in
some applications a client canna take an (application-specific) decision uressit is known that al the
expeded repli es have been received.

Repliesmay begiventotheclient either individually as sonasthey arereceived ar they may be @l-
lated and offered asgroupterminationsto the dient. Inany casetheunderlying goupsuppat mechanisms
must inform the cli ent when deliveringthelast reply. One posshilit y istoinclude aspecial terminationsig-
nature, say end_d_replies(), inthegroupinterrogationwhichisinvoked bythelocal group suppat mech-
anisms after the delivery of thelast reply to the client. Since“end_d_replies()” haslocal semantics- itis
generated bythe local groupsuppat mechanisms (proxy) andisinterpreted bythe client, the format (or
signature) of thismessage can bemutually agreed between a dient applicationanditsgroupsuppat mech-
anismin order to avoid any conflict with the dient’s termination signatures.

Thesesemanticscall for thedesign o anew programming language mmmunication grimitive. How-
ever, as own in section 10.2.6,some of the semantics of the group interrogation can be implemented
or smulated in existing programming languages by using a series of multiple remote procedure call s.

3.4 Signature of Group Interrogation

The semantics of groupinterrogation permits the use of the interrogation signature. The groupinterro-
gation signature is the same & an interrogation signature, with the “end_d_replies()” message (see
sedion 3.3.9 included in the list of termination signatures. It may be noted that the other groupinterro-
gation control messages such as “padl_reply()” and “terminate replies()” (see section 3.3.4 and
sedion 3.3.5 are implicitly a part of the groupinterrogation. The interrogation signature cnsists of an
operation signature, and a finite, nonempty set of termination signatures, as shown in figure 3.1 An
(operation | termination) signature comprises of the following elements:

1. name of the (operation |termination), and

2.zero or more parameter specifications, each parameter specificationconsistsof aparameter nameanda

parameter type.

In case of a matrix-mode group (operation |termination) (section 3.6.1) each parameter name in
the correspondng (operation |termination) signature identifies a multi-element data structure which
contains elements of the aswociated type.
operationrname(py: Tq Poi To, o oo o v vt P T

termination-name-1(p;1- 111, P12 Tio oot B
termination-name-2(pp1. To1, Pz Too -+ o oo - .. , By

ﬁlrgrlg aﬁ grls_tglﬂrg%rrn;()arame{gr nam&eTénnzd T's gand f’orr}?hélrglr(r)éepond ng type names
Fig. 3.1 Interrogation Signature

In case of interrogation, a dient expectsto receive asingle instance of one of the terminationsigna-
tures, spedfiedinitsinterrogationsignature. Smil arly, the server responcswith asingleinstance of one of
the termination signatures, specified in its interrogation signature.

In case of groupinterrogation, a dient expectsto receive zero or moreinstances of each termination
signature, specified in its interrogation signature, in response to its operation invocation onthe server

Group-Based Distributed Computing 36

Group Interrogation: A Group Programming Primitive

group.Similarly, the server respondswith zero or more instances of each termination signature, specified
in itsinterrogation signature, in resporse to a group operation message from the client group.

3.5 Group Message Construction: Collation Schemes

The‘grouprequest’ and‘ groupreply’ semanticsassociated with the groupinterrogationimpliestheexist-

ence of some (engineering) mechanismsin order to combinetheindividua (operation |termination) mes-

sages into correspondng goup(operation |termination) messages which can beinvoked onthe (server |
client) object asasingeinvocation. The combination d individual messagesinto asingle groupmessage

iscalled message coll ation. Themain questionthat arisesishow to combinethe messages, i.e., what coll a-

tion schemeto use.

There are many coll ation schemes which can be used for the mnstruction o groupmessages. Some
of the ooll ationschemesmodify the contents of themessageandtendto bevery application-speafic, while
others do nd alter the contents of the message but rather arrange the comporent messages in a certain
order such that the contents of the comporents can be scanned and processed bythe redpient object. We
broadly classify the message collation schemes in the following two caegories:

1. Content-based collation scheme: These collation schemes perform the ‘mixing of the messages by
modifying and processng the contents, i.e., parameters of the messages. For example, aclient object
may wishto oltainthe*average’ valueor the* maximum’ or ‘minimum’ value of all therepliesreceived
from the server group.These schemes may employ avariety of content-modificaion procedures sich as
theuse of mathematical functions(additi on, multi plication,etc.) to combine messages, synchronizaion
functionsto dsplay the audio and video contents of the messagesin certain synchronized manner, etc.
The mllation processmay also modify the original message signature, i.e., the signature of the collated
groupmessage isdifferent from the original message signature the instances of which were combined.
These schemes are gpli cation-specific, and nd the scope of thisthesis.

2. Sgnaure-based coll ation scheme: Each operation and termination message carries different types of
informationintheform of different ‘ parameter types . Themessage nametogether with theinformation
typesthat it carries constitute the message signaure. These coll ationschemesdo nd modify or process
the contents of the message, instead they combine theinstances of agiven message signature by linking
theinstances of parameter typesof amessagesignatureina certain order. The all ationprocessdoesnot
modify the original message signature, i.e., the signature of the llated groupmessage isthe same as
the original message signature the instances of which were cmbined.

3.6 Basic Group Message Construction Schemes

A group(OPR|REP) messageiscompased of multiple (OPR|REP) messages. Coll ationisthebasisfor the
construction d groupmessage. We propase some basic message @l ation (or combination) mecdhanisms
such that the resulting goup message is compatible with the ODP interrogation type system.

We adopt the signaure-based coll ation scheme for the @nstruction d group (operation |termina-
tion) message because it preservesthe cntent of the comporent messagesaswell astheir signature. This
enablesthe group-oriented (client | server) object to scan and processthe original and unmodified compo-
nent messages which are presented to it as a single groupinvocation. Moreover content-based coll ation
schemes are appli cation-specific, whereas sgnature-based collation schemes are general and permit the
recipient (client | server) object to gain accessto the parameters of the cmponent messages of a group

Group-Based Distributed Computing 37

Group Interrogation: A Group Programming Primitive

message, and hence be ale to later modify them in application-spedfic manner.

Before presenting the message wllation modes, let uslook at the dements of amessage signature,
theinstances of which areto be combined into agroupmessage. The dements of an (operation |termina-
tion) signature aethe (operation|termination) name andits parameters. Each parameter istyped and hes
aname. Essentially, an (operation |termination) signatureisa oll ection d typed information, the parame-
ters, whicharecollectively identified bythe (operation |termination) name. The wllation processtherefore
dealswith the combination o message parameters. The operation remeidentifiesaservice(or afunction)
provided by the server object. The termination nrame corresponds to an appli cation context in the client
objed, in which identicdly named replies can be analyzed (or processed).

Wehavetwo basic parameter coll ationrequirementscorrespondngtothefollowingscenariosfound
in group-based distributed appli cations:

« Each member of the (client | server) groupsends a compl ete instance of an (operation |termina-
tion) signature to the (server | client) object.

« Each member of the (client | server) groupsendsinstances of different parts of the same (opera-
tion [termination) signature to the (server | client) obed.

Correspondngtotheserequirements, wepropasethefollowingmessage ll ationmechanisms. They
permit the combination d multi ple instances of a message signature or instances of different parts of a
message signature into a single group message.

« matrix-mode message mllation

« linear-mode message coll ation

However it must berecognized that these aeonly two of the many other possible @l ationschemes.
They are proposed because they are simple and straightforward to implement (see section 3.6.1.4 using
simple programming language data structures.

3.6.1 Matrix-mode message collation

This coll ation scheme @mbines multi ple instances of a message signature into a single group message
whichisthen invoked onthe sink olject. We explain this coll ation scheme with an example of the Open
Distributed Management Appli cation [33], from the network management domain.

3.6.1.1 Group-Application-1: Managed Group - Manager Object Application
The application consists of a group d managed oljects (MO) managed by a manager obed, as shown
in figure 3.3. Each managed oljed represents osme physical network resource such as a switch, amul-
tiplexor, a communication link, etc. A colledion d managed oljeds representing identicd resource
types (such as al switchesin a cetain geographic area) are organized as a group and a manager object
is assgned to manage the group d identical resource types. The allection d managed oljects can be
viewed as a client group, because each MO periodicdly sends the status information d the physica
network resource that it represents, to the manager objed (the server object), in the form of an opera-
tion message: my_status(sp 1:T 1,.., SP :T), and expects an advice, for example, a manage-
ment signal to appropriately modify the physical resource dtribute values, from the manager object in
theform of atermination message: modif y_status(sp 1:T 1,..., SPp n:T). The status param-
eters in the operation messages convey the arrent values of different attributes of the managed
resource, and in the terminations they represent a modified value suggested by the manager object.
Each MO sends its datus information in my_status(sp 1:T 1,.., Sp n:T). The manager

Group-Based Distributed Computing 38

Group Interrogation: A Group Programming Primitive

objed isnat invoked, byitsgroupsuppat proxy (section 3.11), urtil the status natifications from all the
MOs are received. It isrequired to present a single group operation message, which contains the set of
status parameters received in the individual operation messages, to the manager object. This enablesthe
manager object to dbtain a network-wide status information through a single operation invocation.
Moreover, sincethe total performance of network is dependent uponthe performance of the comporent
network resources, the manager can dedde to modify the individual attribute values for each managed
objed based uponthis complete status informationin the group ogeration message. After analyzing the
status parameters receved in the group operation message, the manager object sends appropriate termi-
nation messages to the MOs. This application represents the need to combine operation messages
before they are invoked onthe server object.

Proxy

my_status(2.3, 3.6, 5.4)

Proxy Proxy Manager
my_status(pl,

B collation reference signature 2.1 B.4| 5.6

it 2.3 [3.6 5.4

my_status(2.4, 3.3, 5.7) 2.4 B.3| 5.7

Fig. 3.2 Matrix-mode message collation: An example of Manager Object and Managed Group Interaction

3.6.1.2 Group Application-2: Modified Group Application-1

Consider groupappli cation-1 withthefollowingmodifications. Themanager object, now becomesthe di-
ent andthe managed oljects (M O) becomethe membersof the server group.The manager object issuesan
operationinvocation: report_status() , onthe MO-groupand expects to receive multiple termina-
tions, my_status(sp 1:T 1,- .,SP j:T), orefrom each member of the MO-group. The termina-
tions carry the management statusinformationin the form of aset of parameters. The manager wantsthe
set of status parameters, recaved in each terminationmessageto be presented together asasingleunittoit,
so that it can analyze the status reports coll ectively. This application represents the cae of termination
message collation, kefore they are invoked onthe client object.

3.6.1.3 Principles of Matrix-Mode Message Collation

1.Snglecompasiteinvocation: Thecollation processresultsintheconstruction d asinglegroupmessage,
whichisinvoked onthesink olject. Each comporent of the matrix-mode group messageiscall ed arow
message (figure 3.3). Each parameter in arow message is typed and hes a unique name.

2. Collation reference: The reference for the construction d matrix-mode group (operation |termina-
tion) message is the correspondng® (operation | termination) signature at the (server | client) object
(see figure 3.3). This is called the coll ation reference signature. Therefore, the names and types of
parameters in the final matrix-mode group (operation |termination) are the same as those in the col-

Group-Based Distributed Computing 39

Group Interrogation: A Group Programming Primitive

lation reference signature.

my_Status(sp 1:T 1,Sp 2T o, sp 3T 3,Sp 4T 4)
Message N ame ‘
Group P P Null P
P Null P P

Row Messag e—»» P P Null P
Group |
Message S t ub P P P Null
Legend :
P: Parame ter P P P P

Instance

Fig. 3.3 Group Message Stub Using Matrix-Mode Collation: Array Structure Implementation

3. Parameter coll ationprinciple: Sincethere are multi ple row messagesin agroupmessage, agroupmes-
sage wnsistsof multipleinstancesof parameterscorrespondngto each parameter name. The parameter
instancescorrespondngtoagiven parameter nameintheindividual row messagesare llected andcol-
lated inamulti -element data structure. Hencethere aeasmany multi-element datastructuresinagroup
(operation |termination) message as the number of parametersin the collationreference signature. As
shown in figure 3.3, the multi-element data structures are combined into a single group (operation |
termination) message stub, which isidentified by the name of the collation reference signature. This
stubisthen invoked onthe (server | client) object.
Sincetheindividual row messages may carry avariable number of parameters, which could belessthan
or equal to o greater than the number of parametersin the coll ation reference signaure, thefoll owing
semantics are implied in the parameter coll ation process.

3.1Null bindingsemartics: If arow message containsnoinstance of aparameter nameinthereferencesig-
nature, the correspondng parameter in the groupmessage is boundto a (programming-language-spe-
cific) “null” value (figure 3.3), and this value is included in the crrespondng multi-element data
structure. The sink object interprets that the correspondng parameter is not provided by the source.

3.2Choppang paameter semantics: If arow message containsmore parametersthan those specified inthe
referencesignature, thenthe parameter instancesfor which thereisnocorrespondng parameter namein
the wllationreference signature are deleted. Thisimpliesthat only those parameters which are desired
by the invoked (server | client) object are retained.

These principles ensure the integrity of the computational type system of the group message.

1. Operation signature with the same name. In case of termination, it is the termination signature with the same
name in the mrresponding operation signature.

Group-Based Distributed Computing 40

Group Interrogation: A Group Programming Primitive

3.6.1.4 Implementation of matrix-mode message collation

In the previous gctionwe have outlined the general principles of message wllation. However the actual

implementation d the wllationschemeis pecifictothedatastructuresof theprogramminglanguage used

by the dient andserver applications. The construction d * multi-element datastructures' andthe organisa-
tion o thesedatastructuresinagroup(operation | termination) stub, can bereali sedin programminglan-
guages using avariety of data aggregation schemes. Here we outli ne some of them:

1. Array structure: A multi-element data structure is alinear organization d comporents. An array data
structurein many programminglanguagesisused for holdingmultipledataelementsof agiventype. An
implementation d matrix-mode coll ation wsing this schemeis $own in figure 3.3.

2.Linked-li st structure: A linked-list of elementsisamore dynamic data structure capable of storingarbi-
trary number of elements of agiven type.

3.6.2 Linear-mode message collation

Thiscoll ationscheme cmbinesinstances of different partsof amessagesignatureintoasinglegroupmes-
sagewhichistheninvoked onthe sink olject. We explain this scheme with an example of * groupcomput-
ing. A very simple sub-set of this application has been chosen in order to demonstrate the linear-mode
collation grinciple.

compute(x : Tx)

Proxy

compute(y:T)

Proxy Proxy
compute(z:T

) compute(x:T X,*T y, 22T 3)

collation reference signature

Proxy

Fig. 3.4 Linear-mode message collation: An Example of Group Computing

3.6.2.1 Group Application-3: Group Computing

The gplication consists of athree-member client group bounl to a server object. The server provides a
‘computational service', say, the computation d amathematica function: (x 2+y2+z2) . It suppatsan
operation: compute (x:T ,,y:T z:T ;) . Each parameter of the server’soperationsignature comes
from a different source, one from each member of the dient group. The individual clients invocations:
compute(X:T), compute(y:T), andcompute (z:T ,) arecollated to produce asingle opera-
tion: compute(x:T ,,y:T y z:T ;) ,whichistheninvoked ontheserver object. Thisrepresentsavery
tightly couded group-appli cation, in which any change in the dient group membership has an impact
on the operation coll ation at the server object. Many group-based applications fal in this caegory (see
sedion 7.7.4), where e&h client provides the partial input, say a fixed number of parameters, but is
interested in the complete reply given by the server object. The total operation message is constructed
from comporent messages.

Group-Based Distributed Computing 41

Group Interrogation: A Group Programming Primitive

3.6.2.2 Group Application -4: Parallel Computing Group

Consider anather tightly-coupled group-based appli cation. It consistsof aclient groupandaserver group.
The server groupisa‘paralel computing goug, i.e., each server performs different processng onthe
same dient inpu, and hence produces different result types. As a ssmple example, consider the server
groupcompaosed of five members: theadder, substractor, multiplier, divisor, andthe averager. Each client
providestwo parametersin itsoperationinvocation: compute(x:T , y:T y),andexpectsto receivethe
sum, difference, product, qudient, andaverage of thenumbersfromthe server group.Each server provides
part of the reply: resul t(a:T gqq), result(b:T g,p), result(c:T), result(d:T 4y).
and resu |t(e:T L,), andthetota reply: result@:T gqq: BT sups T mus AT giv
e:T 4y), isconstructed bythelinear combination o the server replies. Thiskind d appli cationrepresents
the case of termination message coll ation. It also impliesthat aclient can bindto the server groupif each
member is capable of giving the client a subset of the reply and the total set of replies received from the
server group meets the dient’s requirements.

3.6.2.3 Principles of Linear-Mode Message Collation

1. Snge compasite invocation: The linea-mode ollation process results in the construction d a group
(operation |termination) message & a (server | client) object, from instances of different parts of the
same (operation | termination) signature isued by the members of a (client | server) group (see
figure 3.4). Each comporent of the linear-mode group message is call ed atuple message, e.g.,com-
pute(x:T) isatuplemessage. Each parameter in atuple messageistyped and hes aunique name.
The set of parametersin atuple messageiscdled thetuple parameter set, e.g., {x} isatuple parameter
set. A linear-mode group (operation |termination) message is offered to the (server | client) object
throughasingle invocaion.

2.Collationreference: Thereferencefor thelinear-modegroup(operation|termination) messageconstruc-
tionisthe crrespondng (operation [termination) signature at the (server | client) object. Thisiscalled
the collationreference signaure. The number, names andtypes of parametersin the linear-mode group
(operation |termination) is the same as thase in the oll ation reference signature.

3. Parameter coll ationprinciple: Each tuple message carriesavariable number of parameters, which may
be lessthan or equal to the number of parameters in the coll ation reference signature, such that:
1.thetotal number of parametersin the componrent tuple messagesisequal to the number of parameters

in the coll ation reference signature, and
2. no mrameter in the mllation reference signature is received more than orce and
3.for every parameter in thetuple message, thereisa wrrespondng parameter with the same name and
type in the coll ation reference signature at the (server | client) object.
Sincenomorethan oreinstanceisreceived for each parameter inthe cll ationreferencesignature from
theindividual tuple messages, the parameter collation processisasimplelinear combination o parame-
tersreceved inthe tuple messages. Each received parameter instance(in thetuple message) isassgned
to the correspondng parameter in the reference signature. Parameters for which no instances are
received withinacoll ation duration (if specified), areassgned (programming-language specific) “null”
values.

3.6.2.4 Observations of Linear-mode invocation collation
A linear-modegroup(operation [termination) messageisessentially asingletonmessage obtained through
the combination d parameters received from (clients | servers).

Group-Based Distributed Computing 42

Group Interrogation: A Group Programming Primitive

1. Limitation oncomporent invocations: The number of components (tuple messages) of alinear mode
groupmessage is equal to the number of *tuple parameter sets' in the collation reference signature. In
the extreme case the minimum number of comporentsis one (when the number of parametersin the
‘tuple parameter set’ is equal to the number of parameters in the reference signature) and maximum
number of componentsisequal to the number of parametersin thereference signature (when eachtuple
message contains one parameter).

2. Limitationsonsource groupmembership: The number of (clients| servers) that can contributetolinea-
mode group(operation |termination) isequal to the number of ‘tuple parameter sets’ inthe crrespond
ing (operation |termination) signature at the (server | client) object. Therefore the number of (clients|
servers) inthe (client group |server group) isequal to the number of tuple parameters tsin the wrre-
spondng (operation |termination) signature at the (server | client) object.

3.7 Group Interrogation vs. Group Transparency

Transparency isanimportant issiein aprogramming primitive. By givingthe group(operation |termina
tion) receptioncapability tothe (server | client) appli cations, the membersbecomegroup-awareand hence
lose some group-transparency. We present the dfect on grouptransparency to the (clients| servers) which
are apable of accepting and processng group (terminations | operations). The difference between the
properties of matrix-mode and linear-mode group messages is summarized intable 3.1 .

Table 3.1: Comparison of Matrix and Linear mode Collation Schemes

Group Memb_ers_hlp Memper Limitation on the size of the
message Cardinality Identity
source group
components | Transparency | Transparency
Matrix-mode || Variable No Yes No. (Variable-size source group)
Linear-mode || Fixed Yes Yes Yes. (Fixed-size source group)

1. Membership cardinality transparency: When a(server | client) receivesthe matrix-mode group(opera-
tion | termination) invocation it becomes aware of the number of (client | server) group members that
have sent the (operation |termination) invocationsfrom thelength of thegroup ogerationstub. However,
the number of contributors to the li near-mode (operation |termination) invocationis transparent to the
(server | client) object, unessthe knowledge of ‘tuple parameter sets' is known to the (server | client)
application.

2.Member identity transparency: Theissue hereisthe sourceof the comporent (row or tupl€) invocations,
how doestheinvoked (server | client) objea know which member in the (client | server) group has sent
which comporent invocation. In both the matrix-mode andli nea-mode groupmessages, theidentity of
thesourceobjedsishiddentothesink oljects, unessthereisan explicit parameter inthegroup(opera-
tion |termination) signatureto convey thisinformationto thesink application. Theunderlyingenginea-
ingmechanismshaveaknowledge of the sourceof the (operation [termination) messagesand hencethis
information can be locdly provided to the applications via this parameter.

3.8 Comparison b etween Interrogation and Group Interrogation

Whilethe *grouprequest’ and‘ groupreply’ semantics can easily be integrated in the ODP interrogation
primitive throughthe use of the proposed collation mechanism, the multiple andvariablereply invocaion

Group-Based Distributed Computing 43

Group Interrogation: A Group Programming Primitive

and celivery semanticsarenct availableinit. Similarly, groupinterrogation pessesses someunique proper-
ties (see section 3.3) which are nat required in a client-server case. The requirements for interadion
between an client group and server group are fundamentally different from those of a singleton client-
server interadion. The differences are summarized in table 3.2 .

Table 3.2: Interrogation vs. Group Interrogation

Interrogation Group Interrogation
1. singlerequest - singlereply communi- || 1. singlerequest - multiplereply communicaion semantics, ead
caion semantics(client and server side) reply may be of different type (signature) (client side)
2. group request - single reply communication semantics (server
side)

3. group request - multiplereply communication semantics, ead
reply may be of different type (signature) (server side)

sender blocking call (client side) non-blocking call (client side)

singlereply delivery mechanism multiplereply delivery mechanism

location transparent call (client and || location transparent + fully or partially group transparent call
server side) (client and server side)

(no such regquirement) terminablereply delivery semantics (client side)

(no such regquirement) invocation completion reporting semantics (client side)

(no such requirement) controlled (or solicited) reply delivery semantics (client side)

3.9 Need for Group-Oriented Objects

The semantics of thegroupinterrogation primitive proposed ealier hasanimpad onthe messageinvoca-
tion, reception, and processng requirements of the dient and server objects. These semanticsimply that
the dients sroud be cgable of handling nd only multiple andvariable number of repliesfrom the server
group,but also capable of recaving multiplereply types, of processng goupreplies, of interpreting spe-
cia ‘end-of-reply’ semantics, and d invoking‘terminate_replies()’ and* pall_reply()’. Similarly, the serv-
ers oud be caable of receiving ‘group operation messages', of processng these messages, and d
generating multiple (and dfferent types of) replies in resporse to a ‘group operation message’. These
semantics imply that certain special capabilities are required o clients and server objects which are
involved in groupinterrogation. These are described in the following sections.

3.10 Whatis a Group-Based Distributed Application

We define a“ group-based dstributed appication” as consisting d:
1. Group-based client apgication, and 2.Group-based server apgication.

The group-based (client | server) apgication is a distributed application aganized as a (client |
server) group Such anappli cationiscomposed of group-oriented (cli ents| servers). A model of thegroup
based dstributed applicationis $own in figure 3.5.

Group-Based Distributed Computing 44

Group Interrogation: A Group Programming Primitive

3.11 What is a Group-Oriented (Client | Server)

The(client | server) objed whichisinvolved incommunicaionwith a(server | client) groupandiscgpable
of suppatingthe groupinterrogation semanticsis cal ed agroup-oriented (client | server). A group-ori-
ented (client | server) possesses the following properties (see figure 3.5).

1. Partial group-awareness A group-oriented (client | server) object is partially aware of the (server | cli-
ent) group.However it may na be aware of the cardinality or the identities of the group members.

2. Groupinvocation interface: It offers a groupinvocation interface (gii). On the dient side, operation
messages areinvoked and groupter mination messages are received at the gii . On the server side, group
operation messages are received and termination messages are invoked at the gii.

3. Groupmanagement interface A group-oriented olject optionally offersagroupmanagement interface
(gmi). The gmi is used for communicaing management or other padlicy related information from the
objed totheunderlyinggroupsuppat platform. Depending upontheavailablegrouptransparency, each
objed may ohtain certaininformationabou the groupsuch as groupmembership, etc. throughthe gmi.
Thisis discussed in detail in section 6.2.1t may be noted that gii and gmi are logicd interfaces and
may be combined in some implementations.

gii
Proxy ((GSM) | S

C I Proxy (GSM)™

gmi —

gii gii R
C i Proxy (GSM Proxy (GSM) I S
Server Group
gii T oii
C I Proxy (GSM)—| Proxy (GSM) | S
— gmi gmi —+
G G
R gii gii
o C |+{Proxy (GSM) | Proxy (GSM) [+ S
o 4 gmi =" U

Eroup Suppo rt Platferm
Fig. 3.5 Group-Based Distributed Application and the Group Suppo rt Platform.

4. Message (invocation | reception) (on| from) local proxy: Each group-oriented (client | server) object is
suppated (i.e., boundo) by alocd proxy olject cal ed the GroupSupport Machine (GSM), which ads
asaproxy of the(server | client group) withwhichit isinteracting. Theclient invokesthe operationmes-
sages on this proxy which is then transparently multicast to the dl the objects in the server group as
spedfiedinthedistribution pdicy. Similarly, therepli esreceived fromtheserver grouparetransparently
collated by the proxy into group termination message before being invoked onthe client object. The
proxy also suppats the other groupinterrogation semantics described in section 3.3.

5.Group messagereception and pocessngcapahli ty: Thegroup-oriented client iscapableof invokingan
operationmessage and d accepting multiple groupterminationmessages at its“gii”. Thetermination

Group-Based Distributed Computing 45

Group Interrogation: A Group Programming Primitive

handersin the group-oriented clients are cgable of analyzing and processng multiple messagesin a
groupterminationmessage. Similarly, thegroup-oriented server iscapabl eof acceptinggroup ogeration
messageand d generatingandinvokingmultipleterminationmessages (inresporsetothegroup opera-
tion) at its“ gii”. The operation handlersin the group-oriented server are apable of analyzingand pro-
cessing multiple messages in agroup operation message.

6.Groupinterrogationsemanticssuppat capahlity: Thegroup-oriented clientsare cpableof interpreting
“end-of-reply” semantics and d invoking “pal_reply()” and “terminate _replies()” at its gii.

The properties of group-oriented (client | server) objects are summarized in table 3.3 .

Table 3.3: Group-Oriented (Clients | servers)

Group -Oriented Clients Group-Oriented Servers
Multiple reply handling capability (in response to an gperation Multi ple reply generation and invocation capability
invocdion). (in response to a group operation).
Variablereply handling cgpabili ty through “end-of-reply” natifica: || Number of returned repliesis either one or equal to
tion from the proxy (GSM) objed. the number of components in the group operation.
Multiple reply types handling capability (in response to an opera- || Multi plereply typesgenerationandinvocation cgpa-
tion invocation). bility (in response to a group operation).
Group termination processing cagpabilit y. Group operation processing capability.
Reply delivery soliciting cgpability (solicited reply delivery)
Reply delivery termination cgpability (unsolicited reply delivery)
Non-blocking invocation capabili ty.

3.12 Identification of Group Invocations in Group-Oriented (Client | Server)

Our groupinterrogation primitive suppats bath blocking and non-blocking invocation semartics. In case
of blockinginvocations, the dientisblocked urtil thereceipt of asinglegroupreply (consisting d collated
replies from server group) from the local proxy, the GSM.

In case of anon-blockinginvocation,aclient does nat have to wait for the receipt of the repli es after
invokingan operation onthe server group.A client canissue multiple operationinvocations onthe server
group, ore after the other, withou waiting for the replies of the previous operation invocations. Due to
communication delays, different link speeds, etc., repliesarereceived bythe dientinany order. Theques-
tionthen is how shall the client know which reply isfor which operationinvocation.

3.12.1 Invocation Instance Identifier

The solutionto theissueraised aboveliesin beingableto unquely identify an operationinvocation. The
client may invoke different operation messages or multi ple instances of the same operation message one
after the other. So it shoud be possbleto identify every instance of the operation message issued bythe
client.

In ou model the proxy olject providesthe solution. Whenever, an operationisinvoked bythe dient
objed, it isintercepted bythelocal proxy, the GSM, which returnsahand e, aninvocationinstanceidenti-
fier(iiid), to the dient objead (only in case of nonblocking invocation). This handleis used bah bythe
proxy andthe dient. When the proxy receives atermination message (reply), identified with aniiid, from
the server group,the proxy either gives the message alongwith theiii d to the dient or it invokesthe mes-
sage onaspedal interface of the client, so the dient can relate the received reply with the correspondng

Group-Based Distributed Computing 46

Group Interrogation: A Group Programming Primitive

operationinvocation. The dient may al so usethishand eto solicit thenext reply or to terminatethereplies
correspondng to an operation invocation.

Ontheserver side, the proxy invokesthe group operation message onthe server andisblocked urtil
the receipt of the replies. The repliesreceived from the server are tagged, bythe proxy, with theiiid that
was associated with the operation message. This processis described in sedion 6.4.1.

3.12.2 Unique Identifiers

Aninvocationinstanceidentifier isuniqueinagiven group-based applicationin arder to unquely identify
aninstanceof operationmessageanditscorrespondngterminationmessages. It isrepresented asa wmbi-
nation d client-groupidentifier, the dient identifier, the operation message identifier and the invocaion
instancecourt. For example, it can berepresented as, inv_instance id:= group_id.member_id. op_inv_id.
instance_court. Henceit uniquely identifiesthe sender of theinvocation, the name of theinvocation,and
the number of times this operation has been invoked by the sender.

3.13 Communication b etween Group -Oriented (Clients | Servers) and Lo cal Proxy

There is alocal protocol between the group-oriented (client | server) object and the group poxy
objed to which it is bound. This protocol pertains to the exchange of apgication messages (operation,
natification,andtermination) andgroupinterrogationcontrol messages(pall_reply(), terminate_replies(),
end_d _reply()) between the (client | server) objed and the proxy throughthe Gll.

3.13.1 Client Side

As sown in figure 3.6, singleton (operation |termination) messages are invoked by the group-oriented
(client | server) ontheir local proxy while group (operation |termination) messages are invoked by the
proxy onthe group-oriented (server | client) object.

The dient expedstoreceivean invocationinstanceidentifier from the proxy after it invokesan opera-
tionmessage oniit (for non-blockinginvocation). How the invocationinstance identifier isreturned to the
client or isasciated with amessage isimplementation dependent. It may be returned viathe program-
ming language spedfic invocaion mechanism or the reply may be delivered onaspedal interface(a cdl
back interface) of a dient object (see section 10.2.§.

Additionally, as shown in figure 3.6, thereis alocal exchange of groupinterrogation control mes-
sages between the dient object and the proxy. The padl_reply() andterminate replies() are generated by
the dient andintercepted andinterpreted locally by the proxy. Theend_d_reply messageisgenerated by
the proxy and interpreted bythe locd client object. Group-oriented clients have the capability to invoke
and receive these groupinterrogation control messages.

3.13.2 Server Side

A group operationreceived byaserver object containsthe’ servicerequests' (of agiventype) of individual
members of the client group. The server object’s reply is based upa this‘groupinpu’. After scanning,
analyzing,and processngcomponent servicerequestsinthegroupinput, the server objed may either give
asingle reply or multiple replies, ore for each source of the componrent invocation.

3.13.2.1 Single reply to all the clients based upon the group input

In some applications, aserver may generate asinglereply based uponthe groupinpu. Thisreply isto be
sent to all themembersof the di ent groupwhose servicerequestswere present inthegroup operationmes-
sage. Thisis programmed in the proxy object (see sedion 7.8.3.

Group-Based Distributed Computing 47

Group Interrogation: A Group Programming Primitive

3.13.2.2 Individual reply to each client based upon the group input

In some other applications, aserver may give adifferent reply to each client. Althoughtherepliesare still
based uponthe groupinpu, but each reply isdifferent, and passbly of adifferent type (an instance of dif-
ferent termination signatures). In this case the number of replies generated by the server is equal to the
number of componrents (row messages) of the group operation message (see sedion 7.8.1).

A server object may have multiple terminations listed in itsinterrogation signaure. It may respondto a
group oeration message with any of theseterminations. It may generate zero or more instances of termi-
nations correspondng to a given termination signature in resporse to agroup operation message.

3.13.3 Reply Handling Protocol between the Server object and Proxy object

A questionthat arisesonthe server sideishow many replies snoud the underlying roxy object expect to
receivefromtheserver inresporsetoagroup ogerationmessage, andin case of multiplereplies, how does
the proxy know which reply is meant for which client. (The proxy object is resporsible for sending the
replies to the dients.) These issues pertain to a ‘local understanding between the server and the proxy
objed or they can be explicitly programmed in the proxy oljed.

The proxy oljed is explicitly programmed (seesection 7.8) to expect either asingle reply or multi-
ple replies from the associated server object. In case of multiple replies, the proxy oljed is pro-
grammed regarding the order in which replies are expected from the server object. For example, ore
palicy could be that a separate reply is received from the server objed, ore for each client, in the order
in which the @rrespondng comporent message (row message) was arranged in the group ogeration
message stub. Sincethe proxy had ealier collated the group operation message stub, it knows the iden-
tities of the clients and the order on which their operation messages were mllated. So it can send the
replies received from the server objedsto the appropriate dients.

roup-Oriented Group-Oriente
Client Server
gi . g
N Group Programming M odel —
GRP-REP-msg OFﬁR-mslgO
RER poll_reply .
end_of_reply() | | Y terminate _replies() GRP-OPR-msg| | yREP-MSY
Prox Group Engineering M odel Prox)
(GSM) (GSM)
Exception
messages -
g OPR-msg -
- TER-msg Exception
messages

Fig. 3.6 Protocol between group-oriented (client | server) and proxy

Group-Based Distributed Computing 48

Group Interrogation: A Group Programming Primitive

3.14 Conclusion

Group Interrogation is a programming-level communication grimitive that gives the programmer the
accessto thelow-level groupcommunicationat the goplication level. It provides the semantic suppat for
combining multiple servicerequestsfrom client groupinto asinglegroup operationwhich can beinvoked
on a (group-oriented) server object. Similarly, it provides the semantic suppat for combining multiple
repli es from the server groupinto asingle grouptermination which can beinvoked ona(group-oriented)
client object. This all ows the server object to accessmulti ple service requests from the dient groupin a
single invocation. Similarly, it allows the dient to access multiple replies from the server group, in
resporse to agroupinterrogation, in asingle invocation.

The semantics of the groupinterrogationis smple and easy to understand, yet powerful enoughto
expressdifferent message coll ationandreply delivery requirements. The dient isprovidedwithahand eto
receive multiple andvariable number of repliesin a @ntroll ed manner. Grouplnterrogation provides par-
tial grouptransparency to client and server applications.

Group-Based Distributed Computing 49

PART-2

Distributed Platform Model:
“Middeware Suppat”
for
Group-Based Distributed Computing Applicaions

Group Support Services: Requirements of the Group Support Platform

CHAPTER 4 GroupSuppat Services: Requirements
of the Group Suppat Platform

Abstract
Currently availabledistributed patforms sich as CORBA, DCE, DCOM, etc. offer mid-
dleware services for the support of client-server based distributed apgications. This
chapter investigateswhat “ middewareservices’ arerequiredina* groupsuppat plat-
form” for the suppat of group-based distributed apgications. We identify the different
aspedsinvolved in the provision d each groupsuppat servicein order to identify the
functiondity required by the correspondng goupsuppat agents.

4.1 Introdu ction

Much research has been dore in the past in the area of group communicaion. However most of this
research is devoted to the low level support for groupcommunication, such as different types of ordered
multicast protocols [81 - 94], membership management protocols [95 - 99], virtual synchrony [100 -
103, etc. These protocols provide low-level suppat to group-based dstributed appli cations.

Experience with currently available distributed platforms sich as CORBA [18], DCE [19],
DCOM [20] demonstrates the importance of middleware-level suppat for point-to-point and dstributed
client-server communication. These platforms provide the “middeware services’ necessary to suppat
client-server computing, such as messaging, binding, trading, location management, transaction, secu-
rity, etc. In this chapter we aldressthe following guestion. What “middleware services’ are required in
a“groupsuppat (distributed) platform” in order to provide the engineeing suppat for the group-based
applications (see section 3.10. We identify some basic group suppat services that are required by a
wide variety of group-based applications and describe the different aspeds of those services.

4.2 Why Middleware Suppo rt for Group -Based Distributed Applications

The“middlewarelayer” is, in general, alayer of services sandwiched between theapplicationandthelow-

level communicaion facilities. It is characterised bythe following properties:

1. Value-added service comporents: The middeware layer contains the most-commonly needed services
whicharerequired byawidevariety of appli cations, such asaccesstransparency service locaiontrans-
parency service, mohility suppat services, transaction suppat services, security services, etc. These
services make use of the low-level communication faciliti es.

2. Programmable service comporents: Thislayer provides generic services and hence they shoud betai-
loredtoappli cationrequirements. Themidd ewareservice mmporentscan beprogrammed accordingto
appli cation requirements and pdi cies.

Group-Based Distributed Computing 51

Group Support Services: Requirements of the Group Support Platform

3. Interacting service @mponrents: The distributed application consist of distributed * appli cation compo-
nents’ which arespread ondifferent network nodes. Each applicationcomporent issuppated byamid-
dlewarelayer. Themiddeware service mporentsinthesedistributed network nodesinterad withtheir
peer comporents or with ather service comporentsin order to provide some value-added serviceto the
application.

Some platforms, such as ISIS[104- 106], Horus [107 - 108], Amoeba[111- 117, Eledra[109-
110, Transis[113- 114, Rampart [115- 116, etc. provide low-level group communicaion suppat,
such as message multicasting protocols, membership management protocols, virtual synchrony, etc. to
distributed applications. However in these platforms the applications are very closely tied to these low-
level group communication faciliti es, thereby saaificing the flexibility in okltaining dfferent types of
servicesrequired in group-based applications. Thereis no middeware-level suppat in these platforms.

Group-based applicationsdo nd merely require message multicasting service or membership man-
agement service. As shown in chapter 7, group-based applications exhibit arich variety of inter-object
interaction petterns, message ollation scenarios, inter-objed synchronisation scenarios, etc. Theserich
interaction patterns need awell organised, configurable and programmable “middeware suppat”, which
shoud beprogrammed accordingto applicationrequirementsand pdicies. Suchasophisticated and agan-
ised “middeware services’ islackingin the case of groupsuppat platforms. It isan aim of thisthesisto
identify these servicesandto configurethem asalogical and programmableentity inagroupsuppat plat-
form.

4.3 What Middleware Services in the Group Suppo rt Platform and Why

The next step isthe identification d the “middieware-level” services required for the suppat of group-
based di stributed appli cations. Wecall these servicesthe Group Suppa Services(GSS), which are part of
the Group Supprt Platform (GSP). As iown in figure 4.1, the GSP consists of the “group communi-
cationlayer” and the “middeware services layer”.

The group communication layer consists of the low-level message multicasting protocols, such as
unardered broadcast protocol (UBCAST), source-ordered broadcast protocol (FBCAST), causally-ordered
broadcast protocol (CBCAST), atomic-ordered broadcast protocol (ABCAST), etc. andmembership man-
agement protocols, such asvirtual synchrony (VSYNC) etc. Theseprotocolsare extensively researchedin
existing literature [81 - 99]. The middleware layer consists of appli caion-specific services which pro-
vide extrafunctionality other than the low-level group communication function.

Our aim isto identify theissues of * groupcommunication’ that arise & the gplicationlevel, but are
commontoawiderangeof applicationsandto pu theseissuesinthe“middeware” suppat. Theprovision
of such asuppart at the platform level will substantially ssimplify the design and construction d group-
based distributed appli cations. The application designer can now focus onthe gopli cation aspectsleaving
the group comnunication andcoordination aspects to the underlying dstributed patform.

It may be noted that the set of groupsuppat services identified below do nd represent the service
requirementsof all thegroup-based appli cations. Theserequirementsvary considerably from one gopli ca-
tionto ancther. Our aim isto identify some commonandwidely appli cable serviceswhich arerequired by
many group-based applications, such as the ones discussed in chapter 7. Some of these services have
earlier been identified in [34 - 35]. We categorize these services as basic services, seconday services,
and management services depending upontheir role.

Group-Based Distributed Computing 52

Group Support Services: Requirements of the Group Support Platform

@sed Distributed Application

Distribution @ Synchronisation

Support

PPatform

@ Other Services

Group Management Service

Grou

Middleware Service
Layer

Group Communication Service

Fig. 4.1 Group Support Platform: Middleware & Group Communication Services

o0
(@]
c
©

—
QD
(€%}
=

o
3
3

4.3.1 Basic Group Support Services

Thedistributionof amessagefromasourceobject tothesink groupandthe collationof (related) messages

received from the source groupat asink olject is afundamental requirement of almost all group-based

appli caions. Thesetwo arethe mreservicesrequiredfor thesuppat of group-based d stributed computing
applicaions, which are organised as a dient groupinteracting with a server group.

1. Message Distribution Srvice The distribution of a message from the source object to a sink group
makes use of the underlying multicasting protocols. However, the distribution service neels to specify
different aspectsof distributionsuchaswhento dstributethe message, therecipientsof themessage, the
message delivery ordering requirements, (see section 4.4) etc. These items are gplication specific
and as such are programmed by the application.

2.Message CollationService: In group-based appli cations, (rel ated) messagesfrom the sourcegroupneed
to be mllected and combined into asingle groupmessage before being dfered to the sink oljed. How-
ever there ae many aspects of coll ation (seesection 4.4) that need to be programmed in the ollation
service in arder to meet the different message coll ation requirements of the appli cations.

4.3.2 Secondary Group Support Services

These servicesarethe utility serviceswhich arerequired bymany group-based applications. However we

intendto captureawidevariety of servicerequirementsthroughthesemiddeware-level services. Thepro-

vison d these servicesis dependent uponappli cation requirements.

3.Message Synchronisation Service Synchronised adivity isa dharacteristic feature of many group-based
appli cations. For examplein some gpli cations, amessage cannot bedistributedtothesink group uriil a
permisson (or quorum) isreceved from other members of the source group. Similarly, in some other
appli cations, amessage annad be distributed to the sink group urtil some specific event occursin the

Group-Based Distributed Computing 53

Group Support Services: Requirements of the Group Support Platform

source group. Yet in some other applications, members of the client groupneed to invoke messages on
the server groupin some synchronised way in order to gain mutually exclusive aacessto the server
group or to hring certain application-specific state changes in the server group (see example in
sedion 7.9). Synchronisation includes a wide range of application requirements. It may imply some
kind of turn taking protocol within the source group @ it may imply concurrency control in which
messages are delivered to the sink olject (a shared resource) in some serialised arder. There are many
aspects of synchronisation (seesection 4.4) that need to be programmed in the synchronisation ser-
vicein order to meet the different message synchronisation requirements of the applications.

4. Message Filtering Service: Filtering o receved messages before their delivery to the groupmembers,
based either uponthe dient’s criterion a the server’scriterion a both is avery common requirement
in server groups (see example in section 7.10). However there are many aspects to the filtering ser-
vice (seesedion 4.4) that must be spedfied by the gplication. Filtering also requires “m-out of-n
selection” in order to select the best ‘m’ out of ‘n’ qualified contenders in the server group.

5. Message Ordering Service: Ordering d the message delivery to the sink oljectsisacommonrequire-
ment of message distributionservice and message wll ationservice, in order to ensure state consistency
in replicated groups or to satisfy some other appli caiion requirement. In case of message distribution
service, theorderingrequirement isusuall y satisfied by the dhoiceof appropriatemulticasting protocols.
In case of coll ation,the message delivery isordered based uponfactors such asthetype of the message
(for example somereply types must be delivered before others) or the source of the message (for exam-
ple replies from certain server group members be delivered before those from other members), etc.

4.3.3 Group Management Services:

Themanagement servicesarerequired for thesuppat of both thebasic servicesand secondary services. A

commonly required group management serviceis the following.

7. Membership Management Service These include services which control the membership of the group
such as new members joining the group, current members leaving the group, monitoring the fail ure of
groupmembers, and ndifyingthe changein the groupmembership. The membership of the group has
an impad on dstribution, collation, synchronisation, and filtering procedures.

4.4 Basic Issues of Group Suppo rt Services: Elements of Group Suppo rt Policy

Inthis sctionweidentify the basicisauesinvolvedinthedistribution, coll ation, synchronisationandfil ter-
ingof amessage. These pertainto thedifferent aspedsof agroupsuppat servicethat must be specified by
the goplicationin order to oltainthat service. They can also beviewed asgrouptransparency parameters.
As down in chapter 8, these isaues also represent the basic dements of a group pdicy specificaion
language. These padlicy elements are interpreted by the “padlicy-neutral” group suppat agents which
contain the required mechanisms for the execution d these palicies.

Thenation d padlicy has been discussed earlier by many authorsin dfferent domains - management
domain[127- 133, trading damain [134], cooperative work domain [135 - 143, etc. A pdicyisahigh
level statement of the objectives that an olject or a mechanism is required to accomplish. The padlicy
does nat describe the behavior of an dbject in detail. It only prescribes the requirements which can later
be transformed into behavior using appropriate translation mechanisms. In the foll owing sections we
identify the basic elements of padlicy as applicable to the groupsuppat middeware platform.

Group-Based Distributed Computing 54

Group Support Services: Requirements of the Group Support Platform

4.4.1 Issues of Message Distribution: Elements of Distribution Policy

Distribution d amessage from amember to agroupis abasic requirement of group-based appli cations.

The distribution service requires the spedfication d the followingitems:

a. What to dstribute: Thisinvolvesthe specification d the messagesignature, theinstancesof which areto
be distributed.

b. Towhomto dstribute: Thisinvolvesthe specification d member identifiersto whom the messageisto
be distributed.

c. Whento distribute: Thisinvolvesthespedfication of asynchronisationconditionwhich must befulfill ed
beforeamessageisdistributed. Thisenabl esthe distribution d amessageto be synchronised with ather
eventsin the group.

d.Howto distribute: Distribution usually has sme delivery orderingrequirementsin the sink group.The
following delivery guarantees are required in message distribution:

- Unordered delivery: Messagesfrom the sourceobject aredelivered tothesink groupin any order using

the Unordered broacast (UBCAST) protocol.

- Sourceordered delivery: Messagesfrom the same source are delivered tothesink groupintheorderin
which they were sent using the FIFO broadcast (FBCAST) protocol.

- Causal ordered delivery: Messagesfrom different source objectsaredelivered to thesink group kased
uponthe causal order in which those messages wereinvoked from their sources usingthe CBCAST
protocol.

- Destination adered delivery: Messagesfrom different sourcesaredelivered tothemembersof thesink
groupin the same order; which may nat necessarily be the order in which they were sent.

e. Resilienceof distribution: Someapplicationsrequirethe guaranteethat amessagebedelivered to atleast
some minimum members of thesink group a to nore of them, inthe sameorder. Thisisachieved using
an ABCAST protocol.

4.4.2 Issues of Message Collation: Elements of Collation Policy

Collationisthe process of collecting and combining (related) messages received from the source group

into asinglegroupmessage before delivery to the sink oljed. The coll ation service requiresthe specifica-

tion d the followingitems:

a. What message to collate: This involves the specification d the message signature, the instances of
which are to be colleded and collated into a single group message. According to ou collation
scheme (see section 3.6), only messages of the same type can be combined into a group message.
Messages of different types are collated and dHlivered separately to the sink object.

b. Whose messages to include in the collated groupinput: A message of a given typeis usually received
from multiple membersof the sourcegroup. A sink ojed may wishtoinclude ather all messagesinthe
final collated groupinpu or a subset of them based upontheir source.

c. How many messages to include in the llated groupinpu: A sink oljed may wait until al of the
expeded inpus arerecaved o it may pu alimit onthe collation period by restricting the number of
inputs to a certain minimum.

d. How longto wait accumulating the inputs. Messages may be lost due to communication failures or a
message may nat be generated at all dueto member failure. A timelimit must be explicitly imposed on
the collation periodin order to avoid indefinite delay in constructing and delivering the final collated
groupinpu to the sink oljed. In some cases messages of a given type are generated periodicaly by
members of the source group.In such casescoll ated group inpusare delivered tothesink olject period-
ically. However, if multiple inpus are generated by a source object duringa oll ation period, then the

Group-Based Distributed Computing 55

Group Support Services: Requirements of the Group Support Platform

sink olject may dedde to include:

- All inpus received from a given source during the collation period in the group message.

- First Input from a given source in the wllated group message, and the subsequent inpus from that
source areincluded in the subsequent coll ation periodsfor the construction d subsequent groupmes-
sages.

- Recent Inpu received from agiven source during the coll ation periodin the groupmessage, while the
earlier inpus are discarded.

e. Howtocollate: Thefinal issueinthe mllation processishow to combinethereceived inpusintoagroup
message. Thisisdiscussed in chapter 3.

f. When to deliver collated message: Once a group message is constructed, it may either be delivered
immediately to the sink olject or it may be deferred urtil some synchronisation condtionis satisfied.
This allows the message delivery to be synchronised with ather eventsin the group.

g.Inwhat order to deli ver collated messages. Groupmessagesmay bedeliveredimmediately oncethey are
constructed or thesink olject may impose cetainorderingrequirementsonmessagedelivery in arder to
receive the most important message types first and the rest later.

4.4.3 Issues of Message Synchronisation: Elements of Synchronisation Policy

Synchronisationisthe processof coordinatingthe (distribution | deli very) of amessage (from | to) amem-

ber with resped to:

(). the distribution and dHlivery of other messages, i.e., occurrence of other eventsin the group o

(b). the receipt of quarum messages (approval) from other members of the group.

The followingissues are involved in synchronising the distribution or delivery of a message:

a. What message to synchronise: Thisinvolvesthe specification o the message signature, theinstances of
which areto be synchronised with ather messages.

b. With whomto synchronise: A member needsto perform synchronised activity with respect to the activi-
ties of other members in the group. So we need to identify the synchronisation enabling messages as
well as the sources of these messages.

c. How many messages are required for synchronisation: A message may require single or multiple syn-
chronisation enabling messages before it can be scheduled for distribution a delivery.

d. How long to wait to receive synchronisation: Synchronisation enabling messages may be lost due to
communicationfail ures. In arder to avoid indefinite delay, an expli cit timelimit may beimposed onthe
receipt of synchronisationenablingmessages, after which an exception condtionisreported tothemes-
sage sender (and the message is nat distributed or delivered).

e. Disabling d synchronisation: Thedistribution or delivery of amessage may be aandored if an excep-
tion condtionisreported by the members of the synchronisation goup.

4.4.4 Issues of Message Filtering: Elements of Filtering Policy

Filteringisthe processof seledingthereceived messagesfor delivery tothesink olject based uponthefil -

tering criterion (seesedion 7.10 specified either by the source object or the sink olged or bath. The

followingisales are involved in thefiltering d areceived message:

a. What messageto filter: Thisinvolvesthe specification d message signature, the instances of which are
to befiltered in.

b. Onwhat basistofilter: Filteringisusually performed onthebasisof afilteringcriterionwhichisabod-
eanexpression d filter attributes. Client’sattributesare eval uated agai nst server’sfil teringcriterionand
server’sattributes are evaluated against client’ sfilteringcriterion. Thereceved messageisfilteredin at

Group-Based Distributed Computing 56

Group Support Services: Requirements of the Group Support Platform

the server side only when bah the clients and the server’sfiltering criterion are satisfied.

c. Howmany of thefilt ered oljectsto select: If amessageisgroupcast to aserver group,multipleobjectsin
the server groupmay satisfy the filtering criterion. However, the client object may want only one or a
fixed number of filtered oljectsto processthe message. Thereforethe di ent must specify the number of
filtered oljects that must be finally selected to execute the service request.

4.5 Conclusion

Thischapter hasidentified the “middeware-level” group suppat servicesthat arerequired inagroupsup-
port platform in order to suppat the group-based applications. There are different aspedsto each service.
These aspects must be spedfied bythe application in order to oltain the required groupsuppat service.
These aspeds are part of the group pdicy specification language.

Group-Based Distributed Computing 57

Group Support Services: Requirements of the Group Support Platform

Group-Based Distributed Computing

58

Group Support Machine: An Organisation of Group Support Services

CHAPTER 5 Group Support Madiine: An
Organisaion d Group Support Services

Abstract

Thischapter describeshow the set of groupsuppat services, introduced in the previous
chapter, can be configuredtogether insidean architectural framework calledthe” group
suppat machine” and havthe components of this machine work together in the provi-
sion d middleware-level service to the apdications. Each member of the group-based
distributed appicationissuppated by a groupsuppat machine. The set of groupsup-
port machinescommnunicatingwith each ather through arnnter-machineprotocol consti-
tutes a “ group suppat platform”. This chaper introduces an atstract model of an
agent-based group suppat machine.

51 Introdu ction

In the previous chapter we have introduced a set of groupsuppat serviceswhich cater to the groupcom-
muni cation requirements of awide range of group-based dstributed applications. These services can be
provided as dandardised “ middeware” mechanismsbytheunderlying dstributed platform. Inthischapter
we turn ou attention to the organisation d these services in acommon dstributed platform so that the
combination of them can be used in alogicd and flexible way by the appli cations.

[tisour intentionto designageneric software achitecturefor the provision d groupservices. Inthis
chapter wepresent suchanarchitecturefor themidd ewaresuppat of group-based di stributed appli cations.
Each group suppat service is realised by a arrespondng group suppat agent. A set of these ggents,
locdly boundtogether andinteractingwith each ather throughinter-agent interfaces, constitutesa frame-
work cdl ed thegroupsuppat machine (GSM). Each member of the (client | server) groupis suppated by
aGSM. Thecombinationof GSMs communicatingwith each ather throughaninter-GSM protocol consti-
tutes agroupsuppat platform (GSP.

5.2 Group Suppo rt Agents: Realisation of Group Support Services

Each groupsuppat service introduced in the previous chapter, providesadistinct function.In ou model
each groupsuppat serviceisreaised bythe correspondng groupsuppat agent (GSA). Hence we have
theDistributor Agent (D-Agent), the Coll ator Agent (C-Agent), the Synchroniser Agent (S-Agent), theFil -
ter Agent (F-Agent), andthe Member ship Manager Agent (MM -Agent) correspondngto thedistribution,
coll ation,synchronisation,filtering,andmembership management servicesrespedively. Thefunctionality
of these GSAsisdescribed in detail in chapter 6.

Group-Based Distributed Computing 59

Group Support Machine: An Organisation of Group Support Services

5.3 Group Suppo rt Machine: Configuration of Group Suppo rt Agents

Group-based applications do nd need single isolated group suppat services; instead a combination of
theseservicesisrequired for the provision d groupcommunicationrequirements of an applicaion.More-
over these servicesneedto interact with each ather in arder to providegroupcommunicaionsuppat tothe
applications.

Themessagedistributionandcoll ationarethebasic servicesrequired byevery appli cationwhil esyn-
chronisation and filtering are the additional services required by some of the gplicaions (see dapter
7). These services are required by every group member and hence they shoud be accessble to every
group member. Moreover since the group members are distributed ona set of network nocks, it is pref-
erable that these services are locally available & each member node so that the fail ure of one node (or
the links leading to that node) does not prevent other membersin oltaining the group suppat services.
We propcse a @nfiguration d the group suppat agents, available to each group member, within asin-
gle logical architedural framework called the Group Suppt Machine (GSM). A model of GSM is
shown in figure 5.1. The GSM is a onfiguration d Group Suppat Agents (GSAS), the componrents of
which interad with each aher locally via inter-GSA interfaces (see chapter 6) and remotely through
inter-GSM protocol (see dapter 9) for the provision of group suppat service. GSM is a software
madhine, the cmmporents of which are software entiti es.

Thegroupsuppat servicesarerequired onbath the dient and server sides. However, these services
arerequired by dfferent message types onthe dient and server sides, as sownintable5.1 .

Table5.1: Group Support Services Requirement on the Client and Server side

messages

Distribution of Collation of Synchronisationof Filtering of
At OPR-message REP-messages the distribution o Not required
Client NTF-messages OPR-messagesNTF-

At REP-messages OPR-messages the delivery of OPR-messages
Server NTF-messages OPR-messages NTF-messages
NTF-messages
5.3.1 Parallel Configuration of Group Support Agents

The next questionishow to organisethe groupsuppat agentswithin the framework of GSM. The answer
isthat thisisadesignissue and thereisno unque wnfiguration. The proposed solutionisone of the many
passible configurations. It reflects the independence of the GSAs as well as the interactions that occur
between them (see chapter 6).

The GSAsareindependent entitieswhich perform orthogonal functions. Hencethey are configured
as a system of parallel agents which can be accessed by the (client | server) group members. The MM -
Agent provides the suppating function to the rest of the GSAs. It monitors the group membership and
feeds information about the group membership to the rest of the GSAs which nee thisinformationin
order to provide their service Hence it is placed as an agent in the supporting role.

The GSM offers its grvices to the individual componrents of the group-based application. These
comporents are the members of the (client | server) group.These groupmembersshoud na haveto inter-
facewiththeindividual GSAsinthe GSM in arder to oltaintheir service. Thecompasitionandthe config-
uration of the GSM shoud be transparent to the groupmember. Moreover the members shoud be aleto
receive servicesfrom the GSM as snglelogical entity. Additionally, the GSM should be @leto (accept |

Group-Based Distributed Computing 60

Group Support Machine: An Organisation of Group Support Services

deliver) messages (from | to) the member object initslocal programminglanguage. Hence aGroupAgent
(G-Agent) which representsthe GSM andinterfaceswith thelocal member objea isboundtothe GSAsas
shown in figure 5.1. The G-Agent ads as a single point of contact with the GSM.

Legend:

Gll: Group Invocation Interface

GMI: Group Management Interface
MP: Multicast Protocol

roup Suppo rt Machine

Fig. 5.1 Group Support Machine (GSM): Configuration of Group Support Agents

The GSAs inside aGSM need to communicate with their pea agents in ather GSMs throughan
inter-GSM protocol (see chapter 9). Each GSA generates certain types of messagesin order to commu-
nicae with its peer agents in other nodes. Hence aGSM receives many different types of messages
from other GSMs. There is a need for an agent to intercept the different types of messages received
from the network (i.e., the underlying goup communication protocols), parse these messages and gve
them to the gpropriate GSAS for respedive service processing. This function is performed by the
Parser Agent (P-Agent). The P-Agent presents a single logical interface to the underlying retwork (or
groupcommunicaion protocols).

So, theparall el configuration d GSAsisboundto the G-Agent on oreside andtothe P-Agent onthe
other. The G-Agent interfaces with the member object and the P-Agent interfaces with the network.

5.3.2 Functioning of Group Support Machine
The GSM iscomposed of multiple GSAswhichinteract with each ather beforethe (distribution | delivery)
of the message (from | to) agroupmember in order to suppat the group communication requirements of

Group-Based Distributed Computing 61

Group Support Machine: An Organisation of Group Support Services

theapplication. The next questionishow dothe components of the GSM work together inthe provision o
groupcommunicationserviceto the applications. Inthis sectionwe will present abrief description o the
functioning d the GSM. A detailed descriptionis presented throughexample gplications in chapter 6
andin chapter 7.

The GSM is placed between the member objed and the communication retwork. It intercepts the
messagesreceived from both sidesfor processing bytheappropriate GSA sbeforethedistributionor deliv-
ery of message.

When a message is received from the member objed for distribution to the sink group, it isinter-
cepted by the G-Agent. The G-Agent givesthismessage to the D-Agent aswell asto the other agents such
asthe S-Agent andthe F-Agent. Thisall owsthe S-Agent to oltain the appropriate synchronisation o the
message w.r.t other eventsin the source group, leforeitsdistribution. Simil arly, thefilt ering constraintsto
be associated with the message aeobtained from the F-Agent. Onthereceipt of the synchronisationsignal
(if any) from the S-Agent andthefiltering constraints (if any) from the F-Agent, the D-Agent distributes
the message to the sink group sing the appropriate multicasting protocol.

Similarly, when a group protocol data unit GPDU (see chapter 9) isreceived from the network, it
is intercepted by the P-Agent. There are two main types of GPDUs, the control GPDUs and data
GPDUs. The control GPDUs carry the inter-GSM protocol control information oy and data GPDUs
carry bath control and user messages. The P-Agent decodes the GPDUs and degpending uponitstype, it
givesit to the gpropriate GSAs for processng. If adata GPDU is received, the P-Agent givesit to the
C-Agent as well asto the S Agent and the F-Agent. This all ows the S-Agent to oltain the gpropriate
synchronisation d the message w.r.t. the other eventsin the sink group, tefore its delivery to the mem-
ber. Similarly, it allows the F-Agent to evaluate the filtering attributes of the source object against the
filtering criterion d the sink oljed. Oncethe appropriate synchronisation signal and the filtering signal
is recaved from the S-Agent and the F-Agent respectively, the C-Agent performs the allation of the
received message with ather appropriate messages and celivers the group message to the sink olject.

Thus, whil e the comporents of the GSM perform orthogoral functions, the final distribution and
delivery of the message involves the interaction between the comporents of the GSM. In chapter 6, we
present, in detail, the relationship and the interaction between GSAs.

The GSM framework serves as a middleware comporent placed between the appli cation and the
underlying goupcommunication protocols. In particular it can use arange of underlying message multi -
casting protocols with dfferent reliability and adering guarantees.

54 Group Suppo rt Platform: A Parallel Configuration of Inter-Communicating GSMs

Our aim isto designamiddeware platform for the suppat of group-based applications, which are struc-
tured asa dient groupand a server group. The members of the dient group and the server groupare dis-
tributed on retwork nodes. Each member needslocd accessto thegroupsuppat servicesorganised within
the GSM framework in order to avoid lossof groupservicesuppat dueto communicationfailuresarenode
fail ures. Hencewe proposeadistributed agent model of the group suppart platform in which each member

Group-Based Distributed Computing 62

Group Support Machine: An Organisation of Group Support Services

of the (client | server) groupis suppated by an instance of the GSM.

Client Group Server Group

C-1 C-2) ... C-n S-1 S-2) L. S-

G G G G

S S S S S S

M M M

| | | | | |
GCL GCL GCL GCL| | GCL GCL

G(oup Support Pl/ﬂform

Fig. 5.2 Group Support Platform (GSP): A Distributed Agent Model

The model of the proposed group suppat platform is $own in figure 5.2. Each member is sup-
ported by a GSM. Each GSM is suppated by the underlying Group Comnunication Layer (GCL)
which provides group communication grotocol support such as message multicasting protocols, mem-
bership management protocols, etc. The multicast protocol objects in the GCLs are mwnrected to and
communicate with each ather througha communication retwork. This network could be alocd or wide
area network depending uponthe distribution d the member objeds.

The Group Suppa Platform (GSP) iscompaosed of inter-communicating GSMs. The GSPisadis-
tributed agent model, becausethe GSMs aredistributed andthe groupsuppat agentsin each GSM interact
with their peersin aher GSMs viathe inter-GSM protocol (chapter 9) for the provision d the group
suppat service required by the applicaions.

5.5 Agent-Based Approach and Separation of Communication Fun ctions

An agent isan entity or asoftware object (in an olject oriented paradigm) which providesa*“padlicy-neu-
tral” functiondlity within agiven application damain and whase behavior can be modified bythe appli ca-
tion d external user requirements or domain-specific palicies. The GSM framework is an agent-based
approach. The entiti eswithin the GSM framework are pali cy-neutral. For example, the C-Agent can sup-
port any coll ationfunction a accept any number of messagesfor collation, etc. The actual message mlla-
tion processis guided bythe palicies which are external to the entity (see chapter 7).

The communication functions within the GSM are separated into dfferent agents for the sake of
“moduarity” and* separation d concerns’. Each groupsuppat serviceidentified inthepreviouschapteris
adistinct andindependent functionwhich warrantsaseparate “modue” of itsown. Moreover, these sepa-
rate modues need to communicate with each other in order to accomplish certain specific applicaion
requirements as $1own in section 6.4. It may be noted that GSM is a model and a particular implemen-
tation of GSM may choose to combine dl functionsin asinge classdefinition.

Group-Based Distributed Computing 63

Group Support Machine: An Organisation of Group Support Services

5.6 Group Suppo rt Machine: An External, Configurable, and Programmable
Architecture

The GSM is an agent-based software achitecture for the organisation d group suppat services. This
framework of organising goupsuppat services offers the following advantages to the gpli cations:

5.6.1 Separation of group-coordination aspects from application aspects

The group-suppat services, such as message distribution, coll ation, synchronisation, etc., are organised
withinthe GSM framework, andarelayered bel ow the appli cation components. Thislayered architecture
lets the coomplex coordination behaviors (see dhapter 7), foundin group-based applicaions, to be mod-
eled and executed external to application elements. The resulting partitioning d application and goup
coordination behaviors yields improved moduarity, maintainability, and extensibility of group-based
applicaions. The group communication and coordination aspects are separated from the applicaion
aspects. The designer can focus on the gopli cation aspeds while leaving the group coordination aspeds
of the appli cation to the GSM. The latter can be separately programmed as discussed bel ow.

5.6.2 Extensible and configurable architecture

The GSM promotes explicit identificaion d groupcoordination servicesand aplacefor theinsertion o
these services. The GSM isaframework within which new groupsuppat services can be alded andinter-
actionwiththeexistingserviceidentified. Thereforethemodel all owsthegroupsupport platform to evolve
as new groupsuppat functionality isrequired.

5.6.3 Programmable and po licy-driven architecture

The GSM isintended to be ageneric and a programmable service architecture. As shown in chapter 7,
it enables individual member preferences w.r.t. group services, such as to whom to dstribute the mes-
sages, how to distribute the messages, how to collate the messages, with whom to synchronise the mes-
sages, etc. to be programmed through pdicy specifications. The GSM consists of ‘padlicy-free and
neutral group suppat agents which can be programmed according to different application require-
ments. Therefore the achitecture permits changes to the group coordination kehaviors to be modeled
external to the goplications by modifying appropriate group suppat palicies, such as distribution pd-
icy, collation pdicy, etc., withou re-compiling the whole application.

5.6.4 Support for group transparency and group awareness

Depending uponthe user requirements, the GSM can provide varying levels of group transparency to
applications. Throughthe group management interface (chapter 6), the gplications can be natified
abou the arrent group membership and aher group management information.

5.7 Conclusion

The GSM representsan agent-based software achitecturefor theorganisation d groupsuppat services. It
iscomposed o groupsuppat agentswhich provide specialised suppat for groupcommunicationrequire-
ments of applications. We have presented the architecture in an abstract form allowing itsimplementation
in dfferent programminglanguages and computing environments. The GSM isaprimary unit of the mid-
dlewaresuppat for group-based applications. Itisamoduar, configurable, extensible, and programmable
software framework. The group suppat platform, is essentially a distributed agent model composed of
inter-communicating GSMs.

Group-Based Distributed Computing 64

An Abstract Model of Group Support Machine

CHAPTER 6 An Abstrad Modd of Group Support
Machine

Abstract
Thischapter describesin detail theinternal componentsof the GSM, thefunctiondity of
these comporents, the interfaces between these comporents, andthe interactions that
occur at these interfaces. The aimisto describe the internal structure of GSM in an
abstract andimplementationindependent manner. Thischapter containsthesummnary of
the functions of the GSAs illustrated later in the thesisthroughexample apgicationsin
subsequent chapters.

6.1 Introdu ction

The GSM isthe basic entity of the group suppart platform. It is a multi-agent software framework, the
comporentsof which dffer diversegroupsuppat servicesandinteract with each ather incomplex waysfor
the suppat of numerous types of group-based applications. In this chapter we describe in detail the ser-
vicesoffered bythe componrent agents of the GSM, theinteractionsthat occur between the comporents of
the GSM, and the interfacing d the GSM with the member object.

6.2 Middleware Box Between Group Member and Network: External Interfaces of GSM

TheGSM actsasasinglelogicd middeware entity placed between the member object andtheunderlying
groupcommunicationlayer. It offersinterfacesboth to the member object andto thegroupcommunicaion
layer, as siown in figure 6.1. In this section we will describe the dharacteristics of these interfaces and
the nature of information that is exchanged at these interfaces.

6.2.1 GSM - Group Member Interface

The internal comporents of the GSM and the way these comporents work together are hidden from the
member objed. The GSM appearsasasinglelogical proxy oljed to thegroupmember. Apart from appli -
cation messages (i.e., OPR, NTF, REP messages) which are exchanged between the group members
throughthe GSMs, the member objed also need to input certain management information to the GSM
which isrequired for the proper functioning d the GSAs. Hence the GSM offers two interfaces to the
member object. Thesearethe GSM Invocationlnterface (Gl) andthe GSV Management I nterface(GMI).

6.2.1.1 GSM Invocation Interface (GlI):
The Gll is used by the (client | server) member object to invoke (operation, ndification |termination)
messages on the GSM for distribution to the (server | client) group. It is used by the GSM to invoke

Group-Based Distributed Computing 65

An Abstract Model of Group Support Machine

group (operation, ndification |termination) messages on the local (server | client) object. The group

messages are constructed locally in the GSM. These application messages are treated as data by the

GSMs and are exchanged transparently between the GSMs after appropriate group service processng.

The member object interfaceswith the Gl viaits groupinvocationinterface (gii). Thefoll owing are the

characteristic features of the GlI:

a. Compatibility with member’s invocation interface The message invocaions are accepted from and
deliveredto themember object at the Gll inthe member’snativeinvocationstyle. Theinvocationmech-
anism of the Gl is compatible with the member’s programming-language specific invocation mecha-
nisms.

b. Sypport for groupinterrogationcapalli ty: Apart fromusingGlI f or invoking operationand ndificaion
messages, thisinterfaceisalso used bythe dient object for invoking group interrogation control mes-
sages (see sedion 3.3), such as “padl_reply()” and “terminate_replies()” on the GSM. These mes-
sages give the dient the cpability to control the delivery of replies in resporse to an operation
invocation onserver group.

6.2.1.2 GSM Management Interface (GMI)

The GMI isused bythe member object to perform certain management operationsonthe GSM or to com-

municate some local information to the GSM which is required for the functioning o the GSAsin the

GSM (seesection 7.9.4and sedion 7.10.2. Similarly, the GMI isused bythe GSM to communicate the

objed grouprelated information, such as the current membership o the dient and server group, to the

member object, depending uponthe grouptransparency avail able to the member.

GMI isaproprietary interface between the member object andthe GSM. Every group-based appli ca-
tion hasdifferent management requirements, and hence different typesof informationisexchanged at this
interface Thefollowingarethe examplesof types of information that are exchanged between the member
objed and the GSM throughthe GMI:

a. Application-specific information: The GSAsin the GSM are to alarge extent appli cation-neutral and
perform their functions independent of the applications they support. However in some cases, they
need certain application-specific information in order to perform their function. For example (see
sedion 7.10.2, the F-Agent needs the values of some dynamically changing server attributes, such as
the aurrent load onthe server (e.g., the queue length o the printer), current values of performance
parameters, etc., based uponwhich it performs the filtering d the received messages. This informa-
tionisinpu by the server object to the GSM throughthe GMI. Similarly, as sown in section 7.9.4,
the S-Agent needs certain information from the dient application such as which members of the
server group have successully executed its operation messages and which ores have nat, so that the
S-Agent can send appropriate ‘ synchronisation ndification messages' to the other members of the di-
ent group, so that next operation messages are invoked oy onthase server group members who have
successully exeauted the previous operation messages. Thisinformationis given to GSM via GMI.

b. Groupmembership information: An oljed groupisadynamic entity. Members may join andleave the
group,andtherearemember fail uresdueto node andlinkfail ures. In some gpli cations, thegroupmem-
bers areinterested in being informed about the aurrent group membership. Depending uponthe group
transparency subscribed bythe member object, the GSM (i.e., the MM-Agent) natifies groupmember-
ship updites to the member object throughthe GMI.

c. Groupsuppat pdicies: The GMI may also be used by the member objed to specify group suppat
paliciessuchasmessagedistribution pdicy, collation pdicy, filtering pdi cy, andsynchronisation pd-
icy totherespective GSAs, which dffer their servicesbased uponthe user’ srequirements gecifiedin

Group-Based Distributed Computing 66

An Abstract Model of Group Support Machine

these pdlicies.

Legend:

gii: group invocation interface
gmi: group management interface
Gll: GSM Invocation Interface
GMI: GSM Management Interface

Group Suppo rt Maching

P-Agent

/

Fig. 6.1 A Model of Group Support Machine (GSM)

The GMI is alogica interface. As own in figure 6.1, each GSA suppats its own management
interface such as the Distributor Management Interface (DMI), the Collator Management Interface
(CMI), the Synchroniser Management Interface (SMI), and the Filter Management Interface (FMI).
These interfaces are used to input or output the information types explained above.

6.2.2 GSM - Network Interface
The GSM makes use of the low-level message multicastingand adered delivery service provided bythe

underlying goupcommunicationlayer, to transport the group protocol dataunitsbetween the GSMs. The
interface between the GSM and the underlying goup communication layer is called the GSM Network
Interface (GNI). A minimal information reeds to be exchanged throughthisinterface.

The group communicaion layer consists of different types of multicast protocol objects (MP-
Objeds) which provide different message ordering and delivery guarantees. The GSM (i.e., the P-Agent)
only nealsto select theappropriate M P-Object that medsitsorderingand delivery requirement and gveit

Group-Based Distributed Computing 67

An Abstract Model of Group Support Machine

the GPDU and the list of the group members to whom the GPDU is to be multicast. The GSM (the P-
Agent) invokesthefoll owingmessageonthe M P-Obj ect: multi cast(this GPDU,to_these members). Sim-
ilarly, the M P-Object transferstherecaived GPDU tothe GSM through ly invokingthefollowingmessage
on GNI: inpu(this GPDU).

6.3 GSM Components

The GSM isamulti-componrent software machine. Each comporent of GSM performsaspecialized group
suppat function.Inthissedionwedescribein detail the function dfered byeach GSA andthe exception
condtionsthat are encourteredin groupservice processng. Thefunctionality of the GSAsisdescribedin
an abstract manner. The reader isreferred to appropriate examplesin chapter 7.

The GSAs are pdli cy-driven agents. They perform their respedive functions based uponthe corre-
spondnggroupsuppat padicydescribed in the previous chapter. These padliciescan beinput to the GSAs
throughtheir management interfaces(suchasDMI, CMI, SM1,andFMI) or thepadliciescan bespecified as
palicy scripts. The padlicy scriptsare stored in padlicy repaository objects (PROs). The GSAs communicate
with the PROs to find ou what adions to perform when they receive amessage.

6.3.1 G-Agent

The G-Agent acts as a gateway to the GSM. It suppats the GSM Invocation Interface (Gll). It inter-
faces with the member object on ore side and with the rest of the GSAs on the other side, as own in
figure 6.1. The G-Agent provides the engineering suppat for the group interrogation semantics, i.e., it
suppats the nonblocking invocation semantics, solicited reply delivery semantics, terminable reply
delivery semantics, as discussed in the previous chapters.

Ontheclient side, the G-A gent givesthe (operation, notification) message andtheinvocationinstance
identifier that it hasgenerated for that messageinstanceto the D-Agent for distributionto the server group.
If theclient appli cationrequiresthat the message distribution be synchronised with resped to ather events
inthe dient groupandif filtering constraints are to be asciated with the message beforeitsdistribution,
then the G-Agent gives the message to the D-Agent, as well asto the S-Agent andto the F-Agent. This
allowsthe S-Agent to start synchronisation processng andthe F-Agent to search for filtering constraints
asociated with the message type, in parallel with the functions of the D-Agent such as message marshal -
lingand GPDU construction.On the server side, the G-Agent givesthe terminationmessage andtheinvo-
cationinstance identifier that is associated with the message to the D-Agent for distribution to the dient

group.

6.3.2 D-Agent

The D-Agent performsthe distribution of messages based uponthe distribution pdicy specified inthe D-

Policy Script. At the dient side, thereisaD-Policy Script, onefor each (operation, rotification) message,

thusallowinginstances of each messagetypeto be distributed to dfferent members of the server group o

to be sent using dfferent ordering protocolsdepending uporepplicationrequirements. At the server side,

thereisaD-Policy Script, onefor each operationmessage, which spedfiesreply distribution pdicy for the

distribution d repliescorrespondngto thegroup ogeration message. The D-Agent performsthefoll owing

functions.

1. Message encoding, splitting, and renaming: The D-Agent encodes the (OPR, NTF | REP) message
received from the G-Agent as parameter name and value tuples and constructsthe (OPR, NTF | REP)-
GPDU by encapsulating the (OPR, NTF | REP) message, the invocation instance identifier associated

Group-Based Distributed Computing 68

An Abstract Model of Group Support Machine

with the message, and the filtering constraints, if any, oltained from the F-Agent (see sedion 6.4.3.
The filtering constraints are associated orly with operation and ndification messages. If name trans-
formations (see sedion 7.5.3 are specified in the D-Policy Script, then appropriate name transforma-
tions are performed onthe message name and/or its parameter names. If splitting transformation (see
sedion 7.5.]) is pedfied in the D-Policy Script, then multiple GPDUs are constructed ore for each
message component.

2. Synchronised message distribution: In applications which require synchronised message distribution
(see section 7.9), the D-Agent delays the distribution o the message until the reciept of a positive
synchronisation signal from the S-Agent. The D-Agent then delivers the GPDU, the information
abou the membersto whom it isto be distributed and the type of multicasting protocol to be used to
the P-Agent, which in turn selects the gopropriate MP-Object for message distribution. Finally, if an
operation message is distributed, the D-Agent informs the C-Agent of the identities of the server
group members from whom to expect the replies.

3. Associating appopriate identifiers with termination messages. On the server side, the D-Agent is
resporsiblefor thedistribution d terminationmessagesreaeived from the server object (in resporseto
group operationmessage) to the respective dients. Therepliesreceived from the server object areiden-
tified by the ‘group invocation instance identifier (see section 6.3.3 which is different from the
‘invocation instance identifiers' which were asciated with the individual comporents of the group
operation message. However, the D-Agent must associate the gpropriate invocation instance identi-
fiers with the replies before sending the replies to the crrespondng client objects. This is accom-
plished as foll ows.

TheD-Agent receivesfromthe C-Agent theli st of cli entswhaose operationmessageswerecollatedinto a

group operationmessage, theinvocationinstanceidentifierswhich were associated with each operation
message, and the groupinvocation instance identifier which was assciated with the group ogeration
message.
If asinglereply isreceived from the server object, then thisreply isdistributed to all the dientswhose
comporentswereincluded inthegroup operationmessage, with appropriateinvocationinstanceidenti-
fiers tagged to them. In case of multiple replies, the order in which the replies are received from the
server object corresponds to the order in which the comporent messages were aranged in the group
message andit also correspondsto the order in which theclientsare listed in the client list given to the
D-Agent by C-Agent. Based uponthe list of clients and the list of the invocation instance identifiers
received fromthe C-Agent, the D-Agent, associatesappropriateidentifierswith thereceived repliesand
sends them to the correspondng clients.

6.3.3 C-Agent

The C-Agent performsthe coll ation of messages based uponthe coll ation pdi cy spedfiedinthe C-Policy
Script. At the dient side, thereisa C-Policy Script, onefor each operation message type, which specifies
thereply collationand delivery pdicy for therepliesreceivedin respornseto the operationmessage. At the
server side, thereisa C-Policy Script, onefor each operationand ndificaionmessagetype, thusall owing
instances of each messagetypeto be wll ated using adifferent coll ationscheme asrequired bythe gpli ca-
tion. The C-Agent performs the foll owing functions.

1.Messagedecoding, coll ation, andordered delivery: Onthe(client | server) side, the C-Agent receivesthe
(REP| OPR, NTF) GPDUs from the P-Agent. It decodes these GPDUs and extrads the message and the
invocationinstanceidentifier associated with the message from the GPDU. Thenit constructsthemessage

Group-Based Distributed Computing 69

An Abstract Model of Group Support Machine

inaformat that isunderstood bythe locd object. When the required number of the instances of the mes-
sage aereceived fromthespedfied groupmemberswithinthespecified coll ationtimeperiod,the C-Agent
constructsthe groupmessage usingthe specified coll ation scheme and gvesthe groupmessage dongwith
theinvocationinstanceidentifier to the G-Agent, whichin turninvokesthe message onthe member object
using the local invocation mechanism.

Gll

Group Support Machine
G-Agent

(e
MM-Agent

P-A

GNI

Fig. 6.2 A Model of Policy-Driven Group Suppo rt Machine
Insomeapplications, the dient may wishtoreceive aertainreply typesbeforeothersor repliesfrom cer-
tain sourcesbeforethosefrom others. The C-Agent performstheorderedreply delivery functionaccord-
ing to the ordering scheme spedfied in C-Policy Script.

2. Message delivery after filtering constraint processng: Some group-based server applications require
that (operation, ndification) messages be delivered to the server objects only if the server object sat-
isfies the dient’s filtering criterion a the dient satisfies server’s filtering criterion a both (see
sedion 7.10. Filtering d messages based uponclient’s and server’s attributes and filtering criterion
is performed by the F-Agent.

In such applications, the C-Agent includesthe received messagein the oll ation processand celiversit

Group-Based Distributed Computing 70

An Abstract Model of Group Support Machine

to the server object only after the receipt of a proper filtering signal from the F-Agent.

3.Assciating auniqueidentifier with group operationmessage: Ontheserver side, the C-Agent isrespont
sible for the collation o servicerequests of the same type (i.e., instances of the same operation mes-
sage type) recaved from the dient group within a (periodic) collation window (see example in
sedion 7.7), into a group service request (group operation message), before delivery to the server
objed. The group operation messages must be locally identified between the GSM and the server
objed, with a“groupinvocationinstanceidentifier”. This allows the G-Agent to identify its termina-
tion messages with a single groupinvocation instanceidentifier.

In such cases, the C-Agent deletesthe “invocationinstance identifiers’ associated with the componrent
operationmessagesand generatesalocally unique*groupinvocationinstanceidentifier” whichisasso-
ciated with the group operation message. All replies received in resporse to thisgroup operation mes-
sage from the server object are identified with the groupinvocation instance identifier. Finally, the C-
Agent givestothe D-Agent, ali st of invocationinstanceidentifiersof component messages (whichwere
replaced with agroupinvocation instance identifier) andtheli st of the dients, so that the D-Agent can
sendthe termination messagesto the dientswith the gppropriate invocationinstanceidentifierstagged
to them.

4. Generation d the special “end_d _reply()” termination message: On the client side, the C-Agent is
resporsible for the ollation and adered delivery to termination messages. In some applications, the
membership of the server groupis transparent to the client and the dient canna start processng the
replies until it hasreceived all of them. Since the knowledge of the server groupis avail able to the C-
Agent,itsendsaspecial “end_d_reply(invocation_instance_id)” terminationmessagetothe di ent, after
it hasreceved all the expected replies. Thisistreated asanormal termination bythe G-Agent andfor-
warded transparently to the client object.

5.Generation d groupexceptionmessages: Theexceptioncondtionsarising duetocoll ation,synchronisa-
tionandfilter processng onthe server side may result in the non-delivery of the operation message to
the server object. In such cases, the clients must be informed and the reasonfor non-delivery reported.
These exception condtions are reported to the C-Agent (see section 9.6), which in turn informs them
to the local client object by constructing appropriate exception termination messages.

6.3.4 S-Agent

TheS-Agent isresporsiblefor the synchronisationof the (distribution | dlivery) of theoperationand ndi-
ficationmessaged (from | to) the (client | server) objed, based uponthe synchronisation pdicy specifiedin
the S-Policy Script. Thereisan S-Policy Script, onefor each operationand ndificaionmessageonthecli-
ent side aswell asonthe server side. Thisall owsthe (distribution |delivery) of instances of each message
typeto be synchronised with dfferent eventsinthe (client | server) group, depending uporthe applicaion
requirements.

In applicationswhich require synchronised message (distribution |delivery), whenever an operation
or anatificaionmessageisreceived from the (client | network) for (distribution |delivery), the (G-Agent |
P-Agent) gives the message nat only to the (D-Agent | C-Agent), but also to the S-Agent in order to syn-
chronisethe (distribution | dlivery) of themessagewith ather eventsin the (client | server) group.The (D-
Agent | C-Agent) defer the (distribution |delivery) of the message until the receipt of the synchronisation
signal from the locd S-Agent.

In order to oltain the required synchronisation, the S-Agent sends the synchronisation soliciting
requests (S-SOL-GPDU) to the synchroniser groupmembers from whom the synchronisation a permis-
sionto (distribute | deliver) the messageisto be obtained, waits for their resporses (S-RES-GPDU), and

Group-Based Distributed Computing 71

An Abstract Model of Group Support Machine

when the required number of resporses are recaved within the specified time period, it evaluates the
resporses to ched if the synchronisation conditi on spedfied in the S-Policy Script is stisfied (see aso,
sedion 7.9 and sedion 9.7). Based uponits evaluation, the S-Agent either sends a positive or negative
synchronisation signal to the local (D-Agent | C-Agent) responsible for message (distribution | deliv-
ery).

6.3.5 F-Agent

TheF-Agentisresporsiblefor thefiltering d thereceved operation a natificaionmessages at the server

side, based uponthe client’smessagefiltering pdicy or the server’sfiltering pdicy or both, as gecifiedin

the F-Policy Script. Thereisan F-Policy Script, one for each operationand ndificationmessage, onbath

theclient andserver side. Thisall owsthe dientsandserversto spedfy their ownfilteringcriterionandfil -

ter attributes (object attributes) independently, so that amessage is delivered to the server object only if

baoth the client’s and server’s message delivery criterion are satisfied.

1.Filter criterionevaluation: Ontheserver side, theF-Agent isresporsibleevaluatingthe server’sfiltering
criterion wsingthe dient’sfilter attributes (recevedinthe OPR or NTF-GPDU) andthe dient’sfiltering
criterion (received inthe OPR or NTF-GPDU) usingthe server’ sfilter attributes. If both theclient’sand
theserver'sfilteringcriterionis stisfied, the F-Agent givesapasitivefilter signal to the C-Agent, other-
wise anegative filter signal isgiven.

2.mout of nseledion: If the dient specifiesthat aspedfic number of serverswhich satisfy theclient filter-
ing criterion ke selected for message delivery and execution, then the F-Agents in the server group
enter into an “m -out of- N” selection processin order to select the best ‘m’ out of the ‘'n’ contenders
(see sedion 9.9).

6.3.6 MM-Agent

The MM -Agent is the local agent in charge of maintaining the aurrent group membership information,
suchasareaord of current groupmembers, their identities, their appli cation-specific roles, addresses, etc.
Itisresponsiblefor monitoringthe arrent groupmembership, such asthe ommunicationlinkfail uresand
nock failures (see section 9.9). Similarly it receives member addition and remova natifications from
the group administrator. The MM -Agent natifies any change in the group membership information to
the other GSAswhich need thisinformationin order to perform their functions.

6.3.7 P-Agent

TheP-Agent adsasagateway tothe GSM from the network side(i.e., from theunderlyingM P-Objects). It
suppatsthesinglelogicd GSM-Network Interfage (GNI). On the other side it i nterfaces with the rest of
the GSAs.

TheP-Agent recavesfrom the GSAsthe GPDUSs, theidentities of the membersto whom the GPDU
isto be sent, andtheinformationabou the type of MP-Objed to be used for multi castingthe GPDU. The
P-Agent selectsthe appropriate M P-Object and gvesit the GPDU andthe aldressesof thegroupmembers
towhomit isto be distributed.

The P-Agent receives different types of GPDUs from the network side (i.e., from MP-Objects). It
decodesthetypefield of thereaeived GPDU, andbased uponthetype of the GPDU, the P-Agent givesthe
GPDU to the appropriate GSA for processng.

Group-Based Distributed Computing 72

An Abstract Model of Group Support Machine

6.4 Interaction b etween GSAs in the GSM: Internal Interfaces of GSM

TheGSAsaretoalargeextent independent intheprovision d their respective services. However they need
tointeract with each ather locally, withinthe GSM, in arder to providethetotal groupservicerequired by
the applications. In the following sections we describe the relationship and the interaction between the
GSAsandthekind d informationthat need to be exchanged between them. Our intentionistoidentify the
most commonly requiredinteradionsbetweenthe GSAs. Appli caion-specificrequirementsmay addmore
interactionsor moreinformationtotheinteractionsidentified bel ow. Someexampl esof compl etescenarios
of interaction between GSAs are given in section 7.9.7and in section 7.10.5.

6.4.1 Interaction between D-Agent and C-Agent: Coordination between basic group support functions
Thebasicsuppat for group-based dstributed computingisachieved throughcoordination between distri-
bution and collation functions, as shown below for the dient and server side wnsiderations.

1. Client side: The D-Agent distributes the operation messages to the members of the server group.
Depending uporthe application requirements, an operation message may be sent to all the members of
the server group @ it may be sent only to partia server groupmembership. The C-Agent isresporsible
for the llation of repliesrecaved from the server groupin resporse to an operation message. The C-
Agent must know how many repli esto exped and from whom to expect. The D-Agent givesthisinfor-
mation to the C-Agent. The D-Agent invokes the following ndification onthe C-Agent, viathe DC-
interface, after the successful distribution o the operation message.
dc_collate _replies_from(OPR_inv_instance_id: inv_i nstance_id_type,

membership_| i st: member_id_list_type)
This message natifies the C-Agent to exped replies, associated with the identifier specified in the
OPR_inv_in stance_id, from the server groupmembers pedfied in the menbership_list

2. Server side: Onthe server-side, the C-Agent isresporsiblefor thecollation d theinstancesof an opera-
tionsignature (i.e., instances of the same service request type) received from the dient group,withina
(periodic) collation window, into a group operation message (see examples in section 7.7). These
messages may nat necessrily be received from all the members of the client group within the speci-
fied collation window. Hence the replies received from the server in resporse to the group operation
message must be sent only to those cli ents whose operation messages were received within the colla-
tion window.

TheC-Agent del etesthe “invocationinstanceidentifiers’ associated withindividual operationmessages
and assigns a locd “group invocation instance identifier” with the group operation message before
invokingit onthe server object. The C-Agent hasthe knowledge of the comporents of thegroup opera-
tionmessage aswell as of theidentities of the di entswho have sent these messages. The repli es gener-
ated by the server object in resporse to the group operation message ae identified with the “group
invocationinstanceidentifier”. However the replies must be sent to the gopropriate membersof the di-
ent group with their original “invocation instance identifiers” associated with them. The D-Agent is
responsiblefor thedistribution d replies. It must know to whom to dstribute the repliesandwhat iden-
tifier to asociate with each reply. The C-Agent gives thisinformation to the D-Agent, because the C-
Agent knowstheidentiti esof the di entswhase operationmessageswereincludedinthegroup operation
message aswell astheoriginal invocationinstanceidentifiersthat were associated with individual oper-
ation messages.

Thereforethe C-Agent invokesthefollowing natification onthe D-Agent, viathe CD-interface after

Group-Based Distributed Computing 73

An Abstract Model of Group Support Machine

the succesgul coll ation of the group operation message and its delivery to the server objed.
cd_send_re plies_to(GRP_OPR_inv_instance_id: inv_in stance_id_type,
membership_| i st: member_id_list_type,
OPR_inv_inst ance_id_list: inv_instance_id_list_type
Thismessagenatifiesthe D-Agent to sendtherepliesreceived from the server object totheclientslisted
in the “membership_list

Either asinglereply or multiplerepliesare received from the server objed. In case of multiple
repli es, the number of repli esisequal to the number of comporentsinthe group operationmessage and
the order in which the replies are received corresponds to the order in which the operation messages
were padked in the group operation message, i.e., the ny, reply isin resporse to the ny;, operation mes-
sage and must be sent to the correspondng client.

Therepliesrecaved from the server object areidentified with “GRP_OPR_inv_instance_id ”.
However the D-Agent must send the repliesto the respective dientstagged with their original “opera-
tioninvocationinstanceidentifier” whichwasassociated withthe correspondngoperationmessage. The
order in which the clients are listed in the “ merbership_list " corresponds to the order of identifica-
tion d their respedive operation messages in the “OPR_inv_instance_id_list ”. So the D-Agent
sendstheny, reply received from the server object to theny, client listed inthe“ membership_list " and
tags that reply with the ny, “operation invocation instance identifier” listed in the
“OPR_inv_instance_id_list "

6.4.2 Interaction between D-Agent and S-Agent: Synchronise before message distribution
Synchronised adivity isa dharacteristic feature of many group-based applications. Either the distribution
of amessage from a source object to the sink group may need to be synchronised with ather eventsin the
sourcegroup a thedelivery of amessageto asink olject may need to be synchronised with ather eventsin
the sink group @ bath. In this sctionwe will ook into the former case.

In some gopli caions, thedistribution d (operation |natification) messagesisaied bytheclient need
to be synchronised with ather events in the dient group(section 7.9). As down in the example in
sedion 7.9.5,the messages from the members of the “coordinated client groupg are distributed in syn-
chronisation with the message distribution from other members. Similarly, in ather applications, a cli-
ent may need to take the approval or quarum of other members in the group kefore amessage can be
distributed to the server group.In ou model, the S~Agent is resporsible for obtaining the required syn-
chronisation (or quarum) aacording to the application’s synchronisation pdicy by soliciting, receiving
and processng “synchronisation-enabling messages’. In such applications, the D-Agent does not dis-
tribute the message urttil the receipt of aloca synchronisation signd from the S-Agent. So the S-Agent
needs to inform the D-Agent the outcome of the synchronisation processin order for it to perform syn-
chronised distribution. The S-Agent also has to advise the D-Agent to whom the message shoud bedis-
tributed, because the message distributionto all the groupmembers may nat be gproved. In such cases
the S-Agent invokes the following ndificaion message on the D-Agent, via the SD-interface, after
obtaining and processng the required synchronisation (or quarum) from the synchroniser objects (see
detail sin section 7.9 andin section 9.7).
sd_distrib ute_message_to(inv_instance_id: inv_ins t ance_id_type,

membership_| i st: member_id_list_type)
This messages natifies the D-Agent to send the (operation | natification) messages identified by the
“inv_instance_id " to the server groupmembers Pecified in the “membership_list "~

Group-Based Distributed Computing 74

An Abstract Model of Group Support Machine

Table6.1: Interaction of D-Agent with other Agentsbefore & after message distribution

S-Agent F-Agent C-Agent
Client D-Agentrecavesthesynchro- | D-Agent recaves the ‘filter- | D-Agentinformsthe C-Agent about the
side nisation signal from S-Agent | ingconstraints fromF-Agent | number and sources of expeded
before the distribution of | before the distribution of | replies, after the distribution of OPR-
(OPR | NTF). (OPR| NTF) message. messge.
Server || no interadion required. no interadion required. D-Agent recaves the identities of the
side clientstowhomaREP-messageistobe
distributed from C-Agent.
6.4.3 Interaction between D-Agent and F-Agent: Insert the filtering constraints before message

distribution at client side

In some applications, such as in example in sedion 7.10.3,the client specifies ome ‘filtering con-
straints' that must be satisfied by the members of the server group in arder for the dient’s srvice
request (operation message) to be delivered to them for processng. These filtering constraints are spec-
ified as st of client attributes (which are evaluated against server’sfiltering criterion) and client’sfilter-
ing criterion (which is evaluated against server’s attributes). These dtributes and constraints, caled the
filter attributes andfilter constraints respedively, are pre-specified in the F-Agent as part of the dient’s
filtering pdicy for each message type. If the client wishes that its service request be executed by “m -
out of- n” serversin the group, kased uponits filter criterion, then filter cardinality is also included in
thefiltering pdicy. When a service request (operation message) is received from the client for distribu-
tion, the F-Agent interacts with the D-Agent in order to gve the *filtering attributes’ and *filtering crite-
rion’ to the D-Agent so that they are aso distributed alongwith the message. The F-Agent invokes the
following ndification onthe D-Agent, viathe FD-interface, to communicate the fil ter constraints.

fd_include _filter_constraints(inv_instance_id: in v_instance_id_type,
filter_attrib ute_list: attribute_list_type
filter_criter i on: constraint_expression_type,
filter_cardin ality: cardinality _type)

6.4.4 Interaction between C-Agent and S-Agent: Synchronise before message delivery

In some caes, the delivery of amessage to agroupmember need to be synchronised with ather eventsin
thegroup Thisisaparticular requirement in some server groups, in which the delivery of an (operation |
natification) message to a server objed needs the gproval or quarum of some specific members of the
server groupin some supervisory roles. In such appli cations the message delivery to the server object by
the C-Agent iswithheld urtil thereceipt of asynchronisationsignd from the S-Agent. The S-Agent must
obtaintherequired quarum (or synchronisation) from the specified membersaccordingto appli cation-spe-
cific synchronisation pdicy andthen inform the C-Agent abou the outcome of the quarum. Hencethe S-
Agent invokes the foll owing ndification onthe C-Agent, viathe SC-interface, to inform the result of the

synchronisation process (“sync_result "), which isusually abinary information.
sc_synchro nisation_result(inv_instance_id: inv_in stance_id_type,
sync_result: sync_result_type)

Group-Based Distributed Computing 75

An Abstract Model of Group Support Machine

Table 6.2: Interaction of C-Agent with other Agents before message delivery to (Client | Server)

S-Agent F-Agent D-Agent
Client || nointeradion required no interadion required recave from the D-Agent, the number and
side sources of expeded replies.
Server || receive the synchronisation | receve the filtering signal | inform the D-Agent about the identiti es of
side signal from S-Agent before | fromthe F-Agent beforethe | the dients to whom the REP-message(s)
the delivery of the (OPR | | delivery of the(OPR|NTF) | is(are) to be distributed, after the delivery
NTF) message. message. of the crresponding GRP-OPR-message.
6.4.5 Interaction between C-Agent and F-Agent: Filter the received messages before delivery

In applications which require filtered message delivery to server object (see section 7.10), athough
each GSM (C-Agent) in the server groupreceives the dient’s service request (operation message), only
some of them may actually deliver the message to the server object due to the filtering constraints gec-
ified by the dient. In such cases the C-Agent canna include the received message for coll ation process
(and/or for subsequent delivery to server objed) until the filtering constraints and attributes snt along
with the message are evaluated by the local F-Agent according to a pre-specified server'sfiltering pd-
icy and a permissonreceived from it. Hence, the F-Agent needsto interad with the C-Agent in order to
communicate the outcome (“filter ~ _result) of the filtering process and the m -out of- n seledion
processto the C-Agent. Thisinteradion accurs over the FC-interface.

fc_filteri ng_result(inv_instance_id: inv_instance _id_type,

filter_resul t : filter_result_type)

6.4.6 Interaction between MM-Agent and other GSAs: Communicate group membership information
Thegroupmembership, themember identities, andthelocation o membersmay betransparent to the (cli-
ent | server) application comporents boundto the GSM. However this information must be avail able to
GSAsin order for them to perform their functions. The MM -Agent isresponsiblefor maintainingthe cur-
rent groupmembershipinformation.Itisresporsiblefor monitoringthe aurrent groupmembership,includ-
ing communicaion link failures and nock failures. Similarly it receves member addition and removal
natifications from the group administrator. Hence the MM -Agent interacts with the other GSAS, viathe
MM-GSA interfaces, to communicatethe groupmembership informationwhenever thereisachangeinit.
add_member _notification(group_id: group_id_type,

member_id: n ame_type,

member_role: role_type,

member_locat i on: address_type)
delete_mem ber_notification(group_id: group_id_typ e,

member_id: n ame_type)

6.5 Conclusion

The GSM isasoftware achitecture of groupsuppat middleware. The cmmporents of the GSM offer spe-
cialised group suppat services based uponthe goplication requirements gedfied in the group pdicy
scripts. Althoughthe components of the GSM perform orthogoral group suppat functions, they need to
interact with each ather in order to provide the total groupsuppat service required by the applications.

Group-Based Distributed Computing 76

Group Coordination Models: Platform Support and Policy Specification

CHAPTER 7 GroupCoordination Models. Platform
Suppat and Policy Specification

Abstract

Thebasic* client-server” model describeshow a singletonclient obtains srvicefroma
singleton server. In this chapter we describe the extended coordination modelsfoundin
group- based dstributed appgications - the “ group coordination models’. These
extended model s coordinate multiple, independent serversto provide mmplex services
for theclients. Smilarly they permit the wordination d operationinvocationsfrom nmul-
tiple, independent clientsin order to request a‘groupservice froma server object or to
bring a desired state charnge in the server object. In this chapter we describe these
extended coordination models which enharce the basic dient-server interaction model
in amulti-object environment. The mwordination kehaviorsinherent in these modelscan
bespecified a a high-level using a goup pdi cy specificationlanguage. Thislanguageis
introduced informally throughexamples.

7.1 Introdu ction

In general, acoordinationmode ischaraderized byamulti-comporent configurationandtheinteractions
that occur between the comporents of the cnfiguration [143 - 148. The focus of this chapter is on
coordination models foundin group-based appli cations. We call such coordination models the “group-
based client-server coordination models’ or in short the “ group coordination models’.

A groupcoordinationmodel ischaracterized bythestructure of the gopli cationconsisting d the an-
figuration d a dient groupand a server group and the interactions that occur between the members of
these groups. The former aspect of the amordinationmode is gatic whil e the latter aspect isdynamic and
thus programmable. The intra-group and the inter-group interactions between the members of the client
and server groups can be viewed at a high-level as group coordination paterns or group coordination
behaviors. Therefore, as siown in figure 7.1, a group coordination model is a combination d a group
coordination kehavior within agiven group agansation.

Inthischapter we show how different groupcoordination pdterns(or behaviors) can beobtained by
compasingthebasicgroupsuppat services sichasmessagedistribution, coll ation, synchronisation, fil ter -
ing, etc. in dfferent combinations. The combination d thesebasic servicesin dfferentgroup aganisations
yields different group coordination models.

In this chapter we introduce some basic group coordination models and dscussassociated group
coordination petterns (or behaviors). These high-level group coordinations patterns are expressble as a
combination d basic messagedistributionschemes(padli cy), message coll ation schemes(pdlicy), message
synchronisation schemes (palicy), message filt ering schemes (pdlicy), etc.

Group-Based Distributed Computing 77

Group Coordination Models: Platform Support and Policy Specification

< Group Coordination Model>

f) y
Group Organisation| Group Coordination Behavior

Y

Combination of:

1. Message Distribution Schemes

2. Message Collation Schemes

3. Message Synchronisation Schemej
4. Message Filtering Schemes

A configuration of:

1. Client Group
and

2. Server Group

Fig. 7.1 Group Coordination Model: Combination of coordination b ehavior and group organisation

Our aim isto represent groupcoordination patternsas programmabl e coordination kehaviourswhich
can be specified as message distribution, coll ation, synchronisation,andfiltering pdicies. These pdlicies
areinterpreted bythegenericand pdi cy neutral groupsuppat agentswithinthe GSM. Thereforethegroup
suppat agentssuppat groupcoordination kehaviourswhich can be spedfied and programmed within the
GSM, external to the applicationlogic.

Inthischapter weinformally introduceGPSL, thegroup padicy specificationlanguage, asalanguage
framework whichis capabl e of specifying dfferent groupcoordination petterns. A formal introductionto
the syntax and semantics of the language is given in chapter 8.

7.2 Basic Group Coordination Models

Group-based appli cations exhibit a wide spedrum of coordination models. These coordination models
involvenumerousandcomplex coordination behaviorsand multi-obyject organi sationschemes. Inthis sc-
tionwe introduce some basic group coordination models foundin group-based appli cations and dscuss
what groupsuppat services, such asdistribution,collation,synchronisation, etc., areinvolvedintheprovi-
sion d the associated group coordination kehaviors.

1. Sngeton Client - Server Group Coordination Model: This model is characterized by a client object
interrogating a server groupand receiving multi ple repli es, one from each member of the server group.
Thiscoordinationmodel involvesthe distribution of an operation message from the dient object to the
server groupand the coll ation of multiple termination messages received from the server group tefore
delivery to the client object. Message distribution scenarios are presented in sedion 7.4 and
sedion 7.5. Thereply collation and delivery scenarios are described in section 7.6.

2. Client Group- Sngleton Srver Coordination Model: This model is characterized by a dient group
interrogatingasingletonserver andreceiving multiplereplies, onefor each member of theclient group,
from the server object. Inthismodel, aset of client objects, related to each ather in an appli cation-spe-
cificmanner, invokeinstances of thesame operationmessage signature (not necessarily identicd) onthe
server. Thisgroupcoordination model invol vesthecollationof instancesof thesameoperationsignature
into agroup operation message (groupservice request) which isinvoked onthe server object and the
distributionof the server’sreply (or replies), whichisbased uponthegroupservicerequest, tothe dient
group.In thismodel the subsequent behavior of each client is dependent upon o biased bythe previ-

Group-Based Distributed Computing 78

Group Coordination Models: Platform Support and Policy Specification

ous behavior of the rest of the members of the dient group. Service request collation models are
described in section 7.7and reply distribution models are described in sedion 7.8

3. Client Group- Server GroupCoordination Model: Thismodel isageneralisation d the previous mod-
els. It involves multi ple servers (or managers) in dfferent roles serving (or managing) a dient group.
Each server (or manager) takes care of the different service aspect of the dients.

4. Synchronised Invocation Model: Thisis a special case of the “client group- server groupg’” model in
which dstribution d an operation message from each member of the client groupis s/nchronised with
respect to the other eventsin the client group. This enablesagroup d clientsto perform synchronised
invocations on the server groupin order to gain an exclusive accessto the server groupandto bring
abou adesired state change in the members of the server group. This coordinationmodel involves syn-
chronisingthedistributionof operationmessagesto the server groupand coll ating server repliesbefore
delivery to the client object. Thismodel is described in section 7.9.

5. Filtered Invocation Model: Whil e the synchronisation d the distribution o (operation | naification)
messages occursinthe dient group,thefiltering o these messages, based uponsomefilteringcriterion,
beforedelivery to the server objects, occursinthe server groups. Thismodel ischaracterized bythedis-
tributionof (operation |natification) messagesto all themembersof the server groupbut thefil tering of
these messages only at the subset of server groupmembersbased uponeither the dient’sfiltering crite-
rion a the server’sfiltering criterion a both. This model is described in section 7.10.

7.3 Basic Issues in Group Coordination Models

In most of the group-based appli cations, the clients often need to invoke multi ple servers, coordinated to

refled how those serversinterrelate and contribute to the overall application. Similarly the servers often

need to receive multi ple service requests from agroup of (related) clients, coordinated asasingle ‘ group

servicerequest’. Similarly, the members of the dient group reed to invoke service requests onthe server

groupcoordinated to bringabou certain spedfic state dhangein the server application. These multi -cli ent

and multi-server appli cations give riseto many interadionisaues. The basicissuesthat arisein these one-

to-many and many-to-one coordination models are:

1. how multiple services are requested and how thaose services are organised,

2. how multiple repliesfrom the service groupare combined and the order in which they are delivered to
the dient,

3. how muiltiple service requests from client groupare coordinated into agroup service request and how
multiple dients are organised,

4. how multiple replies generated in resporse to group service requests are distributed to the dients,

5. how invocations from members of the dient group are wordinated to bring abou the desired state
change in the server application,

6. how service requests are selectively filtered in the service groupin order to satisfy specific dient and
server requirements, etc.

Coordination model srepresent oneway to handlethese diverse group aganisationand goupinter-
action iswes. We ill ustrate throughexamples the different group coordination models which involve a
combination d message distribution, coll ation, synchronisation and filt ering services. We start with the
basic coordinationmodel swhichinvolvesinglegroup suppat servicesand proceed to more complex ones
which involve multiple services.

Group-Based Distributed Computing 79

Group Coordination Models: Platform Support and Policy Specification

7.4 The Basic Message Distribution Model

Themost basic coordination patternin agroup-based applicationisthedistribution d aservicerequest or
anatificationfrom aclient object to aserver group. The basic message distribution scheme involves the
spedfication d server groupmembership to whomthe messageisto be distributed andthetypeof ordered
multicast protocol to be used for message distribution, to the D-Agent.

7.4.1 Group Application-1: Stock Exchange Application

Anautomated stock exchange servesasagoodexampleof group-based applicationin commercial domain.
As gown in figure 7.2, the stock exchange is composed of three main entities: the stocks, the brokers,
and the austomers (each suppated bya PC or aworkstation). These entities are distributed ona wmbi-
nation d local and wide aea networks. Each of them can belogically organised as a stock group, a bro-
ker group, and a customer group. A stock object is responsible for the management of its broker group
and the broker object is responsible for the management of its customer group.

Each member of the stock group represents a company whaose shares are traded in the stock market and
periodically ndtifiesthe stock information d that company to the set of brokerswho have subscribed to
that information. The following ndification is broadcast periodicdly by the stock olject to its broker
group stock_i nfo(stock_id,time_of_day,stock va | ue,stock_volume)

Broker Group

g

roRer Group-

o

Stock Group Broker Groups Customer Groups
Fig. 7.2 Stock Exchange Application: A Group-Based Distributed Application

Each broker deal swith the stocks of many companies, and hence abroker may beamember of “bro-
ker groups’ of many stock objeds. Brokers may also be specialised in certain types of stocks (or compa-
nies) and hence the austomers must take services of specific brokersin arder to buy the stocks of specific
companies. A customer may purchase different stocksthroughabroker. A broker isrequired to (periodi-
cally) natify the customers abou the value of the stocks which they have purchased.

Group-Based Distributed Computing 80

Group Coordination Models: Platform Support and Policy Specification

Each broker has acustomer groupwhich buys, sell s, and receives other information about the stock
throughthe broker. A customer may be a member of customer groups of many brokers.

7.4.2 Message Distribution Requirements & Policy Specification

The dove mentioned appli cation represents a case in which information dstributionisamajor require-
ment. Each stock oljed natifiesthe aurrent stock informationtoitsbroker group.Sincethisinformationis
distributed periodically, thereisnostringent requirement for the gomicity of messagedelivery; itis suffi-
cient that stock natifications are delivered to the brokersin the order in which they are sent, i.e., source
ordered multicast is sufficient. Hencethe D-Agent inthe GSM boundto each stock object isprogrammed
with the following pdicy:

notificat i on_distribution_policy
for stock _info
distribut e stock_info(stock id,time_of day,stock _value,stock volume)

to my_broker_group
using SOWCE_ORDERED_MULTICAST
end_polic vy

Fig. 7.3 Message Distribution Policy Specification

7.5 Advanced Message Distribution Models: Smart D-Agents

Message distribution is the most basic group communication service. However coordination kehaviors
within group-based appli cationstendto be complex andrequire somesyntadical messagetransformations
beforedistribution. Inthefoll owing subsedionswe present thetwo commonly required message transfor-
mations throughexamples and policy specification.

7.5.1 Splitting Transformation

The message distributioninitsmost basic form involvesthe distribution d complete (operation, ndifica-
tion, a termination) message to the sink group. The source object invokes the complete message, but in
some cases, the members of the sink group are nat interested in the entire message, or they may not be
capable of accepting a interpreting the compl ete message. Each member of the sink groupmay beinter-
ested in dfferent parts of the message and hence capable of interpreting orly limited parts of the message
signature. This implies that the message contents be selectively distributed to the sink group. Splitting
transformation is a syntactical message transformation which splits a message into multi ple comporent
messages. Each comporent message isidentified by the name of the message and contains one or more
parameters of the original message.

This type of message transformation facil itates many group coordination models as shown in this
chapter. In particular it all owsacomputationto bedivided amongst server groupmembersby splittingthe
servicerequest (operationmessage) into multi ple comporent servicerequests (comporent operation mes-
sages) and dstributingthem to the members of the server group.The partial results can be combined upon
receipt, andasingleanswer can be presented to client. Thistype of distributionand coll ationschemefully
exploits the multiprocessng capabilities avail able in distributed systems.

7.5.2 Message Splitting Requirements & Policy Specification

In groupapplication-1, abroker objed receives gock informationfrom different stock objectsat periodic
intervals. It isrequired to dstribute the average stock price information daily (at the end d the business
day) to its customer group. The broker object sends the foll owing ndificaion to its customer group:

Group-Based Distributed Computing 81

Group Coordination Models: Platform Support and Policy Specification

stock info (price_Nortel,vol_Nortel,price_ ATT,vol_ ATT,price_IBM,vol_IBM,

price_Cogn o0s,vol_Cognos). However the austomers are interested only in the information abou the
stocksthat they have purchased. Hencerelevant information reedsto bedistributed toindividual members
of the customer group.The D-Agent, onthe broker side, can be programmed to perform splittingtransfor-
mation before the distribution d the message, as sown infigure 7.4

notificat T ONn_distribution_policy

for stock _info

distribut e stock_info(price_Nortel,vol_Nortel,pri ce ATT,vol ATT,
price_IBM,vol_IBM;,pric e_Cognos,vol_Cognos)

transform ed_as

component_message stock_info(price_Nort el, vol_Nortel)
to = customer-1,customer-5,cutomer-9
usi ng SOURCE_ORDERED_MULTICAST

conponent_message stock_info(price_ATT, v ol_ATT)
r-

to . customer-1, customer-2, customer-3, cu stomer-4
usi ng SOURCE_ORDERED_MULTICAST

conponent_message srock_info(price_IBM, v ol_IBM)

to . customer-2,customer-5,customer-6,custo mer-7
usi ng SOURCE_ORDERED_MULTICAST

conponent_message stock_info(price_Cognos , vol_Cognos)

to = customer-4,customer-8, customer-9
usi ng SOURCE_ORDERED_MULTICAST

end_policy
Fig. 7.4 Splitting Policy Specification

The source (broker) object need na be mncerned abou sending multiple componrent messages to
individual membersof thesink (customer) group; it can makeasingle messageinvocation. The sourcemay
also na necessarily need to know who the recipients are and what part of the informationthey are inter-
ested in. Moreover the broker appli cation reed nd be modified asthe austomersaredynamicaly added or
removed fromthe austomer group.These object grouprel ated aspeds can be modified external to the (bro-
ker) applicaionin the GSM.

7.5.3 Renaming Transformation

Ancther common goup coordination mode is the binding d a dient object to a heterogeneous srver
group.Clientsoftenrequire accessto multipleheterogeneousserversto obtainindependent servicesin ds-
tributed applications such as parall el computational groups, process control appli cations, office automa-
tion, etc. In such appli cations each member of the server group povides adifferent service. As diownin
the example below, each member of the server groupacceptsthe sameclient input, but performsdifferent
processng onit and hence produces different types of results. In particular the dient’s frvicerequest is
identified by dfferent namesby each member of the server group.ln some @sesit isalso possblethat the
service request (operation message) parameters are identified by different names onthe dient and server
side.

The @ove mentioned situationisalso pasgblein hanogeneous rvicegroups, in which each mem-
ber of the server groupcan perform the requested operation and producethe sameresult, but the same ser-
vicerequest is identified by dfferent names by each member. In al such cases, it is desirable that the
clientsbe aletoinvokethe server groupthroughasingle generic servicerequest in arder to maintain the
server group transparency.

Group-Based Distributed Computing 82

Group Coordination Models: Platform Support and Policy Specification

Thisimpliesthat the(operation, ndification,termination) messagesbe gpropriately renamed at thesource
before distribution to the sink group so that these messages can be identified by their recipients. Naming
transformation is a syntactical message transformation in which a message and/or its parameters are
renamed appropriately beforedistribution.Sincethe GSM onthe source sidehasthe knowledge of thesink
group, thistransformationis performed by the D-Agent before message distribution.

7.5.4 Group Application-2: Parallel Computational Group

In many casesadistributed appli cationis organised as group-based appli cationin order to exploit the par-
allelism and heterogeneity of appli cation componrents. In such appli cations, the serviceisoffered na by a
single server, but by aset of independent and heterogeneous srver objects. One such applicationisapar-
allel computationd group, which is an example of heterogeneous server group.In this example we con
sider a simple computational group which is composed of set of server objects which dffer different
services, suchasan Adder, Multiplier, Arithmetic-MeanGenerator, Geometric-MeanGenerator, andHar-

monic-Mean Generator.
sum_of(ps,p2,P3:P4,P
:rresult(sum) ADDER

0f(p1,P2,P3:P4.P

compute(a,b,c,d,e)
::result(sum,product,am,gm,hm)

am_of(p1,p2,P3,P,.P,.)
am_ 5
GSM % = --result(am) | AM-Generato

IONAL GROUP

PARALLEL £O

Fig. 7.5 A Parallel Computational Group

The compasition d the computational groupis unknown to the dient. The client invokesasinge
generic servicerequest: compute(a,b,c,d,e) onthegroupin arder to okltainthe sum, product, arith-
metic-mean, geometric-mean, andthe harmonic-mean o thefivenumbers. However this srvicerequestis
recognized by dfferent names by each member of the server group, as shown in figure 7.5. Hence the
client’s generic service request must be appropriately renamed before distribution. The client expectsto
receive asingle reply in the following termination signature: result(sum, product, am, gm,
hm). However each member of the server group sends part of the reply, namely the result(sum),
result(p r oduct), result(am) , result(gm), andresult(hm) . Therefore the partial
replies ent by the members of the computational groupmust be assembled together into asinglereply in
the dient’s termination signature format.

Thereforethe dient can oltainthetotal service by invokingasinglerequest onagroup d heteroge-
neous ervers and coll ating the received replies. The parallel computational group exemplifies a group
coordination model which involves operation message renaming and dstribution onthe dient side and
reply coll ation onthe client side. All these coordination petterns are rendered transparent to the client and

Group-Based Distributed Computing 83

Group Coordination Models: Platform Support and Policy Specification

server application by the GSM. This type of coordination model also impliesthat aclient can bindto a
server groupif each groupmember provides partial service and the total service provided byindividual
members meets the clients requirements.

7.5.5 Renaming Requirements & Policy Specification
InGroupApplicaion-2,the dient’sgeneric servicerequest must berenamed appropriately beforedistribu-
tionto the cmputational group,so that it can be recognised bythe members of the computational group.
The following renaming and distribution pdicy specificaion pograms the D-Agent on the client side
GSM to rename the message before distribution.
operation _distribution_policy
for comput e

distribut e compute(a,b,c,d,e)
transform ed_as

[

renamed_message sum_of(pl,p2,p3,p4 , p5)
to ADDER

using SOURCE_ORDERERULTICAST

renamed_message produ ct_of(pl,p2,p3,p4,p5)

to. MULTIPLIER
using SOURCE_ORDERERULTICAST

renamed me SaA?‘IQORam_Of (p1,p2,p3,p4,p5)

S

to . AM-GENER

using SOURCE_ORDERERULTICAST
renamed_message gm_of (p1,p2,p3,p4,p5)
to GM-GENERATOR

using SOURCE_ORDERERULTICAST

renamed_message hm_of (p1,p2,p3,p4,p5)
to HM-GENERATOR
using SOURCE_ORDERERULTICAST

]

end_policy

Fig. 7.6 Renaming Policy Specification

The dient isunaware of the existence of themultiple serversinvolved in the provisionof the ompu-
tational service and d the need to invoke individual servers by a different operation rame.

7.6 Reply Collation and Delivery Models

Themost commongroup coordinationmodel isthebinding d aclient objed to aserver group. The server
groupcould either beahomogeneousgroup a aheterogeneousgroup.Inthistype of coordinationmodel,
theclient objed interrogatesaserver groupandit receives multi plereplies, ore from each member of the
group. The question that arises is how does the dient want these replies to be wllated and the order in
whichtherepliesto bedelivered toit. As rowninthe examplesinthis sction,the dientshavetheir own
requirements (or preferences) with respect to the collation d replies and the order in which those replies
are delivered to them. The foll owingisaues arise with respect to the reply coll ationandits delivery to the
client objed.
1. Reply oollation based uponcardinality: Thereply collation pdicy implementsthe fail ure semantics of
the groupinterrogation. It dictates how many servers must successfully reply in order for the group

Group-Based Distributed Computing 84

Group Coordination Models: Platform Support and Policy Specification

interrogationto be considered succesgul. In some other cases, the client may want to receivefixed-size
groupterminations, separately, in arder to ease the processing d the terminations.

2. Reply collation based uponsender identity: In some other appli cations, the client wants to receive the
repli es nt by some specified senderstogether inasinglegrouptermination,in order to separately anal -
yse the replies received from different sender groups.

3. Reply collation based uporreply type: In case of heterogeneous rver groups, different types of replies
arereceived from thegroupin resporseto the dient’soperationinvocation.In such applicationsthe di-
ents wish to receive dl i nstances of replies of a given type together in a single group termination, in
order to separately analyse different types of replies.

Table7.1: Reply Collation and Delivery Schemes

Collation and delivery of instances of single reply type to client

multiple reply instances delivered as a single group termination: matrix-mode llation

multiple reply instances delivered as a single group termination: linear-mode ollation

multiple reply instances delivered separately in any order

AlwIdPE

multiple reply instances delivered separately in spedfic order

Collation and delivery of instances of multiple reply types to client

delivery of multi ple instances of ead reply type & separate group terminations in any order

delivery of multi ple instances of ead reply type & separate group terminations in spedfied order

delivery of multiple instances of ead reply type & singletonterminations in any order

® N u

delivery of multi ple instances of ead reply type & singleton terminations in spedfic order
Special Cases
9. discarding the rest of the reply types on the arival of the spedfic reply type

10. || choosing between reply types

4. Separate deli very of singletonreplies: Many clientswish to recave singletonrepliesassoonasthey are
received bytheir local GSM because they donat want to wait for alongtimeto receive dl therepliesas
asinge groupreply. In these applications, the replies are processed as soonas they are received.

5.Orderedreply delivery: Some clientswishtoreceive and processtherepliesina certain order. Sequen-
tial delivery of singetonisrequested in the following cases:

- Pick the chosen few and dscard therest: In some @ses, the dientswant to receive and processcertain
desired reply typesor repliesfrom certainimportant (crucial) membersbefore othersandif thereplies
already collected are sufficient, the client requests to terminate the delivery of the rest of the replies.

- Processall of themin acertain order: When the client appli cationrequires processng d certain reply
types or repliesfrom certain sendersin some sequential order, for example to bringa certain desired
state change, etc.

In such cases the clients pre-specify the order of reply delivery to their proxy olject, the GSM (C-

Agent), and the replies are delivered to the dients only when the reply delivery is explicitly solicited.

Thisistypicd of clientswhich have ‘ solicited reply reception capability’.

6. Disabling d reply delivery: In some aases, the dient isinterested in receivinga certain reply andif that
reply typeisrecaeived from any of the senders, it may require other reply typesto be abandored and orly
the desired ore delivered to it. Smilarly if an exceptionterminationis reported by any of the senders,
then the dient may wish to abandonthe rest of the replies.

Group-Based Distributed Computing 85

Group Coordination Models: Platform Support and Policy Specification

These requirements are typical of group-oriented client applications. They dictate asophsticated
reply collationand celivery pdicy specificationin arder to program the C-Agent inthe dient’sGSM abou
how andwhen to deliver thereplies. The GPSL is capabl e of specifyingthese complex reply collationand
delivery pdicies as shown in the examples below.

Some of theimportant reply collationand delivery schemes commonly required by goup-oriented
client applications are summarized in table 7.1 .In the following subsedions we ill ustrate these scenar-
ios throughexamples, together with the correspondng pdicy spedfication.

7.6.1 Group Application-3: Stock Inventory System

A stock inventory system isagoodexample of group-based appli cationwhich exhibitsdifferent reply col-
lation and delivery scenarios. The consumers, supgiers, and the inventory manager are the main compo-
nents of an inventory system.

Every retail business (such as department store, grocery store, stationery store, etc.) has its own
inventory system. Each retail business slls multiple types of merchandise. The inventory manager is
responsi blefor keepingsufficient merchandiseintheinventory storage. It must order themerchandisefrom
the supdi erswhenever the merchandise goes below a certain threshold level. Typically thereare multiple
suppiersfor each type of merchandise. The supgiersof a particular merchandise are organised asa sup-
plier group. Hence there are multiple suppier groups, ore for each type of merchandise.

Retail
Outlet-2
Retail
Outlet-3

Inventory

Manager GSM

GSM

Retail
Outlet-n

Fig. 7.7 Stock Inventory System

Consider the nfiguration d a distributed inventory system shown in figure 7.7. Every retall
businesshas a set of retail outlets (for example check-out machines) throughwhich products are sold to
customers. These retail outlets act as consumers and they are organised as a consumer group. The
inventory manager periodically chedksthe aurrent levels of merchandise availability by sending the fol-
lowing service request (operation message) to the consumer group query_sale_status() . On
receipt of this request, each member of the cnsumer groupresponds with the following reply (termina-

Group-Based Distributed Computing 86

Group Coordination Models: Platform Support and Policy Specification

tion message): sale_status(me r chandise-1, merchandise- 2,....,merchandise-
n) , indicating the number of products of each type that have been sold since the previous query through
agiven retail outlet (check-out machine).

After receiving the aurrent merchandise sale information from the wnsumer group, the inventory
manager calculates the current merchandise availability for each merchandise type. If any merchandise
fall sbelow acertainthreshold level intheinventory, theinventory manager must start the processof order-
ing the merchandise from the correspondng merchandise’s supgier group.

Theinventory manager startswith finding ou how much quantity of agiven merchandise each sup-
plier can provide and consequently how many supgiersit shoud contad (or place an arder) in order to
med its inventory requirements. So it invokes the following service request (operation message)
“query_merchandise_ava i lability(merchandise_id) " onthe supdier group(acting as
aserver group) to find ou their supgy cgpability. Each member of the supgdier groupresponds with the
following reply to indicate the quantity of merchandise it can suppy:
merchand i se_availability(merchandise_id,q uantity)

7.6.2 Delivery of Group Termination of a Single Reply Type: Matrix-Mode Collation

When aclient interrogatesahomogeneous server group, it receives multi plereplieswhich areinstances of
the same reply type (i.e., termination signature), but they are not identical replies. The client wants to
receive dl the replies together in a single group termination so that it can analyse (or process them
together and make some appli cation-specific decision based upon goupreply. Moreover theclient canna
start processingtheindividual repliesuntil it hasreceived all of them. In such cases, asingle grouptermi-
nationis constructed (in either matrix or linea mode depending uponwhether complete or partial reply
instances arereceved) after all therepliesarerecaved bythe C-Agent inthe dient’'s GSM. The previous
exampleillustrates this as well as some other reply collation requirement.

7.6.2.1 Reply Collation Requirements & Policy Specification

In groupapplication-3,theinventory manager canna cal cul atethe aurrent merchandiselevel (merchandise
avail ability) until it hasreceivedthe’ salestatus’ informationfrom all the members of the consumer group
(check-out machines). So it wantsto recevethisinformationfrom all the membersof the cnsumer group
together throughasing egrouptermination. Since every member of theconsumer groupsendsthesalesta-
tus of each merchandise, the replies must be combined in matrix-mode (see section 3.6.1). Moreover
the inventory manager does nat want to wait an indefinite period d time for the delivery of groupreply.
Usudly the ‘sale status' replies are received immediately from the consumer group, so the inventory
manager wants any number of replies receved within 5 minutes of issuing the

“query_sale_status ” be combined into agrouptermination and celivered to it.
TOT __Query _sale_status
deliver sale_status(me rchandise-1,................., merchandi se-n)

from consumer_Group
within 5 minutes

collation _cardinality UNSPECIFIED
collation = _mode MATRIX

]

end_polic vy

Fig. 7.8 Reply collation and delivery policy of a single group termination (matrix-mode)
The padlicy specification shown in figure 7.8 captures these requirements for the coll ation of replies.
The C-Agent in the GSM of the inventory manager is programmed with this palicy.

Group-Based Distributed Computing 87

Group Coordination Models: Platform Support and Policy Specification

7.6.2.2 Transparency and Policy Interpretation

The pdlicy specifies the collation d any number of the instances of the reply “sale_status(mer-
chandise - 1,.,merchandise-n) " recaved from the cnsumer groupwithin S5minutesof theissu-
ing d the correspondng operation message “query_sale_status " in the matrix mode. The dient
(inventory manager) neal not be concerned abou collecting multiple and pesbly variable number of
replies, if the consumer groupis transparent.

7.6.3 Delivery of Group Termination of a Single Reply Type: Linear-Mode Collation

In some cases a dient object is transparently boundto a server group, asif it was boundto a singleton
server. The client expectsto receive asingereply asasingletontermination message. |If each member of
theserver group gvespartial reply (i.e., part of theterminationsignature), thenthetotal reply must becon-
structed by assembli ng together partial replies using linear-mode coll ation (seesection 3.62).

7.6.3.1 Reply Collation Requirements & Policy Specification

In groupapplication-2, the dient expectsto recave asingle reply in the foll owing termination signature:
result(s um, product,am,gm, hm). However each member of the computational groupsends
part of the reply, namely the result(sum), result(product), result(am),

result(g m, andresult(hm). Therefore these partial replies must be assembled together into a
singlereply inthe dient’sterminationsignatureformat, usinglinea modecollation.Moreover repliesfrom
al the members of the computational group must be received, aherwise the reply canna be constructed
(andan exceptiontermination hasto be sent to the dient by the GSM). Theclient wantsthe completereply
to bedeliveredtoit within, say 5minutes, of the correspondng oferationinvocation, (otherwise an excep-
tionterminationis snt to the dient by the GSM).The following pdicy speafication captures the above
mentioned requirementsfor thecoll ation o repli esreceived from the computational group.TheC-Agentin
the GSM of the client is programmed with this pdlicy.

terminati on_collation_policy
for comput e

deliver r esult(sum, product, am, gm, hm)
from computational Group

within 5 mnutes

collation _cardinalit ATLEAST(ALL)
collation =~ —mode LINEAR
end_]polic y

Fig. 7.9 Reply collation and delivery policy of a single group termination (linear-mode)

7.6.3.2 Transparency & Policy Interpretation
Thepadlicy specifiesto collate the partial i nstances of the terminationsignature “result(sum, prod-
uct,am,g mhm) ” whicharereceved from the computational group,within 5minutes of theisu-
ing d the wrrespondng operationmessage “compute ”, inthelinear mode, ony if all i npusarereceived
from all members of the computational group, otherwise an exceptionterminationmust be cnstructed by
the C-Agent and delivered to the client object.

The dient isunaware of the existence of themultiple serversinvolved in the provisionof the ompu-
tational service and d the need to combine partial replies snt by each member of the group.

7.6.4 Unordered Delivery of Singleton Terminations of a Reply Type
In some cases the client wants the replies from the server groupto be delivered to it as sonasthey are

Group-Based Distributed Computing 88

Group Coordination Models: Platform Support and Policy Specification

received bythe GSM in arder to avoid the delay associated with the reception d the groupreply, particu-
larly when the members of the server groupare proneto sendinglate replies or when the dient hasimme-
diate reply requirements. So singleton replies need to be delivered to the dient separately in the order in
whichthey arrive. In such casesthe dient isnot necessarily interested in receivingall thereplies. In partic-
ular, when the replies already delivered are sufficient for it to proceed, the dient may request the reply
delivery to be terminated (i.e., terminable reply delivery semantics). In order to control the delivery of
replies, the dient may usethe ‘palled reply delivery scheme’, so that the GSM will deliver thereply only
when client explicitly requestsit, provided that the reply is available.

7.6.4.1 Unordered Reply Delivery Requirement and Policy Specification

In groupapplication-3, the supgiers give their replies (i.e., merchandise avail ability information) to the
inventory manager’ squery only whenthey havethe product currently avail able, otherwisethey delay their
reply. Thesuppiersmay also delay their replies due to some other considerations. However theinventory
manager is interested in finding ou the product avail ability as son as possble (so that it can place an
order). So the inventory manager isinterested in receiving the replies from the supgier groupas onas
they arereceived byits GSM. Oncetheinventory manager can oltaintherequired quantity of themerchan-
disefrom the supgierswhaserepliesit hasanalysed, it may request the delivery of other repliesto beter-
minated. The inventory manager queries the supplier group periodically. The inventory manager puts a
certain time limit onthe receipt of replies, after which it will place an arder with the supdierswho have
responckd to its query within the time limit. The following pdicy specification captures the éove men-
tioned requirementsfor reply coll ation and celivery. The C-Agent of theinventory manager’'sGSM ispro-
grammed with this pdlicy.

termination_ collation_policy.

for [query_me r chandise_availability
deliver merchandise_availability(merch andise_id,quantity)
from supplier_Group
within 0 minutes
collation_cardinality UNSPECIFIED
collation_mode SINGLETON(ANY-ORDER)

end_p(])Iicy

Fig. 7.10 Unordered delivery of singleton terminations of a reply type

7.6.4.2 Transparency & Policy Interpretation

The palicy specifies the delivery of the instances of reply
“merchandise_availabil i ty(merchandise_id,quantity) ", a sngleton termination
messages, to theinventory manager object inthe order inwhichthey arereceived from the supgier group,
within 60minutes of the correspondng operation invocation.

7.6.5 Ordered Delivery of Singleton Terminations of a Reply Type

Theorder of delivery of singletonrepliesto the client object isanimportant criterionin some gopli cations.
Theclient not only wantsto receiveindividual replies, but it also wants smerepliesto be delivered before
others, based uponthe sender of thereply. Thisallowsthe dient to pick and processthe repli esfrom some
of itsfavored servers before others. When thereplies already delivered are sufficient for it to proceed, the
client may request the delivery of the replies from the rest of the serversto be abandored.

Group-Based Distributed Computing 89

Group Coordination Models: Platform Support and Policy Specification

7.6.5.1 Ordered Reply Delivery Requirement & Policy Specification

Consider thefoll owingvariationin the requirement of group application-3. The supgiers of agiven mer-
chandise are distributed andlocated at different places. If the inventory manager wantsto arder the mer-
chandisefrom the supgiers neaer to it than those farther fromit, in order to reduce transportation cost or
delivery times, then it would like to receive the replies (merchandise avail ability information) from the
nearest vendarsfirst. Assoonastherequired quantity of theproduct isavailablefromthenearest supgiers,
theinventory manager may nat beinterestedin hearingfrom other supgiers. Thefollowing pdi cy specifi-
cation captures the above mentioned requirements for reply collation and delivery. The C-Agent of the
inventory manager’s GSM is programmed with this palicy.

terminati on_collation_polic =~ 7
for query _merchandise_availability

deliver nmerchandise_availability(merchandise_id,) quantity)
from supplier-3, supplier-2, suppli er-5, supplier-1,supplier-4
within 60 minutes

collation_cardinality UNSPECIFIED

collation_mode SINGLETON(ORDERED)

end_%Jolicy
Fig. 7.11 Ordered delivery of singleton terminations of a reply type

7.6.5.2 Transparency & Policy Interpretation

The pdicy spedfies to the C-Agent to deiver the instances of reply
“merchandise_availabil i ty(merchandise_id,quantity) ", received from thesupgiers
listed in the “from ” clause, as sngleton termination messages, in the order in which the supdiers are
listed inthe“fro ni clause, within 60minutes of the mrrespondng operation invocation.

7.6.6 Unordered Delivery of Multiple Reply Types as Singleton Terminations

When a dient object invokes a heterogeneous server group, it not only recaves multiple replies, but the

received replies are of different types, i.e., instances of different termination signatures. A question that

arisesin such acaseishow to collate and deliver instances of multiple reply typesto the client object. As

shown in the following examples, the client appli cations exhibit different requirements with respect to

these options. One such ogionistheunadered delivery of multi plereply typesas sngletonterminations.

In such a case the client applicaionis charaderised by the foll owing requirements:

1.client isinterested in receiving all reply typesin any order

2.the dientisinterested inreceivinginstancesof each reply type a sngletonterminations so that they can
be delivered to it as soonasthey are received by GSM and hence processed immediately; when suffi-
cient number of instances of a given reply type ae receved, the client may ignare the rest of the
instances of that type.

3.theclient may requiretheinstances of agiven reply typeto bedelivered toit in certain order in order to
processthe replies from its preferred servers ealier than the rest.

7.6.6.1 Reply Collation & Delivery Requirements and Policy Specification

Consider aspedfic exampleof stock inventory system (groupapplicaion-3) inretail grocery business In
this case the inventory manager deals with dfferent supfdier groups, for example thereisadairy group,
bakery group, meat group, fruitsgroup, etc. If the pdlicy of the grocery storeisto order therequired quan-
titiesof merchandiseperiodically, say every two days(in order to get thefresh supgies), thentheinventory
manager invokes the following service request (operation message):
“query_merchandise_ava i lability(my_store_id) "onall the supgiersgroupstofind ou

Group-Based Distributed Computing 90

Group Coordination Models: Platform Support and Policy Specification

the quantity of merchandisein therespedive domainseac suppli er can provide. The membersof the sup-

plier groupsrespondto thisgeneric servicerequest with thefollowing dfferent reply types, indicatingthe

quantity of each product that they can suppy:

Dairy group diary_availability(milk,ch eese,butter,yougurt)

Bakery group bakery_availability(white_br ead,brown_bread,muffins)

Mea group meat_availability(l amb,beef,chicken)

Fruit group: fruit_availability(a pple, banana, orange, strawberry)
Theinventory manager hasarequirement of specific quantitiesof each merchandisetypeandisinter-

ested in placingthe purchase order with the nearest suppi ers. Therefore the inventory manager wantsthe

repli es from each supgier groupto be delivered to it sequentiall y startingwith the nearest supgier to the

farthest one, andas soonastherequired guantity of product isachievablefrom the nearest suppdierswhose

repliesit hasprocesdfirst, theinventory manager isnaot interested in repliesfrom therest of thesupgiers

in that groupand may ignare those replies.
terminatl on_collation_policy
for query _merchandise_availability

deliver diary_availability(milk, ch eese, butter, yogurt)
fromdiar y_Supplier-3,diary_Supplier-2,diary_Supp | ier-4,
diary_Supplier-1,diary_ Supplier-4

within 50 minutes
collation _cardinality UNSPECIFIED
collation_mode SINGLETON(ORDERED)

interleav ed_with

deliver bakery_availability(white_b r ead, brown_bread, muffins)
frontbakery_Supplier-3,bakery_Suppli er-2,bakery_Supplier-5,

bakery Supplier-1,bakery _Supplier-4, bakery Supplier-6
within 50 minutes
collation_cardinality UNSPECIFIED
collation_mode SINGLETON(ORDERED)

interleaved_with

deliver meat_availabil i ty(lamb, beef, chicken)
fronmeat_Supplier-3,meat_Supplier-2 , meat_Supplier-1
within 50 minutes

collation_cardinality UNSPECIFIED

collation_mode SINGLETON(ORDERED)

interleaved_with

deliver fruit_availability(apple, b anana, orange, strawberry)

from fruit_Supplier-3, f ruit_Supplier-2,fruit_Supplier-4,fruit_ Supplier-1
within 50 minutes

collation _cardinality UNSPECIFIED

collation = _mode SINGLETON(ORDERED)

]
end_policy

Fig. 7.12 Policy Specification for interleaved delivery of instances of multiple reply types
Inthisexample, theinventory manager isinterestedinreceving all thereply types. Moreover it want
replies from a given supgier group dcelivered to it in a certain arder (in the order of the proximity of the
suppier). However replies from different suppier groups can be interleaved in any order. The inventory
manager can accept the repli esreceved within 50minutes of correspondng qiery for merchandise avail -

Group-Based Distributed Computing 91

Group Coordination Models: Platform Support and Policy Specification

ability. The pdicy specificaion shown in figure 7.12 cgptures the above mentioned requirements. The
C-Agent of the inventory manager’'s GSM is programmed with this pdlicy.

7.6.6.2 Transparency & Policy Interpretation

The pdlicy spedfiesthe delivery of theinstances of each reply type as sngleton termination messages, to
the client (inventory manager) objed in the order in which the supgiers are listed in the mrrespondng
“from " clause, within 50 minutes of the correspondng operation invocation. The supdiersarelistedin
the “from ” inthe order of their proximity to the grocery store. Theinstances of different reply types may
be interleaved and cHlivered in any order.

7.6.7 Unordered Delivery of Multiple Reply Types as Group Terminations

In some ‘multiplereply type' client applications, the dient canna make an appli cation-specific decision
(i.e.,itcanna proceed further) until it hasreceived al i nstances of eadch reply type. In such casesitisbetter
to collateinstances of each reply typeinto groupterminations andto deliver multiple groupterminations,
onefor each reply type, to the dient objed. These groupterminations can be delivered to the dient in any
order, as oonasthe dl theinstances of areply type arereceived bythe GSM, because the dient applica-
tionwantsto receive all the reply types and is unaffeaed bythe order of delivery of those reply types.

terminati on_collation_policy
for query _merchandise_availability

[

deliver dairy_availability(milk_qua ntity,milk_price,cheese_quantity,
~ cheese_price,butter_q uantity,butter_price)
from diary_Supplier_Gr oup

within 50 minutes
collation _cardinalit UNSPECIFIED
collation = —mode MATRIX

]

interleaved_with

[deliver bakery availab i lity(white_bread_quantity,white_bread price,
muffins_quantity,muffins _pricé)

from balé%r y_Supplier_Group

iiRon_ S ginyies UNSPECIFIED

collation_mode MATRIX

interleaved_with

deliver nmeat_availability(lamb_quantity,lamb_pri ce,beef_quantity,beef price)
from meat_Supplier_Group

within 50 minutes

collation_cardinality UNSPECIFIED

collation_mode MATRIX

interleaved_with

deliver fruit_availabi | ity(apple_quantity,apple_price,orange_ __ quantity,
orangeprice,banana_quant i ty,banana_price)
from fruit_Supplier_Group

¢offaflon_cardimafis

lon_ > UNSPECIFIED
collation_mode MATRIX

end]_policy
Fig. 7.13 Policy specification for Unordered Delivery of Multiple Reply Types as Group Terminations

Group-Based Distributed Computing 92

Group Coordination Models: Platform Support and Policy Specification

7.6.7.1 Reply Collation & Delivery Requirement and Policy Specification

Consider adlight variationin requirement of the previousexample. If theinventory manager makesapur-
chasedecision based uponthe cost of the product rather than the proximity of the product suppli er, thenthe
inventory manager must receiveall therepliesfromasupgier grouptofind ou which supgier sellsagiven
product at the lowest price. Inthiscase, as ©onasall therepliesfrom agiven supdier grouparereceived
by the GSM, a grouptermination must be constructed and delivered to the inventory manager. Hereit is
convenient for the inventory manager to processasinglegroupreply. The groupterminationsfrom differ-
ent suppier groupscan bedeliveredin any order. In this case each supgier not only providestheinforma-
tion abou the quantity of the product that it can supgy, but also the price of the prodict in its reply to
the inventory manager’s query for product avail ability. The palicy specification shown in figure 7.13
captures the aove mentioned requirements for reply collation and delivery. The C-Agent of the inven-
tory manager’'s GSM is programmed with this padlicy.

7.6.7.2 Transparency & Policy Interpretation

The pdlicy in figure 7.13 specifies to the C-Agent to ddliver all instances of each reply type & group
termination messages as onas al replies from a given supgier group are received. The instances of
different reply types may be interleaved and delivered in any order.

7.6.8 Ordered Delivery Multiple Reply Types as Singleton Terminations

In some ‘multiple reply type' client applications, the clients have preference for certain types of replies.
They wish to receive cetain reply types before others and when sufficient number of the desired reply
typesarerecaved, they may terminatetheflow of rest of therepli es. In such appli cationsthe order of reply
delivery is based uponthe ‘type of the reply’. In some gplications, the dient also knows how many
instances of a given reply type to expect and who sends those reply types.

7.6.8.1 Reply Collation & Delivery Requirement and Policy Specification

Consider anather instance of a stock inventory system (group application-3) in a department store. We
illustrate the requirement of ordered delivery of multiple reply types as sngletonterminations througha
simpleexample. A department store, amongst many other merchandise, carrieswinter jackets. Thesejack-
etscomein dfferent colors. The customersshow acertain preferencefor thecolor, say green, due, andred
in the order.

So theinventory manager wishesto kegy asmany green (andthen bue) jacketsin stock asavailable
from thesuppiers. There aemultiplesupdiersof winter jacketsandeach supdi er providesaspecific-col-
ored jacket. Duringthewinter season,theinventory manager wishestokeep his gock of jacketsat acertain
threshaldlevel, soit periodically sendsthefoll owing query tothesuppier grouptofind ou thetype(color)
of the jacket and the quantiti es avail able from each o the supdier:

“query_merchandise_ava i lability(my_store_id) ”

On recept of this query, the jacket suppiers respondwith ore of thefollowmg replies:
green_ja cket(supplier_id,quantity,date_av ailable,cost_per_piece)
blue_jac ket(supplier_id,quantity,date_ava i lable,cost_per_piece)
red_jack et(supplier_id,quantity,date_avai | able,cost_per_piece)

If the inventory manager can get the required quantities of green jackets, thenit isnat interested in
receiving aher types of replies. If the required gquantity of green jadketsis not available, the it wishesto
receive the replies of the blue jacket suppiers, etc. Moreover, the inventory manager has a cetain time
limit associated with receivingthereplies, after whichit wil | order what ever isavailablefrom thesupgiers
who have responded to its query. The following pdicy specification captures these requirements.

Group-Based Distributed Computing 93

Group Coordination Models: Platform Support and Policy Specification

terminati on_collation_policy
for query _merchandise_availability

deliver green_jacket(s upplier_id,quantity,date_available,cost _per_piece)
from green_jacket supp | ier_Group

within 60 minutes

collation_cardinality UNSPECIFIED

collation_mode SINGLETON

followed_by

deliver blue_jacket ier i i i i
o blue_jack_elt_Su p(pl sulpeprll% Tcl)%,guantlty,date_avallable,cost_ per_piece)

within 60 minutes
collation_cardinality UNSPECIFIED
collation_mode SINGLETON

]
followed_by

deliver ~ red_jacket gupplier_id,quantity,date_ava i lable,cost_per_piece)
from red_jacket Supplier_Group

within minutes

collation_cardinality UNSPECIFIED

collation_mode SINGLETON

I
end_policy
Fig. 7.14 Policy Specification for Ordered Delivery of Multiple Reply Types as Singleton Terminations

7.6.8.2 Transparency & Policy Interpretation

The pdlicy in figure 7.14 spedfies to the C-Agent to deliver instances of each reply type & sngleton
terminations. The instances of the reply “blue_jacket() " are delivered to the client only when all
theinstances of thereply “green_ j acket() " arereceavedfromits supdier group a after the expiry
of itstime out period, whichever occurs first. Similarly, the instances of the reply “red_jacket() ”
are delivered only when all the instances of the reply “bl ue_jacket() " arereceived from its sup-
plier group a after the expiry of itstime out period.

7.6.9 Disabling the Delivery of Other Reply Types by a Preferred Reply Type

Althougha dient object may receive multiplereply typesfrom the server group,in someapplications, the
clientisinterested in only one specificreply typeandif thisreply typeisgenerated byany one member of
theserver group,all other reply typesare of nosignificancetotheclient. If thisdesired (or preferred) reply
typeisreceived, then all other reply typesneed to bediscarded and only the desired reply typedelivered to
the dient. Inthe dsenceof therece pt of thedesired reply typethe dient may beinterestedinreceivingthe
other replies. The foll owing example demonstrates this requirement.

7.6.9.1 Group Application-4: Mobile Telecommunications

Mobiletelecommuni cations givesthe subscriber the freedom of mohility. It givesthe subscriber theability
toreceiveandinitiate phorecdl son hisor her terminal anywhereinthe‘ mohili ty domain’ and becharged
to his home phore account. The subscriber (or terminal) is registered in one administrative domain (a
courtry or a telecommunications company). The subscriber (terminal) registration service within an
administrative domain is usually implemented as a distributed name service in which the global name
space (subscriber identificaioninformation) ispartitioned, andadifferent nameserver maintainseach par-
tition.In caseof mohiletelecommunicaions, theterminal registrationserviceisdistributed between multi -

Group-Based Distributed Computing 94

Group Coordination Models: Platform Support and Policy Specification

ple Home Location Registers (HLRS) located in dfferent citiesand aganised asasingle logical service,
called an ‘HLR Group . A subscriber (terminal) isregistered in ore of the HLRs.

GSM @

Fig. 7.15 Group Interrogation in Mobile Telecommunications

When the user visitsaforeign administrative domain andwishesto initiate or receive call s, he must
register with the Visitor LocationRegister (VLR) of thevisited damain. The VLR groupcasts an authenti-
cation request, authenticate _terminal(terminal_id) , to the HLR Group of the users
domain. If the user isregistered, orly one of the members of the HLR groupresponds pasitively with the
reply registered_t erminal(terminal_id) , While dl othersrespond negatively with thereply
unregist ered_terminal(terminal_id) . If the user is urregistered, then all HLRs respond
with unregistered_terminal(terminal_ id).

7.6.9.2 Reply Collation & Deliver Requirement and Policy Specification

In goupapplication-4,the VLR isinterested inreceiving aregistered_ terminal() reply from
any ore of the members of the HLR group. If thisreply isreceived from any one of the HLRs, then all
other replies are of nosignificanceto the VLR (client). If the terminal isnot registered in any HLR, then
oneunregistered_ terminal() replyis sufficient, say the most recent one. Sincethe VLR canna
wait indefinitely, atimelimit hasto be imposed for the acceptanceof replies. If reply from any one of the
HL R groupmembersisnot received within the specified timelimit, thenthe VLR shoudreceve anexcep-
tionfrom its GSM indicating the receipt of insufficient replies within the specified time limit.

It is irrelevant to the dient (VLR) which name server (HLR) responds. The palicy specificdion in
figure 7.16captures the above mentioned reply collationand delivery requirements. The C-Agent of the
VLR's GSM is programmed with this pdlicy.

7.6.9.3 Transparency & Policy Interpretation

It may benoted that if the “registered_terminal(terminal_id) "reply isrecaved from any one mem-
ber of the HLR group,then delivery of the rest of therepliesisdisabled, andthisreply isdelivered to the
client. However in order to deliver the“unr egistered_terminal(terminal_id) " reply, the GSM must
wait until thereceipt of thistype of reply from all membersof theHLR group.Since onereply of thistype
is sufficient, only ore reply (the most recent one) is picked ou of the many
“unregistered_terminal(ter mnal_id) " repliesfor delivery to the dient (VLR).

Group-Based Distributed Computing 95

Group Coordination Models: Platform Support and Policy Specification

terminati on_collation_policy
for authe nticate_terminal

deliver unregistered_t erminal(terminal_id)
from HLR_Group

within 900 msec

collation _cardinality ATLEAST(ALL)
collation _mode MATRIX(RECENT)

]
disabled_by

deliver registered_ter mnal(terminal_id)
from HLR_Group

within 900 msec

collation_cardinality ATMOST(1)
collation =~ _mode SINGLETON

]
end_policy

Fig. 7.16 Policy Specification for Disabling the Delivery of Other Reply Types by a Preferred Reply Type

7.6.10 Choice between Multiple Reply Types

In some applications, the dients may show choice between reply typesbased uponsome criterionsuch as
the number of the received reply instances, for example to know what do the mgjority of theinterrogants
say. In ather casesthischoiceisbased uponthe source of thereply type, for exampleto know what do spe-
cificmembersof theinterrogated group raveto say. Thefoll owingexampledemonstratesthisrequirement.

7.6.10.1 Group Application-5: Group Survey

Groupsurvey isa ammmon practicein many applicaion damains. A surveyor objed wishesto collect the
opinion d the members of the surveyed groupon aparticular subject or topic. The surveyor object broad-
casts a “query(topic) " message to the surveyed group and waits for their reply. In such applications a
binary reply isexpeded from the surveyed group.It could be ayes() or No() reply or anapproved() or
unapproved _reply() , €tc. Inthe simplest case the surveyor object isinterested in the reply returned by
themajority of thesurveyed groupmembers. In someother cases, thesurveyor objedisinterestedinal the
received reply types and the number of instances of thase reply types.

terminati on_collation_policy
for query

deliver Yes(member_id)

from Surv eyed_Group

within 1 day

collation _cardinalitATLEAST(MAJORITY),ATMOST(ALL)
collation _mode MATRIX

choice

deliver No(member_id)

from Surveyed Group

within 1 day

collation _cardinality ATLEAST(MAJORITY),ATMOST(ALL)
collation ~_mode MATRIX

]
end_policy
Fig. 7.17 Policy Specification for Choosing b etween reply types based upon cardinality requirements

Group-Based Distributed Computing 96

Group Coordination Models: Platform Support and Policy Specification

7.6.10.2 Reply Collation & Deliver Requirement and Policy Specification

In groupappli cation-5, the surveyor object isinterested in receiving orly thereply typewhichisreturned
by majority of the surveyed groupmembers. Moreover, it wantsto know the identities of these members.
The other reply types shoud be discarded. The pdlicy specificaionfigure 7.17 captures the eove men-
tioned reply collation and celivery requirements. The C-Agent of the surveyor's GSM is programmed
with this pdlicy.

7.6.10.3 Transparency & Policy Interpretation
The choice operator in figure 7.17 explores both the sides smultaneously and delivers only ore of the
message for which the ‘ cardinality’ (or coll ationtime out) clauseis stisfied first and dops the other.

7.6.10.4 Group Application-6: Scheduling Group Meeting

Scheduling goupmedingsisanother commonrequirement in many organisations. A secretary isrespon
sible for scheduling these meetings. The secretary sends a query “are_you_available(d ay,time) " to
the membersof the groupto find ou their availability onaparticular day andtime. The membersrespond
with “Yes(member _id) ” or “No(member_id) " replies. Usualy there are some minimum membership
requirements for scheduling meetings, such as ameeting canna be scheduled withou the presence of at
least three managers and at |east five staff members.

7.6.10.5 Reply Collation & Deliver Requirement and Policy Specification
In groupappli cation-6, ameeting canna be schedul ed without the presence of at least three managersand
at least 5 staff members. Moreover, the secretary wantsto know theidentiti esof all memberswhoarewill -
ing to attend the meding. If this condtion canna be satisfied, the secretary wantsto get asinge ‘No’
reply.

Thefollowing pdi cy specificationcapturesthe bovementioned reply coll ationand delivery require-
ments. The C-Agent of the secretary’s GSM is programmed with this padlicy.

terminati on_collation_policy
for are_y ou_available

deliver No()

from MANAGER_Group, STAFF_Group
within 1 day

collation_cardinality UNSPECIFIED

collation_mode MATRIX(RECENT)
]
disabled_by

deliver Yes(member_id)

from MANAGER_Group, STAFF_Group

within 1 day

collation_cardinality ATLEAST(ANY(3,MANAGER),ANY(5,STAFF)),
ATMOST(ALL)

collation_mode MATRIX

]
end_polic vy
Fig. 7.18 Policy Specification for Choosing b etween reply types based upon sender identity

7.6.10.6 Transparency & Policy Interpretation
Thispadlicy specification celivers one of the two reply typesto the dient based uponthe @ove mentioned
rule. Moreover asingle “No” reply (the most recent one) is snt if the &ove condtionisnat satisfied.

Group-Based Distributed Computing 97

Group Coordination Models: Platform Support and Policy Specification

7.7 ‘Group -Service’ Request Models: Service Request Collation Models

The basic client-server model isa‘single request - single reply’ model. Some group-based appli cations

giveriseto‘ group-servicerequest - multiplereply models', as showninthe examplesbel ow. Thesetype of

appli cationsare examplesof “client group- singletonserver” coordinationmodelsinwhich aset of clients

which arerelated to each other in an appli cation-specific manner and which require the sametype of ser-

vice ae organised as aclient group and are placed under the supervision a management or serviceof a

single (supervisor or manager or) server objed. Such coordination models aretypicdly characterized by

the foll owing properties (see sedion 2.2.2.9:

1. Multipleinstances of the same servicerequest (operationsignature) or instancesof different partsof the
same service request are invoked from client group to server objed.

2. Servicerequests are invoked periodically from client groupto server object.

3. Server’sreply is based uponthe group-inpu (group service request).

These type of applications require that the individual service requests of the same type from the
members of the dient groupbe combined together into asingle “group-servicerequest” which isinvoked
onthe server object. The server objed now has access to the total groupservice request throughasingle
operationinvocation. The server object can then analyse or processthetotal groupinpu together and gve
itsreply (or replies) to the dient group membersbased uponthe groupinput. The subsequent activiti es (or
behavior) of the dient groupmembersis modified uponthe recapt of the reply from the server object.
Hencethesetypesof coordinationmodel sare charaderised bythefoll owingadditional property: “thesub-
sequent activities (or behavior) of each client is dependent uponand |or biased bythe previous adivities
(or behavior) of the rest of the members of the dient groupg’.

This type of group coordination model involves the collation of clients srvice requests into a
group service request which isinvoked onthe server objea and the distribution of multi ple replies gen-
erated bythe server object (in resporse to the group service request) to the members of the client group.
There ae many applications which exhibit this type of group coordination model, such as network
management systems, land a mohil e traffic control systems, processcontrol applications, etc.

7.7.1 Group Application-7: Network Management Application

Client groups offer a convenient solution to the problem of organising a set of related oljects under the

management (or control) of amanager object andfor disseminatingmonitoringand management informa-

tionin distributed appli cations. Network management systemsexhibit two prominent characteristicsof cli-
ent group-based appli cations:

1.Clientgroupmodels: Thetwo main entiti esof the network management systemsarethemanager objeds
andthemanaged oljects. A group o related managed oljectsina cetain geographicareaor inapartic-
ular administrative domain are organised together asasinglelogical entity whichismanaged byaman-
ager object. Each managed olject sendsitspartial (andlocd) statusinformation to the manager object
and expeds to receive a management signal from it based uponthe total group inpu. Here we have a
case of “client group’ interacting with asingle server objed.

2. Globd deasionmodels. Network management systems are based upon d¢obal dedsion modelswhich
rely onnetwork-wide statusinformationfor management function. Examplesof global decisionmeda-
nismsinclude routing algorithmsthat compute routes based upa network-widetraffic condtions sich
aslinkfailures, congestioncondtions, etc. Network managersrequireglobal network inpu beforethey
can make aty management decisions in order to ogimise network-wide performance characteristics.

Consider asimple example of telecommunicaion retwork management. A telecommunication network

Group-Based Distributed Computing 98

Group Coordination Models: Platform Support and Policy Specification

consists of aset of switches conneded together by communicationlines. A set of switchesin aparticular
geographic area(such asacity) areplaced under the management of atraffic manager whichisresporsible
for managing switches and for maintaining kelanced traffic condtions on the network links.

The set of switchesis organised asamanaged-object groupunder the management of the traffic manager
objed. As down in figure 7.19, each switch is represented by a managed olject (MO), a software
entity, which periodicdly reports its gatus information to the traffic manager (in the form of an opera-
tion message) and expects a reply, a management command, from the traffic manager. The managed
objed grouprepresents a client group of the traffic manager object which acts as a server object.

The traffic manager object expectsto receive the combined statusreports of al the switches (MOs) inits
domainin order to evaluatethe overall network condtion. It isexpected to gve amanagement command,
inresporseto thegroup statusreport, to theindividual MOsin theform of repliestotheMOs. Thereply of
thetraffic manager isbased uporthegroupinpu andcould bedifferent for individual switches. Thereplies
suggest achangein thetraffic routing dan or no modificationto the existing routing table. Each switch
periodically sends the following operation message to the traffic manager:

my_statu s(buffer_space,throughput,delay,| i nk_condition), and expects to
receive one of the foll owing termination messages from it:

route_tr affic (in_link, out_link)

status_ O K()

-~

K/

MO-1

(o}e) | |OO |
W
2
o
=y
oS
t||on Netwo

GSM Traffic
Manager

icati

Switch-2-

Telecommun

o x MO-n
____Switch-n

Fig. 7.19 Group Interrogation in Telecommunications Network Management

7.7.2 Constructing a ‘Group-Service’ Request: Matrix-Mode Collation & Policy Specification

Thenext questionishow to combineindividual servicerequests(operationmessage) from the dient group
into a group-service request (group ogeration message). In sedion 3.6, we have described two basic
coll ation schemes: the matrix-mode and the linear-mode collation schemes, as smple and straightfor-
ward message groupng medanisms. The matrix-mode coll ation schemeis applicable in casesin which
each member of the dient groupsends a mwmplete instance of the operation signature. In group applica-
tion7, each member of the managed-object group sends a @mplete instance of the
“my_status(buffer_spac e,throughput,delay,link_condition)" operation. Now let
us examine the other requirements of message ollation.

Group-Based Distributed Computing 99

Group Coordination Models: Platform Support and Policy Specification

In groupappli caion-3, the managed-object group sends datus report to the traffic manager object
every 60 minutes. The traffic manager wants to receive the combined status report from all theMOs asa
singlegroup ogerationinvocaion.Inthisexample, themanaged olject groupconsistsof 11 members. The
traffic manager wants datusinpusfrom at least 7 managed oljects, otherwisethegroup input isnat suffi-
cient for the traffic manager to make any decision abou the global network traffic condtion. If multiple
status reports are received from the managed olject during a @llation period, then the traffic manager
wants the most recent input to beincluded in the group operation message, because it conveys the latest
status information. The foll owing pdicy specification, captures these requirements. The C-Agent in the
GSM of the traffic manager is programmed with this padlicy.

operation _collation_policy
for my_st atus

deliver my_status(buffer_space,thro ughput,delay,link_condition)
from switch_Group

every 60 minutes

collation_cardinality ATLEAST(7), ATMOST(11)

collation” _mode MATRIX(RECENT)

]
end_policy
Fig. 7.20 Operation Collation Policy Specification

7.7.3 Transparency & Policy Interpretation

The aove pdlicy specification programsthe C-Agent to coll ect the instances of the message specifiedin
the “deliver-clause " which arereceived fromthesources pecifiedinthe “from-clause " during
thetime duration specified in the “every-clause ”. If the required minimum number of messages are
received within the specified coll ation period, then the C-Agent constructsthe groupmessage in the speci-
fied coll ation mode, otherwise an exceptionterminationis constructed and sent to the client groupmem-
bers. The group ogeration message is invoked onthe traffic manager (server) object at the end d the
collation period.

7.7.4 Group Application-8: Target Location Acquisition Sonar System

The military sonar system, which isused to locate underwater targets such as sibmarines, etc., isanother
variationof above mentioned group coordinationmodel inwhich related cli ent objeds, organised asacli-
ent group, send their inpus, as operation messages, to the server object, and each of them is dependent
uponthe aumulative server’sreply (which isbased upongroupinpu) to pasitiontheir ‘firing stations' on
thetarget. Thedifferenceinthiscasebeingthat each member of thegroupsendspartial inpu (partial oper-
ationsignature) to the server objed, but each o themisinterested in the completereply (the completeter-
mination signature) from it. The followingis asimplified version d the sonar system.

The sonar system consists of aset of sonar stationswhich are placed at strategic locationsonthe sea
surfaceor onthe seashore, so asto scan awide-volume of seawater. Each sonar stationisequipped witha
‘firing device', whichwhen gventhelocation d thetarget can pant andfire & it. The sonar stationsoper-
ateusingthe soundwavestechndogy. They are cgableof givingthedistance of thetarget object fromthe
sonar andan approximate direction, but nat the actual locaion(i.e.,the‘x’,'y’, and‘z’ coordinates) of the
target. Obviously asingle sonar isnat sufficient for target locaionacquisition.Hence aminimum of three
sonars are employed to oltain sufficient information (i.e., target distance from each of them) to cdculate
the target location (target’s coordinates) in the sea.

As downinfigure 7.21,the set of sonar stationsis organised as a dient group urder the guidance
of an doff-shore ‘target tracking system’. Each sonar station sends the distance of the target from itself to
the tracking system, in the form of an operation message: “target_distanc e(D) ". The existence

Group-Based Distributed Computing 100

Group Coordination Models: Platform Support and Policy Specification

of the sonar groupis transparent to the tracking system. The tracking system expects to receve the fol-
lowinginpu, as an operation message from the sonar group target_distanc e(D1, D2, D3).

target_distance(D1)
. 'farget_location(X-coord, Y-coord, Z-coord)

target_distance(D1, D2, D3)
: ;target_location(X-coord, Y-coord, Z-coord)

target_distance(D2)
: : target_location(X-coord,
Sonar-2 H 9et (

“ESM

(_|stanc_e(D§2
‘rfarget_location(X-coord, Y-coord, Z-coord)

Fig. 7.21 Group Interrogation in Sonar System

Thetrackingsystem functionsasaserver objed, becauseit computesthelocation(i.e., coordinates)
of thetarget based upon the client groupinpu andits own knowledge abou the locaion d theindividual
sonars and sends the target coordinates back to each sonar in the form of a termination message:
“target_location(X-coo r d,Y-coord,Z-coord) ”. The sonarsfeed thisinformationto their
locd firing devices, which useit to pant at the target andfire at it.

This application represents atightly-couged and nonscalable application. The tradking system is
tightly couped to the three member sonar station group. Thetracking system can orly accept inpusfrom
these three members. Any changein the dient group membership canna be accommodated bythe server
objed. Moreover theclientinpus, athowgh of the sametype, must beboundto the correspondng parame-
ters of the server’s operation signature.

7.7.5 Constructing a Service Request from Partial Service Requests: Linear-Mode Collation & Policy
Specification

Group Application-8 is an example of client-group-based applicaion in which each client gives partial
input (partial service request) to the server object. The complete service request is constructed, onthe
server side, by combining the partial service requests using the linea-mode ll ation scheme. Moreover
inputs from al the sonar stations are required, aherwise the target coordinates canna be calculated. If
each sonar station sends the target distance, say every 3 minutes, then the foll owing pdicy specificaion
capturestheserequirements. The C-Agentinthe GSM of thetracingsystemisprogrammed withthispal-

icy.

operation _collation_policy
for t[arge t _distance

deliver t arget_distance(D1, D2, D3)
from sonar_station_Group

every 3 minutes

collation_cardinality ATLEAST(ALL)

collation =~ _mode LINEAR

end_policy

Fig. 7.22 Linear-Mode Collation of partial service requests

Group-Based Distributed Computing 101

Group Coordination Models: Platform Support and Policy Specification

7.8 Replies to Group-Service Request: Reply Distribution Models

As mentioned in section 4.2.3,the group-oriented server may generate either a single reply or multiple
replies, onefor each member of the dient group,inresporseto thegroup-servicerequest (i.e., group ofer-
ation message). In case of asingle reply, it is meant for all the members of the dient groupand hence, a
copy of it issent to each member of the group.In case of multiple repli es, the order of reply generationis
based uponalocal protocol between the server and its GSM. Hence the GSM (or the D-Agent) knows
which reply isto be sent to which client.

7.8.1 Multiple Replies to Group-Service Request

In groupapplication-7, thetraffic manager object, which isagroup-oriented server object, gives multi ple
replies, onefor each managed olject, inresporseto thegroup operationmessage. Theserepliesare gener-
ated by the traffic manager in the order in which the comporent operation messages, of each managed
objed, werearranged in the wrrespondng goup operation message. The D-Agent must sendthereplies
only to thase managed oljedswhose componrent operation messageswereincluded inthe correspondng
group operation message (i.e., ony to thase clientswho have actually requested the serviceand nd to all
members of the client group). The following dstribution pdicy spedfication programs the D-Agent to
sendthe nth reply received from the traffic manager to the managed olject whase operation message was
placed in the nth row in the crrespondng goup operation message.

terminafi on_disiribufion_policy
for my_st atus
distribute REPLIES
to SENDERS_IN_ROW ORDER
using UNORDERED_MULTICAST
end_policy

Fig. 7.23 Multiple Replies Distribution Policy

7.8.2 Transparency & Policy Interpretation

The above padlicy specifies that the replies received in resporse to the group ogeration spedfied in the
“for clause” be distributed to the senders of the componrent messages of the group ogration. The ‘ny,
reply is nt to the sender of the ‘ny," comporent of the group ogeration message.

7.8.3 Single Reply to Group-Service Request

In groupapplicaion8,asingereply, “target loc ation(X-coord,Y-coord,Z-coord) ,is
received from the tracking system in resporse to the group opration message,
“target_distance(D1,D2 , D3) ".This reply isto be sent to al the sonar stations, because their
comporent operationmessageswereincluded inthe correspondng group operationmessage. Thefoll ow-
ing pdicy specification programsthe D-Agent of the trading system to senda apy of thereply to all the
‘senders’ of the component operation messages of the @rrespondng group oferation message.

terminat 1 on_distribution_policy
for targ et distance

distribute _REPLY_

to SENDERS

using UNORDERED_MUICAST
end_poli cy

Fig. 7.24 Single Reply Distribution Policy

Group-Based Distributed Computing 102

Group Coordination Models: Platform Support and Policy Specification

7.9 Synchronised Invocation Model

The most general groupcoordinationmodel isthebinding o a dient groupto aserver group. Many coor-
dination kehaviors can be seen in this coordination model. In this section we discussa specific dassof
coordination behavior whichisthe dharacteristic feaureof appli cationsinwhichagroup d clientsinterro-
gates a server groupin a synchronised manner.

Whenever a dient group,instead of asingleton client, interrogates a server group,abasic question
that arisesishow to coordinate the invocation d multi ple service requests (operation messages) from the
members of the client group. In section 7.7, we described ore method d synchronising the invocaion
of multiple service requests from aclient group ona server object. In this case, each member of the cli-
ent group periodicaly invokes (operation |natification) messages of the sametype (i.e., instances of the
same message signature), and the synchronisation is achieved by collating the message instances of the
same type, invoked duing a given periodic interval, into a group service request. In this section we
describe another method d synchronising the invocation d multiple service requests from a client
group. In this case, each member of the dient groupinvokes (operation | naification) messages of dif-
ferent type, and the synchronisation is achieved by scheduli ng these messages in a certain sequential or
paralel order in order to gve amutually exclusive acessof the server groupto the dient group mem-
bers, so asto bring a desired state change in the members of the server group. In this case the distribu-
tion d messages from the members of the dient group are @ordinated based upon some
synchronisation pdicy.

Theinvocation d (operation | ndification) messages from the dient groupin an arbitrary order on
the server group can lea to inconsistent or otherwise undesirable state dhanges in the members of the
server group. Synchronised invocation d messagesfrom the dient groupisthe solution. There aenumer-
ousinvocationsynchronisation kehaviorscorrespondingto dfferent appli calionrequirementsresultingina
wide variety of synchronisation pdicies.

7.9.1 Why Synchronised Invocation in the Client Group

Thedistribution d (operation |natification) messages from the client groupmembersis synchronisedin

“coordinated client groupapplications’ due to many appli catlion requirements. In this sctionwe list the

Maj or Ones.

1. To oltain quaum (permisson) of superior roles before message distribution: In some client-group
based applications, the groupmembers have different roles, and subardinate roles are required to seek
thequarum or permisson d superior rolesbeforethey sendtheir servicerequestsor information ndifi-
cations to the server group. The quarum is provided based uponthe @ntents of the message or the
source and cestination d the message or acombination o all of them.

2. To grant fair accessto the server groupto the dient groupmembers: In some goplications the dients
want amutuall y exclusive aaccessto the services of the server group.In such casesaroundrobin or apri-
oritised accesspalicy may beemployedin arder to schedulethedistribution d the servicerequestsfrom
the members of the client group.

3.To bring a cesired statechangeinthe server groupmember sthroughsynchronised messageinvocations:
In some client-group kased appli cations, members of the client group reed to invoke messages onthe
server groupin some synchronised way in order to
a. gain mutually exclusive access to the server group,andto
b. bringcertain appli cation-specific state changeintheserver group,through the coordinated invocaion

(or distribution) of messages from the client group members.

Group-Based Distributed Computing 103

Group Coordination Models: Platform Support and Policy Specification

In such applications, a dient canna invoke an (operation |natification) message on the server group
until some previous message(s) have been invoked by some specific member(s) of the dient group,
and a confirmation received by them that the desired state dhange has occurred in the server group.
Hence amessage is not scheduled for distribution bythe GSM until a ‘ synchronisation message’ is
received from other GSM(s), signalling successful delivery and |or execution d the previous mes-
sages.
There are many aspects of synchronisation pdi cy that need to be programmed in the S-Agent of the
GSM in order to specify the different message synchronisationrequirementsof theappli cations. An exam-
ple of synchronisation pdicy is siown in section 7.9.6.

7.9.2 What are Synchronisation Events in Client Group s
Inasynchronised invocation model, an (operation |natification) messageinvoked bya dient onitsGSM is
not distributed to the server group bythe GSM urtil the GSM either explicitly seeks the permisson d
other membersof the dient group or it (i.e., the GSM) isimplicitly informed when an event of somesignif-
icanceto the application accursin ather members of the dient group(i.e., gven the permissonto invoke
themessage). Inthelatter case, the event of significanceiscalled asynchronisationevent, and themessage
that conveys the occurrence of this event to other members of the groupis called a synchronisation mes-
sage.

The objedive of the synchronised invocation model isto gve a ©®ordinated or mutually exclusive
accessof the server groupto the dient groupmembers. Thismeansthat whenever aclient relinqushesits
use of the server group, it (or its GSM) must inform the other members (or their GSMs) so that the next
message can be invoked (distributed) onthe server group. The questionthat arisesiswhat informationis
required by the dient (or itsGSM) to know that its message has been delivered to the server groupandthe
state of the server group hes been appropriately modified. The receipt of thisinformation constitutes the
synchronisation event which triggers asynchronisation message. Thisinformationis appli cation specific
and the nature of this information varies with appli cation requirements. In the following section we list
some events which are considered as s/nchronisation events by the “coordinated client group applica-
tions’:

1. Receapt of message delivery confirmation from the GSM: In some applicationsit is sufficient to know
that a(operation | naification) message has been delivered to all the server groupmembers. Assoonas
thisconfirmationisrecaved, asynchronisation message may be sent to the other members of the dient
group (so that messages can be scheduled for distribution from thaose sites). This confirmation can be
obtained from the underlying multicasting protocols, such asan atomic ordered broadcast protocol. As
soonasthe D-Agent rece vesthisconfirmationfrom theunderlyingmulticast protocol object, it informs
the local S-Agent in the dient's GSM. The S-Agent then constructs the appropriate synchronisation
message and sendsit to the other members of the dient group(i.e., to the SSAgentsin their GSMs), as
spedfied in the synchronisation pdicy.

2.Receipt of messagedeli very confirmationfromtheservers. In some other applications, asimplemessage
delivery natification from the underlying multi cast protocol object isinsufficient to establish that the
desired state change hasoccurred in the server groupmembers. Therequirement isto issuiethe synchro-
nisationmessage only when repliesarereceived from the server groupmembers. Theserepliesare con-
firmationthat an action hesbeen performed bythe servers. As onastherequired number of repliesare
received bythe C-Agent, it informsthelocd S-Agent inthe dient’'sGSM. The S-Agent then constructs
the gpropriate synchronisation message and sends it to the other members of the dient group(i.e., to
the S-Agentsin their GSMs), as gedfied in the synchronisation pdicy.

Group-Based Distributed Computing 104

Group Coordination Models: Platform Support and Policy Specification

3. Receipt of desired state change natificationfromthe previouscli ent: In some other synchronisedinvoca-
tion models, such as the example in section 7.9.5, a (operation) message can be invoked only on
those server group members which have succesgully executed the previous messages invoked by
other clients, according to some gpli cation-specific criterion. In such applications the mere recapt
of replies from the server group membersis insufficient to establish that the desired state change has
occurred in the servers or a succesdul execution d the client’'s message was performed by the serv-
ers. This requirement arises in appli cations in which the server group members are of the same type
(possess smilar cgpabilities or functionalities), but are nat replicas, such as a group d robas, or a
group d students which perform the same requested operation with dfferent levels of preasion a
corredness. In such applicationsit is required to analyse (or process the repliesto determine that the
desired state change has occurred in the servers or the results of the message execution returned by
the servers, in their replies, conform to the desired level of acceptance.

Thereforewhen all therepliesare received from the server group,the C-Agent collatesthem into a
grouptermination message and celiversit to the dient object. The dient object analyses each reply to
determine which members of the server group have successully exeauted its (operation) messageand/
or which of them have undergonethe desired state change, accordingto some goplication-specific crite-
rion.The dient, theninformsthe GSM (the S-Agent) which members of the server group have success
fully executed its message and which o them have not. This communication between the client
objed andthe GSM occaurs throughthe Group Management Interface (GMI), as described in detail in
sedion 6.2.1.When the S-Agent receives this notification from the client, it constructs the appropri-
ate synchronisation message and sends it to the other members of the dient group (i.e., to the S
Agentsin their GSMs), as gedfied in the synchronisation padlicy.

Thistypeof synchronisationisnot based uponthe number of acknowledgmentsreceived fromthe server
group, but rather on the contents of the replies nt by the server group members.

7.9.3 What are Synchronisation Messages
Thesynchronisation pgrocessinvolves sekingthe permisson o other members of the client group before
the distribution d the message and/ or receiving ndifications from other members of the client group
which grant permissionfor the distribution d the message to the server group.Theclient (or its S-Agent)
which seeks the permisson d other members of the group,in order to dstribute amessage, iscall ed the
synchronisation seeker while the groupmembers which gve (or deny) such a permissonare cdled syn-
chronisation providers.

A synchronisation messageis constructed and sent by the S-Agent to soli cit the permissonto dstribute a

member message or to grant apermissonto distribute the message. There are three types of synchronisa-

tion messages which are exchanged between the S-Agents. They are:

1. Synchronisationsoli citingmessage: Thismessageisconstructed bythe synchronisationseeker S-Agent
and sent to the synchronisation rovider S-Agents, to solicit the permissonto dstribute the message.
Thismessageisconstructed bythe S-Agent when an (operation |natification) messageisreceved from
the dient objed for distribution to the server group.

2. Synchronisationresporse message: Thismessageisreturned in responseto the synchronisation soli cit-
ingmessage by thesynchronisation provider S-Agentsto thesynchronisationseeker S-Agent, to convey
the result of the synchronisation soliciting request.

3. Synchronisation ndification message: Thisisan ursolicited message which is constructed by the syn-
chronisation provider S-Agent and sent to the synchronisation seeker S-Agentsto inform them that a
pending message at their site an be distributed andtheidentities of the server groupmembersto whom

Group-Based Distributed Computing 105

Group Coordination Models: Platform Support and Policy Specification

themessage an bedistributed. Thismessageisisaied bythe synchronisation provider SSAgent as oon
astheconfirmationof themessage delivery and/ or successul state changeisreceived from thelocal D-
Agent or the C-Agent or the client object, as discussd in section 7.9.2.This g/nchronisation mes-
sage saysto itsredpients: “it’s now your turn to dstribute the message” and “ distribute the message
to these members’ (see examplein section 7.95).
Theinformation contained in these synchronisationmessagesis appli cation-specific andisinterpreted by
the S-Agentswhich are programmed to interpret alimited set of information content. The format of these
and the information contained in them is discussed in chapter 9.

7.9.4 Communication between the Client Object and the S-Agent

When a synchronisation soliciting message isrecaved byan S-Agent, it isrequired to deade the type of
resporse (for e.g., authorisation a denia to distribute a message) to gve in a synchronisation response
message and when to sendthat resporse. In some cases, the S-Agent can decidelocally what resporseto
return andwhen to return that response based uponsome synchronisation pdicy (such asaroundrobin o
prioritised message scheduling algorithm) that has been pre-spedfied to the S-Agent. However in some
other cases, the subardinate roles are required to take the permission d superior roles before distributing
themessage. In such casesthe permissionto dstributeamessageisgranted based uponthe contentsof the
message. The membersin the superior role need to analyse the message contents before deddingthetype
of resporse (such as an authorisation a denial to dstribute a message) to gve. In such casesthe S-Agent
needsto contad itsmember objed to gveit themessage mntentsandtheinformationabou thesource and
destinations of the message. This communication between the S-Agent and the member object occurs
throughthesynchroni ser management interface (SMI) of the S-Agent andthegroupmanagement interface
(gmi) of the member object (see dso section 6.2.1).

Similarly in appli cations, such as described in section 7.9.5,in which a desired state changeisto
be brougtt in the server group throughthe wordinated message invocaions from the dient group,the
permisson to distribute the next message from succesor group members is given after the analysis of
the replies (received from the server group) by the current token hdder (client). The airrent token
halder (client) isrequired to inform the local S-Agent which members of the server group have success
fully executed its message and which of them have nat, so that next message from the successor group
membersisdistributed only to those server groupmembers which have successully exeauted the previ-
ous message. Hence there is a need to communicate some appli cation-specific information to the GSM
in arder to enable the synchronised message distribution. This information could be asimple “pass|
fail” information together with the identities of the server group members who have “passed | failed”
the operation message execution, asisthe ase in the examplein section 7.9.5.The interpretation d this
information bythe S-Agent is defined by the application. Again this communication between the dient
and the S-Agent occurs throughthe synchroniser management interface (SM1) of the S-Agent and the
group management interface (gmi) of the member object. On receiving this information from the dient,
the S-Agent constructs the appropriate synchronisation natification message and sends it to succesor
group members.

7.9.5 Group Application-9: Coordinated Testing Application

Inthis ssdionwe describe ageneric exampleof a @ordinated cli ent groupappli cationin order toil lustrate
the principles and requirements of synchronised message distribution from client group members. Our
intentionisnotto describeany particular appli cation, but to gvean examplewhich coversabroad range of
appli cations of thiskind. Applicaionsin the product testing damain and product manufaduring danain

Group-Based Distributed Computing 106

Group Coordination Models: Platform Support and Policy Specification

are some of the examplesthat fall in this category. These goplicationsrequire the coordinated actions of

many agents (testersor builders) in order to carry out thetesting a manufacturing function. In thefoll ow-

ingwe consider ageneric examplefrom atesting damnain. Thisappli cationis characterised bythefoll ow-
ing features:

1.Comporentsof atesting apli cation: Thetestingactivity involvesdifferent typesof testswhich are con-

ducted onobjects-under-test (OUTS) by different tester agents (TAS) which are specialised in gving
thosetestsandin evaluatingtheresultsof thasetests. In an automated testingenvironment thesetestsare
condwcted onagroup d OUTsina aertainsequential (or parallel) order in order to conform to the gopli -
cation-specific testinglogic. For example, sometests must be performed before othersin order to bring
the OUTsto the desired state or to discard those OUTswhich fail the preliminary testsfrom the rest of
the testing activities.
TheTAsrepresent any softwareor hardwareentiti eswhich contain damnain-specifictestinglogicinclud-
ing human agents such as profesors spedalised in specific subjects. The OUTSs represent software or
hardware or mechanica or human entities which are of the sametype (i.e., possess smilar cgpabilities
andfunctionaliti es), but are not repli cas, such asagroup d robasor agroup d studentswhich perform
the same (testing) function with dfferent levels of predsion and correctness

2.0rganisation d testing appication asaclient group andserver group: Thecoordinated testing appli ca-

tionconsistsof agroup d TAsorganised asa dient groupandthe group d OUTsorganised asaserver
group, as gown in figure 7.25. The TAs are ategorized as clients and OUTs as srver objeds
because the TAs invoke testing operations (operation message) on the OUTSs, and the OUTs execute
those testing operations and return the result of their test executionin the form of replies (termination
messages) to the TAs. In some applications, the repli es of the OUTs depend upontheir previousinvo-
cation history.
The TAs analyse the replies received from the OUTs to determine which o them conform to their
required level of acceptance andwhich of themdo nd. Oncethe TA determineswhich of the OUTshave
passed itstest andwhich of them have nat, it must communicate thisinformationto its successor TA(S)
so that it (they) caninvokeits (their) testing operations onthase OUTswhich have passed the previous
tests.

3. Separation d testinglogic fromtest coordinationlogic: As showninthe examplebelow, thetest coordi-
nation(andsequencing) logic could bevery complex. Moreover thetest coordinationlogic changeswith
different appli cationtestingrequirements. Henceitisdesirableto keep thislogic external to the gplica-
tion elements (i.e., tester agents), so that tester agents do na have to be modified for different testing
requirements. In our model thetest invocation synchronisationlogic andthe identiti es of the client and
server groupmembersare madetransparent to thetester agentsandthey resideinthe GSM (S-Agent) as
programmabl e synchronisation pdicy. The TAsonly communicate their passor fail verdict of their test
operationsto the GSM (S-Agent) viatheir gmi (see section 6.2.1) and leave the test coordination and
test progress(i.e. sending the synchronisation ndification message to succesor members) functions
to the GSM (S-Agent).

4. Testing Cycles: In an automated testing environment, there ae many itemswhich comefrom production
environment to testing environment, but thereisonly alimited number of ‘testing faciliti es' . Hence the
tests are conducted in cycles. A fixed number of objeds are tested during each cycle. A testing cycle
consistsof different typesof tests, administered by dfferent TAs, which areinvoked ore after the other
according to the spedfic test coordinationlogic.

Thetest operation (operation messages) for the next cycleisinvoked bythe tester agentsontheir local
GSM at the GlI, as ©onasthey givethe ‘pass or ‘fail’ verdict of their previous operation message to

Group-Based Distributed Computing 107

Group Coordination Models: Platform Support and Policy Specification

the GSM at its GMI (see also section 7.9.7). However, the new test operationis not scheduled for dis-

tribution urtil a synchronisation message is received from the predeaessor clients (i.e., their GSMs).
5. Protocol between Client andGSM: The dient isrequired to invoke the test onthe Gll andto communi-

cate the results of the test to the GSM (S-Agent) onthe GMI. The dient is obliged to inform the GSM

abou the outcome of the aurrent test operation. It impli esthat the synchronised activity inaclient group

requires that the groupmembers are pable of (and ohi ged to) inputing certain appli caion-specific

informationwhichisrequired for the progress of the synchronised activity, such asthe oneabove, tothe

GSM. It istheunderstanding (protocol) between the member andthe GSM that the member invokesthe

next operation onthe Gl1 after giving the verdict of the previous operation onthe GMI. The following

activities are performed by the client object in every testing cycle:

a. Invoke the test message (operation message) at the GlI.

b. Evaluate the replies (delivered throughthe Gll).

c. Convey the result of the test evaluation to the GSM (S-Agent) at the GMI.

Example: Let usconsider aspecifictestingexamplein order toill ustrate the requirementsof test coordina-
tion.Consider agroup d TAs, each specialised to perform aspedfic testingtask onagroup d OUTs. The
foll owing types of tests are performed:

1. Initialisation pocedure at the beginning d atesting cycle: i nit_test() ,

2.'Type-A' test: test -A(aq,a 5,a 3),

3.'Type-B’ test: test-B(b 1,b »)

4.‘Type-C test:test-C(c 1,C ,,C 3,C 4)

5.'Type-D’ test: test-D(dq,d »)

6. 'Type-E test:test-E(e ,,e 5, e 3,€ 4,€ 5),where a,,a 5, b 4,Cc q,C 5, etc.
are test parameters.

Each o these tests are performed by dfferent TAs. In the most general case, there are multiple TAs
assgned to perform atest of agiventype, andinthe extreme casethereisasinge TA per test type. Inthe
genera caseof multiple TAsper test type, each TA performsthe sametypeof test, but not necessarily iden-
tical tests, i.e., testswith identica parameter values. Moreover their test assessment and evaluation crite-
rionisdifferent. In such cases, the application isinterested in oltainingan opnion o different testersof a
given type before declaringa‘pass or ‘fail’ outcome.

In ou example the TA group consists of the following members:

1. A test administrator: TAdmin, which initi ali ses the testing activity

2. One agent which performs ‘ Type-A’ test: TA-1

3. Two agents which perform ‘ Type-B’ test: TB-1, TB-2

4. One agent which performs‘ Type-C’ test: TC-1

5. One agent which performs ‘Type-D’ test: TD-1

6. One agents which performs‘ Type-E’ test: T E-1

After evaluatingtheresults of thetesting operation, each tester agent communicatesthe‘ pass or the‘fail’
verdict of the correspondng test operationtoitslocal S-Agent throughthe followingmessageinvocation
onthe GMI:

sync_ena bling_info(successful_member_list , failed_member_list)

The following are the application-specific test coordination requirements:

1."Type-A” test can be offered only to thase OUTs who have passed init_test().

2.“Type-B” test can be offered ony to thase OUTswho have passed “ Type-A” test.

Group-Based Distributed Computing 108

Group Coordination Models: Platform Support and Policy Specification

GSM (i

GSM test-A(al,a2,a3)

Glo

GSM teSt-B(b1 ,b 7}

Server Group

GSM test-C(C4,C »,C 2,C Q

GSM [#HEC. 3€a€s) : Group cast

Legend:

Client Group

Fig. 7.25 Coordinated Testing Application

3. “Type-C” and “ Type-D” tests can be offered in parall €, i.e., the execution d these tests can beinter-
leaved at OUTSs, however they can be offered orly to those OUTswho passed at least one (of the two)
“Type-B” test.

4.“Type-E” test can be offered orly to thase IUTswho have passed either “Type-C” or “Type-D” test.

5. The test administrator, TAdmin, is natified by the other test agents abou the outcome of the test. A
member of the OUT groupmay either passthetest or fail thetest or not respondto thetest (i.e., itsreply
isnot received within the specified time limit). After the completion d the “ Type-E” test, the TAdmin
must send the final passor failure natifications, with appropriate gradesif required bythe gplicaion
(for product certification, etc.), to the OUTs. So the TAdmin isrequired to send a

5.1"“Grade-A()” natification to those OUTswho have passed “ Type-E” test.

5.2"Grade-B()” natificationtothose OUTSwho havepassed“ Type-C” or “ Type-D” test but not “ Type-E”

test.

5.3"Grade-C()” natificaiontothose OUTswho havepassed “ Type-B” test but not “ Type-C” or “ Type-D”

test.

5.4"Grade-D()” natification to those OUTswho have not passed “Type-A” test.

5.5"Object_Partialy Tested()” natificationtothose OUTswho havenat respondedto any oneof thetests.

Group-Based Distributed Computing 109

Group Coordination Models: Platform Support and Policy Specification

These natificationsare sent asoperationmessagesto the OUTs. When the TAdmin receivesthe con
firmation d the receipt of these natificationsfrom the OUTsin the form of replies (or when the C-Agent
sends an exceptionterminationmessageto it when therepliesare not received within a aertaintimelimit),
it starts the next testing cycle.

7.9.6 Synchronisation Requirements & Policy Specification

Thetest messagesaredistributed to the OUTswhen aspecified synchronisationcondtionissatisfied. The

synchronisation conditionis gecified in the S-Agent in GPSL as a synchronisation pdicy specification.

The synchronisation condti on represents the test coordination logic. In this sdion we describe the test

synchronisation requirements and the test outcome natification requirements of the tester agentsin group

appli caion-9 and the correspondng synchronisation pdicy spedfication.

1. Test Initiali sation: Thetest administrator, TAdm n, initi ali sesthe OUTsand preparesthem for the sub-
sequent testingadivity, at the beginning of every testingcycle. Thereisno precondtionto thedistribu-
tionof theinit_test() operationinvoked bythetest administrator. However, oy thoseOUTswho
havesuccesdully initialised themselves shoud beincludedinthe subsequent testingactivity. Hencethe
result (passor fail) of theinit_test() shoud be natified to the next tester agent, i.e., TA-1. The
following pdicy spedficationcapturesthe“init_ t est() ” synchronisationrequirements.Itis eci-
fied to the S-Agent associated with TAdm n.

synchroni sation_policy
sync init _test()

)

notify

sync_events passed(),failed(),reply_ not_received(),test_not_scheduled()
to TA-1,TAdmin

]end_polic y
Fig. 7.26 Synchronisation Policy Specification for the S-Agent of TAdmin

2.Sequencing” Type-A” test after testinitiali sation: The “Type-A” test can oy bescheduled for distribu-
tion after the completion of test initialisation process by the test administrator. Moreover, only those
OUTswho have succesdully initi ali sed themsel ves are offered the “ Type-A” test. The outcome of the
“Type-A” test must be natified to tester agents of “ Type-B”. The outcome of all thetestsisnatified to
the test administrator. The following pdicy captures these requirements. It is Pecified to the S-Agent
associated with TA-1.

synchroni sation_policy
sync test -A(al, a2, a3)
with

unsolicited_reception_of passed(mem ber_list)
from TAdmin

within ~ Time_Limit_1

]sync_card i nality ATLEAST(ALL)

notify
sync_events Ppassed(),failed(),reply_not_received ().test_not_scheduled()
] to TB-1, TB-2, TAdmin

end_policy

Fig. 7.27 Synchronisation Policy Specification for the S-Agent of TA-1

Group-Based Distributed Computing 110

Group Coordination Models: Platform Support and Policy Specification

Policy Interpretation: In the &ove pdlicy specificaion, we introduce afew new language primitives.
These are explained in detail in chapter 8. Intuitively, the semantics of this palicy specificationisto
synchronise the distribution d the message specified in the ‘sync’ clause with the (unsolicited)
reception d a synchronisation rotification message, “passd()”, from the TAdmin within a certain
time of the invocation d the message, test-A(a 1,a »,a 3) , by TA-1. If the synchronisation ndifi-
cation message is not received within the spedfied time period, then the message is not distributed
and an exception termination is returned to the member (TA-1) aongwith the gpropriate exception
information. The synchronisation ndificaion message cntains the list of the members who have
succesgully executed the previous message invoked by TAdmin. The message is required to be dis-
tributed orly to these members. If the list is empty, then the message is not distributed and an excep-
tion termination is sent to the member (TA-1) along with the gpropriate exception information.
Moreover, the S-Agent sends a synchronisation ndification message,
“test_not_scheduled() ", to the members gecified in the ‘natify’ clause to inform them that
nore of the members could qualify for my test. This enables the progress of the other testing activi-
ties within the testing cycle and krings the testing cycle to its termination.

As mentioned in section 7.9.4, the S-Agent expeds to receive a natification from the associated

member (TA-1), viathe SMI, which contains the identities of the reply messages which are declared

‘pass and ‘fail’ by the member. These identiti es are mapped onto the crrespondng member identi-

ties by the S-Agent (see section 7.9.7). The S-Agent then constructs a synchronisation ndificaion

message which contains identifiers of the server group members who have passed, failed, and nd
responckd to the test, and sends it to the members specified in the ‘natify’ clause.

At any given site, the S-Agent is required to ndify the following events, throughthe SSNTF-GPDU

(see section 9.7.2), to the other S-Agents asociated with the members gecified in the ‘ notify’ clause

These events may be generated by the group member (test agent), the locd C-Agent, or due to a

time-out condtionin the S-Agent.

1. Thelist of the memberswho have passed the test: passed(member_list) . Thisevent is gener-
ated by the groupmember (test agent).

2. Thelist of memberswho have fail ed the test: failed(membe r _list) . Thisevent isgenerated

by the group member (test agent).

3. Thelist of memberswho have not responded to the test, i.e., whose replies were not received bythe
C-Agentwithinthespecifiedreply collation period: reply_not_rec eived(member_list)
Thisis generated bythe local C-Agent.

4.1f theabove mentioned synchronisationrelated informationisnot received byany S-Agent withinthe
spedfied‘ synchronisationinterval’, then thetest (operationmessage) canna bedistributed to server
group,an exception termination is returned to the dient (test agent), and the following message is
sent to al the members gedfied in the ‘natify’ clause, in oder to avoid any deadlock:
test not scheduled() . Thiseventisgenerated dueto synchronisationtime-ouit.

5.If “test_not_scheduled () 7 isreceaved from any one of the S-Agent in the SNTF-GPDU,
then the S-Agent which receives this message sends an exceptionterminationto itslocad client (test
agent), and sends the “test_not_scheduled() " message to the other S-Agents gecified in
the ‘natify’ clause.

. Sequencing“ Type-B” test after the completion d “ Type-A” test: “ Type-B” test can only be offered to
those OUTswho havepassdthe” Type-A” test. “ Type-C” and”“ Type-D” testersrequire anctificaion o
the completion d “Type-B” test and the identiti es of the members who have passed this test.

Group-Based Distributed Computing 111

Group Coordination Models: Platform Support and Policy Specification

synchroni sation_policy
for test- B()

sync test -B(bq, b 5}
with

unsolicited_reception_of passed(mem ber_list)
from TA-1

within ~ Time_Limit_2

sync_cardinality ATLEAST(ALL)

noti]{y

sync_evasssed(),fa i led(),reply_not_received(),test_not_sc heduled()
to TC-1, TD-1, TAdmin

end_policy
Fig. 7.28 Synchronisation Policy Specification for the S-Agent of TB-1, TB-2

4. Parallel Scheduling d “ Type-C” and” Type-D” test after the completion d “ Type-B” test: “ Type-C”
and“Type-D” tests can be scheduled in parallel only onthose IlUTswho have passed at least on d the
two “Type-B” tests condicted by TB-1 and TB-2. “ Type-E” tester agent requires anatification d the
completionof “ Type-C” and“ Type-D” testsandtheidentities of the memberswho have passed thistest.

synchroni sation_policy

for test-)

sync test -C(Cq,C 2,C 3,C 4)
with

unsolicited_reception_of passed(mem ber_list)
from TB-1, TB-2

within ~ Time_Limit_3

sync_cardinality ATLEAST(1)

N
notify
[

sync_events passed(),failed(),reply _not_received(),test_not_scheduled()
to TE-1, TAdmin

]
end_polic y

Fig. 7.29 Synchronisation Policy Specification for the S-Agent of TC-1
5. Sequencing“ Type-E” test after the cmmpletion d “ Type-C” and “ Type-D” test: “ Type-E” test can be
offered orly to those IUTs who have pas=d either “Type-C” or “ Type-D” test.

Group-Based Distributed Computing 112

Group Coordination Models: Platform Support and Policy Specification

Ssynchroni _sation_policy

fch{rnC tet%ts-t - (el,e 2,e 3,e 4,e 5)
with
unsolicited_reception_ of passed(member_list)
from TC-I o
within ~ Time_Limit_4
sync_cardinality ATLEAST(ALL)
[r
unsolicited_reception_of passed(memb er_list)
from TD-1
within ~ Time_Limit_4
sync_cardinality ATLEAST(ALL)
nothEy
sync_events passed(),failed(),reply_not_received ().test_not_scheduled()
to TAdmin
end_]policy
Fig. 7.30 Synchronisation Policy Specification for the S-Agent of TE-1

6. Sequencing final test outcome natifications after the completion d testing ectivity: Let’s take two
requirements of thisfinal testing activity.
6.1 Grade-B()” natificaions are sent to thase OUTswho have passed “ Type-C” or “Type-D” test but not
“Type-E” test.
SYTICTITOTI SalloOrn_pPoOlCy
for G adg—
sync Grad e-B()
with
(1
unsolici t ed_reception_of passed(member_list)
fro m TC1 .
within ~ Time_Limit 5
fync_cardlnahty ATLEAST(ALL)
o
unsolicited reception_of passed(memb er_list)
vrvcl)t%n TD‘ﬁm e Limit 5
])sync_cardl nality ~— ATLEAST(ALL)

and

H%ﬁ?l'cﬁtﬁqrreceft'?tngof failed(memb er_list)
;év%éicar inafity " — ATLEAST(ALL)

) notify
[

sync_events _ NONE_
to _ NONE_
end_policy

Fig. 7.31 Synchronisation Policy Specification for the S-Agent of TAdmin - (for Grade-B() message)

Group-Based Distributed Computing 113

Group Coordination Models: Platform Support and Policy Specification

Policy Interpretation: The *_ NONE_" inthe “sync_events’ clause meansthat nosynchronisationevents
aregenerated. The “ NONE_” inthe “to” clause meansthat thereisno reedto sendaS-NTF-GPDU” to
any oreinthe group.

6.2The TAdmin must send“Object_Partially Tested()” messageto those OUTswho have not responced
to any ore of thetests or if atest isnat scheduled (performed) by any ore of the test agents.

synchroni sation_policy

for Objec t _Partially Tested()
sync Obje ct_Partially_Tested()
with

unsolicit ed_reception_of reply_not_received(membe r_list)
from TAdm n,TA-1,TB-1,TB-2,TC-1,TD-1,TE-1

within Ti me_Limit 5

jsync_card i nality ATLEAST(1), ATMOST(ALL)

or

unsolicit ed_reception_of test_not_scheduled()
from TAdm n,TA-1,TB-1,TB-2,TC-1,TD-1,TE-1
within ~ Ti me_Limit_5

sync_card i nality ATLEAST(1), ATMOST(ALL)

]

notify

[
sync_even ts _NONE_

to_ NONE_
]end_polic y

Fig. 7.32 Synchronisation Policy Specification for the S-Agent of TAdmin (for Object_Partially _Tested()
message)

7.9.7 Interaction between GSM Agents to Support Synchronised Message Distribution from Client

The synchronisation d message distribution from client group members is achieved throughthe @wop-

eration d multiple GSM agents, such as, the S-Agent, the D-Agent, and the C-Agent, as $iown in

figure 7.34. These agents interact with each ather locdly via the inter-agent interfaces and remotely
throughthe inter-GSM protocol, for the support of synchronised message distribution.

The G-Agent intercepts the (operation | natification) messages received from the dient objed. In
appli cationsinvolving synchronised message distribution, the G-Agent givesthismessage not only to the
D-Agent (arrow 1 in figure 7.34), but also to the S"Agent (arrow 2 in figure 7.34), because the latter
must inform the former when and whom to dstribute the message to after receiving the gpropriate syn-
chronisation notification messages and processng the synchronisation pdicy associated with the mes-
sage (spedfied as S-Policy Script, as shown in figure 6.2).

1. Interaction between SAgent andD-Agent: (Synchronise before distribution). When an operation mes-
sageisreceived from the dient for distributionto the server group, the D-Agent doesnat distribute the
message until asynchronisationmessageisreceived from thelocd S-Agent. Thismessageisisaued by
the S-Agent when the synchronisationcondtionspecified bytheclient inthe S-Policy Script is stisfied.
Themessage mntainstheidentifier of the operationmessagefor which therequired synchronisation hes
been achieved and the identities of the server group members (for example OUTs in figure 7.25 to
whom it can be distributed. Thisis siown in arrow 3infigure 7.34.

sd_distrib ute_message_to(inv_instance_id: inv_inst ance_id_type,
membership_| i st: member_id_list_type)

Group-Based Distributed Computing 114

Group Coordination Models: Platform Support and Policy Specification

As down in figure 7.33, the distribution pdicy of the D-Agent contains an indicaion in the ‘to’
clause (i.e., “NOTIFIED_MEMBERS”) that the message distribution requires a natification from
the S-Agent, and that it can be distributed orly to thase server group members identified (in the
“membership_list”) by the S-Agent. Therefore the D-Agent delays the distribution urtil nctified by
the S-Agent.

operation _distribution_policy
for test- A

distribut e test-A(al, a2, a3)

to NOTIFIED_MEMBERS

using SOURCE_ORDERED_MULTICAST
end_polic y

Fig. 7.33 Synchronised Message Distribution Policy
2.Interaction between D-Agent andC-Agent: (Exped repli esfromthesemembers). After theD-Agent dis-
tributes the message to the ‘natified members’, it informs the C-Agent to expect replies from those
members, as shown in arrow 4. The D-Agent gives the identiti es of these members to the C-Agent.

dc_collate _replies_from(OPR_inv_instance_id: inv_i nstance_id_type,
membership_| i st: member_id_list_type)
<
o
=
O [=
z |2
—|™
X |3
SIE
OHF
@ |+
n |2
Q[
S| o GSM
0|5
ol &
£33
=5
2>
HE ©
(S
<
= o
— \Clent R
P-
REP‘mS
distribute | age(OPR-msg)
OPR- g oct REP-me i C-Agent
Sigent e memmeig © D-Agent ese mempere> P ?
SYNC-NTF-message
to and from other S-Agents To P-Agent
(via the P{Agent)
REP-message received from these members + From P-Agent
correspondence between REP-msg identifiers and
their sender identify

Fig. 7.34 Coordination b etween GSM Agents to Suppo rt Synchronised Message Distribution from Client

Group-Based Distributed Computing

115

Group Coordination Models: Platform Support and Policy Specification

3.Interaction ketween C-Agent andG-Agent: (Repli esreceived fromthesemembers). The C-Agent expeds
to receive the replies from the ‘natified members (for example OUTs in figure 7.25). It collects the
repli es received within the collation period, as edfied in the wllation pdlicy, and gives them to the
client object, viathe G-Agent as shown in arrow 5 in figure 7.34. These replies may be returned sep-
arately or they may be mllated into a single group termination message which is returned to the di-
ent. In many applications, the replies are locdly identified (for example by their offset in the group
termination message) between the C-Agent and the client; the identifiers of the servers which have
sent these replies are not explicitly given to the client (unless sich a parameter existsin the termina-
tion message itself).

4. Interaction between C-Agent and SAgent: On receivingtherepliesfrom thelocd GSM (G-Agent), the
client (for example the tester agent in figure 7.25) analyses these replies and gves a “pasdfail” ver-
dict to thelocal S-Agent (see arrow 7 in figure 7.34) for each of the received reply, by identifying the
replies with their local identifiers (for example by their offset in the group termination message).
However, the S-Agent must know the identities of the servers (for example OUTs in figure 7.25
which have passed/failed the test (i.e., the operation message sent by client), so that it can include
thisinformationin the synchronisation ndificalion message (S-NTF-GPDU) to ather S-Agentsin the
client group (test agent groupin figure 7.25). Therefore, the C-Agent must inform the S-Agent the
locd reply identifiers and their correspondng sender identifiers, as shown in arrow 6 in figure 7.34.
cs__replie s_received_from(reply_identifier_list, s erver_identifier_list)

Thisenablesthe S-Agent to know which servershave not sent their repli es, so that appropriateinforma-
tion(suchas“reply _na_received()”) isincluded in the synchronisation ndificationmessage (S-NTF-
GPDU) that aresent to ather S-Agentsinthe dient group.The correspondence between thereply identi-
fiersand the server identifiers also enables the S-Agent to know which servers have successfully exe-
cuted the client’s operation message and which ores have nat, as explained in the next bullet.

5. Interaction ketween client object and SAgent: (Receive synchronisationrelated information from the
client). In some applications, such asin groupapplication-9, the S-Agent receves amessage from the
client objed (test agent), throughits synchronisation management interface (SM1), which containsthe
identities of the replies (for exampletheir offset in the grouptermination message) which are satisfac-
tory and ursatisfactory (or passed and fail ed) according to the client’s application-specific aiterion
(such as the test result evaluation criterion in group application-9). This is siown in arrow 7 in
figure 7.34. Based uponthis information and the correspondence between the reply-ids and the
server-ids received from the C-Agent, the S-Agent can dedde which server group members have
passed o fail ed the test (operation message) sent by the dient. The dient invokes the following mes-
sage onthe S-Agent viathe SMI (arrow 7):

reply_eval uation_results(reply_identifier_list, st atus_list)

6. Inter-GSM commnunication between SAgents: (Notify synchronisation eventsto ather S-Agents) When
the S-Agent determines the identiti es of the server group members who have passed, failed, and nd
responckd to the test, it must communicate thisinformation to the synchronisation seeke S-Agentsin
the dient groupthroughtheinter-GSM protocol, so that the synchronised message distributionadivity
can proceed in the group. For example, in groupappli catlion-9, when the repli es of the operation mes-
sage test-A(a 1,a j,a 3),arereceived, analysed,andcommunicated to thelocal S-Agent by TA-
1 (client), the S"Agent of TA-1 (synchronisation provider) sends the identities of the OUTswho have
passed, fail ed,andnot responced to thetest, to the synchronisationseeker S-Agentsassociated with TB-
1 and TB-2, in the synchronisation ndification message (SSNTF-GPDU).

Group-Based Distributed Computing 116

Group Coordination Models: Platform Support and Policy Specification

7.9.8 Transparent & External Suppo rt for Synchronised Invocation in the GSM

As downinthe previous example, thelogic for the synchronised distribution o messagesfrom the client

groupmembers could bevery complex. Moreover thislogic changeswith dfferent message synchronisa-

tionrequirementsof an appli cation, such asdifferent test message wordinationlogicin groupapplication-

9. Henceit isdesirable to keep thislogic external to the gplication elements (client objeds), so that the

appli cation elements do nd have to be modified for different message synchronisation requirements.

In our model the message synchronisation logic and the identities of the dient and server group
members are made transparent to the gopli calion elements and this information resides in the GSM (S
Agent) as programmable synchronisation pdicy. The application e ements only communicate certain
appli cation-specific informationwhichisrequired for the synchronisation, such asthe passor fail verdict
of thetest operationin groupappli cation-9, to the GSM (S-Agent) throughthe“gmi” and SMI and leave
the rest of the message synchronisationfunctions to the GSM. The GSM transparently performsthe fol-
lowing synchronisation functions for the application elements:

1. Synchronisationconstraint (palicy) evaluation: The constraintsonthedistribution d messagefrom the
client objects, specified assynchronisation pdicies, areevaluated bythe S-Agents, andwhen these con-
straints are satisfied, the D-Agents are natified to dstribute the message.

2. Progressof the synchronised activity intheclient group: The synchronisationevents, such astherece pt
of al replies from the server group or the successful execution o operation messages in the server
group,are natified to ather synchronisation seeker S-Agents viathe synchronisation ndification mes-
sages, in order to progressthe synchronised message distribution activity in the client group.

7.10 Filtered Message Delivery Model

Filtering d (operation |natification) messagesin aserver group kefore delivery to the server objectsisa
commonrequirement in group-based applications, in which amessage groupcast by a dient object to the
server groupisdelivered to asubset of server groupmembersbased uponsome messagefil teringcriterion
spedfied either by the client or the server or bath.

Typicd examplesof “filt ered messagedelivery inserver groups” include awiderangeof appli cations
from traditional ‘servicegroup appli cations to some non-traditi onal network management appli cations,
such as
1.requestingservicesfromagroup d serviceprovidersbased uponcost or someperformancecriterion, o
2. amanager objed (acting as a dient) wishesto seledively address the managed oljects in a managed

objed group(actingasaserver group) based upa their diverse attributes sich aslocaion, cevice dar-
acteristics, etc.

7.10.1 Why Filtered Message Delivery in the Server Group

Althougheadh member of a(homogeneous) servicegroup povidesthe sametype of service, but the qual -
ity of the provision d the service may differ from member to member due to the difference in the non
functional attributesassociated with the service. The qudity of serviceischaracterised bythese nonfunc-
tional attributes 2uch asthe queuelength of the print server, load or other performance metrics of aserver
objed, cost of service provision, etc.

In many applications, the selection d the sub set of serversfrom an organised service group,to han-
dle agiven servicerequest, isbased upan these“ qudity of service’ related attributes. A sub set of servers
are seleded, for service request handliing, from the server group, kased upontheir quality of service
attributes. Hence these atributes are cdl ed filter attributes. A filtering criterionisabodean expresson

Group-Based Distributed Computing 117

Group Coordination Models: Platform Support and Policy Specification

compased o filt eringclausesjoined with bodean operators. A filteringclauseisafilt er attribute compared
with a constant value or afunction wsing relationship operators.
Thefiltering o messages, before delivery to the servers, isperformed in the server groupfor thefol-

lowing reasons:

1.To gvetheclient theabhility to chocsethe serversto executeits servicerequest based uponclient’ sfil ter-
ingcriterion: In some gpli caionsthe clients wish to select spedfic serversfrom the server group,for
execution d its rvicerequest, based uponitsfilt eringcriterion.Sothecli ent specifiesitsfilt eringcrite-
rionasabodean expresson d server’sfilter attributes, which is groupcast alongwith the (operation |
natification) message. Insome caesthe dient al so specifiesthenumber of serversrequired. The dient’s
filtering criterionis evaluated onthe server side by each GSM (F-Agent) in order to find if the server
objed satisfiesthe dient’sfilteringcriterion.All those servers(i.e., their GSMs) whosatisfy the dient’s
filtering criterion enter into an m-out of-n selection process (see sedion 9.8) in arder to select the
fixed number of serversto whom the message will be finally delivered.

2.To gvetheserver theahility to chocsethe cli entsit wishesto servicebased uponserve’ sfilteringcrite-
rion: Theserver objedsinthe server groupmay nat necessarily wish to accept servicerequestsfromall
passibleclients. In such acasethey specify their requirementsfor ‘service offer’ whichthe di ents must
satisfy in order to oltain the service Thisis specified as server’sfiltering criterionwhich isabodean
expresson d client’sfilter attributes, such asthe geographiclocation d the dient or the cost of service
offer. Theserver’sfilteringcriterionis gecifiedtoitslocal GSM (F-Agent). Inthese gopli caionsthe di-
ent spedfiesthe value of itsfilt ering attributes which are groupcast alongwith the message. The GSM
(or F-Agents) ontheserver sideusesthe dient’sfilteringattributesto evaluatethe server’ sfilteringcrite-
rion. Themessageisdelivered to those serversat which the server’ sfilteringcriterionis stisfied bythe
client’sfilter attributes.

7.10.2 Communication between the Server Object and F-Agent

Filteringisdore by the F-Agent based uponthe valuesof thefilter attributes. These dtributesare goplica-
tion-gpecific. They can be static or dynamic. The values of dtatic atributes do nd change with time
whereas the values of the dynamic atributes change with the exeaution history of the server objects, such
asthe‘ queuelength of theprinter objed’ or the*load’ andthe‘resourceavailability’ of aserver object, etc.
Hencethevalues of the dynamic attributes must be communicated tothe GSM (i.e., itsF-Agent) whenever
there isachange in its value, in order to filter the messages based uponthe current values of the filter
attributes.

Therefore the GSM neeals ome appli cation-specific information for the correct functioning of the
message filtering process As described in section 6.2.1, this information is communicated from the
member object to the GSM throughthe group management interface (gmi) of the member and GSM
Management Interface (GMI) of the GSM. The F-Agent receives this information through its Filter
Management Interface (FMI). The server objed can also naify its ready o busy status via its gmi, so
that the messages are filtered in orly when the server signals arealy status. The content and the format
of the messages exchanged between the member object and the GSM is appli cation-specific and corre-
sponds to the local *member-GSM’ protocol. For example, the values of the filter attributes can be naoti-
fied throughthe nodify_attribute(attribute_name, a t tribute_value) message, from the dient
to the F-Agent.

Group-Based Distributed Computing 118

Group Coordination Models: Platform Support and Policy Specification

7.10.3 Group Application-10: A Printer-Pool

A set of printerswith an associated print server isan example of homogeneous srvice group. The printer
groupis compaosed of different types of printers such as a dot-matrix printer, alaser (bladk and white)
printer, color printer, etc. Althougheach printer providesthe same servicetype, i.e., printing d text, there
isadifferencein the quality of service atributes sich asthedelay in handiingthe print request dueto df-
ferent queue lengths and printer speeds, and dfferent quality of prints such as coarse and fine, etc.

The dient broadcastsitsprint request “ print_request(data)” toall print-servers, whichareorga-
nised asaprinter group. However, this request should be queued (or delivered) at the print server which
satisfies the following client’s gpedfications:

1. smallest job qLeue,

2. color, laser print,

3. cost of printing lessthan 5 cents per page, and
4. printer speed greater than 5 pages per minute.

Theprint serversrequirethat the users (cli ents) identify themselveswith their user-ids, location,and
their account numbers. Only the* print requests’ of thase userswhoareregistered with them andwho have
sufficient fundsavail ableintheir accourtsarefil tered in. Hencetheaattributes such asprinter queuelength,
funds avail ablein auser’saccoun are dynamic atributes which are ommunicated to the F-Agent by the
print server whenever there is achange in their values, viathe gmi and FMI (see figure 7.37).

Sincethe “print request” should be queued at only ore print server, al the print servers(i.e., their F-
Agents) who satisfy the client’s requirements and where the dient al so satisfiesthe print server’srequire-
ments (i.e., registered as a user and have sufficient funds avail able) enter into an “m-out of-n selection”
process(section 9.8). The seledion process chooses the print server which best satisfies the dient’s cri-
terion and in case of atie the printer closest to the client is slected. The selected print server informs
the dient where it is located and the number of pages that are printed, througha reply message to the
client’s print request, such as“collect_o utput(printer_id, number_of_pages_printe d)”.

7.10.4 Filtering Requirements & Policy Specification

The dient’s requirements are spedfied as a bodean filtering criteria. The dient’s attributes, such as
‘user_id’, ‘user_location’, etc. are specified asfilt ering attributes. The client’sfiltering criterionis evalu-
ated usingthe values of the server’sattributesandthe server’sfilteringcriterionisevaluated usingtheval-
uesof client’sattributes, bythe F-Agent associated with the server objed. The number of serversrequired
bythe dient to executeits srvicerequest isspedfied asfilteringcardinality. If “m-out of-n selection” pro-
cessisrequired, then identities of the members amongst whom thisisto be caried ou is gedfiedinthe
‘amongst’ clause. The followingisthe client’sfiltering pdicy specification.

filtering_ policy
for print_ request()
amongst Pri nter_Group

filtering_ cardinality ATLEAST(1),ATMOST(1)
filtering_ criterion ((printer_type = laser) and (mn (queue_length))
and (printer_quality =c olor) and
(cost_per_page <5 cents) and
(printer_speed > 5ppm))
filtering_ properties (user_id = jim, user_locatio n=computer_science_dept,

user_account=Ac11029)

end_policy
Fig. 7.35 Client’s Filtering Policy Specification

Group-Based Distributed Computing 119

Group Coordination Models: Platform Support and Policy Specification

The print servers gecify the value of their attributes and their filtering criterion in their filter pal-
icy specification, as 1own below.

filtering _policy
for print _request()
filtering _criterion ((user_id in registered_user_ list) and
user_account has sufficient fund))
filtering _properties (printer_type = laser,
queue_length = 175 pages
printer_quality = color,
cost_per_page=3 cents,
printer_speed=7ppm)
end_policy

Fig. 7.36 Server’s Filtering Policy Specification

7.10.5 Interaction between GSM Agents to Support Filtered Message delivery to Server Object

Thefiltered delivery of messagesto the server object isachieved throughthe aoperation d multiple GSM

agents, such asthe F-Agent, the D-Agent, and the C-Agent. These agentsinteract with each ather locdly

viatheinter-agent interfacesandremotely throughtheinter-GSM protocol, for thesuppat of filt ered mes-
sagedelivery, asexplained below. We explaintheinteraction between these agentsonthe dient (figurenct
given) and server side (figure 7.37) GSM.

1.Interaction ketween G-Agent, D-Agent, andF-Agent (cli ent side): Inthefilt ered message delivery appli-

cations, whenever an (operation | ndification) messageisrecaeived from theclient, the G-Agent not only
gives the message to the D-Agent, but also to the F-Agent, so that the latter can send the filtering con-
straints to be associated with the message to the D-Agent.

2.Interaction ketween F-Agent andD-Agent (client side): The dient’ sfilt er attributes, filt er criteria, andfil -
ter cardinality must be sent to the server side GSM alongwith the (operation |ndtification) message.
These filter constraints are stored in the F-Policy Script (figure 7.35 in the F-Agent, as shown in
figure 6.2. When a message is received from the dient for distribution to the server group, the D-
Agent does nat distribute the message urtil the filtering constraints, which are to be included in the
(OPR |NTF) GPDU arereceived from the local F-Agent. The F-Agent sends the fil tering constraints
to the D-Agent, as soonas the (operation |notification) message is recaved from the G-Agent.

3.Interaction ketween D-Agent andC-Agent (cli ent side): After the D-Agent distributestheoperationmes-
sage to the server group members, as gecified in the distribution pdicy, it informs the C-Agent to
exped repliesfrom thase members. The D-Agent givestheidentities of these membersto the C-Agent.
However, because of thefiltering o these messagesin the server group, ory a sub set of the specified
server groupmembersreceve the message and consequently only asubset of them sendthereplies. In
lieu of repliesfrom the serversthat werefil tered ou, the C-Agent receives“fil ter exception messages”
from their C-Agents (see sedion 9.6.3, thereby avoiding any problem caused bythe receipt of fewer
than expeded replies.

4. Interaction ketween P-Agent, F-Agent, andC-Agent (server side): The P-Agent always intercepts the
GPDUs received from the network. Whenever an D-(OPR | NTF) GPDU (see section 9.6) is
received with filtering constraints associated with it, the P-Agent extracts the filter constraints field
from the GPDU and gves it to the F-Agent. The rest of the GPDU is given to the C-Agent. Thisis
shown byarrows 1 and 2in figure 7.37.

5. Interaction between F-Agent and C-Agent (server side): When an (operation | naification) messageis
received from the P-Agent for delivery to the server objed, the C-Agent does nat deliver the message
until afilteringmessageisreceived from the F-Agent, authorizingit to deliver themessage. The F-Agent

Group-Based Distributed Computing 120

Group Coordination Models: Platform Support and Policy Specification

givesthisauthorisation orly when the server satisfiesthe dient’sfilteringcriterionandthe dient satis-
fiestheserver’'sfilteringcriteria andif the server isfinally selededinan“m-out of-n selection” process
Thisinteradionis shown byarrow 4 in figure 7.37.

GSM

odify_attribute(attribute_name, attribut

F-PAR an

t0 and fro

(via P-Age

Fig. 7.37 Coordination between GSM Agents to Suppo rt Filtered Message Delivery (Server Side)

4.Inter-GSM communication between F-Agents(server side): Whenthe di ent’ sfil teringcriterionandfilter
attributesarereceived bythe F-Agent onthe server side, it evaluatesboth the dient’sandthe server’sfil -
teringcriterion wsingthe server’ sandcli ent’ sfil ter attributesrespectively. When bah thebodean cond-
tions are evaluated as ‘true’, then the F-Agent entersinto an “m-out of-n seledion” process (arrow 3)
with other such F-Agents throughthe inter-GSM communication protocol (see section 9.8).

5. Interaction between C-Agent and D-Agent (server side): When the C-Agent receivesthe permissonto
deliver theoperationmessagefromthe F-Agent (arrow 4), it deliversthe messageto the server object via
the G-Agent (arrow 5 in figure 7.37). The reply returned by the server object in resporse to this mes-
sage must be sent to the correct client. The C-Agent has the knowledge of the identity of the client
which isreceived in the D-OPR-GPDU. So, the C-Agent informsthe dient’s identity to the D-Agent,
as fiownin arrow 6, so that the reply (arrow 7) is snt to the corred cli ent.

Group-Based Distributed Computing 121

Group Coordination Models: Platform Support and Policy Specification

6. Interaction ketween server andF-Agent (server side): In some appli cations, such asin groupappli ca-
tion-10, the server object (such as the print server) must inform the airrent values of the dynamicdly
changingfil ter attributes (such asthe queue length of the print server) to the F-Agent, so that filtering o
thereceived messagesis performed based uponthe current values of thefilter attributes. Thisinforma-
tionis communicated to the F-Agent, viaitsfilter management interface (FMI), whenever thereisany
change in the values of the filter attributes (queue length o printer). Since this information can be
received at any time, thisinteradion shown byan arrow labelled ‘'n’ in figure 7.37.

7.10.6 Transparent & External Suppo rt for Filtered Invocation

As grownintheexample &ove, the dtributesandthe aiterionfor filtered message delivery could bevery
complex. Moreover this criterion changes with different appli cation requirements for thefiltering o the
same message in the server group.Hence it is desirable to keep thefilter attributes and filtering criterion
external tothe gopli cationelements(client and server objects), so that theapplicationelementsdo nd have
to be modified for different message filtering requirements.

In ou model the message filtering constraints andtheidentities of the cli ent and server groupmem-
bersaremadetransparent to theapplicationelementsandthisinformationresidesinthe GSM (F-Agent) as
programmable messagefiltering pdicy. The gplication elements only communicate certain application-
spedficinformationwhichisrequired for thefiltering,such astheval ues of thedynamicfilter attributes, to
the GSM (F-Agent) andleave therest of the messagefiltering functionsto the GSM. The GSM transpar-
ently performs the following filtering functions for the application elements:

1. Filtering constraint (policy) evaluation: The F-Agent evaluates the client’s filtering criteria using the
server'sfilter attributes and the server’sfiltering criteria using the dient’sfiltering attributes.

2.mout of-nseledion: When bahthe dient’sandthe server’sfilteringcriterionareevaluated as* true’, the
F-Agent entersinto an “m-out of-n seledion” processto select the final winner(s) to whom the (opera-
tion | naification) message can be delivered.

7.11 Conclusion

The group suppat platform (GSP) provides the suppat for different group coordination petterns (or
behaviors) between cli ent and server groupmembers. These coordination petterns can bereali sed through
a cmbination d basic group suppat services, such asmessagedistributionservice, message ll ationser-
vice message synchronisationservice, andmessagefilteringservice. In ou model, these coordination pat-
terns can be programmed in the GSP by specifying appropriate message distribution pdicy, collation
palicy, synchronisation pdicy, and filtering pdicy in GPSL.

Inthismodel, the GSAsmanagethegroupcommunicationandcoordination petternson behalf of the
user applications, whoinfluencethe behavior of these agentsby meansof padli cy spedfications. Theideais
to describe the functionality required of the groupsuppat platform (GSP) in a dedarative language, the
group pdicyspecificationlanguage (GPSL), in order to specify arich set of applicationrequirementswith
respect to dfferent group suppat services such as message distribution, coll ation, synchronisation, filter-
ing, etc. Thereforethe GSP offers slective grouptransparency by allowing appli caionsto specify group
suppat palicies.

Group-Based Distributed Computing 122

Group Policy Specification Language: An Introduction

CHAPTER 8 Group Policy Specification Languege:
An Introduction

Abstract
We have developed alanguagefor the specification d messagedistribution, coll a-
tion, synchronisation, andfiltering requirements of an appication, & a high-leve
independent of the mechan smsor protocols needed to implement them. Thischap-
ter describes the syntax andthe semantics of the language.

8.1 Introdu ction

Inexisting goupsuppat systems, such asISIS, Horus, Electra, etc., interadionsbetween groupmembers
are expressed intermsof explicit communication protocols such as different types of multicast protocols.
Theinabili ty to abstract over interadion between groupmembersresultsinlow-level spedficationandrea-
soning. As a mnsequence it is not passhle to describe and compase the interaction petterns between
group members at a high-level withou worrying abou the low-level message multicasting protocols.
Moreover, it isdifficult to modify the interaction petterns between group members because the involved
groupsuppat mechanisms are hardwired into appli cations.

Our approachisto expressgroupcoordination patternsasa mmbination d messagedistribution,col -
lation, synchronisationandfilteringconstraints. They are spedfied abstractly ascorrespondng goupsup-
port padicies. We have developed a language framework for the spedfication of these group suppat
padlicies. Itiscalled GroupPolicy Specification Language (GPSL). In this chapter we describe the syntax
andsemanticsof GPSL. The BackusNormal Form (BNF) of GPSL isgivenin appendix. Numerousexam-
ples of the use of this language were given in chapter 7.

8.2 Why Group Policy Specification Language

The GPSL isaspecial purposelanguagefor the high-level spedfication d messagedistribution,coll ation,

synchronisationandfilteringrequirementsof anappli cation. Thesegroupsuppat requirementscanal so be

viewed asgroupinteractionconstraints, such asmessagedistributionconstraints, coll ationconstraints, etc.

Thedesign d GPSL is motivated by the following considerations:

1. Separation d apgication concerns from group-coordination concerns. There is a need to separate
objedsfrom inter-object interactionisauesin an olject groupenvironment. The GPSL permitsthe sepa-
ration d applicationlogic from group-interadionissues. Groupinteractionconstraints can be specified
separately in pdicy scripts. The pdicy scripts are stored in the GSM and are interpreted by GSAS.
Changesto groupcoordination behaviorsarepaossbleby modifyingtherelevant groupsuppat palicies,
without modifyingthe gopli cation. Thisenabl esabetter descriptionandmodification d groupcoordina-

Group-Based Distributed Computing 123

Group Policy Specification Language: An Introduction

tion behaviorsexternal to theappli cations. M oreover coordination patternscan be changed dyremicdly
during an appli cation sesgon, withou re-compili ng the appli cation.

2. High-level specification d groupinteraction constraints: GPSL permits a high-level and declarative
spedfication d group-interadionconstraints, independent of the engineeringmechanismsor protocols
needed toimplement them. Thehigh-level language astractsaway from any detail ed behavior of group
suppat agents.

3. Policy-driven mechanisms: Policies shoud be explicitly expressed rather than implicitly defined, in
order to be &leto represent and manipulatethemwithin a omputer system. Policiesare specified using
apadicy definition ndation. Thisnotationisinterpreted bythe mechanismswhich are required to exe-
cute the padlicies. The group communication and coordination is transparent to the programmer who
spedfiesthese aspectsin ahigh-level and abstract way inthe GSM using GPSL. The groupinteradion
constraints are evaluated prior to the distribution a the delivery of each message.

8.3 Basic Elements of GPSL

Themessage distribution, coll ation, synchronisation andfil tering functions have many aspects associated

with them (section 4.4). These aspects dow certain commonality over these group suppart functions.

This commonality can be expressed clealy througha common language framework. The elements of

the GPSL are based uponthese fundamental aspects or issues. The relationship o the language de-

ments to the group suppat servicesis simmarized in table 8.1 .

1. Message Specification: Message spedficationisabasic requirement of agroup pali cy spedficationlan-
guage. We need to specify the message signature (see section 1.5.2 the instances of which are to be
distributed, collated, synchronised, and filtered.

2. Membership Specification: We need to specify the members of the groupto whom amessageisto be
distributed or fromwhom itisto be wllated or from whom the synchronisation messages are required
before the distribution or delivery of the message in consideration.

3. Time Specification: Coll ationandsynchronisationfunctionsareusuall y bounaed byatime-limitin order
toavoid anindefinitedelay in thereceipt of messagesthat areto be allated or of therece pt of synchro-
nisation messages.

4. Cardinality Spedfication: We need to specify how many messagestoincludeinthe wllation processfor
the construction d group (operation |termination | naification) message or how many messages are
required for synchronisation a how many of thefiltered servers shoud be finally selected to perform
message processng.

5. Combination-mode Specification: Incase of coll ation,thereceived messagesneed to becombinedintoa
singlegroupmessage, beforeinvoking onthegroupmember. Some basi ¢ message coll ationschemesare
described in section 3.6.

6.Ordering Sgedfication: The messages haveto bedistributed or delivered in a cetain order to the group
members.

7. Attribute Specification: The recaeved messages are filtered based uponcriterion d the client or of the
server or of bath, specified as abodean attribute expresson.

The messagedistribution, coll ation, synchronisation,andfiltering pdi ciesare spedfied usingacombina-

tion d thesebasi clanguage elements. Thecombination d these el ementsassociated with amessagetypeis

called agroup pdicy primitive (GPP). Every message type, the instances of which are to be distributed,
coll ated, synchronised, or filtered, is associated with ore or multiple GPPs.

Group-Based Distributed Computing 124

Group Policy Specification Language: An Introduction

Table 8.1: Relationship between Basic issues of Group Support Services and Elements of GPSL

Distribution Collation Synchronisation Filtering
M essage instances of what instances of what instances of what instances of what mes-
Specification message typeto dis- | messagetypetocol- | messagetypetosyn- | sagetypeto filter
tribute late chronise
Member ship Spec- || to whom to distrib- | whose messagesto | with whom to syn- whose messages to filter
ification ute the message collate chronise
Time NA how long to wait to | how long to wait to NA
Specification receéve messge receve synchronisa-
beforestartingcolla- | tion messages.
tion
Cardinality Speci- || the minimum num- | how many how many synchroni- | how many of the filtered
fication ber of messagesthat | messagesto sation messgesneal | server objeds sould be
must be delivered collate toberecavedinorder | seleded for message
to schedulethemes- | processing
sage distribution
Collation mode NA how to combine NA NA
Specification recaved messages
Message Ordering || what ordering guar- | inwhat order to disabling of synchro- | NA

Specification anteesarerequired | deliver receved nisation
for thedistribution | messages
Attribute NA NA NA onwhat basistofilter the
Specification recaved messages
8.4 Syntax and Semantics of Group Policy Primitives

A group pdicy specificationconsistsof oneor more GPFPs. In thefoll owingwe present the syntax andthe
asciated semantics of the basic GPPs used in the specification d distribution pdicy, collation pdicy,
synchronisation pdicy, and filtering policy.

8.4.1 Distribution Policy Primitive
The GPPusedinadistribution pdicy spedficationiscalled adistribution pdicy primitive (DPP). Thefol-
lowingisthe syntax and semantics of a DPP. The examples of DPPs are given in sedion 7.4.

8.4.1.1 DPP Syntax
distribut I on_policy
for message name
[
distribut e message specification
to membership specification
distribut i on_cardinality cardinality speci f ication
using ord ering specification
1
end_polic vy

Group-Based Distributed Computing 125

Group Policy Specification Language: An Introduction

8.4.1.2 DPP Semantics
Instances of the message spedfied in the distribute clause
are to be distributed to the members edfied intheto clause
usingthe appropriate multi casting protocol which providesthe ordering glarantees goeci-
fiedintheusing clause;
in case of atomic ordered multicasting protocol, the message must be distributed to atleast

the number of members Pecified in the distribution_cardinality clauseorto
nore of them.
The ordering specif i cation consists of ‘UNORDEED, ‘SOURCE_ORDERED

‘DESTINATION_ORDERE, ‘ATOMIC_ORDEREDnessage ordering requirements.

8.4.2 Collation Policy Primitive
TheGPPusedina wllation pdicy spedficationiscdl ed acollation poli cy primiti ve (CPP). Thefoll owing
isthe syntax and semantics of a CPP. The examples of CPPs are given in section 7.6 and in section 7.7.

8.4.21 CPP Syntax
collation _policy
for message name
[
deliver nmessage specification
from memlership specification

within | every time specification
collation _cardinality cardinality specific ation
collation ~ _mode collation mode specificatio n
]
end_polic vy

8.4.2.2 CPP Semantics
Instances of the message spedafied in the deliver clause
which are received from members ecified in thefrom clause

within the time period specified in the within | every clause

are to be cmbined into a group message using the coll ation scheme specified in the
collation ~ _mode clause

only when their total number satisfies the collation_cardinality clause.

The CPP is compased of multiple GPSL elements enclosed within square brackets. As shown in
examples in section 7.6, areply collation pdicy may contain multi ple CPPs which are joined together
throughmessage ordering specifiers described in section 8.5.7. The order in which (group) messages
are delivered to the sink olject is gecified by these message ordering specifiers.

8.4.3 Synchronisation Policy Primitive
TheGPPusedinasynchronisation pdicy iscalled asynchronisation pdicyprimiti ve(SPP). Thefoll owing
isthe syntax and semantics of SPP. The examples of SFPs are given in section 7.9.

8.4.3.1 SPP Syntax
synchroni sation_policy
for message name

Group-Based Distributed Computing 126

Group Policy Specification Language: An Introduction

sync message specification
with
[

(un|)so I icited_reception_of message spec i fication
from memlership specification

within ~ ti mng specification

synchroni sation_cardinality cardinality sp ecification

]
notify

[
sync_even ts message specification
to membership specification

1
end_polic vy

8.4.3.2 SPP Semantics
Synchronise the (distribution | delivery) of the message specified in the sync clause
(from | to) the group member
with the (un)solicited reception d theinstances of synchronisationmessage spedfiedinthe
(un|) sol icited_reception_of clause,
from the groupmembers edfied in the from clause,
only when the required number of synchronisation messages as gedfied in the
synchroni sation_cardinality clausearereceived withinthetime period speci-
fied in thewithin clause,
and ndify the occurrence of the locd synchronisation events gedfied in the
“sync_events " clauseto the group members specified intheto clause.
The SPPiscomposed of multi ple GPSL e ements enclosed within square brackets. As iownin examples
in sedion 7.9, a synchronisation pdicy may contain multiple SPPs (one for each synchronisation mes-
sage) which are joined together throughbodean operators suchas‘and’, ‘or ', ‘not ’, ‘xor, etc.

8.4.4 Filtering Policy Primitive
The GPPusedinthefiltering pdicy specificaioniscalled thefiltering pdicy primitive(FPP). Thefoll ow-
ingis g/ntax and the semantics of the FPP. The examples of FPPs are given in sedion 7.10.

8.4.4.1 FPP Syntax
filtering _policy
for message name

[

filter message specification
amongst nmembership specification
filtering _cardinality cardinality specific ation
filtering _criterion attribute expression
filtering _properties attribute list
1
end_polic vy

Group-Based Distributed Computing 127

Group Policy Specification Language: An Introduction

8.4.4.2 FPP Semantics

Filter in the message spedfied inthef ilter clause

at m (specified in the client’sfilter_cardinality clause)

out of n (specified in the client’samongst clause) servers

1. which satisfy the client's filtering criterion (specified in the dient's
filtering _criterion clause) by their attributes (specified in the server's
filtering _properties clause), at the time of evaluation
(I satisfy your criterion), and

2. in which their own filtering criterion, if any (specified in the server's
filter_cr i terion clause), is stisfied bythe dient’s attributes (specified in the
client’sf ilter_properties clause),
(you satisfy my criterion), and

if the required minimum number of servers (as ecified in the

filtering _cardinality clause) are not available, then do nafilter inthe message

at any server.

8.5 Syntax and Semantics Of GPSL Elements

A pdlicy specification in GPSL is a combination d basic language dements identified in section 8.3.
The basic language elements are the message specifier, membership specifier, time specifier, cardinality
spedfier, combination mode specifier, attribute combination operators, and message ordering operators.
In this section we present the syntax and the semantics of these language dements.

8.5.1 Message Specifier Elements
Message specificationconsist of the message signaure. Every GPP spedfiesthe (operation |natification |
termination) signature, the instances of which are to be distributed, coll ated, synchronised or filt ered.

8.5.2 Membership Specifier Elements

Membership specificaionisdorein GPSL either by specifyingmember name, member roleor groupiden-

tifier. Member names, member rolesand groupidentifiersareregisteredinthe GSM. In case of termination

distribution, the membership specification is dore by the foll owing specifiers:

a. SENDERSIf asinglereply isgenerated bythe server in resporse to agroup ogeration, then thisreply
must be sent to those clients whase operation messages were included in the group operation.

b. SENDER-IN-ROW-ORDER If multiple replies are generated by the server object in resporse to a
group oferation,then the order in which thereplies are generated isthe same athe order in which the
correspondng client operation messages were padked in the groupmessage, hencethereplies must be
sent to the correspondng clients, in that order.

8.5.3 Cardinality Specifier Elements
Thefollowingcardinality specifiersareavail ableinthe GPSL for thespecification d distributioncardinal -
ity, collation cardinality, synchronisation cardinality, and filtering cardinality:
a. ATLEAST(cardinal_exp ression) : This gedfier means:
- distributioncardinality: that the message be distributed to the specified minimum number of members
or to nore of the members of the sink group,
- collation cardinality: that the instances of the message be received from specified minimum number

Group-Based Distributed Computing 128

Group Policy Specification Language: An Introduction

membersbeforeit can be ll ated into thegroupmessagefor delivery tothesink olject or themessage
be not delivered at all,

- synchronisationcardinality: that theinstances of the message be recaved from the speafied minimum
number members before the message under synchronisation can be sent from the source object or
delivered to the sink olject.

- filteringcardinality: that the message befiltered in at the specified minimum number of membersor be
filtered at none of the members of the server group.

2. ATMOSTC ardinal_expression) : This gecifier means:

a. distribution cardinality: that the message be distributed to as many members as Pecified, but not
exceeding the maximum specified.

b. collationcardinality: that the groupmessage be wllated from instances of the messagereceived from as
many members as Pecified, but not exceeding the maximum specified.

c. synchronisation cardinality: Not Applicable

d.filtering cardinality: that the message befilt ered in at as many members as specified, but nat exceeding
the maximum specified.

where the,

cardinal_expresson:= integer | POS(integer_list) | ANY (integer, rol e_name) |
ANY(integ er, POS(integer_list)), where

POS(integ er_list) := Pick the member(s) at the specified pasitions(s) in membership list speci-
fied in the (to | from) clause.

ANY(integ er, role_name) = Pick any ‘n" membersin the specified role.

ANY(integ er, POS(inte ger_list)) = Pick any ‘n" members from the specified pasitions.

3. UNSPECIFIED: The semantics of this gecifier is equivalent to ATMOST(ALL), i.e., wait for the
receipt of messages urtil the expiry of time spedfied in the “within” or “every” clause.

8.5.4 Time Specifier Elements
Thefoll owingtime specifiersare avail ablein the GPSL for the specification d collationand synchronisa-
tion duation.

a within : This gecifier is used for specifying a maximum time limit for the receipt of termination
messages in resporse to the operation message andfor the receipt of synchronisation resporse mes-
sagesinresporsetothe synchronisationsoli citingmessage. | n case of terminationcoll ation, thetime-
out period starts after the sending of the correspondng operation message, andin case of synchroni-
sation, it startsafter the sending of the mrrespondng synchronisationsolicitingmessage. Thetermi-
nationmessagesaredelivered totheclient object inthe desired coll ationmode as onastherequired
number of them as gecified inthe wllation cardinality clause have been received, within the speci-
fied time limit.

2.every : This gedfierisusedfor specifyingthe’ periodic’ natureof collation d operationand ndifi-
cation messagesrequired at the server objed. The collation process s$arts and ends at the beginning
and end d the wllation period. The group (operation | ndtification) message is delivered to the
server object only at the end d the wllation period. Clocks are assumed synchronised to the preci-
sionrequired bythe application.

The anount of timethe C-Agent isrequired to wait before the delivery of the messagetothesink olject is
based uponcollation time and coll ation cardinality. Thisrelationship is described in table 8.3 .

Group-Based Distributed Computing 129

Group Policy Specification Language: An Introduction

8.5.5 Combination Mode Specification Elements
Thefollowing collation operators are available in the GPSL correspondng to the coll ation schemes pro-
posed in sedion 3.6. The “SING.ETON mode corresponds to the delivery of individual messages
without any coll ation. The semantics of these operatorsis specified in table 8.2 .

1. MATRIX(SEQUENTIAL|ANY-ORDER, FIRST|RECENT|ALL)

2.LINEAR(FIRST|RECENT|ALL)

3. SINGLETON(SEQUENTIAL|ANY-ORDER, FIRST|RE CENTJALL)

These operators gecify the foll owing aspeds of the collation:

a. How to construct a group message from the comporent messages,

b. In what order to arrange the component messages in agroup message, and

c. If multipleinpusarereceived from the same sourceobject duringa all ation period,then how to han-

dle the multiple inpus. The sink olject may wish to include:

- All inpusreceived from a given sourceduring the mllation period in the group message.

- First input from a given sourcein the wllated group message, and the subsequent inpus from
that source aeincluded inthe subsequent collation periodsfor the anstruction d subsequent group
messages.

-Recent inpu received from agiven sourceduringthe llation periodinthe groupmessage, while
the earlier inpus are discarded. Other schemes are paossible; they are nat included.

8.5.6 Attribute Combination Specification Elements

The messagefilteringcriterionis gecified as an attribute expression, which isabodean expresson. The
bodean operators, suchas‘and’, ‘or ’, ‘xor ’, etc. are used in attribute expressions. The usua compari-
son operators suichas‘<‘, *>’, '==", etc. are used for comparison between attributes. The bodean opera-
torsare also used for the conjunction d synchronisation pdicy primitives (see examples in section 7.9)
in order to specify multiple synchronisation a aternative synchronisation requirements.

8.5.7 Message Ordering Specification Elements

Message orderingisarequirement in the distributionand deli very of messages. Thedistribution adering
requirementsare specified asun-ordering, source ordering, atomic ordering, etc. They are satisfied by the
choiceof appropriate multicast protocols. Themessage delivery orderingrequirementsare specified using
thefoll owingmessageordering operatorsavail ableinthe GPSL to speafy appli cation-specificordering o
the delivery of received messages to the sink olject.

a. followed_by : previous message followed by successor message: The delivery of previous
messageisfollowed by thedelivery of successor message, assoonastherequired instancesof the pre-
vious message is received from the specified source objects in the specified coll ation interval.

b. interleaved_with - message-1 interleaved_with message-2: Two messages can be
delivered in any order to the sink olject as sonasthey are scheduled for delivery (by the collation
mode, collation cardinality or collation duation semantics).

c. disab | ed_by : regular message disabled_by exception message: The delivery of a regular
message isdisabled by thereceipt of exceptionmessage once the required number of exception mes-
sages are received from the specified source objedsin the spedfied collationinterval, at whichtime
only the exception message is delivered to the sink olject, while the regular message discarded.

d.choice :alternate-1choice alternate-2: Thealternate-1or alternate-2 messageisdeliveredtothe
sink oject, whichever is scheduled first for delivery (using the collation mode, collation

Group-Based Distributed Computing 130

Group Policy Specification Language: An Introduction

Table 8.2: Semantics of Collation Operators

Number of
Collation Component components .
mode ordlzering frompagiven S
source
Coll ate the cmmponent messagesin the matrix-mode in the order inwhich
their respedive sourceobjedsare spedfiedinthefrom clauseandinclude
SEQUENTIAL | FIRST | the (first|recent|all) message(s) from agiven sourceobjed receved duing
RECENT | | the wllation period inthegroupmessage. In caseof ‘AL L’ constructor, all
GAEE messages from a given source ae combined in adjacent locations of the
MATRIX group message.
Coll ate the cmponent messages from the sourceobjeds (specified in the
ANY-ORDER | FIRST | from clause) in the order in which they are receved, in the matrix-mode,
RECENT | and include the (fir st|recent|all) message(s) from a given sour ce obj ect
ALL recaved during the collation period in the group message.
Coll ate the mmponent messages from the source objed (spedfied in the
from clause) in the linear mode and include the (fir st|recent) message
Not Applicable fromagiven sourceobjed receved duringthe cll ation periodinthegroup
LINEAR messge.
ARET | Inlinear coll ationscheme, thetupleparametersare aranged as edfiedin
RECENT .
the message signature.
‘ALL’ isaninvalid constructor in the linear collation scheme.
Do not combinetherecaved messages. Deliver the(fir st| recent|all) mes-
sage(s) recaved duringa ollation periodfrom agiven source objed indi-
vidually to the sink objed, as singleton messages, in the order in which
their respedive source objeds are spedfied in the from clause.
SEQUENTIAL ;';CSET’\!T | I pcasegf ‘ A LL’ and’ REQENT’ conﬁructors,.the.m%sagedgli very Fothe
ALL sink object isdelayed until thecollation_cardinality clauseis stisfied or
until the mllation duration expires (becausethe C-Agent doesnot know if
more messages will arrive from agiven sour ce object whileit iswaiting
for messages from other sources). Incaseof * ALL’ constructor, all mes-
sages recaved from a given sour ce object during a llation period are
delivered sequentialy to the sink objed before starting the delivery of
other messages from other source objeds gedfied in the from clause.
IS| cl)\l,\? LE Do not combine the receved messages. Deliver the (first| all) message(s)
recaved fromagiven sourceobjed individually tothesink objed assoon
asit isreceived.
FIRST | Incaseof ‘'RECENT'’ constructor, themessage deli very tothesink obj ect
AN ORDIER /TEEENT || isdelayed wntil the collation_cardinality clause is satisfied or urtil the

collation duration expires (because the C-Agent does nat know if more
messages will arrive from a given sour ce object while it is waiting for
messages from other sources). Once the collation_cardinality clause is
satisfied or the wllation duration expires, the most recent message
recaved from ead sourceobject is delivered separately to the sink objed
in the order in which it arrived.

Group-Based Distributed Computing

131

Group Policy Specification Language: An Introduction

Table8.3: Combined Semantics of Collation Time, Collation Cardinality, and Collation M ode

ATLEAST

ATMOST

ATLEAST
+

ATMOST

within
(used
on the
client
side)

Wait until the recept of spedfied
minimum number of TER-messages
or urtil the end of the wllation
period, whichever occurs first.

If the spedfied minimum messages
are not receved duing the llation
period, give an exception messageto
the client object, otherwise give the
spedfied minimum messages to the
client object in the spedfied colla
tion mode, as soon as they are
received.

Discard other messages.

In case of SINGLETON delivery
mode, the delivery of termination
messages is delayed until the recept
of the specified minimum messages.

Wait until therecapt of spedfied
maximum number of termination
messges or until the end of the
spedfied collation period, which-
ever occursfirst.

Give dl messagesrecavedwithin
the mllation period to the dient
objed in the spedfied collation
mode.

Discard other messages.

Wait until the spedfied minimum
number of termination messages
have been recaved, and if more
coll ation period exists, then wait
until thereceapt of spedfied max-
imum number of messages or
until the end o the ollation
period, whichever occurs first.

If the required minimum mes-
sages are not receved during the
collation period, give an excep-
tion messagetotheclient object,
otherwisegivethespedfied mini-
mum and as many as receaved
spedfied maximum messages to
the client object in the spedfied
collation mode.

Discard other messages.

every
(used
on the
server
side)

Wait until the end o the spedfied
collation period.

If thespedfied minimum (OPRINTF)
messges are not recaved during the
collation period, send an exception
message? to the dient objects from
whom the messages were receaved,
otherwise give dl the receved mes-
sages to the server object in the
spedfied coll ation mode.

Wait until the end of the spedfied
collation period,

and give & many as receved
(OPR|NTF) messages to the
server object inthespedfied col-
lation mode.

Discard other messages.

Wait until the end of the spedfied
coll ation period.

If the required minimum
(OPR|NTF) messages are not
recaved during the allation
period, send an exception mes-
sage to the dient objeds, other-
wise give dl messages recaved
within the allation period to the
server object inthespedfied col-
lation mode.

a. An exception messageis not required if the recéved messge is a notification.

cardinality and coll ation time semantics). In case of singleton celivery mode, the alternate message

whose instance is received first isretained for delivery, whil e the other is dropped.
These operatorsare used to order the delivery of collated reply typesto the dient object, when multiple
reply typesor multipleinstancesof agivenreply type aerecavedinresponseto an operationinvocaion
onthe server group.A reply coll ation pdicy iscomposed of oneor multiple collation pdicy primitives
(CPPs) conrected by these message ordering operators (see examplesin section 7.6).

8.6

Conclusion

Inthischapter we haveintroduced alanguagefor expressngabroad family of groupsuppat palicies. The
languagesuppatsthespecification d therequirementsof messagedistribution,collation,synchronisation,
andfiltering.

Group-Based Distributed Computing

132

Inter-GSM Protocol

CHAPTER 9 |nter-GSM Protocol

Abstract
The Group Supprt Machine (GSM) isaconfiguration d Group Supprt Agents (GSAS)
whichinteract witheach aher locally viatheinter-GSAinterfacesandremotely through
inter-GSM protocol for the provision d group support service. This chapter describes
theremote communication between the peer GSAslocated in dfferent GSMIs- theinfor-
mation that is exchanged between the GSAs, the format in which this information is
exchanged, andthe handshaking involved between the GSAs.

9.1 Introdu ction

The GroupSuppat Machine (GSM) isamulti -agent machine. The GroupSuppat Agents (GSAS) canna
offer their servicesindependently inisolation.Instead, these agentsneed to communicatelocally with ather
agentsin the GSM, aswell asremotely with their peesin aher GSMs, in arder to provide the required
group suppat services to the goplication (client | server) comporents. In chapter 6, we have described
the local interadion between the GSAs via the inter-GSA interfaces. This chapter describes the inter-
GSM communicaion ketween the GSAs located in dfferent machines using the Inter-GSM Protocol
(IGP).

9.2 Why Protocol between GSMs

Thefirst questionthat arisesiswhy dowe need acommnunication protocol between GSMs. The answer to
thisquestionis quite straight forward. The GSM is composed o different types of GSAswhich perform
spedalised groupsuppat functions. The GSAs need to exchange their service specific informationwith
their pea GSAsin order to perform their functions. Thetypeof informationthat isexchanged between the
GSAsdependsupontheserviceoffered by the GSAs, for examplethefiltering attributesandfilt eringcrite-
rion reed to be exchanged between the F-Agents, the service-specific synchronisation signals need to be
exchanged betweenthe S-Agents, etc. Sincethisinformationisgenerated and consumed bythepeer GSAs
(andisnat conveyed to the member), thereisthe need for standardisedinter pretationof informationthat is
exchanged between them. A standardised syntax of theinformationandtheassociated semanticsgivesthe
standardised interpretation. Moreover the peer GSAsmust have a onsistent understanding o what infor-
mationto expect in resporseto theinformationthey have sent to their peers. Thiscan be achieved bystan-
dardising the handshake procedure. These ae the isaues of aformal protocol between the GSMs.

Group-Based Distributed Computing 133

Inter-GSM Protocol

9.3 Peer GSAs in Inter-GSM Protocol

Before we proceed to the description d the IGP, we need to identify which agent talks to which ather

agents throughthe IGP, in order to establish peer relationship between them.

1.Peer of D-AgentandC-Agent: TheD-Agent performsthefunction d distributing(operation, ndificaion
| termination) messages onthe (client | server) side, whil ethe C-Agent performsthefunction d collect-
ingthese messagesonthe (server | client) side. Hence the C-Agent receivesthe messages snt by the D-
Agent.

2. Peer of S Agent: The S-Agentscommunicaewith ather S-Agentsinthesamegroup.The S-Agent plays
one of two roles: the synchronisation-seeker or the synchronisation-provider. Thereis an exchange of
message synchronisation related information between these two roles.

3. Peer of F-Agent: The F-Agent communicates with other F-Agents in the server group. The F-Agent
playsoneof two roles. the contestant or thearbitrator. Thereisan exchange of messagefil teringrelated
information between these two roles.

4. Peer of MM-Agent: The MM-Agent communicates with aher MM -Agents in the dient and server
groups. There is an exchange of group membership and member monitoring related information
between the MM -Agents.

94 A General Format of the Inter-GSM Protocol Data Unit

Thepeer GSAscommunicatewith each ather throughthe exchange of GSM protocol dataunits(GPDUS).
Different types of information are exchanged between the peer agents. Before giving the detail s of the
inter-GSM protocol, we start with identifying the type of information that needs to be exchanged
between the peer GSAs in arder to identify a general format of the GSM protocol data unit (GPDU),
showninfigure9.1.

Some types of information are always present in al GPDUs such asthe:

1.GPDU-type: Every GPDU must be properly identified so that the P-Agent onthereceivingsidecan gve
it to the appropriate GSA for processng.

2. Sender-id: Therecipient GSA must know the identity of the sender of the GPDU in al pea-agent com-
munication. The name of the sender of the GPDU isincluded in thisfield.

3. Souce-group-id: The sender of the GPDU must also identify the groupthat it belongsto in order to
uniquely identify a member in the client groupand the server group.

4. Message identifier: Every operation and ndification message invoked by the client object isuniquely
identified locally by aninvocationinstanceidentifier, whichisgenerated bythe G-Agent. Every GPDU
that carriesan application messageor thesynchronisationandthefiltering related informationabou that
message carries the invocdion instanceidentifier, as explained in foll owing sections.

Some information types are exchanged in specific peer agent communication, such as:

1. Information exchanged between D-Agent andC-Agent: The D-Agent onthe dient side sendsoperation
or natificaionmessagesand ogionally filtering constraintsassociated withthosemessages. Optionally,
the gopli cation-specificroleof the sender of the GPDU isal so sent to therecipient. Hencethereisaneed
for a“payload” field, “groupinteraction constraints’ field, and “ membership-descriptor” field in the
GPDUs exchanged between the D-Agent and the C-Agent.

2. Information exchanged between SAgents. As shown in the examplein section 7.9,the S-Agent either
sends the message for which the synchronisation (permisson) is being souglt or the synchronisation-
related information (in the form of amessage) abou that message which isidentified byitsinvocaion

Group-Based Distributed Computing 134

Inter-GSM Protocol

instanceidentifier. In somecases, the membersto whom themessage can bedistributedisalso identified
by the S-Agent. Hence thereis aneed for “ payload” field to carry the message or the synchronisation-
related information abou that message, and “membership descriptor” field in the GPDUs exchanged
between the S-Agents.

Sender- |Sender- [Message Group .
CRRERIRE Group- |ldentifier Identifier PAYLOAD Membership- Elatp CensiE s
Identifier Descriptor

Fig. 9.1 A General Format of GSM Protocol Data Unit (GPDU)

3. Information exchanged between F-Agents. The contestant F-Agents sndthefil tering attributes andfil -
teringcriteriontothearbitrator F-Agent andthe abitrator F-Agent sendsthe outcome of the “m -out of -
n selection pocess' in the form of a message (such as slected() | na-seleded()) to the contestant
agents. Hencethereisaneead for “payload” field to carry theresult of selection processand* group con
straints” field to carry filtering constraints in the GPDU.

9.5 Encoding of GPDUs

TheGPDU isaplacehadder for theidentification d informationtypesthat must be exchanged betweenthe
peer GSAsin theremote GSMs. The focus of the IGP isin theidentification d theinformationtypesand
the handshaking involved between the peer GSAs, and nd on any specific encoding schemesfor the rea-
sons mentioned below. There are numerous encoding passible for the GPDU fields. One such schemeis
employed in ou Javaimplementation d IGP, andis described in section 10.2.4.

Thefirst andthe most important step in any protocol designistheidentificaion o informationtypes
that need to be exchanged between the protocol partners and the handshaking (message exchanges)
involved between them. The next step isthe encoding d the information in the protocol data units. The
type of encoding schemeto be enployed for the mding d any protocol dataunit isleft open for bi-latera
agreements between the protocol partners and a specific choiceto be made by protocol implementations.
Moreover any explicit choiceof the encoding scheme al so restricts the usage of the IGP. For example, the
“sender-id” field could be encoded as “octet” or an “integer” or a “fixed-size character string’, etc. The
choice of one octet encoding would restrict the sender groupsize to 256.Hence, the choice of encoding
scheme s left open for bi-lateral agreement between protocol partners.

The entire GPDU isessentially an application-level “complex data structure” consisting d multiple
fields(just likeaprogranminglanguage datastructure). The principlesemployed for theencoding o low-
level protocol dataunits sich asthose of X.25 a ATM Frames, etc. with “byte-level” considerations and
boundry alignments, etc. are not used at the application-level PDUs. The application-level protocol data
units, such as X.400messages, CorbaRequest M essage, Reply Message, or the propased GPDUsare spec-
ified usingahigh-level natationsuchasASN.1, OMG Interface DefinitionLanguage (IDL), etc. Thereare
compilerswhich translatethe IDL specification d these high-level messagesto “onthewireformat” such
asCommonDataRepresentation (CDR) andthenrecover (unmarshal) the original messagefromthe CDR
format. These compilerstake are of codingand de-codingisaues sich as byte dignments, variablefield
lengths, etc.

Here ae some possble chaices of IDL encoding that can be used for the GPDU fields:

1. GPDU Type: The GPDU type @an beencoded asan IDL “octet” or “char” or an “enum” (i.e., enumer-
ated data type.

Group-Based Distributed Computing 135

Inter-GSM Protocol

2. Sender Group Identifier: This field can be encoded as IDL “octet”, “unsigned short”, or even as an
“enum” (which will allow user defined restrictions on the choice of groupidentifiers).

3. Sender Identifier: The same choices as for “sender groupidentifier” field”. All the above mentioned
fields are of fixed length.

4. Payload Thisis a variable length field which contains appli cation messages such as OPR-message,
REP-message, etc. Thefirst“I” bytesof thisfield definethetotal length of therest of the GPDU andthe
next “p” bytes definethelength of therest of the payload field. Thelength of “p” and“1” isnegatiated
between protocol partnersto accommodate the maximum possblerequired sizes of payload and o the
GPDU. Thepayload itself contains programming language specific parameter datatypessuch asbod-
ean, integer, float, char, string, etc. They areencoded inthe mrrespondnglIDL typesandareembedded
inthisfield.

5.GroupMember ship Descriptor: describesthe any “appli cation-specific” roleof the dient or server group
members, such asagroupadministrator, etc. Thisisagain avariablelength field, thefirst “m” bytes of
thefield definethelength of therest of thisfield. Thelength of “m” isnegatiated between protocol part-
nersto accommodate the maximum required sizeof thisfield. Theroleof client and server groupmem-
bers can be most naturally mapped into an IDL “enum” type or other posshbilities sich asan “octet” or
“short” may also be used to represent arole.

6. Group Constraints. are described as a set of attribute-value pairs and/or a combination d those pairs.
They areused asfilt er-constraints. Again, thisisavariablelength field; however, thelength o thisfield
can bededuced from thelength of the previousfields. Each attributeistyped, suchasan“integer” value
attribute, a“float” valueattribute, “bodean” valueattribute, etc. They areencoded inthecorrespondng
IDL types and are embedded in thisfield.

The entirel DL specification d the GPDU isthen compiled or marshalled into “ Common Data Repre-
sentation”, whichisthe “on-thewireformat”, andtheindividual fieldsareremvered into theorigina form
at the recaving end wsing urmarshalling routines.

9.6 Inter-GSM Protocol between D-Agent and C-Agent

TheD-Agent onthe (client | server) sideisresporsiblefor thedistribution d (operation, ndification |ter-
mination) messagesreceived from the (client | server) object. Thereisaunidirectional transfer of (opera-
tion, ndification |termination) messages from the D-Agent onthe (client | server) sideto the C-Agent on
the (server | client) side.

9.6.1 Application Message Communication b etween D-Agent & C-Agent
The G-Agent receives (operation, ndification |termination) messages from the locd (client | server)
objed. Itadds“invocaioninstanceidentifier” tothesemessagesin order to uniquely identify them. Thenit
gives the message and its identifier to the D-Agent. The D-Agent constructs the D-OPR-GPDU, the D-
NTF-GPDU andthe D-REP-GPDU, ore each for the distribution operation, ndificaion,andtermina-
tion message respedively (see figure 9.2). These GPDUs contain the respedive message (in the pay-
load field) and the invocation instance identifier associated with the message (in the message identifier
field). The invocation instance identifier helps in the association d the reply messages with the corre-
spondng operation messages, so that the C-Agent onthe client side can separate the replies received in
resporse to dfferent operation messages from the server group.

The D-Agent also adds the (client | server) identifier in the “sender identifier” field and its group
identifier inthe* sender groupidentifier” field. If the(client | server) hasan“ application-speafic” role,itis

Group-Based Distributed Computing 136

Inter-GSM Protocol

placed in the “group membership descriptor” field of the GPDU.

Fig. 9.2 Inter-GSM Protocol between D-Agent & C-Agent

TheD-Agent onthe dient sideal so encapsul atesthefilt eringattributes, thefilt eringcriterion,andthe
filter cardinality, if any, intheD-(OPR |NTF)-GPDU. Thesefil teringconstraintsareincludedinthe GPDU
in order to send bah themessage andthefilteringconstraintsassociated withit inthesame GPDU. Thefil -
teringconstraintsareobtained fromthelocd F-Agent, and are placed inthe* groupconstraints’ field of the
GPDU. Whenfilteringconstraintsareincluded, thenthese GPDUsareidentified as* DF-OPR-GPDU” and
“DF-NTF-GPDU”, in arder toidentify the presence of “group-interactionconstraints’ inthe GPDU to the
P-Agent onthe server side. When this GPDU isreceved by the P-Agent onthe server side, it strips the
groupconstraint field, and gvestheinformation contained in thisfield to thelocal F-Agent, alongwith a
copy of the“messageidentifier” field. Therest of the GPDU isgiven to thelocal C-Agent for the unmar-
shalling d the encapsulated message and its subsequent collation.

9.6.2 Marshalling of Application Messages in GPDUs

TheD-Agent recaves(operation, ndification [termination) messagesfromthelocd (cli ent | server) object
(viathe G-Agent) as the message name foll owed by a series of zero or more parameter values. The D-
Agent associates the recaved parameter valuesto their correspondng parameter names according to the
message signature specified in the D-pali cy script, thereby constructingthe <parameter name, parameter
value> tuples. The message name dongwith these parameter tuples are caried in the “ payload” field of
the GPDU.

The gpli cationmessagesare marshall ed (or encoded) as<parameter name, parameter value>tuples
in order to handle the posgble differencein message signatures onthe client and server sides, and also to
enablelinea mode all ation by the C-Agent ontheother side. The C-Agent performstheunmarshalling d
GPDUs snt by the D-Agent. The presence of <parameter name, parameter value> tuples in the GPDU
all owsthe C-Agent onthereceivingsideto associate the parameter valuesto the crrespondng parameter
names before collating and invoking the message onthe local (client | server) object.

9.6.3 Group Exception Handling Protocol Between C-Agents

The distribution d an (operation | naification) message from the client to the server groupinvolves the
activation d various GSAsontheclient side and onthe server side, in arder to processthe group-interac-
tionconstraints(suchasdistribution,collation,synchronisation,andfilteringconstraints), beforethedeliv-

Group-Based Distributed Computing 137

Inter-GSM Protocol

ery of the message to the server objects. If the operation message isfinally delivered to the server objeds

after successul group constraint processng bythe GSAs, then multiple replies are received by the C-

Agent onthe dient side from the D-Agents in the server group.

However when exception conditions arise in groupconstraint processng bythe GSAsonthe client
side or onthe server side, the message ether canna be distributed from the dient’s side or it cannat be
delivered to the server objects. In case of groupconstraint processngexceptionsonthe dient sidesuch as
synchronisation (or permisson) to send amessage not received, then the message isnat distributed and a
locd exception termination message is returned to the client object by the involved GSA.

In case of group constraint processng exceptions on the server side, the operation message is not
delivered to the server object andthe gpropriate groupexceptiontermination messageis constructed by
the C-Agent onthe server side andit is sent to the C-Agent onthe client side viathe C-EXP-GPDU. The
following goupconstraint processing exceptions are reported to the C-Agent onthe dient side by the C-
Agents on the server side in the C-EXP-GPDU.

1. Coll ation exceptions. Many exceptionsmay beencourtered duingan operationcoll ation process such
asan operation rame or its parameter names are not recogrised bythe C-Agent, aminimum number of
operation messages naot received within the specified collation period, etc. The C-Agent on the server
side constructsan exception terminationmessage with appropriate reason parametersandsendsit tothe
C-Agent onclient side.

2. Synchronisationexceptions: If the synchronisation (or permisson) to deliver amessageisnot received
within the specified timeinterval from the spedfied groupmembers, then the message canna be deliv-
ered to the server object. The S-Agent onthe server side informsthe local C-Agent of the result of the
synchronisation processng. The C-Agent discards the operation message and constructs an exception
terminationmessage with appropriatereason parametersandsendsit tothe C-Agent onclient side. The
reason parameters may convey application-spedfic detail ssuch asreasonfor disapproval, theidentities
of the groupmembers who dsapproved the delivery of the message, etc.

3.Filteringexceptions: Filter processngmay encournter many exceptions sich asafil teringcriterionspec-
ified bythe dient or the server isnot satisfied, client’sfilter attributes not recognised o insufficient on
the server side, the server isnot selected for service provisionin“m -out of- n selection process’, etc. In
such cases, themessage canna be delivered to the server object. The F-Agent ontheserver sideinforms
thelocal C-Agent of theresult of thefil ter processng. The C-Agent discardsthe operationmessage and
constructs an exception termination message with appropriate resson parameters and sendsit to the C-
Agent on client side.

The “payload” field of the C-EXP-GPDU contains the reason for the exceptionin the form of amessage
withappropriatereason parameters. The" messageidentifier” field containstheinvocationinstanceidenti-
fier of the crrespondng operationmessage, so that the C-Agent onthecli ent side can associ ate the excep-
tion message with its correspondng operation message. All types of exceptions on the server side ae
deliveredtothe C-Agent onthe dient sideby the C-Agent ontheserver side. Thisensuresthat the C-Agent
onthe client side does not exped replies from the wrrespondng server objects.

9.7 Inter-GSM Protocol between Peer S-Agents

The S-Agentsinthe(client | server) groupareresporsiblefor synchronisingthe (distribution |delivery) of
the message (from | to) the (client | server) object, with respect to ather eventsin the group.The S-Agents

Group-Based Distributed Computing 138

Inter-GSM Protocol

in agroupcommunicate with each ather in arder to perform thisfunction. The S-Agent plays one of two

roles: the synchronisation-seeke or the synchronisation-provider, as defined bel ow.

1. Synchronisation-seeke S-Agent: It isthe S-Agent associated with the (client | server) object whichis
required to seek the synchronisation a permisson from other members of the (client | server) groupin
order to (send |receve) the message.

Fig. 9.3 Inter-GSM Protocol between S-Agents

2. Synchronisation-provider S-Agent: It isthe S-Agent associated with the (client | server) objed which
providesthesynchronisation-rel atedinformationtothesynchronisation(or permisson) request from the
synchronisation seeker (client | server) objects.

There is an exchange of synchronisation related information between these two roles, as $1own in
figure 9.3. The synchronisation-seeker S-Agent may either explicitly seek synchronisation (or permis-
sion) to dstribute or deliver the message from the synchronisation-provider S-Agents or it may receive
synchronisation-related information from the other synchronisation-provider S-Agentsin an ursoli cited
manner. These two modes of synchronisation process are explained bel ow.

9.7.1 Solicited Synchronisation Protocol
In appli cations which require synchronised message distribution, when an operation a natification mes-
sageisreaived from the dient object by the G-Agent, it givesthe message both to the D-Agent andto the
S-Agent. TheD-Agent doesnat distributethemessageuntil an appropriate synchronisationsignal (permis-
sion) isreceived from the locd S-Agent. Similarly, in applications which require synchronised message
delivery, when aD-OPR-GPDU or aD-NTF-GPDU isreceived from the network by the P-Agent, it gives
the GPDU bothto the C-Agent aswell asto the S-Agent. The C-Agent doesnot deli ver the messageto the
server object, urtil an appropriate synchronisationsignal (permisson) isreceived from thelocal S-Agent.
In the solicited synchronisation protocol, the synchronisation-seeker S-Agent explicitly seeks the
permisson d the synchronisation-provider S-Agents, in arder to authorizethe distribution a delivery of
the appli cation message, by sending the S-SOL-GPDU to all the synchronisation provider S-Agents as
spedfiedinits S-palicy script, andthen waitsfor aspeafied time periodfor the receipt of SRES-GPDUSs
from the synchronisation-provider S-Agents. On receipt of the S-SOL-GPDU, the synchronisation-pro-
vider S-Agentsrespondwith their synchronisation-rel ated information, such asthe permissonto (distrib-
uted |deliver) themessage granted ar denied, etc., bysending S RES-GPDU to the synchronisation seeker
S-Agent. The synchronisation-provider S-Agent may give the resporse to the synchronisation request
based uponsome padlicy or after consulting with the group member via the SMI and gmi, as siown in

Group-Based Distributed Computing 139

Inter-GSM Protocol

figure9.3.

The S-SOL-GPDU containsthe foll owing information, apart from other sender identificaioninfor-
mation:

1. payloadfield: a copy of the operation a notification message whichisto be (distributed | delivered),

2. message-identifier-field: the invocation instance identifier associated with the message, and

3. group-membership descriptor-field: sender’s appli cation-specific role,

4. groupconstraint field: optionall y, theidentiti es of the (server groupmembers| client object) (to |from)
whom the message is (to be distributed |receved).

Thisinformationis used by the synchronisation-provider S-Agent to decide whether to grant the
requested synchronisation a not. TheS-RES-GPDU containsthefoll owinginformation,apart from sender
identificaion information:

1. payloadfield: a resporse to the synchronisation request in the form of a messages, such as
“synchronisation_request_approved()”, “synchronisation_request_denied()”, etc.

2. message-identifier-field: containstheinvocationinstanceidentifier whichwaspresentinthecorrespond
ing S-SOL-GPDU,

3. group-member ship-descriptor-field: sender’s application-spedfic role,

4. groupconstraint field: optionally, the identities of the server groupmembersto whom the message can
be distributed, thisfield is a sub-set of the correspondngfield in the S-SOL-GPDU.

9.7.2 Unsolicited Synchronisation Protocol

Inthe unsolicited protocol, the synchronisation seeker S-Agent does not explicitly seek the permisson o
thesynchronisation-provider S-Agents, instead it impli citly waitsfor therecei pt of asynchronisation ndi-
ficationmessage from the synchronisation-provider S-Agents, in order to authorise the distribution d an
(operation | rotification) message from a dient site.

Inthisprotocol, the S-Agent switchesitsrole between synchronisation-seeker and synchronisation-
provider, depending uporwhether it isrequired to wait for therecei pt of synchronisation ndificationmes-
sages or whether it is eligible to send such messages.

An example of unsolicited synchronisation process in client group is given in the example in
sedion 7.9.5and illustrated in figure 7.25. In this appli cation, the members of the client group (tester
agents) send messages to the server group in a synchronised manner. Let us consider a subset of this
applicaion in order to demonstrate the unsolicited synchronisation protocol. The message “test-
A(aq,a 5, a 3)” from the tester agent TA-1 can be distributed to the server group, ory when a per-
missonis received from the TAdmin. This permisson s received througha S-NTF-GPDU. Moreover
this message shoud only be distributed to those server group members who have succesdully passed
thetest “init_test() " of the TAdmin. Thisinformationis also present inthe SSNTF-GPDU. In this
instance, the S-Agent (in the GSM) asciated with the TA-1 is the synchronisation seeker S-Agent
whereas the one assciated with the TAdmin is the synchronisation provider S-Agent.

When therepliescorrespondngto the“init_test() " operation message arereceived, the TAd-
min analyses these replies and gvesa “pass’ or “fail” verdict for each reply, based uponits application
spedfic criterion, to its locd S-Agent via the “gmi” and “SMI” as sown in figure 9.3. The S-Agent
converts the reply identifiers into the correspondng server group member identifiers (seesection 7.9.7)
and constructs two messages, “passed(member_list)” and “failed(member_list)”. These messages are
sent in the “payload” field of the SNTF-GPDU (see figure 9.4) to the synchronisation-seeker S-Agents

Group-Based Distributed Computing 140

Inter-GSM Protocol

as pecified inits S-palicy script.

Sender- |Sender |Message Group - .
CFLLR e Group- |ldentifier| Identifier PAYLOAD | Membership- Elrap-Clnsi el

‘ Identifier ‘ ’ Descriptor ‘
|

client-id associated with the OPR-message P2 specific role
sent by the synchronisation provider failed(), etc.

client group id or the “test cycle identifier”.
Fig. 9.4 S-NTF-GPDU Format

When the S-Agent asociated with the TA-1 receives this SNTF-GPDU, it informs the locd D-
Agent to dstributethemessage“test-A(a 1,a ,,a 3)” tothememberswho have passed the previous
test, andthen it assumestherole of synchronisation provider S-Agent (to communicate the passand fall
verdict from TA-1 to ather members of the client group).

In general, the SSNTF-GPDU natifiesthe occurrenceof certain synchronisationeventsat its snder,
such asthedelivery of an operationmessageto the server group, @ thereceipt of all therepliesfrom server
group, o thepass/ fail verdict, to the synchronisation-seeker S-Agents. Thenatification d the occurrence
of these eventsmay bereceived from thelocd D-Agent, or local C-Agent, or from the associated member
objed, viathe gmi and SMI as shown in figure 9.3. The S-NTF-GPDU contains the following informa-
tion (apart from other standard fields):
1.payloadfield: Thepayloadfield of the SNTF-GPDU contains certai n appli cationspecific synchronisa-

tion related information, such as “passd(member_list)”, “failed(member_list)”,
“reply_not_received(member_list)”, etc. (see examples of these @ses in sedion 7.9.6, which is
required by the synchronisation seeker S-Agentsin the group.
2. message-identifier-field: Thisfield containstheinvocationinstanceidentifier of the operation a natifi-
cation message which has been sent by the previous client (synchronisation provider). In the dove
example, this field represents a “test cycle identifier”.

S—JTF—GPDU i $ invocati&n instance-id pissed(), C"e!t.'s application ab}ent

9.8 Inter-GSM Protocol between Peer F-Agents

The F-Agentsinthe server groupareresporsiblefor filteringthe (operation a natification) messagesand
performing“m- out of - n selection” of servers, before aithorisingthe delivery of the messageto the server
objeds. Filtering d messages based uponclient and server’sfilter attributes and filter criterion accurs
locdly, while* m- out of-nseledion” requiresinter-GSM protocol between F-Agents. It may benoted that
thereisno reed for filtering d the termination messagesin the client group.The F-Agent playsone of the
two roles: the contestant or the arbitrator, as defined below.

1. Contestant F-Agent: It isthe F-Agent associated with the server object which isrequired to satisfy the
filtering criterion specified bythe client object, before the delivery of message.

2. Arbitrator F-Agent: An arbitrator F-Agent may be chosen from amongst the contestant F-Agentsor an
F-Agent asociated with aspeda member of the group,such asaGroup Administrator, may be desig-
nated asan arbitrator F-Agent. Thefunction d thearbitrator F-Agent, inan*“m-out of- n seledion” pro-
cessisto seled ‘m’ serversout of ‘n’ aacording to certain filtering criteria.

An example of thefiltering processis given in section 7.10.3and illustrated in figure 7.37.1n this

Group-Based Distributed Computing 141

Inter-GSM Protocol

example aclient sendsit print request, “print_ request(data)” , to al print-servers, which are organ-
ised asaprinter group. Thisrequest isdistributed to al the members of the printer groupthroughthe D-
OPR-GPDU. The dient’sfilter criterion,filter attributes, and filter cardinality (specified in figure 7.39
are stored in the “groupconstraints’ field of D-OPR-GPDU. However the print request shoud be deliv-
ered to only one member of the groupwhich best satisfies the dient’sfiltering criterion.

When the P-Agentsin the server groupreceive the D-OPR-GPDU, they strip the* groupconstraint”
field and gveit to thelocal F-Agent alongwith a apy of the message identifier field and gvetherest of
the GPDU to the local C-Agent. The C-Agent does not deliver the message in the payload field
(“ print_request(data)”) until thefiltering processis completed bythe F-Agent andthe permissonto
deliver the message is received fromit.

Thefiltering process consists of filter criterionevaluationwhich isperformed locally and“m -out of
-nselection” processwhichrequirestheinter-GSM protocol between F-Agents. Thefilter criterionevalua-
tion ensures that the client’sfilter criterion specified in figure 7.35(for example st per page <5 cents,
printer quality = color, etc.) is satisfied by the print server and the print server’sfilter criterion specified
infigure 7.36(client isaregistered user, client has aufficient fundsin hisaccount) is stisfied bythe di-
ent.

Sender- | Sender:Messageé- Group - .
GPDU-TYPE Group- ||dentifieldentifief |, PAYLOAD |Membership Group-Constraints
‘ldentifier Descriptor ’
F-PAR-GPDU Prnt—Strver—id g‘r r?gg—g;ﬂ:a;glﬁ%o selrver! application-specific
role
rint.Server Cleint’s filter criterion + server’s attributes +
Eroup— d Ve invocation-instance identifier id’s of print server group memberhlp which is
associated with print_request(participating in theiltering process (as
message in the B % L} specified in the amongst clause in figure 7.35

Fig. 9.5 F-PAR-GPDU Format

When bahthe dient’sand server’sfilter criterionare satisfied, the F-Agentsenter into an“m -out of
-nseledion’ processin arder to seled asingle best print server (the one with the minimum queue length,
which dffers srviceat lowest cost, etc.). Evenif aserver cannot satisfy theclient’ sfilter criterion, it enters
into an“m-out -of -n selection” processby sendinga “non_garticipant()” messagein the payload field of
F-PAR-GPDU (see figure 9.5), in order to ensure that the abitrator F-Agent receves bids from all the
members of the print server group tefore it starts the “m -out of - n selection” process These F-Agents
are contestant F-Agents. A single F-Agent, usually associated with the (GSM of) Group Administrator
isasggned the role of an arbitrator F-Agent. The “m -out of- n selection” of serversis usualy required
when a dient specifiesa certain (minimum or maximum) number of serversthat must handeits service
request.

The mntestant F-Agentsexplicitly seek the abitration d the abitrator F-Agent by submittingtheir
bidstoit, in arder tofindif they arethelosersor thewinnersin the*m -out of -n selection process’. Sothe
contestant F-Agents participatein the m-out of- n selection” processby sendingthe dient’sfilteringcri-
terion and the associated server’s attributes in F-PAR-GPDU (see figure 9.5) to the abitrator F-Agent.
The identities of the print server group members amongst which the “m -out of- n selection” isto be
dore is also sent in the “group constraints’ field of the F-PAR-GPDU. This information is obtained

Group-Based Distributed Computing 142

Inter-GSM Protocol

from the correspondngfield in the D-OPR-GPDU in which the original “print_request()” was encapsu-
lated.

Sender- | Sender |Message Group- ;
ChCE Group- |Identifier Identifiger PAYLOAD MemEership—GrOUp Constraints

Identifier Descriptor

| |

. . selected() or A *'
FXES-GPDU Arbltr!tor-ld not_selegted() arbitrator EMmpty
;) invocation-instance identifier
ér%brp_ti%r s in the corresponding F-PAR-GPDU

Fig. 9.6 F-RES-GPDU Format

The abitrator F-Agent waitsfor a certain specified period d timefor the receipt of F-PAR-GPDUs
from all the F-Agents in the group (i.e., those specified in the “group constraint” field of the F-PAR-
GPDU). If it receivesthe F-PAR-GPDUsfrom all the contestantswithin the specified timeinterval, thenit
startstheseledion processimmediately. It selectsthe*m’ serversthat best satisfy the di ent’sfil teringcrite-
rion,from amongst the bidsthat it hasreceived, within a certain pre-specified timeinterval. Alternatively,
incaseof a mmplexfiltering pdicy, thearbitrator F-Agent may consult itsasociated member, viathe FMI
and gni, as shown in figure 9.7,in arder for the member to perform the selection. Finally, the F-Agent
informs the result of the seledion process, such as “selected()” or “not_selected() to all the members of
the group by sending the F-RES-GPDU (see figure 9.6). If an dd F-PAR-GPDU is deteded, it is
ignored bythe arbitrator F-Agent. If ‘ m’ or no servers shoud dothe job, then the F-RES-GPDU is snt
to the seleded contestants using an atomic broadcast protocol.

(Filter- i (Filter-
Contestant) arbitrator)

F-Agen
contestan

Fig. 9.7 Inter-GSM Protocol between F-Agents

9.9 Inter-GSM Protocol between Peer MM-Agents

An olject groupis adynamic entity. New members may be added to the group, existing members may
leavethegroup, o theremay belinkfailuresor member fail ures, leadingto achangein the membership of
the group. These events have an impact on the functioning d the GSAs, which depend uponthe current

Group-Based Distributed Computing 143

Inter-GSM Protocol

groupmembership informationin arder to perform their respedive functions. For example, if thereisan
additionto the membership of the server group,it shoud be natified to the D-Agents and C-Agents of the
client group so that (operation | naification) messages are aso sent to the new member, and reply mes-
sages expeded from new members. Similarly if thereisaremoval or fail ure of an existingmember of the
server group,it shoud be natified to the C-Agent of theclient groupso that it does not expect repliesfrom
adeleted member. Any changein the membership of the (client | server) groupshould also be natified to
the S-Agents of that groupso that they may seek the synchronisation d the gopropriate members of the
group.

The groupmanagement aspects are beyondthe scope of thethesis. It isnat theintention d thethesis
to present an elaborate membership management protocol. Such protocol shavebeen extensively described
in the literature, such as virtual synchrony [100- 103, etc. Our aim isonly to deal with those member-
ship management aspects which have an impact onthe functioning d the GSAs. The MM -Agent intro-
duced in chapter 5, performs the minimum membership management functions required to suppat the
other GSAs, such as monitoring the membership o the group, ndifying the member failures, and
receiving membership change natifications from other MM-Agents and the group administrator. The
MM-Agent then ndifies these membership changes to the local GSASs.

9.9.1 Distributed Membership Monitoring

Groupmembership needsto be cntinually monitored in order to detect member fail ures due to nock or
link failures. There are many schemesfor monitoringthe‘liveliness of groupmembers. They rangefrom
centralised monitoring schemesto distributed monitoring schemes. In centrali sed scheme, aspecial mem-
ber of the group, wually intherole of agroup adninistrator, isresporsible for membership monitoring.
The MM -Agent associated with the groupadministrator sends* probe messages’ to the other MM-Agents
(associated with ather groupmembers) which respondto these probeswith“i amalivemessages’. Whena
resporseisnot received within aspecific time period (or after specific number of retries), the administra-
tor's MM-Agent sends a“member failure(member_id)” natificationto therest of the MM-Agents. How-
ever, this heme suffers the disadvantage of single point of fail ure. Hence we have adopted a distributed
monitoring scheme.

In distributed monitoring scheme, the management resporsibility is distributed amongst all MM -
Agents. Each MM -Agent isresporsiblefor sending the probe messages and ndifyingmember failuresto
others. There aemany distributed monitoring protocols, oneof them isexplained below. TheMM-Agents
of theobject groupare organised asalogical ring,with apredecesor and succesor assgned to each mem-
ber. Each MM -Agent isresponsible for monitoringits predecessor andinformingitsown ‘liveness toits
successor. Hence each member periodically sendsan “i_am_alive()” messageto its successor in the M-
NTF-GPDU. If thismessageisnat received from apredecessor, within aspecified timeinterval, the mem-
ber fail urenatificationissent toall themembersof thegroup,includingthe suspected fail ed member using
M-NTF-GPDU, with the “member_failure(group_id, member_id)” messageinthe payloadfield. When a
member is restarted or receives its own failure natification, it seeks re-entry into the groupthroughthe
group adninistrator (seenext sedion).

9.9.2 Membership Change Notification

In many groups, themember additionandmember removal iscoordinated throughaspecia groupmember
intherole of agroup adninistrator, which admits new members or gives permisson to the existing mem-
bers for leaving the group kased uponappli cation-specific membership management palicies. Once it
decidesto join anew member to the group a to delete amember from the group, it natifiesitslocal MM -

Group-Based Distributed Computing 144

Inter-GSM Protocol

Agent. The MM -Agent then broadcasts any membership change natificationsto al the MM -Agents of the
group, through the MM-NTF-GPDU. The payload field of this message contains the
“add_member(group _id, member_id, member_role, member_address predecessor, successor)” or the
“delete_member(group_id, member_id)” message, asappropriate. When anew member isadded, its suc-
cessor and predecesor are dso assgned, so that membership monitoringcan proceed, asdiscussed above.
TheMM-Agent playstheroleof monitoring, dsseminatingandreceivingthe management informa-
tion pertaining to the groupthroughM-NTF-GPDUSs, and d informing any membership changesto the
locd GSAs. The M-NTF-GPDU contains the foll owing information:
1.message-identifier field: Thisfieldidentifiesthenumber of invocation d themessage of agiventype, for
example, “thisisthe5th“i_am_alive()” messagefrom me” or “thisisthe 7th“add_member()” message

from me so that an MM -Agent knows if it has missed any message.
2. payloadfield: Thisfield contains the message which isto be sent to ather MM -Agent(s), such as
a i_am alive(),

b. member_failure(group_id, member_id),

c. add_member(group_id, member_id, member_role, member_address predecessor, successor)

d. delete_member(group_id, member_id)

3. membership-descriptor field: Thisfield contains the senders appli caion specific role.
4. group-constraints field: Thisfield is absent.
A summary of the GPDUsisgivenintable 9.1

Table9.1: A Catalogue of GPDUs

Receiver(s Membersh Group
GPDU Type || Sender PAYLOAD ip .
) . Constraints
Descriptor
D-OPR-GPDU || D-Agent C-Agentsin OPR-message Client’'sappli- | client’sfilter attributes,
on client server group (receved fromclient) | cation-spedfic | criterion,andcardinality
side role
D-NTF-GPDU || D-Agent C-Agentsin NTF-message Client’'sappli- | client’sfilter attributes,
on client server group (recaved from client) | caion spedfic | criterion,andcardinality
side role
D-REP-GPDU || D-Agent C-Agentsin REP-message Server'sappli- | absent
on server client group (recaved from server) | cdion spedfic
side role
C-EXP-GPDU || C-Agenton | C--Agent(s)in | Exception message Server'sappli- | absent
server side | client group cdion spedfic
role
S-SOL-GPDU Synchroni- | Synchronisa- OPR |NTF-message | Sender’'sappli- | optional (see
sation tion provider cdion spedfic | sedion9.7.1)
seeker S-Agents role
S-Agent
S-RES-GPDU Synchroni- | Synchronisa- sync-request-approved | Sender’'sappli- | optional (see
sationpro- | tion seeker or cdion spedfic | sedion9.7.1)
vider S-Agent sync-request-denied role
S-Agent

Group-Based Distributed Computing

145

Inter-GSM Protocol

Table9.1: A Catalogue of GPDUs

Receiver(s Membersh Grou
GPDU Type || Sender PAYLOAD ip P
) : Constraints
Descriptor
SNTF-GPDU Synchroni- | Synchronisa- synchronisation Sender’s appli- | absent
sationpro- | tion seeker events, such as cdion spedfic
vider S-Agent(s) passed(member_list), | role
S-Agent fail ed(member_list).
F-PAR-GPDU Contestant | Arbitrator m_out of n_selea() | Sender'sappli- | client’sfilter criterion +
F-Agent F-Agent cdion spedfic | server'sattributes+ con-
role testant id's.
F-RES-GPDU Arbitrator | Contestant seleaed() or arbitrator absent
F-Agent F-Agents not_seleded()
M-NTF-GPDU || MM-Agent | MM-Agent i_am alive(), Sender’s appli- | absent
member_failure(), cdion spedfic
add_member(), etc. role
9.10 Inter-GSM Protocol over Multicasting Protocol

The Inter-GSM protocol (IGP) enables the peer GSAs to communicae with each ather using standard-
ised exchange formats, and it defines the handshaking ketween the peer GSAs. However, as shown in
figure 9.8,the IGP is suppated by the underlying multicasting protocols in the Group Communicaion
Layer (GCL), i.e., the GPDUs that are exchanged between the GSAs are adually carried by the under-
lying multicasting protocols. These GPDUs are encapsulated in the “payload” field of the multicast pro-
tocols and transparently caried to the other GSMs.

9.10.1 Group Communication L ayer
As $own in figure 9.8,the GSM is suppated by Group Communication Layer (GCL). The GCL
iscomposed of different types of Multi cast Protocol-Objects or MP-Objeds. Each MP-Object suppats
a different classof multicast protocol, such as unardered multi cast protocol, source-ordered multi cast
protocol, causal-ordered multicast protocol, atomic-ordered multicast protocol, etc. The GCL provides
the foll owing services to the IGP:
1.Message delivery service: The multicast protocols provide the low-level message delivery servicesand
takes care of fail ure handling, retransmissons, etc.
2.Messageorderingservice Themulticast protocol sprovidesdifferent typesof messagedelivery ordering
such as urce-ordering, cestination-ordering, casual-ordering, etc.
3. Resilience guarantees: The multicast protocols provide message delivery guarantees such as atomic
delivery (including same ordered delivery) at all destinations.

Group-Based Distributed Computing 146

Inter-GSM Protocol

(OPRINTF|REP) message
- |

Inter-GSM
GSM - Protocol > GSM
— Multicast -
GCL ™ Pprotocol ~L_GCL

Fig. 9.8 Inter-GSM Protocol over Multicast Protocol

9.10.2 GSM - GCL Interface
TheP-Agent of the GSM interfaceswith the GCL. The P-Agent receivesthe GPDUsfrom thelocd GSAs
and gvesthem to the gopropriate MP-Objedsfor delivery to ather GSMs. Similarly it receivesthe GPDUs
from the MP-Objects and gives them to the gpropriate locd GSA based uponthe information in the
“GPDU type” field.

TheP-Agent givesthe GPDU andtheli st of itsrecipientsto the gopropriate MP-Object, byinvoking
a standardised service primitive: “multicast(this_ GPDU, t o_these_members) ”. Similarly,
the MP-Object delivers the GPDU to the P-Agent by invoking a standardised primitive on the local P-
Agent: “receive(this_GPDU)

9.11 Conclusion

This chapter has described the Inter-GSM protocol (IGP) between the peer GSASs. This protocol enables
the communication between the peer GSAs using a standardised format. The information content of the
GPDUs and the handshaking involved between the peer GSAsin arder to perform their respective func-
tionsisdescribed. Somepossble excodingschemesfor GPDU fieldsareouitlined. Thel GPissuppated by
aset of underlyingmulti cast protocolswhich provide different message delivery and adering glarantees.

Group-Based Distributed Computing 147

Inter-GSM Protocol

Group-Based Distributed Computing 148

Group Support Platform: Implementation and Performance

CHAPTER 10 Group Supyort Platform:
|mplementation and Performance

Abstract
This chapter describes the implementation detail s and performance aspects of the Group
Suppat Platform. Apartial model of the Group Suppa Machineinvolvingthe G-Agent, D-
Agent, C-Agent, andP-Agent wasimplemented inthe Java programminglanguage. Theaim
of thisimplementationexerciseisto validate the abstract model andthe protocol, proposed
inthe previouschapters, experimentall y andto ganinsight into the performance aspects of
the model.

10.1 Introdu ction

The proposed model of the Group Suppat Machine (GSM) is implemented in the objed-oriented pro-
gramminglanguage Java. The object-oriented features of Javamap naturally into the object-oriented besis
of the proposed model. Thelanguage also suppats ome of the advanced olject-oriented features such as,
classes, inheritance, exceptions, methodoverload ng, multi-threaded programming, object seriali zation,
remote method invocation, thread synchronization and buffered inpu/output facili ties, required for the
straightforward implementation o the model.

The am of thisexerciseisto widen the scope of the thesisin order to implement the abstract models
presented previoudly.

10.2 Implementation Details

The implementation reported in this chapter is carried ou in Symantec’s Visua Cafe Professional Java
Development Environment (Ver. 3.0 running onMicrosoft Windows 95. Visual Cafe suppats DK 1.1.

We have implemented the G-Agent, D-Agent, C-Agent, and P-Agent of the GSM, as highlighted in
figure 10.1. The implementation consists of approximately 1400 lines of Java mde. In the foll owing
sub-sections we describe in detail the implementation d eacdh aspect of the model. We describe imple-
mentation requirements for each aspect, the arrespondng Javalanguage features, and how the require-
ments can be suppated by ore or acombination d Java features.

10.2.1 Implementation of GSM Agents

Each GSM Agent, such as the D-Agent, C-Agent, etc., encapsulates a distinct functionality and as such
corresponds to a separate “functional modue” or an “object” in an olject-oriented paradigm. Hence the
GSM agents are implemented as an instance of a separate Java class Therefore, the GSM consists of a
G_Agent class D-Agent class, C_Agent classand a P_Agent class as siown in figure 10.2.

Group-Based Distributed Computing 149

Group Support Platform: Implementation and Performance

10.2.1.1 GSM Class

The GSM class ®rves asa GSM agents instantiation and initiali zation class It creates the instances of
GSM Agent classes suichastheD_Agent class G_Agent class etc. It containsthe Javamain() method, the
starting pant of any program execution.

Legend:

Gll: Group Invocation Interface
GMI: Group Management Interface
MP: Multicast Protocol

Legend:
Shaded Agents
are implemented
in Java.

Fig. 10.1 Which Agents are implemented

The GSM agents need to communi cate with each other in order to perform their respective functions.
Hence they shoud know the identity of other local GSM agent in arder to invoke methods onthem. The
GSM classpasssthe object reference of theinstanceof each GSM agent to every GSM agent. Thisisdone
by invoking the method gsmObje ctRefs(G_Agent, D_Agent, C_Agent, P_Agent) on
each GSM agent.

TheGSM classinpusthegroup-idandmember-id of the associated groupmember (yet ancther clasg
and untizesthe local GSM agents with thisinformation.

The GSM classalso invokesthe palicy programminginterfaces of the D-Agent and the C-Agent, by
invokinginit() method onthem, in arder to input the respective distribution and collation pdicy from
the user.

10.2.1.2 G_Agent Class
TheG_Agent classimplementsthe equivalent of the di ent-sidestubsandthe server side skeletonsfoundin
the conventional middlewareplatformssuchasCorba. Inthe current implementation,these stubsand skel-
eton are hard-coded with the gopropriate invocaion hendersto hande a seleded set of application mes-
sages, dueto the lack of automatic stub and skeleton generation capabili ty.

Group-Based Distributed Computing 150

Group Support Platform: Implementation and Performance

On the client side, the G_Agent classcontains a hard coded stub for each appli cation message (an
OPR-message). The stub accepts the OPR-message invocationsfrom locd client appli cation, generatesa
uniqueinvocationinstanceidentifier, and gvesthemessage dongwiththeinvocationinstanceidentifier to
the D_Agent classfor distribution, byinvoking gd_distribute_mess age(message, mes-
sageld) onD_Agent.If theG_Agentisprogrammed for solicited reply delivery, the stubreturnsareply
handeimmediately tothe dient, thereby unbdockingthe dient. (The dient canthenissuepadl _reply() later
on whenever areply is required, seesedion 10.2.9. If the G_Agent is programmed for an unsolicited
reply delivery, the stub executes a java thread synchronizaion method, wait(), thereby blocking the cli-
ent until the receipt of agroupreply from the C_Agent class

Ontheserver side, thecg_deliver_message() method d the G_Agent classactsasaskeleton.
It containstheappropriateinvocation handlersfor each OPR-message suppated bythelocal server object.
Theseinvocation hand ersreceivethe OPR-message andthe associated invocaioninstanceidentifier from
thelocal C_Agent class They withhdd theinvocationinstanceidentifier and deliver the OPR-messageto
thelocal server applicationandareblocked urtil thereceipt of thereply from theappli cation.When areply
isreceived from the server application,theinvocation hand ers ndthereply alongwiththe crrespondng
invocationinstanceidentifier totheD_Agent classfor distributionto the appropriate client(s), byinvoking
gd_distr i bute_message(message, messageld) on D_Agent.

The G_Agent class sippats the GSM Invocation Interface (Gl1) and hence suppats agroupinter-
rogation APl with solicited, unsolicited, and terminale reply delivery semantics. This is discussed in
detail i n section 10.2.6.

10.2.1.3 D_Agent Class

TheD_Agent classimplementsthepalicy-based dstribution d the OPR and REP-messagesreceived from
the G_Agent class It contains methodsto input and store the message distribution pdicy from the user, to
perform GPDU coding and construction, and its delivery to the P_Agent classfor distribution using an
appropriate low-level protocol. As mentioned in sedion 10.2.3,we use Java RMI to transport the
GPDU payload between the GSMs.

Group-Based Distributed Computing 151

Group Support Platform: Implementation and Performance

DPPI

CPPI
1

To Network

From Network

Legend:
DPPI: Distribution Policy Programming
Interface

CPPI: Collation Policy Programming
Interface.

Fig. 10.2 GSM Implementation: GSM Agents and their Interaction

Group-Based Distributed Computing

152

Group Support Platform: Implementation and Performance

The D_Agent class contains an important method, gd_distribu t e_message(message,
messagel d) , whichisinvoked bythe stubsandthe skeletonsof the G_Agent classto request the distri-
bution d OPR and REP-messages respectively. Thismethod performs application message marshalling,
GPDU coding and construction. A detailed description d these functions is given in section 10.2.4.
Message marshalling is dore based uponthe message signature, hence there is a separate marshalling
routine for each message type. Once a GPDU is constructed, this method reads the distribution pdicy
from the “distributionPolicyObject " to find out the destination group membership and the
protocol to be used for message distribution. The GPDU, the destination group membership and the
protocol information IS given to the P_Agent class by invoking
dp_multi cast_ GPDU(thid_GPDU, to_these _members, u sing_this_protocol)
on it. Finaly, onthe dient side, it invokes a method, dc_oPR_message_sent_to(oPRName,
oPRId, sentToList) onthelocd C_Agent classto inform it abou the invocation instance identi-
fier that will be asociated with the correspondng REP-messages (only those REP-messages which are
identified properly and are sent by the membersin the “sentTO List " are accepted for coll ation byC-
Agent).

10.2.1.4 C_Agent Class

TheC_Agent classimplementsthe palicy-based collation d the OPR and REP-messageswhich are encap-
sulated in the mrrespondng GPDUSs received from the P_Agent class It contains methods to input and
store the message coll ation pdicy from the user, to perform GPDU de-coding, appli cation message ur-
marshalli ng (message recnstruction), message coll ation and its delivery to the G_Agent classfor final
delivery to theclient or server appli cation wsingthe appropriate delivery semantics (soli cited, unsoli cited,
terminale).

The C_Agent class contains an important method, pc_collate_message(GPDU) , Which is
invoked by the P_Agent classto request the llation d OPR and REP-messages contained in the corre-
spondngGPDUSs. Thismethod performs GPDU deaoding, myload un-marshalli ngtorecover theoriginal
message, and message collation. A detailed description of these functions is given in section 10.2.4.
Message unrmarshalling is done based uponthe message signature, hence there is a separate un-mar-
shalling routine for each message type. Before performing collation on the recovered message, this
method checks if the receved (OPR | REP) message is acceptable to the (server | client) applicaion
(i.e., if the message type is included in the message specification of the “collationPolicyOb-
ject "), if the message sender is authorized (i.e., if the message sender is included in the membership
spedfication of the “collationPolicyObject "), andin case of a REP-message, if the invocation
instanceidentifier associated with the messageisvalid (i.e., whether an OPR-message with an identical
invocation instanceidentifier was snt by the D-Agent).

Once the above mentioned steps are performed, the pc_collate_ message(GPDU) methodcol-
latestheremvered message based uponthe oll ation pdi cy specified for the crrespondngmessageinthe
“collationPolicyObject ”. When the required number of messages of a given type ae received
(i.e., collation cardinality is satisfied), a group message is constructed based onthe spedfied collation
mode (matrix or linear or singeton) and divered to the G_Agent class by invoking
cg_dHiver message(message, messagel d) onit. Onthe server-side, when agroup-OPR messageisdeliv-
ered to the G_Agent class a cd_send replies .t o(messageld, componentllids,
replyRec eivers) methodisinvoked ontheD_Agent class sothat thereply received from the server
in resporse to the group OPR-message is sent by the D-Agent to oy those members of the dient group
from whom the componrent OPR-messages were received.

Group-Based Distributed Computing 153

Group Support Platform: Implementation and Performance

10.2.1.5 P_Agent Class

The P_Agent class performs the inter-GSM communication. This is described in detail in
sedion 10.2.3. The P_Agent class contains a dp_multic ast GPDU(this_GPDU,
to_these _members, using_this_protocol) method which is invoked by the D_Agent
classto transport the GPDUs from the D-Agent to the C-Agent. This method transports the GPDUs to
the peer P-Agents associated with the GSMs of the specified group members using the Java RMI proto-
col. When a GPDU is received, the P-Agent gives it to the locd C-Agent by invoking
pc_collate_message(GPDU) onit.

10.2.2 Implementation of Inter-Agent Invocations

The GSM agents communicate by invoking methods on each ather. In Java, asin any other programming
language, themethodinvocationsareblocking, i.e., thecdl er isblocked urtil thereceipt of thereply (or the
completion d method,if theresultisvoid). Theuse of thistype of call er-blockingcommunicationmeda-
nism pases certain performance and architectural problemsin amulti -agent software such as Group Sup-
port Platform (GSP) which consists of multi ple GSMs (andtheir comporent agents) communicatingwith
each aher.

In therealizaion d the Group Suppat Platform (GSP), thistype of blocking overheal is extremely
serious. It resultsin achain of blocked methods. For example, when aclient’s OPR-messageisinvoked on
aGSM (i.e, its G-Agent), thismessage isinvoked bythe G-Agent onthe D-Agent which in turn invokes
the correspondng OPR-GPDU on the P-Agent. The sourceP-Agent invokesthe GPDU onthedestination
P-Agentsin the server group. The destination P-Agent invokes the received GPDU onthelocal C-Agent
whichinturninvokesthe ollated group message onthelocal G-Agent andfinally onthe server objectsin
theserver group.Dueto the blocking reture of methodinvocations, thefirst methodinvoker isnot released
until all thesuccesor invokersarereleased (i.e., havereceivedtheir replies). Thisresultsinall theagentsin
the GSM beingtied upto handle asingle client request.

Thereisanother architectural requirement inthe GSM, the path traced bythereply isnat the same &
theonetraced bytheoriginal client’srequest. Therepliesaredistributed bythe D-Agent ontheserver side,
and collated by the C-Agent on the client side. Hence there is aneed to de-coupe the request and reply
path and to undock the methodcall chain.

A simple and elegant solution to the problem mentioned above existsin Java. Thisis offered by the
Javathreads. Thethread gvesaway to implement concurrency or, in the case of asingle processor envi-
ronment, interleaved execution. The abili ty to create multiplethreadsandto embed theinter-agent method
invocations within the body d the threads is the key to the solution. In ou implementation whenever a
class(or amethod) needsto invoke another class(or amethod) it instantiates an instance of a Javathread
referredtoasaNonBlockinglnvo ker, usingathread sstart() method.Thebody d the NonBlock-
inglnvok er thread contains a single method call ed run() which contains the gpropriate inter-agent
methodinvocation. So amethodinvocationis handed byan independent and concurrent thread of execu-
tion, thereby unbocking the original thread, the caller. Using this mechanism we have redized a non
blockinginvocationmechan sm, thereby avoi dingthechain of blockedinvocations. Wenow have aparall el
architecturefor GroupSuppat Platform in which each GSM (andthe componrent agentswithin the GSM)
can execute concurrently with ather GSMs.

In ou implementation, the inter-agent invocaionsfollow a cetain naming convention. For example,
the method called gd_distribute_message() isinvoked (in an independent thread) by the G-
Agent onthe D-Agent to request the distribution d the message.

Group-Based Distributed Computing 154

Group Support Platform: Implementation and Performance

10.2.3 Implementation of Inter-GSM Communication

Inter-GSM communication accursviathe P-Agent. Inareal environment, the P-Agent usesan appro-
priate multi cast protocol to dstribute the GPDUsto the (P-Agents of the) destination GSMs. Our imple-
mentation is carried ou in asimulated environment on a single machine. We have implemented a four
member group,each o them suppated by an individual instance of GSM, identified as GSM1, GSM2,
GSM3,andGSM4. All these GSMsrunin separate address pacesonasinglemachine. SowechoseJava's
nativeinter-processcommunication protocol totransport the GPDUsbetweenthe GSMs. In ourimplemen-
tation P-Agents communicate with each ather via Java's Remote Method Invocation (RMI) protocol.

After theinstantiation d GSM agents, each P-Agent isregistered in the Java RMI registry usingthe
Java sbind() or rebind() method.Beforemakinganinvocation,theP_Agent islocated usingthe“lookup()”
operation d theJavaRM | registry. Theseinvocations between P-Agentsare dso executed in Java sthread
and hence are non-blocking.

10.2.4 Implementation of Inter-GSM Protocol

The Inter-GSM Protocol (IGP) is described in chapter 9. This protocol consists of a set of GPDUs
which describe how an agent within a GSM communicates with its pee agent in a remote GSM. The
emphasis of that chapter is ontheidentification d the different fields required for inter GSM communi-
cation and their information content. There ae several aspects of the protocol that are not defined in
that chapter, such as marshalling d the message parameters and the detail ed coding o the GPDU fields.
These aspects pertain to the implementation d the protocol, and are decided based upon l-lateral
agreement between protocol partners. They are described in this sction.

As mentioned in sedion 9.5, there are many paossibilities with respect to the format and the coding
of the GPDU fields. In ou Java implementation d 1GP, we have chasen a simple and straightforward
coding for the GPDU fields. Thisis described below for each of the GPDU fields.

The GPDU Typefieldidentifiesthetype of the GPDU. Thisfield takesalimited set of values, such as
“D-OPR-GPDU", “D-REP-GPDU", etc. There ae numerous encodings possblefor thisfield, suchasa
“byte”, “integer”, “enumerated types’, “ charader strings’, etc. In ou implementationthisisencoded asa
character Sringin Java.

The Sender Groupldentifier and the Sender Identifier fields of the GPDU identify the sourcegroup
andthe sender of the GPDU. Againthere aemany possbilitiesfor the encoding d thesefields, asouitlined
in section 9.5. The simplest being the representation d these fields as charader Sring which we have
chasen in ou implementation.

The Message Identifier field contains the “invocation instance identifier” associated with an OPR,
REP, or an NTF-message. Itisauniqueidentifier andit could berepresented asan integer, character string,
or some combinationthereof. In our implementationwe encoded it asan integer. The GroupMembership
Descriptor and Group Constraints fields are not used in ou implementation.

The encoding (or marshalling) of the Payloadfield of the GPDU deservescareful attention. Thisfield
containsthe gopli cationmessage (i.e., an OPR, REP, or an NTF message) anditsparameters. In high-level
programminglanguages, such as Jva, C++, C, etc., thesemessageshavetheir correspondngmessagesig-
natures and they are typed. Each message contains zero or more parameters and each parameter is an
instanceof abasiclanguagetype such asaninteger, boolean, character, float, etc. or of a cmnstructed type.
Thereare many encoding schemespassblefor thesetyped messages. In Corba’ s General Inter-Orb Proto-
col (GIOP), these typed messages are encoded using a Common Data Representation (CDR).

In our implementationwe have chosen asimple message encodingschemewhichisnativeto the Java
language. All basic and constructed typesin Javaare an extension d the Object class The Object classis

Group-Based Distributed Computing 155

Group Support Platform: Implementation and Performance

at theroat of the Javaclasshierarchy. Moreover, an Object classisseriali zable, arequirement for JavaRMI
protocol which is used to transport the GPDUs between the GSMs. The Payload field of the GPDU is
implemented asan array of Object class Thisallowsall basic and constructed Javatypesto be marshall ed
as an Object type, the base type.

The marshalling d the OPR and REP messagesis carried ou based uponthe message specification
(message signature) in the distr i butionPolicyObject . Each message parameter is marshall ed
into its base type, the Object type, using an appropriate marshalling function for that type. The payload
consists of a sequence of parameter names, implemented as a string, and the wrrespondng marshalled
parameter value.

10.2.5 Implementation Distribution and Collation Policies

The Group Policy Specification Language (GPSL), introduced in chapter 8, is essentially aframe-
work which identifies the basic elements of message distribution pdicy, collation pdicy, etc. The
emphasis of GPSL isto gve alanguage framework rather than any spedfic notation. Being alanguage
framework, it can be implemented in avariety of mechanisms.

In our implementation,thedistribution pdicy andthecollation pdi cy areredi zed as Jva dassesiden-
tified as DistributionPolicy and CollationPolicy respectively. These classes contain the
correspondngelementsof thepadli cy such asmessage specification, member ship specification, cardinality
spedfication, etc. The message specification consists of the message name, foll owed by a sequence of
parameter name and parameter type specificaion. Thisisimplemented asa character Sring. Themember -
ship specification consists of acomma separated li st of groupmember names. Thisisagain aString. The
time specification specifiesthe maximum coll ationwaiti ng period. Thisisimplemented asan integer. The
cardinali ty specification specifies the minimum or maximum number of messagesrequired for coll ation.
Thisisnaturally mapped into aninteger. The coll ationmode could be “matrix”, “linear” or “singleton’. It
can be represented either as an enumerated type or asa string. The latter is chosen.

Distribution pdicy and collation pdicy are programmed inthedistr i butionPolicyObject
andthecol lationPolicyObject respedively. These objectsareimplemented asan array of Dis-
tributio nPolicy classandCollationPol i cy classesrespectively. Thesizeof thearray isequal
to the number of message types sippated bythe group members.

The distribution and collation policies are solicited from the user in the init() method d the
D_Agent classand C_Agent classrespedively. This method serves as the Group Policy Programming
Interface of the GSM (see figure 10.2).

10.2.6 Implementation of an API for Group Interrogation Primitive

The group interrogation grimitive propcsed in chapter 3 essentially defines an application-level
APl which is offered bythe GSM and used by client comporents of a group-based appli cation (see def-
inition in section 3.10 for invoking OPR-messages on the server group and for recaving multiple
replies in a solicited or unsolicited manner from the server group. This communication gimitive is
offered as an API to the application comporents by the G-Agent of the GSM and it is referred to as
GroupInterrogation Interface (Gll) in section 6.2.1.1.

Thegroupinterrogation grimitive givestheclient the capabil ity to receiveasingle groupreply or mul-
tipleindividual repliesin asolicited or an ursolicited manner. In the foll owing sub-sections we describe
how these capabilities are suppated in our APl implementation wsing the Java's thread synchronizaion
primitives, wait() and natifyAll () which are used bythe G-Agent to wait for the replies andto be natified
when the replies arrive.

Group-Based Distributed Computing 156

Group Support Platform: Implementation and Performance

10.2.6.1 Implementation of Unsolicited Group Reply Delivery - API
This API suppats the most smple semantics of the groupinterrogation, i.e., the dient invokes an OPR-
message onthe Gl and it is blocked urtil the receipt of asingle groupreply.

Theclient’srequest (OPR-message) invocationisintercepted bythe G_Agent classandishanded by
the gpropriate stub. The stub generates anew invocaioninstanceidentifier (iii d) and sendsthe message
alongwith itsiii d to the D-Agent for distribution to the server group. The stub then waits for the group
reply to be received from the C-Agent by exeauting the wait() Java synchronization grimitive.

Due to the non-blocking reture of inter-agent invocations (as discussed in section 10.2.2, and dwe
to therepliesfoll owing a path dfferent from the one followed by the request message, the stubs have to
execute await() method.

Whenthe C-Agent hasreceved all the expected repliesfrom the server groupmembers, asspedfiedin
the reply collation pdicy, it gives a singe group reply to the G-Agent by invoking
cg_deliv er_message() onthe G-Agent. The cg_deliver_message() method d the G-
Agent storesthereceived groupreply inalocd buffer and sendsanatificationto the waiting stub byexe-
cutinganother Java synchronization grimitive, the natifyAll (). The stub then fetches the groupreply from
the buffer and returnsit to the client, thereby unbockingit.

10.2.6.2 Implementation of Solicited Multiple Reply Delivery - API

The solicited reply delivery semantics of the group interrogation imply that the individual replies
received from the server groupin resporse to an OPR-message are delivered to the dient by the GSM
only when explicitly requested by the dient, the dient is undocked immediately after invoking the
OPR-message.

As in the previous case, the dient’'s request (OPR-message) invocation is intercepted by the
G_Agent classand is handled by the gpropriate stub. The stub generates a new invocation instance
identifier (iii d) and gvesthe message dongwith itsiii d to the D-Agent (using the non Hockinginvoca-
tion, described in section 10.2.9 for distribution to the server group. However, in this case, the stub
returns the invocdion instance identifier to the client as a reply hande, thereby unblocking the dient
immediately. The client may now engage in aher processng. Theiiid is aso locally stored in the G-
Agent as an index for reply storage (when it is received) and retrieval (when requested by client).

Incomingreplies areidentified with theiiids that were associated with the correspondng OPR-mes-
sage. In case of singletonand solicited reply delivery, the C-Agent sendstheindividual repliesalongwith
their invocation instance identifiers to the G-Agent as onas they are received from the server group
(withou collation). These replies are buffered within the G-Agent and indexed with the correspondng
invocation instanceidentifier.

Whenever a new reply is required, the dient invokes a pdl_reply(reply _hande) on the GlI of the
G-Agent. This invocation is handed by the stub for the padl_reply. If the reply correspondng to the
reply handeis avail able in the local buffer, the stub returns the oldest reply in the buffer. If noreply is
avail able, the stub may either block the dient, waiting for the receipt of a new reply or it may give a
“reply nat available” reply and unbock the dient (the client may try later). In our implementation the
former option is chasen. In the former case, the stub executes a wait() primitive waiting for the receipt
of reply available natification from the cg_delive r_message() method.When areply isreceived
from the C-Agent, the cg_deliver_ me ssage() method executes the Java synchronization primi-
tive natifyAll () to ndify the waiting stub about the receipt of the reply. The stub then returns this reply
to the client, thereby unbockingit. This APl can be further enhanced to hand e the delivery of different
types of replies by including areply type argument in the pal_reply(reply _handle).

Group-Based Distributed Computing 157

Group Support Platform: Implementation and Performance

10.2.6.3 Implementation of Unsolicited, Multiple and Terminable Reply Delivery - API

Thistype of reply delivery semanticsimply that theindividual repliesfrom the server groupare delivered
totheclient by the GSM in an ursolicited manner as soonasthey arereceved from the server group.The
terminable reply delivery cgpability gives the client the control to terminate the delivery of subsequent
replies when it does not want them any more. The terminable reply delivery capabili ty can also be com-
bined with the solicited reply semantics, althoughit adds little advantage.

In Java, asin any other programminglanguage, the dientsare unbdocked after the delivery of thefirst
reply, whether it isasingetonreply or agroupreply or areply hande ainthe previous case. Theimple-
mentation d unsolicited delivery of multiple repliesindividually (as and when they are received) using
existinglanguagesrequiresthe dient to suppat acall backinterfaceto recaveindvidual and ursolicited
repliesfrom the GSM. The clientsregister their callback interface with their local GSM. The cli ents may
either suppat asingle @l badk interface or multiple cll back interfacesin order to suppat the recept of
different types of replies. So, the GSM knows which client’sinterface(s) to invoke to deliver the replies.

Asinthe previouscase, the client’ srequest (OPR-message) invocationisintercepted bythe G_Agent
classandishandled bythe appropriate stub. The stub generates anew invocationinstanceidentifier (iii d)
and sendsthe message alongwithitsiiid to the D-Agent (using the non HBocking invocation) for distribu-
tiontothe server group.Thenthe stubreturnstheinvocaioninstanceidentifier tothe dient asareply han
dle, thereby undockingthe dientimmediately. Theclient may now engagein ather processng.Inthiscase
each reply hand e (iiid) isassociated with acorrespondngreply delivery flagwhichis st true by the stub
before returning the reply handeto the client.

Whenindividual repliesarereceived fromthelocd C-Agent, the G-Agentinvokestheserepliesonthe
appropriate cdl back interface of the dient if thereply delivery flag associated with thereply handeis st
totrue, otherwisethereply isdiscarded. (Theclient isinternally ndtified of thereply receipt by their call -
back methodks).

When the cli ent wantsto terminate the reply delivery for aparticular OPR-message, it invokes aspe-
cial message terminate_replies(reply _hande) onthe Group Invocation Interface (GllI) of the G-Agent.
Thismessageishanded by the correspondngstub,which turns off the arrespondngreply delivery flag,
thereby disabling the delivery of subsequent replies.

10.3 Performance Aspects

Middewareisan entity that liesbetween the applicationsandthelow-level communicationinfrastructure.
Therefore the performance of middeware platform is an important aspect to the appli cations that use it.
Middeware platforms perform some useful functionsin arder to make distributed computing transparent
to the goplicationsthat use them. Hence, in general, thereis some performance overheal associated with
these platforms.

In this section we discussperformance of the Group Suppat Platform (GSP), a middeware for the
suppat of group-based dstributed applications. It makesgroup-based distributed commnunicationaspeds
transparent to the appli cations.

Some of the desirable properties of the midd eware platformsare highthroughpu, low latency, flexi-
bility, scalahility, reliabili ty, andease of use. Inagroup-based distributed environment, thereare many fac-
tors that have an effect on these desirable properties. In the foll owing sub-sedions we examine these
factors and evaluate the performance of GSP using the performance metrics [149 - 153 used for the
evaluation d middeware platforms.

Group-Based Distributed Computing 158

Group Support Platform: Implementation and Performance

10.3.1 Message count

Thenumber of messages exchanged between the midd eware entiti esisabasic performancemetric. It has
adired effect onthe network load and the gpli cation throughpu and reply-reception latency. In case of

GSP, the basic data unit that is exchanged between the middleware antities (i.e., the GSMs) isthe Group
Protocol DataUnit (GPDU). As shown bel ow, thismessage countisdirectly propattional tothe size of the
group,i.e., number of groupmembers. For example, an OPR-GPDU hasto be distributed to all the server

group members and the originating GSM has to wait for the reception of all the REP-GPDUSs before a
groupreply can be sent to the client. Hence group size increases the message count.

Thereply receptionlatency, idedly, isnot afunction d message court (or rather the groupsize). Ina
environment compaosed of concurrent server groupand communicationlinks, it takesthe same anourt of
timetoreceive a ‘single” reply or “n” number of replies from the group(given anegligible wllation pro-
cessingtimeto construct agroup reply inthe client's GSM). Thisisdueto the fad that the REP-GPDUs
fromall theserver groupmembersarereceived smultaneously bythe dient’sGSM inresporseto an OPR-
GPDU (because dl OPR-messagesareprocessed andthecorrespondngREP-GPDUsaregenerated simul -
taneously because of the concurrency inthe server group). However the distribution o the membersof the
server groupfrom the dient objed andthe dharacteristics of the communicationlinks between them (and
thedynamic network |oad) affectsthelatency of thereception of replies(REP-GPDUS) from theindividual
members of the server group.

Here is a quantitative evaluation d the message count. Consider a client object interacting with a
server group d size “n”. The dient’'sGSM sends*n” number of OPR-GPDUS, oreto each member of the
server group. Similarly, it receives “n” number of REP-GPDUS, ore from each member of the server
group. Therefore the total message court is“2n”.

Now let’s evaluate the message @urt if a “filtering requirement” (see example in section 7.10) is
imposed in the server group. This means that “m out of n” servers in the server group are filtered
(selected) to perform (execute) the dient’s request (OPR-message)™. Again, the client’'s GSM sends “n”
number of OPR-GPDUSs, ore to each member of the server group. The OPR-GPDUSs contain the filter-
ing constraints gecified by the dient. An OPR-message aan ony be given to “m” members of the
server group which satisfy the dient’sfiltering criterion. In order to dothis, the contestant F-Agent in
each GSM sends an F-PAR-GPDU (see section 9.8) to an arbitrator F-Agent, atotal of “n” messages. In
resporse to this, the abitrator F-Agent sends its “selected” or “not selected” reply in F-RES-GPDUSs,
one to each member of the server group,ancther “n” messages. The set of “m” filtered (selected) serv-
ers endtheir repliesin REP-GPDUSs. Therefore the total message court inthiscaseis“3n+m”.

10.3.2 Message Complexity
The size of the messages exchanged between the midd eware entiti esisanother performance metric. Itis
usually measured in “bytes’. It depends uponthe anourt of control informationcarried inthe GPDUs (in
addition to the usual payload size) and the type of encoding scheme employed. As described in chapter
9, the GSMs need aminimal control informationto be exchanged between them in order to communi-
cate with each other andto perform their function.

Here'saquantitative evaluation d the sizeof the GPDUs which carry appli cation messages, such as

1. It may be noted that filtering does not alwaysimply “m out of n” seledion. If a dient wants all serversin the group
that satisfy the dient’sfiltering criterionto be seleded, then only locd filtering is done, “m out of n” seledionis
not required.

Group-Based Distributed Computing 159

Group Support Platform: Implementation and Performance

D-OPR-GPDU, D-REP-GPDU and D-NTF-GPDU. The size of any PDU depends uponthe encoding
scheme. Here weill ustrate the size using most simplest scheme. The minimum size of the GPDU fields
are:

1. GPDU Type: using an “octet” IDL encoding =1 byte,

2. Sender Groupld: usingan “octet” IDL encoding= 1 byte,

3. Sender Id: using an “octet” IDL encoding = 1 byte,

4. Message ldentifier: usinga“short” IDL encoding = 2 bytes,

5. Payload Thisavariable length field which contains appli caion message. Thefirst 2 bytes of thisfield
speafy the rest of the payload length. This field is encoded as parameter name and parameter value
tuples. The parameter namesarerequired inaGPDU to suppat the “linear-mode message wllation” on
thereceiver side. Theinclusion d parameter namesincreasesthe payload size. The parameter namesare
“IDL stings’. Therefore the encoding d an OPR-message (with a variable number of parameters)
requires “q” bytesto encode parameter names and “p” bytes to encode the actual parameter values.

Thereforethetotal message sizeis“p+q+ 7 bytes. Theoverhead isg+7 bytes. If only matrix mode
collationis suppated, then there is no need to encode parameter namesin the payload field. In this case
message size shrinksto “p+ 7” bytes. Onepassbility of minimizingthe payload complexity isto useopti-
mal coding techniques, which generates the least number of bytes.

Apart from message cournsand message complexity, we present some other factorsthat also have an
impact on the performance of a“middieware” system.

10.3.3 Communication Network Speed

Theresporsetimeor thereply reception delay isprimarily dependent uponthe characteristicsof the com-

munication retwork andindividual linksthat connect theclient object to the server group,and onthephys-

icd distribution d individual groupmembersfrom theclient. The speed of theindividual communicaion

links between the client and the server groupmembers, isthe primary fador that affect the resporsetime.
Moreover, theresponsetimeisal so affeded by such varying and dyramicdly changing retwork traf-

fic condtions arising due to congestion, link fail ures, re-routing, etc.

10.3.4 Message Marshalling and Un-marshalling Overhead

The encodingand decoding d the GPDU onthe sender andreceiver side dso adversely affect the overall
performance of the GSP. It decreasesthethroughput andincreasesthelatency of reply reception bythe di-
ent. The encoding d all the GPDU fields, except the payload, incurs afixed amount of processng over-
head. Themarshallingand unmarshalling d the payload field invol vesvariable processngoverheal. The
payload consists of variable number and types of parameters. The use of complex data structures for
parameter types requires excessive marshalling and unmarshalli ngoverhead. Latency also increases|in-
early with the size of the request.

In general long operations with many parameters and complex parameter types take longer for mar-
shalling and unmarshalling. This is due to the fad that marshalling routines convert the complex data
typesinto most basi c datarepresentationforms (flattening). Thesetransformationfunctions, such asmes-
sage marshalling, buffering, data copying, etc. are the primary areas that must be optimized to achieve
higher throughpus.

10.3.5 Intra-GSM Invocations Overhead
Conventional middlewareplatformssuch asCorba, DCOM, etc. suffer from excessveintraORB function
calls. One of thereasonsfor latency intheseplatformsisthelongchain of intrasORB functioncalls. These

Group-Based Distributed Computing 160

Group Support Platform: Implementation and Performance

intraORB invocations and the internal data wpying between buffers consumes a significant amourt of
CPU, memory and I/0O bus resources and they affect the dficiency of the model.

In ou implementation d GSMs we make special considerationto minimizethisoverhead. Duetothe
use of nonblocking invocations (see section 10.2.2 for inter-agent invocation within the GSM, this
type of delay isamost nontexistent in ou implementation. In particular, thistype of architedure avoids
the longchain of inter-agent calls. After making an invocation onancther agent, the calling agents are
released immediately to accept another request (either from the dient or another agent) because inter-
agent invocations are performed in an independent and rewly spawned thread. Also the design d the
GSM minimizes the need for invocations between the GSM agents.

10.3.6 Internal Buffer Sizes and Queue Lengths Considerations

Any implementation d middeware platform requires the use of internal buffersand queuesto store and
processmessages until they areready for delivery to the client or server appli cations. Thesize andthe dl o-
cation d these system resourcesis also a performance consideration. A small number (and size) of these
bufferswould result inthe user requestsbeing queued, thereby affectingthroughpu, andalarge number of
them would result in waste of system resources. An oggimal and dyramic allocation strategy is always a
requirement.

In our implementation,the most prominent buffersarethe cllationbuffersrequired to storemessages
(OPR or REP) until agroupmessageisconstructed. The size of each collationbuffer isknown becausethe
groupsize and message sizeare known. It isthe number of these buffersthat are needed that isunknown.
However thisisnat a problem in Java because Java permits dynamic allocation d buffers.

10.3.7 Concurrency and Multi-threaded architecture aspects

The @ncurrency in middleware is dependent uponthe use of multi-threaded design techniques. Multi-
threadingisin general agood asign performance optimizationtedhnique. It minimizeslatency, increases
throughpu and ensures predictability in middeware platforms.

Thepropased GSM model, can beimplemented in many waysand byusingany combination d multi-
threading techniques [154] such as thread-per-request architecture, thread-per-connection achitecture,
thread-per-objed architecture, thread-pod architecture, etc. The choice of one or the other architecture
depends uponthe nature of applications suppated. It isatrade-off between concurrency andthe host sys-
temresourcesthat are consumed. For examplethethread-per-request architedureisvery costly intermsof
consumingsystemresources, butisuseful to handlelong duationrequests such asdatabase queries. In ou
sample GSM implementationwe use multi-threadingmainly to avoid performance bottlenecks such asin
inter-agent invocations (which may result inlong-chain of inter-agent cal swithin GSM) andto avoid cli -
ent requests starvation.

Multi-threading allows requests to execute simultaneously withou impeding the progress of other
requests. If properly used, it can ensure that client requests can be handed quckly enoughand rew
requests are not starved or unduy delayed. With multi ple threads, each request can be serviced initsown
thread, independent of other requests. Likewise system resources are are dso conserved, since creatinga
new threadistypically much lessexpensivethan creatinganew process Moreover thethread desafter the
completion d the request, thereby releasing the resources. However, even with multi-threaded architec-
tures, it may be noted that the performanceis dependent uponthe number of CPUsandthethread schedul -
ing pdicies employed bythe native host environment.

10.3.8 Timers
Theuseof timersinthemiddeware platformsall ows usersto impase amaximum upper bound orthetime

Group-Based Distributed Computing 161

Group Support Platform: Implementation and Performance

spent waiti ngfor thereceipt of replies. Timersareanintegral part of midd eware platforms. Inthe GSP, the
the upper limit onthereply reception delay isdetermined bythe collationtimers (which are programmed
as part of the reply collation pdicy).

10.3.9 Collation Processing Overhead

So far we have eval uated the GSP based uporthe metricsthat arerelevant bath to the “single dient - singe
server” middeware platform such as Corba andto the group-support midd eware such asGSP. Inthisand
in the subsequent sub-sedionwewill evaluate GSP based uponthe considerations that are specific to the
groupsuppat middeware.

In a group-based environment, there ae many factors that contribute to the latency and delaysin
receivingresporses. Oneof themistherequirement for delivery of groupreply to the dient. The wnstruc-
tion d thegroupreply involvesmessage coll ationmecdanisms. Reply coll ationcan oy be completed and
agroupreply constructed when all the replies are received from the server group.Hence wllationintro-
ducesits own reply reception celay.

10.3.10 Other Group Processing Overhead

Other group pocessing functions such as g/nchronization and filtering dscussed in chapter 4, also
have a mgjor impact on the throughpu and latency of the GSP. The synchronization d client’s (OPR-
message) invocations in the client grouprequires the execution d a solicited or an ursolicited synchro-
nizaion protocol as described in section 9.7. This protocol involves the exchange of S-GPDUs which
introduces further delay in the distribution of OPR-message to the server group, and consequently the
reply reception latency.

Similarly, the filtered delivery of client’sinvocationin the server grouprequires the exeaution d an
“m-out of-n seledion” protocol as described in section 9.8. This protocol involves the exchange of F-
GPDUs which introduces further delay in the delivery of OPR-message to the server group,and conse-
guently the reply reception latency.

10.3.11 Reliability and Robustness
So far we havefocussed ou attention onthethroughpu andlatency characteristics of the GSP. Inthisand
the foll owing sub-sections we evaluate the other performance aspeds of the GSP.

The GSPisareplicated architecture. Due to the presence of GSM entity at every member node, the
failuresarelocali zed. Failure of onenodeor GSM doesnat affect the overall performance of therest of the
GSP (except for examplethe unavailability of reply from one group member). Moreover the management
protocol discussed in section 9.9, deteds failures and provides fail ure natifications to the rest of the
GSMsin the GSP.

Robustnessof the midd eware platform isdetermined bythe upper limits of the entitieshanded, e.g.,
the maximum size of the request, the maximum number of client and server objects, etc. In a multi-
threaded implementation d GSP, each client request ishand ed by aseparately spawned thread. Hencethe
robustnessof the GSPislimited bythe avail abili ty of the underlying system resources sich as the maxi-
mum number of threads, buffers, etc. that can be obtained from the host system.

10.3.12 Scalability

Scalabili ty istheabili ty to hand etheincreasing number of objectsintheendsystemsandinthedistributed

system. Scalability isimportant for large scale gopli cations that handle large number of objeds on each

network nock as well aslarge number of nodes throughou a distributed computing environment.
There are two aspectsto the scalabil ity of the GSP, the scalability of the GSMs and the scalability of

Group-Based Distributed Computing 162

Group Support Platform: Implementation and Performance

the Inter GSM Protocol (IGP). The former determines the ability to hande the increasing number of
requests in the end systems andthe latter determinesthe aoility to add more nodesin the distributed sys-
tem.

In amulti-threaded GSM implementation, each client’s request ishanded by a separate thread. The
ability of the GSM to handle an increasing number of clientsandtheir requestsin the end systemsislim-
ited bythe maximum number of threads andthe buffersthat can be obtained from the host. Therefore, the
maximum limit on the scalability is st by the underlying hcst resources.

The scalability of the IGP is determined bythe scalability of the GPDU fields. Thefields that have a
directimpact onthescal ability arethe” Sender-Group-1d”, “ Sender-1d”, andthe “Message-1d” . Theencod-
ing d these fields affects the scalabilit y. For example, if “ Sender-1d” field isencoded as a “byte’, then a
maximum of 256 obectscan besuppated bythe GSP. However, if thisfieldisencoded asavariablelength
“String’ (asisdorein ou Javaimplementation), then an arbitrarily large number of objects can be sup-
ported by GSP. None of the GPDU fields constraint the expansion d the groupsize. The IGP itself does
not limit the scal abili ty of themiddeware. A simil ar considerationappli esto the scalability of theunderly-
ing multi cast protocols which transport the GPDUs between the GSMs.

10.3.13 Ease of Use

The ease of use of amiddleware platform isan important criterionfor the gpli cations. Inthis sib-sedion
we discusshow easy it isfor the dient and server comporents of the group-based applicationto use the
GSP. Asmentioned in the previous chapters, the GSM offerstwo interfaces to the user application. These
are the GSM Invocation Interface (Gll) and GSM Policy Programming Interface (GPPI). These ae the
only interfacesthat are accesgbletothe gplicationsandwewill describeinthefollowingsub-sectionsthe
easeof useof theseinterfaces. Theseinterfacesareavail able ashigh-level APIsin our Javaimplementation
of GSM.

10.3.13.1 Ease of use of GSM Invocation (Gll) Interface and Group Interrogation primitive

TheGll isused bythe group-oriented client and server comporents. It'san API that suppatsgroupinter-
rogation grimitive anditsassociated semantics, such as licited reply delivery, terminablereply delivery,
etc.

Thisisasimple and easy to useinterface Inthe simplest case, the client invokes request (OPR-mes-
sage) onthe Gll, asit would on any other middleware such as Corba, andis blocked urtil the receipt of a
singlegroupreply. All aspectsinvolved in givingagroupreply, such as request distribution, reply colla-
tion, etc. are handled transparently by the GSM.

TheGll alsosuppats phisticated reply delivery semantics. TheGll suppats smesimpleprimitives
toenable dientsto control thereply delivery. The dient isgiven the control to receiveindividual repliesas
whenthey arerequired andto terminatethereply delivery whenthey arenolonger required (inan ursolic-
ited delivery semantics). This control is again simple. The client smply hasto invoke “pall _reply()” in
order to solicit areply and “terminate _replies()” in order to stop the flow of reply delivery.

Similarly, thegroup-oriented server objed receivesthe “grouprequest” from theclient group viaasin-
gleinvocationfrom the Gll, asa“singlerequest” isdelivered to asingeton server by Corba. The request
collation is dore transparently by the GSM. Similarly, the group-oriented server returns either asingle
reply or groupreply inasingleinvocation of Gll. The dis-aggregation o groupreply andthereply distri-
bution, collation, etc., is all hand ed transparently by the GSM.

The group aiented clients and server use the Gl with almost the same flexibilit y and ease of use as
thesingletonclientsand server usethe Corbainvocationinterface. GSM all owsall thegroupcoordination

Group-Based Distributed Computing 163

Group Support Platform: Implementation and Performance

aspects to be modeled and executed external to the applications.

10.3.13.2 Ease of use of Group Policy Programming Interface

Unlike in conventional middeware platforms sich as Corba, there are many aspectsin a group suppat
midd eware which must be programmed bythe user. Asdiscussed in detail in the previous chapters, these
aspects describe how to dstribute the messages, how to collate and deliver the replies, how are client
requests synchronized, how arethey filtered before delivery to the server group. These pertain to the mes-
sage distribution, coll ation, synchronization, and filtering pdicies. The GPPI offers an interface for the
programming d thesepadlicies. As snownin ou implementation,the GPPI can beredi zed asasimpleuser
interfacethroughwhich all aspedsof distribution,coll ation, etc. pdiciesareinpu from theuser. Inamore
sophisticated implementation, the GPR can beredized asa Graphical User Interface.

10.4 Comparison of Group Suppo rt Platform with CORBA Middleware

The GSPisan enhancement of the aurrently avail able middeware solutionsin arder to provide support to
aspecial category of distributed appli cations, the group-based dstributed apgi cations, which are com-
posed of a dient groupinteractingwithaserver group.Inthis sctionwe cmparethesuppat of thegroup-
based applications in GSP with the suppat of same gplicaionsin the airrently avail able middeware
solutions such as CORBA. Theideaisto compare

1. the ease of use of the proposed group interrogation primitive with the traditiond interrogation (or

remote procedure call), and

2.the groupsuppat platform with traditional middeware approaches sich as Corba.

A detailed comparison between Corba and GSP w.r.t. the performance metrics such as message count,
message complexity, response times, and adiscussion d trade-offsisgiven intable 10.1andtable 10.2

10.4.1 Comparison at Programming-Level

In this sction we will evaluate the programming effort required by the client applicationin invoking a
server group and receiving the replies using bdh the traditional Corba gproach and the proposed GSP
approach. Similar effort on the server side using bdh these approachesis also compared.

10.4.1.1 Group Interrogation vs. Remote Procedure Call

Usingthetraditional remote procedure call mechanism of Corba, thecli ent hasto invoke each server inthe
server group separately and die to the bl ocking semantics of the remote procedure cdl, it hasto wait urtil
thereply isreceived beforeit caninvokethenext server. Thisintroducesconsiderablelatency andalso pus
theresporsibilit y of knowingthe server groupmembership andany changesin the membership onthe di-
ent appli cation. The proposed groupinterrogation grimitivea ongwith theunderlying GSPgivesthecli ent
the capabili ty to invoke multiple servers Smultaneously andto receiveasinglegroupreply withou know-
ing the membership o the server group.

Group-Based Distributed Computing 164

Group Support Platform: Implementation and Performance

Group-Based Distributed Computing 165

Group Support Platform: Implementation and Performance

Table 10.1: Corbavs. GSP: How do they compare w.r.t. Crucial Performance Metrics

GSP

Corba

M essage Count

A detail ed analysis of the mes-
sage count in GSP is given in
sedion 10.3.1. As down, the
message aunt is diredly pro-
portional to the size of the
group, and to be predse it is
equal to twice the size of the
group.

Message @unt = 2n, where,
“n” is the size of the server
group, with which the dient is
interading.

M essage Count

In case of Corba, the basic data unit that carriesthe request / replies between the middle-
ware atities(i.e., the ORBSs) isthe “Request Message/ “ Reply Message”. Because mrba
does not provide “group support”, the dient hasto separately invoke eat member of the
server group, one dter another (seediscussioninrow 3 of thistable). For eadinvocaion
a “Request Message” is sent from client ORB to the server ORB and a “Reply Message”
issent in the reverse diredion. Thus 2 messages are exchanged between ORBs for eath
invocaion. Thereforefor aserver group d size“n”, atotal of 2n messages are exchanged
between the dient objed and the server group.

Conclusion: Themessage murt in boththe platformsisidenticd. The GSPdoesnot incur
any extraoverhead over Corbawith resped to this metric. Moreover, the GSPgivesalot
more functionality and group support to the gopli cations, than isavailablein Corba, such
ascollation of replies, solicited delivery of replies, and aher functionsdescribed ealierin
thethesis.

Group-Based Distributed Computing

166

Group Support Platform: Implementation and Performance

Table 10.1: Corbavs. GSP: How do they compare w.r.t. Crucial Performance Metrics

GSP

Corba

M essage Complexity:
ThelGPisthelnter-GSM com-
munication potocol in GSP.
The request/replies are caried
in the D-OPR-GPDU/D-REP-
GPDU. A detailed analysis of
themessage complexity in GSP
is given in sedion10.3.2. It
was found that the message
sizeis (7 + q + p) bytes long,
where g is the number of bytes
required to encode parameter
names, and p is the number of
bytes required to encode the
parameter values.

If only matrix-mode cllationis
required, then there is no need
to send parameter namesin the
payload field, so the total mes-
sage sizeinthiscaseis7 + p
bytes.

M essage Complexity:

The GIOP isthe Genera Inter-ORB communication protocol in Corba. The gplication

messages (request/replies) are caried in the GIOP “Request Message”/ “Reply mes-

sage®. As described below, there is some additional complexity in Corba “Request

Messages” dueto different types of control information that are caried in this message.

Apart fromtheusual “Message Type” field (1 bytelong) andthe “Message Size”field

(4byteslong), the Corba “Request Message” a so containsthefoll owing control informa-

tion in its header:

1. magic: Thisfieldidentifiesthe “GIOP” protocol itself. Thisfield isused toidentify the
GIOP from other possible inter-ORB communicaion protocols. It is 1 byte long.

2. GIOP-version: contains the version number of the GIOP protocol being used. Thisis
used to ensure inter-operabilit y between ORBs. Thisfield is 2 bytes long.

3. Request-1d: Thisissimilar infunctiontothe “Message-1d” fieldin GPDUs. Itisused to
associatereply messageswith the aorresponding request messages. Thisfieldis4 bytes
long.

4. Response Expeded: Thisfieldisused toindicateif areply is expected to the enclosed
request message. Thisfield is unnecessary in our case, because notification messages
(which do not have areply) are sent in aseparate GPDU, the D-NTF-GPDU. Thisfield
is 1 byte long.

5. Objed_key: This field identifies the target objed. It is identified as a “sequence of
octets’. It'slength is negotiated between protocol partners, and isusually between 4to
16 bytes. However, thisfield is redundant and actually not required. A message need
only identify its ®nder (such as “ Sender-1d” in GPDU) . The target objed reference
need only be given to the lower layer protocol which carries the message to the target
objed.

6. Requesting_principal: Thisfield identifiesthe message sender. Thisis smilar in func-
tiontothe “Sender-1d” fieldin GPDU. Againitslength isnot spedfied, it isnegotiated
between protocol partners and varies from 4 to 16 bytes.

7. Operation: Identifies the name of the operation being invoked. It is identified as a
string. Itisavariablelength field. The operation nameisincluded as part of payloadin
GPDU and nd in aseparate field.

8. Request body: Thisisthe payload field. Its length isvariable, say “p” bytes.

So, the total size of the Corba “Request Message” (taking only minimal field length,
wherever unspedfied) = “21 + p” bytes

Conclusion: In general the Corba Request message caries alot of control information

thanthat required in GPDUSs. The control informationinthe wrresponding GPDU ismin-

imal. Inany protocol design, it isalwaysdesired to keep the antrol information minimal
in the protocol data unit.

However, inthe OPR-GPDU the payload fieldismuch longer thanthe arresponding field

in Corba due to the need to carry parameter names along with parameter values. The

parameter names are required to assst the linea-mode ollation on the recever side. If
only matrix-mode ollation is supported, then parameter names are no more required in
the GPDU payload and the payload fieldsin both GSM and Corba aeidenticd in length

(i.e., p bytes).

Group-Based Distributed Computing

167

Group Support Platform: Implementation and Performance

Table 10.1: Corbavs. GSP: How do they compare w.r.t. Crucial Performance Metrics

GSP

Corba

Response Time

In case of GSP, the dient
invokes a single OPR-message
on the locd GSM which is
then simultaneously distrib-
uted (multicast) by the GSM
to the server group and hence
the server group members are
invoked simultaneously.
Therefore, the servers respond
with their replies sSmulta-
neously and the dient recaves
multiple replies (as a single
group reply) in one “invoca

Response Time (Reply Reception Delay)

In case of Corba, the dient hasto invoke aremote procedure all oneach member of the
server group separately, and dueto the bl ocking semantics of theremote procedure cdl , it
has to wait until the reply isreceived before it can invoke the next server in the group. If
“d” isthesingle “invocaiontimedelay” or theroundtrip delay inrecévingasinglereply,
then to invoke aserver group of size “n” and get badk their repliesrequires“nd” units of
time.

Response Time = (nd) units of time, where, “d” isthe single invocation round trip delay
and “n” isthe size of the server group.

Conclusion: Theresponsetimeisfar better in GSP compared to Corba. Thisisbecaise
the GSPisdesigned exclusively for the support of group-based applicaions. Soit iscapa
bleof simultaneousdistribution OPR-messagesand of collatingtherecevedrepliesintoa
group reply. The group-based appli cation experience amuch lower reply reception delay
whenused onGSP. They receave dl therepliesfromtheserver groupinasingleroundtrip

tion time delay”, say “d” units
of time.

delay. Corbaisnot well suited for use by group-based applications.

a. PDUs are referred to as Messagesin GIOP.

10.4.1.2 Ease of group request invocation

Using the remote procedure call medanism of Corba, thereis noway for the server to receive multiple
requests (OPR-messages) from the dient group asasingle “grouprequest” via asingleinvocation onthe
server. In arder to receive and processa“grouprequest”, the server application hesto recave individual
client requests from the dient group.Moreover the server hasto doall the housekeeping d tracking the
individual recaved requests. It must also know the membership of the client groupandalso changesinthe
groupmembership. The propased groupinterrogation primitive dongwith the suppat of GSP solvesthis
problem. It givesthe server thefadlit y to receive the multiple client requestsin asingleinvocationandto
respondto the grouprequest with single or multi plerepli es. Moreover the GSP takesthe resporsibil ity of
sending the replies to the appropriate clients.

10.4.1.3 Support for Advanced Programming-level facilities in GSP vs. Corba

Thesuppat for advanced programming-level facilities such asmultiple andvariablereply delivery to the
client (in resporse to arequest invocation onthe server group), solicited reply delivery, terminable reply
delivery, isnonexistent in the arrent remote procedure call mechanism of Corba. The propcsed group
interrogation primitive with the support of the GSP givesthe dient the cpabili ty to receive multiple and
variable number of repliesinasolicited or unsolicited manner andthe ability to request thetermination o
reply delivery, when they are no more required. For example to suppat the solicited reply delivery, the
GSPstorestherepliesand gvesthemto the dient onan explicit request. Such as suppat isnon-existentin
Corba.

Group-Based Distributed Computing 168

Group Support Platform: Implementation and Performance

Table 10.2: GSP vs. Corba: What are the Other Trade-Offs

GSP

Corba

Need for
sophisticated
Client and
server appli-
cations

While there ae major gains achieved by the use of GSP
(seesedion 5.6) and its group interrogation cgpability
(see sedion 3.3) as outlined previously, they also
require some amount of sophisticaion in the (client |
server) applicaions that use them. Essentially this com-
plexity arises due to the need for clients and servers to
be partially group-aware.

The dients dould be caable of handling not only
multiple and variable number of replies, but also capable
of processng group replies, and of invoking
“poll_reply()” and “terminate_reply()”.

Simil arly, the servers sould be cgable of processng

group operation messages.
So, there isan underlying requirement for the dient and
server applicaionsto bedesigned “ group-aware”. How-
ever, thisisalso the underlying basis of any group-based
appli caion.

Corbaappli cations are based upon “single-

tonclient” and* singleton server” communi-
cdion assumption. Hence they cannot be
used as components of the “group-based
applicaions” without at least being
designed partially group-aware.

Code
Complexity

In case of GSP, there is a need for some sophisticated
programminglanguagefadliti essuch asmulti-threading,
thread synchronisation fadliti es, etc. to implement
advancedfeauressuchasnon-blockinginvocation, soli c-
ited reply delivery semantics, etc.

Code complexity alsoincresseswiththe aldition of other
group support functionssuch as Synchronisation and Fil -
tering, which are required in some group-based applica

Simple dient-server based applications of
Corba do not demand the sophisticaion
required for the support of group based
appli cations. Sothe amdefor thebasic Corba
infrastructureisquitestraightforward. How-
ever, the aldition of other Corba Services
such as Naming Service, Transadion Ser-
vice, Seaurity Service etc. increases the

tions.

code cmmplexity.

10.4.2 Comparison at Platform-Level

A comparison d the Corba and the GSP at the platform-level reveal s the differencein the scope of these
platforms. They addressdifferent typesof distributed applicationsandas sich encapsul ate different setsof
functionalities.

10.4.2.1 Middleware functions of GSP vs. Corba

TheCorba andthe GSP cater to different typesof distributed applications. Whil e Corbasuppats sngle di-
ent and single server type interadions, the GSP istargeted exclusively at the suppat of group-based ds-
tributed applications. Hence & the platform-level we seedifferent setsof “ middewarefunctions” in Corba
and GSP. Corba automates common d stributed computing tasks such asobjed registration, location,and
activation; request de-multi plexing; parameter marshallingand unmarshalli ng; and ogeration d spatching.
The GSP automatescommon groupcommuni cationtaskssuch asmessagedistribution,coll ation,synchro-
nizaion,filteringetc. It also providesaframework for identificaionand dacement of other groupsuppat
services.

10.4.2.2 Platform programmability Capability in GSP vs. Corba
Corba, like other midd eware platforms does not define APIsthat allow applicationsto specify their end-
to-end QoSrequirements. Similarly it does not provide suppat for end-to-end QoS enforcement between

Group-Based Distributed Computing 169

Group Support Platform: Implementation and Performance

appli cationsaaossanetwork. For instance, Corbaprovides nostandard way for clientstoindicatetherel-
ativeprioritiesof their requeststoan ORB. The GSPisaprogrammable and pdicy driven midd ewareplat-
form. It provides an explicit APl and language framework for the programming d the middeware
functions according to the user requirements.

10.5 Case Studies

In ou Javaimplementation d GroupSuppat Platform, we used four case studiesto demonstrate some of
the key capabiliti es of the GSP, such as

1. GroupReply Delivery, Matrix mode collation (Singleton client interading with a server group),

2. GroupReply Délivery, Linear mode oll ation (Singleton client interading with server group),

3. Solicited Reply Delivery (Singleton client interacting with a server group),

4. Group Request Delivery and Reply Distribution (Client groupinteracting with a singleton server)

The case studies were dhasen from the examples given in chapter 7. In the foll owing subsections
we describe briefly each case study that was chosen for the demonstration d the @ove mentioned cgpa-
bilities. Smple examples were chosen in arder to demonstrate the concepts. The reader is referred to
the arrespondng examplesin chapter 7 for details about thase examples.

Each case studyinvolved either aclient object interading with aserver group o aclient group inter-
acting with a server object. The size of the (client | server) groupis chasen to be three members. Each
member of the (client | server) groupis supparted by the GSM. Hence the execution d each case study
involved four GSMs, identifiedasGSM 1, GSM2, GSM 3,and GSM4. The case studieswere carried ou in
asingle machine. Each client and server object isresident in aseparate Javaprocess and suppated byits
own GSM.

10.5.1 Case Study-1: Group Reply Delivery, Matrix-Mode Collation

This case study is based uponthe example given in section 7.6.2.This example is developed to demon-
strate the distribution o operation message by the dient's GSM to the GSMs in the server group and
the matrix-mode ollation d replies by the dient's GSM into asingle groupreply before its delivery to
the dient objed.

Inthisexample, the dient object sendsa “query_sale status()” operationto the membersof the server
group (consumer group in the example), each of which responds with a “sale status(reatiler_id,
merchandise 1, ..., merchandise 5)! reply. A single group reply is constructed by the dient's GSM
based uponreply collation pdicy as pecified bythe dient.

Our implementationsuppatsthe specification d messagedistributionandreply coll ation pdiciesby
the user before the client and server applicaions are triggered.

10.5.2 Case Study-2: Group Reply Delivery, Linear-Mode Collation
This case study is based uponthe example given in section 7.6.3.This example is developed to demon-
strate the linear-mode llation d replies. Each server sends part of the reply expected bythe dient, and
theclient’'sGSM constructsatotal reply usinglinea-modecollation grinciple, beforeitsdelivery tothe di-
ent objed.

In this example, the client object sends a “compute(pl, pl, ...p5)" request to the server group (an

1. Assuming each server sells 5 types of merchandise).

Group-Based Distributed Computing 170

Group Support Platform: Implementation and Performance

arithmetic group), each member of the server group daespart of the computation,i.e., addition,multipli ca-
tion,andarithmetic mean, andtherefore sends part of thereply asresult(sum), result(product), result(am).
The dient's GSM performs alinear mode wllation d these replies, and then gves the tota reply, i.e.,
result(sum, product, am), to the client. With the linea mode collation process, the dientisunawareif itis
interacting with a singleton server or a server group.

10.5.3 Case Study-3: Solicited Reply Delivery

This case study is based uponthe example given in section 7.6.4.This case study is developed to dem-
onstrate the “Solicited Reply Delivery API” of groupinterrogation. This API gives the client the caa-
bility to receve replies only when it expli citly asks for them from the local GSM, using “pall _reply()”.
Thisallowsthe dient to control the reply delivery from underlying GSM and nd to be overwhelmed by
aflow of replies from the server group. The client gets the repli es as and when it needs them

Inthisexample, the dient objed sendsa” query_merchandise_avail abilit y()” request to thethe server
group (the merchandise supdier group) throughits GSM. Each member of server grouprespondsto this
request with its reply, “merchandise availability(supplier_id, merchandise idl, quantity 1,
merchandise id2, quantity 2).

When the “query_merchandise_avail ability()” request is received from the dient, the local GSM
immediately unldocks the dient by returning it an “invocation instance identifier” (see sedion 3.12.J)
which serves as areply hande. The client can now perform other computation a processng. When it
needs areply from the server group,it invokes“pall _reply(reply _hande)” onthelocal GSM. If areply is
avail able correspondngto the reply handle, the GSM returns this reply, otherwise the dient is blocked
until the receipt of areply from a member of the server group.

10.5.4 Case Study-4: Group Request Deliver and Reply Distribution

This case study is based uponthe example given in section 7.7.4. This case study involves a client
group (sonar group) interading with a server object (tracking oljed). This case study demonstrates the
construction d group service request from the partial service requests snt by the individual members
of the client group, which is invoked onthe server object, and the distribution of replies to the dient
group.

In this example the client groupconsists of three members. Each member of the client groupsendsa
partial servicerequest “target_distance(d;)”, whichisthedistanceof a“target objed” from theclient, and
expedsto receivethe “x”, “y”, and* z” coordinates of thetarget (so that it can firethat target). The server
objed (i.e., thetracking system) cannot compute the coordinates of thetarget until it recavesthedistance
of that target from three different locations, which is the location d the dientsin the dient group. The
GSM onthe server side collates the partial service requests, i.e., target_distance(d;), into acomplete ser-
vicerequest, i.e., target_distance(d,, do, d), whichistheninvoked ontheserver object. Thereply received
from the server, “target_location(x_coord, y_coord, z_coord)”, isthen distributed bythe GSM to al the
members of the client group.

Group-Based Distributed Computing 171

Group Support Platform: Implementation and Performance

Group-Based Distributed Computing 172

Conclusions and Directions for Future Work

CHAPTER 11 Conclusons and Diredionsfor Future
Work

Abstract
Inthischaper wesummerizethework presentedinthethesisand highlightitsmain
contributions. Sane suggestions for future work are also gven.

11.1 Conclusion and Contribution of Thesis

To date most of theresearch in thisareawasfocussed onlow-level aspects of groupcommunication, such
asvarioustypesof messagemulticasting protocol sandmembership management protocols. Our thesishas
extended the benefitsof groupcommunicationtotheapplicationlevel. We haveidentified anew paradigm
of distributed computing- thegroup-based d stributed computing paadigm. Thisparadigm isasynergy of
groupcommunicationmodel and ather distributed olj ect model ssuch asthecli ent-server model andobyject
groupmodel.

Consequently, thisthesisrepresents ashift of research focusfrom low-level issues of groupcommu-
nicationto the high-level isaues of an overall distributed environment required for the suppat of group-
based distributed computing appli cations. Our thesisfillsavoid that exists at this high-level. The thesis
addressesdual levelsof suppat for group-based d stributed computingapplications. Thesearethedistrib-
uted programming-level suppat (computational suppat) andthedistributed platformlevel suppat (engi-
neering suppat).

11.1.1 Contribution at the Programming-Level

A major contribution d the thesis towards the programming-level suppat for group-based dstributed
applicaionsisthenation d groupinterrogation andits associated semantics. Thiscommunication grimi-
tive takes into consideration the most general requirements of group communication, at the gplicaion
level, between the dient andserver comporentsof agroup-based appli caion.Itisanalogowsto theremote
procedure all primitive which is used for communication ketween a singeton client and a singleton
server.

The proposed groupinterrogation primitive enables one-to-many and many-to-one communicaion
between the dient group andthe server group.It allows asingletonclient to accessa server groupin ore
call, throughthe mediation of the group proxy ojed (i.e., the Group Suppat Machine), andto recive
multiple and variable number of repliesin a controll ed manner in resporseto that call. Similarly, it allows
a singleton server to receve multiple service requests from the client group as a single group service
request andto issue multiple replies, one for each client, in response to the groupservice request. There-
fore, interrogating (or remote invoking) an oljed groupis as natural asinterrogating a singleton ohect.

Our work isnotable particularly with respect to gving generality to thegroupcommunication gimi-

Group-Based Distributed Computing 173

Conclusions and Directions for Future Work

tive. It goes beyond the requirements of communicating with the repli cated server groups, in which all

repli esreturned from thegroupareidentical, and hence asinglereply can bereturned to the client. We dso

takeinto considerationthe general requirementsof communicatingwith hanogeneousand heterogeneous
server groups, inwhich multiple, variable, and dfferent typesof repliesneed to bereturnedtothe dient,in

a oontrolled manner either as singleton replies or group repli es (see chapter 2). Similarly, we dso take

into consideration the requirements of client group invoking a group service request on a singleton

server objed. Hence the proposed group communicaion grimitive possesses single request - multiple
reply (client side), group request - single reply (server side), and group request - multiple reply (server
side) semantics, apart from other features outlined bel ow.

Our work recognizes that reply handling transparency is smetimesimpaossible, andin many cases
undesirablebythe dient appli cations. So clientsmust have accessto multiple and dfferent typesof replies
in a controlled manner.

The proposed group interrogation grimitive is versatile and wseful in a variety of applicaion
domains. The flexibility and the power of groupinterrogationis obtained throughthe following features
(see chapter 3).

1. multi plereply delivery capahlity, which all ows the same or different types of repliesto be delivered to
the dient one after ancther,

2.variablereply delivery capallity, which all owsthe dient toreciveanend d reply natificationfromthe
underlying goupsuppat platform,

3.groupreply delivery capalili ty, which permits both the generic signature-based reply coll ation seman-
ticsas well asthe application-spedfic content-based reply coll ation semantics,

4. controll ed reply delivery capahlity, which al ows the cli ent to explicitly soli cit the repliesasandwhen
required bythe client,

5.terminabe reply delivery capahli ty, which allows the client to terminate the delivery of therest of the
repliesif it has received a sufficient number of them or the desired ores.

6. ordered reply deli very capalili ty, which allowsthe dient to receive replies of different typesor replies
fromdifferent sourcesinadesired order; reply delivery orderingis gedfiedin our model aspart of col-
lation pdicy.

Transparency isanimportant aspect of aprogramming grimitive. Our model all owsthe programmer
toconfigurethelevel of grouptransparency by spedfying dfferent messagedistributionandcollation pd-
icies (see section 7.4 to section 7.8). A notable feature of our model is that we have propased a generic
message @llation scheme, which we call signaure-based collation scheme (see section 3.6). This
scheme alows a (client | server) object to receive agroup (reply | service request) withou modificaion
of its contents. Hence, the client applications can processthe group message in an appli caion-specific
manne.

The semantics of the groupinterrogation primitive has an impact onthe message invocation, recep-
tion, and processng requirements of the client and server objects. We describe the characteristics of the
group-oriented client and server objects which are @pable of invoking, receiving and processng goup
interrogation messages (see chapter 4).

The proposed groupinterrogation primitive isapowerful and flexible programminglanguage level com-

munication grimitive which supports ‘ request-resporse’ style communication between client groupand

server group.

11.1.2 Contribution at the Platform-Level
Thefocusof our thesisisonmiddieware-levd suppat for group-based distributed applications. Thismid-

Group-Based Distributed Computing 174

Conclusions and Directions for Future Work

dlewareresidesontop d theexistinglow-level groupcommunication protocols. The main contribution o

thethesisat thedistributed platformlevel isthe software achitedure of an agent-based and pdi cy-driven

groupsuppat middeware platform. Thisis an extensible, configurable and programmable achitecture
which permits the separation d group coordination aspeds from appli caion issues. The group suppat
platform is compased of many componrents. These are summarised below.

1. Groupsuppat agents. We have identified a set of middleware-level group suppat services (GSSs),
required by many appli cations (see chapter 4). Some of the cmmmonly required group suppat ser-
vices are message distribution service, message collation service, message filt ering service, message
invocation and delivery synchronisation service, etc. These services are offered bythe correspondng
group suppat agents (GSAs). We identify the different aspects of each group suppat service which
form the basis of the design d the group pdicy specification language.

2. Groupsuppat machine: Group-based applications usually need a combination d groupsuppat ser-
vices, rather than individual ones. These services need to interad with each ather in order to suppat
diverse application requirements. An important contribution d thisthesisisthe design d an architec-
tural framework for the organi sationand configuration of these groupsupport servicesin thegroupsup-
port platform (see chapter 5). This framework is called the group suppat machine (GSM). GSM is
compaosed o aconfiguration d GSAswhich interad with each ather locally viathe inter-agent inter-
faces. We describe how the comporents of this software machine work together in the provision o
group suppat services to the goplications (see chapter 6). Each member (or component) of the
group-based applicaion is suppated by a GSM. The set of GSMs communicaing with each ather
throughan inter-GSM protocol (IGP) constitutes a group suppat platform (GSP).

3.Inter-GSM Protocol: The GSM isamulti-agent machine. The GSAscanna offer their servicesindepen-
dently orinisolation.Instead these agents need to communicatelocall y with ather agentsinthe GSM, as
well asremotely with their peersin ather remote GSMs, in order to providetherequired groupsuppat
services to the gplicdions. The remote communicaion between the peer GSAs in different GSMs
occurs throughthe inter-GSM protocol (IGP) (see chapter 9). The | GP describes the information that
is exchanged between the peer GSAS, the format in which this information is exchanged, and the
handshaking involved between the GSAs.

4. Programmable andPoli cy-Driven Group Supprt Platform: We distingu sh agentsfrom padicieswhich
determinewhat thase agentswill do(seechapter 6). The GSPiscomposed of genericand pdicy-neutral
GSAs, which can be programmed to dffer their services accordingto applicationrequirementsfor mes-
sage distribution, collation, synchronisation, filtering, etc. (see chapter 7). These requirements are
spedfied using goup pdicy spedfication language. The GSP is driven by these pdlicies which are
spedfied as pdlicy scripts and stored in the GSM.

5. Group Policy Specification language: Each group suppat service has different aspeds to it. These
aspectscorrespondto dfferent applicationrequirementswithresped tothat service. They have a @rtain
commonality over different groupsuppat services. They can be model ed as elements of agroup pdicy
spedficationlanguage. We have developed alanguage framework, based uponthese dements, for the
spedfication d group suppat padlicies (see chapter 8). The language permits the high-level and
declarative specification d message distribution, collation, synchronisation and filtering require-
ments of an appli cation,in an abstract manner independent of the mechanisms or protocols needed to
implement them. It permits the separation d appli cation concerns from group coordination concerns
which are spedfied external to the applications, i.e., inside the GSM. Changesto group coordination
behaviors are posgble by modifying relevant groupsuppat pdiciesin the GSM, withou any change
to the application code.

Group-Based Distributed Computing 175

Conclusions and Directions for Future Work

6. Group coordination models: Many existing dstributed applications, in dfferent domains, consist of
multiple dient and server comporents, which interact with ore ancther on a one-to-one basis, thereby
saaificingtheparallelismand performanceinherent inthese gopli cations. Oneof themain contributions
of our work isthevisuali zation d these gpli cationsasgroup-based applicationsandcasting (or model -
ing) them asaclient groupinteradingwith aserver group.Theintra-groupandtheinter-groupinterac-
tions between the members of the dient and server group can be viewed at a high-level as group
coordination paternsor groupcoordination kehavior. A groupcoordinationmodel isacombination o
groupcoordination behavior within agiven group agansation. In thisthesiswe have shown how dif-
ferent groupcoordination patterns (or behaviors) can be obtained bycomposingthebasic groupsuppat
services, such as message distribution, collation, synchronisation, filtering service, etc., in dfferent
combinations (see chapter 7). The cmbination d these basic services in dfferent group aganisa
tionsyields different group coordination models. We have represented group coordination petterns as
programmable wmordination kehaviors which can be specified as message distribution, collation, syn-
chronisation, and filtering pdicies.

7. Performance The performance of the propased groupsuppat platform is comparable to andin some
aspects better than the performance of conventional cli ent-server based middeware platforms such as
Corba. Theimplementationof the proposed model andan evaluation d the performancecharacteristics
of themodel reveal that the message court isthe samein bah the platforms. The message complexity is
much lessin GSP. The messages (i.e., the GPDUSs) exchanged between the GSMs have fewer control
informationthan the messages exchanged between the ORBsin the Corbaplatform. Theresporsetime
ismuch better in GSPbecausethe client getsagroupreply from the server groupinasingle “invocaion
roundtrip time delay”. Additionally, the implementation d the model was carried ou using advance
Javamulti -threadingandthread synchronisationtechniques, thereby all owingthe suppat of non-block-
inginvocations and solicited reply delivery semantics.

11.2 Directions for Future Work

Thework presented in thisthesisprovidesabasisfor many futureresearch and development adivities. As
thenew group-based d stributed applicationsemergein different appli cation danainsand proliferateinthe
commercial arena, theneedto provide aprogramming-level suppat andplatform-level suppatincommer-
cialy avail abledistributed systemswil | beincreasingly recognsed. Webelievethat themodel wehavepre-
sented in the thesis for the programming-level and distributed platform level suppat for group-based
distributed applications provides agoodstarting pant for the design d such systems.

11.2.1 Research on Group-Oriented Programming L anguages & Systems

The groupcommunication primitive, groupinterrogation, propcsed in thethesisisa andidate for imple-
mentationin programming languages for use in real applicaions. The semantics of this primitive has an
impact ontheclient and server appli cations, aswell asonthe programminglanguagesused inthedevel op-
ment of these applications. Both the gpli cations and the programming languages need to be group-ori-
ented. This can be very easily seen as explained below.

When aclient invokesagroupinterrogation onthe server group, the dient applicationand hencethe
programminglanguage shoud be capable of handli ngmultiplereplies, groupreplies, and d receivingend
of reply natifications from the underlying goup suppat platform. Similarly when the server receves a
groupinterrogationfrom the dient group, it shoud be capable of handing goup servicerequestsand d
generating multiple replies. These and aher aspeds of groupinterrogation, as explained below, require

Group-Based Distributed Computing 176

Conclusions and Directions for Future Work

enhancementsto the current programminglanguages. Thisrepresentsafertil e aeaof researchin program-

ming languages.

1. Multiplereply semantics: The programminglanguages need to be cgpable of handlingmultiple and df-
ferent types of repliesin response to groupinterrogation. Current programming languages return the
thread of control to the dient as sonas asingle reply is received. In server applications, the server
objeds $roud becapableof generatingmultipleand dfferent typesof repliesinresporseto agroupser-
vicerequest. Current server applications return asingle reply only.

2.Nonblockingsemantics: Thenonblockinginvocation semanticsimply that aclient caninvoke multi ple
groupinterrogationswithout waitingfor repli esof the previousinvocation. Thiscdl sfor multi-threaded
clientsand needfor multipletermination(or reply) handerscorrespondngto dfferent typesof expected
repli es. This manticsalsoimply that theinvocationmedanism must be apableof acceptingan“invo-
cation instance identifier” in resporse to the invocation d a group interrogation.

3. Controlled reply semantics: This smantics imply that the programming languages provide a handle,
such as “pall_reply()”, as suggested in the thesis or employ some other mecdhanism to gve the client
the antrol to receive the replies as and when it wants them, at the desired pace.

4. Terminale reply semantics: This manticsimply that the programming languages provide a handle,
such as “terminate_replies()”, as suggested in the thesis to gve the client the cntrol to terminate the
replies when it does not want any more replies.

5. Variable reply semartics: Thisimpliesthat the programming languages provide a specia termination
signature, such as“end_d_reply()”, or some other mechanism to indicate the last reply.

6. Groupreply or group request semarntics: This smantics has very little impact on existing client and
server appli cations. A groupmessage (reply or request) can be anstructed usingexisting programming
language structures guch as an array or alinked list.

11.2.2 Integration of GSM Model in CORBA

Animportant future activity istheintegration d the propased model of GSM in popudar distributed plat-
forms suichasCORBA. AddingGSM suppatinaCORBA environment isachall engingtask that requires
various considerations. Whether the GSM can be integrated within the Object Request Broker (ORB) or
placd ouside the ORB as an externa objed serviceis an issue which requires further consideration.

The D-Agent and the C-Agent of the GSM model perform, amongst other functions, the message
marshalli ng (encoding) and urmarshalli ng (decoding) functions. They also encode and decode the group
protocol data units (GPDUSs) which are the units of exchange in the inter-GSM protocol (IGP). Smilar
functions are performed by the stubs and skeletons of the CORBA model. The integration o the GSM
model in CORBA need to take into consideration these common isues.

While 11OP is an inter-ORB protocol, the IGP isan inter-GSM protocol. Therefore, the synergy of
these protocol sdependsuponwhether the GSM isintegrated withinthe ORB or outsideof it. Theproposed
model of group support platform isintended to enhance the middeware suppat avail able from currently
avall abledistributed platforms, suchasCORBA, in arder to suppat animportant classof distributed appli -
cations - the group-based distributed appli cations.

11.2.3 Extension of GSM Model

Wehaveproposed amodel of GSM which containsasub-set of groupsuppat servicescommonly required
by many group-based appli cations. However the GSM servesasaframework withinwhich new groupsup-
port services can beidentified andthelr interactionwith the existing oresdefined. Group suppat services

Group-Based Distributed Computing 177

Conclusions and Directions for Future Work

tendto be domain-specific and hence new servicesmay beidentified asnew application donainsare wn-
sidered. In such cases, it isrequired to identify the relationship of the new services with the existing ores
andto defineanew configuration o groupsuppat services. Thisalso hasan impact onthe existinginter-
GSM protocol.

11.2.4 Extension to Group Policy Specification Language

Thegroup pdicy specificationlanguage (GP.), asdefinedinthethes's, iscgpable of specifyingmessage
distribution pdicy, collation pdicy, synchronisation pdicy, andfiltering pdicy. In aher words, the lan-
guageiscapableof specifyingthe appli cation’srequirementswith respect to alimited set of group suppat
services. It will be interesting to explore other group suppat services and find aut the different issues
involved in the provision of these services, aswell asto seeif the existing GPSL language framework can
spedfy the new service's requirements or if an extension to the language framework is required.

Group-Based Distributed Computing 178

List of References

[1]
[2]
[3]
[4]
[5]
[6]
[7]

[8]

[9]

[10]
[11]
[12]
[13]
[14]
[13]
[16]
[17]

[18]

International Standard ITU-T X.901/1S0O 107461: Basic Reference Model of Open Distributed
Processng - Part-1: Overview.

International Standard ITU-T X.902/1SO 107462: Basic Reference Mode of Open Distributed
Processng - Part-2: Descriptive Model

International Standard ITU-T X.903/1SO 107463: Basic Reference Mode of Open Distributed
Procesdng - Part-3: Prescriptive Model

Draft International Standard ITU-T X.904/ 1SO 107464. Basic Reference Model of Open
Distributed Processng - Part-4: Architedural Semantics

Farooqu, K., Logrippo, L., and de Meer, J. The ISO Reference Modd for Open Distributed
Processng: An Introduction. Computer Networks and |SDN Systems, Vol. 27, 1995, 1218229.

Farooqu, K., and Logrippo,L. Architecure for Open Distributed Software Systems. In Zomaya,
A.Y.H. eds. Parallel andDistributed Computing Handbod, McGraw-Hill, 1996, 303329.

Linington, PF, Introdwction to the Open Distributed Processing Basic Reference Moddl,
Proceedings of the IFIP Internationd Workshop onOpen Distributed Processing, Berlin October
1991, North-Holland, (1992, 3- 14.

Herbert, A. The Challenge of ODP, Proceedings of the IFIP Internationd Wbrkshop onOpen
Distributed Processng, Berlin October 1991,North-Holland, (1992, 15- 28.

ANSA Reference Manual, Volume A, B, C., Release 01.01,Architecture Projects Management
Limited, Cambridge, U.K., July 1989.

AN SA Computational Model, AR.001.01ArchitectureProjects Management Limited, Cambridge,
U.K., February 1993.

ANSA: An Application Programmer’s Introduction to the Architecture, TR.017.00 Architecture
Projects Management Limited, Cambridge, U.K., November 1991.

ANSA: An Engnee’s Introduction to the Architedure. TR.03.02, Architedure Projeds
Management Limited, Cambridge, U.K., November 1989.

ANSA: A System Designer’s Introduction to the Architedure. RC.253.00,Architecture Projeds
Management Limited, Cambridge, U.K., April 1991.

AN SA Technical Report, Management in Objed-Based Federated Distributed Systems, TR.39.00,
Architecture Projeds Management Limited, Cambridge, U.K., February 1993.

Edwards, N. Open Dependable Distributed Systems, ANSA Phase 3 Technical Report APM.
1145.01, Architecture Projeds Management Limited, Cambridge, U.K., March 194.

RACE Open Service Architecture, 13h Deliverable, The ROSA Handbook,Release 2, RACE
Project R1093.December 1992.

Schoo, P, and Tonnky, I. The ROSA Objed Model, Proceedings of the IFIP Internationd
Workshop onOpen Distributed Processng, Berlin October 1991 North-Holland,(1992), 291-300.

Objed Management Group, “The Common Object Request Broker: Architedure and
Specificaion’, Rev. 2.0, 1995.

Group-Based Distributed Computing 179

[19]

[20]
[21]

[22]

[23]

[24]

[23]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]
[34]

[33]

[36]

Open Software Foundition. (1994 OSF DCE Application Development Guide. Open Software
Founchtion, revision 1.0,edition 1994.

The Componrent Objed Model Spedfication Microsoft (1995.

Open Services Architedure within Integrated Services Engineering, CASSIOPEIA RACE Ref:
R2049,Externa Deliverable, R2049CRA/SAR/DS/P/014/b1, February 1994.

Igguden, D., Rees, O., and van der Linden, R. Architecture & Frameworks, ANSA Phase 3
Tecdhnical Report, APM.1017.00.03ArchitectureProjects Management Limited, Cambridge, U K.,
June 1993.

Taylor, C.J. Object-Oriented Conceptsin Distributed Systems, Computer Sandardsandl nterfaces,
Vol. 15,No. 23, 1993.

Jul, E. Separation d Distribution and Objects, Proceedings of the Workshop onObject-Based
Distributed Programming in conjunction with th ECOOP’93 in Lecture Notes in Computer
Science 791, Springer-Verlag, 1994, 4754.

TINA-C Déliverable, Overall Concepts and Principles of TINA, Version 1.0,Document Label:
TB_MDC.018_1.0_ 94 Telecommunication Information Networking Architecture Consortium,
February 1995.

TINA-C Deliverable, Service Architedure Version 2.0,Document Label: TB_MDC.012 2.0 95,
Telecommunication Information Networking Architecture Consortium, March 1995.

TINA-C Deliverable, TINA-C Service Design Guidelines, Version 1.0, Document Label:
TP_JS 001 0.1 95 TelecommunicaionlnformationNetworkingArchitectureConsortium,March
19%.

TINA-C Deliverable, Computational Modeling Concepts, Version 2.0, Document Label:
TB_A2HC.012_1.2 94February 1995.

TINA-C Deliverable, EngineeringM odelingConcepts (DPE Architedure), Version2.0, Document
Label: TB_NS.005_2.0_94December 1994.

TINA-C Deliverable, Management Architedure, Version 2.0, Document Label:
TB_GN.010 2.0 94, Telecommunicaion Information Networking Architedure Consortium,
December 1994.

TINA-C Dédiverable, Conredion Management Architecture, Document Label:
TB_JB.005 1.594, Telecommunication Information Networking Architedure Consortium,
March 1995.

TINA-C Deliverable, TINA Objed Definition Language (TINA-ODL) Manual, Version 1.3,
ArchivingLabel: TR_NM.002_1.3_95TelecommunicationlnformationNetworkingArchitecture
Consortium, June 1995.

ISO/NNEC 13244 / ITU-T Draft Rec. X.703, Open Distributed Management Architecture, 1997.

Oskiewicz, E., and Edwards, N. A Model for Interface Groups. AN SA Phase 3 Technicd Report,
APM. 1002.01APM Limited, Cambridge, U.K., May 1994.

Achmatowicz, R. Object Groups For Groupwvare Applications: Application Requirements and
Design Issues. Technicd Report No. 685,Queen Mary and Westfield College, Department of
Computer Science, London,U.K., September 1994.

Watanabe, T., and Yonezawa, A. An ador-based meta-level architecturefor group-widerefledion.
In Proceedings of the REX School/Workshop onFounddions of Objed-Oriented Languages,
Noordwijkerhou, Netherlands, May 1990, Lecture Notes in Computer Science 489, Springer-
Verlag, 1991, 405425.

Group-Based Distributed Computing 180

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[43]
[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

Matsuoka, S., Watnabe, T., and Yonezawa, A. Hybrid group refledive architecture for object-
oriented concurrent reflective programming. European Conference on Object Oriented
Programming, 1991, 231250.

Zweiacker, M. The Persistent Object Group Service-An approad to fault tolerance of open
distributed applications. Proceedings of the IFIP/IEEE Internationd Conference on Open
Distributed Processng andDistributed Platforms, May 1997, Toronto, Chapman & Hall (1997,
224-235.

Pardyak, P. Group Communication in an Object-Based Environment. Procealings of the 2nd
Internationd Workshop onObject-Orientationin Operating §stemsIWOOS 92, September 1992,
106-116.

Murata, S., Shionazaki, A., Tokoro, M. A Network Architedure for Relaible Process Group
Communication. Proceedings of the 14th International Conference on Distributed Computing
Systems, 1994, 6673.

Glade, B.B., Birman, K.P.,, Cooper, R.C., and van Renesse, R. Lightweight process groups.
Proceedings of the OpenForun’ 92 Technical Conference, Utredit, The Netherlands, November
199, 323336.

Maffeis, S. The Object Group Design Pattern. Proceedings of the 1996 USENIX Conference on
Objed-Oriented Techndogies, Toronto, Canada, June 1996.

Versmmo, P. and Rodrigues, L. Group Orientation: A Paradigm for Distributed Systems of the
Nineties. In Proceedings of the 3rd Workshop onFuture Trends of Distributed Computing Systems,
|IEEE Computer Society Press April 1992, 5763.

Powell, D., ed. Delta-4: A Generic Architecture for Dependalde Distributed Computing (1997)
Springer-Verlag, Berlin.

Birman, K.P. The processgroup approach to reliable distributed computing. Commnunication o
ACM (December 1993, Vol. 36,No. 12, 3653.

Liang, L, Chanson, S.T., and Neufeld, G.W. Process groups and goup communications:
clasgfication and requirements. IEEE Computer, Vol. 23,No. 2,(February 1990, 56-66.

Achmatowicz, R. Object Groups For Groupwvare Applications: Application Requirements and
Design Issues. Technicd Report No. 685,Queen Mary and Westfield College, Department of
Computer Science, London,U.K., September 1994.

Benford, S. and Paime, J. A Standard for OSlI Group Communication. Computer Networks and
ISDN Systems, Vol. 25,(1993, 933946.

Cosquer, F.J.N. and Versmmo, P. The Impad of GroupCommunication Paradigmson Groupvare
Suppart. In Proceedings of the 6th Workshopon Future Trends of Distributed Computing Systems,
Koreg |IEEE Computer Society Press, 1995, 207214.

Rodrigues, L., and Versmmo, P. Replicated Object Management using Group Techndogy, In
Proceedings of the 4th Workshop onFuture Trends of Distributed Computing Systems, Lisbon,
Portugal, September 1993,|IEEE Computer Society Press 54-61.

Babaoglu, O., and Schiper, A. On GroupCommunicationin Large-Scale Distributed Systems. In
ACM S GOPS Operating Sstems Review, July 1993, 6267.

Prinz, W. Survey of Group Communication Models and Systems. In Computer Based Group
Communication, the AMIGO Activity Model, Ellis Horwood, 1989.

Szyperski, C., andVentre, G. Efficient GroupCommunicationwith Guaranteed Quality of Service.
Proceedings of the 4th Workshop onFuture Trends of Distributed Computing Systems, Lisbon,
Portugal, September 1993,IEEE Computer Society Press 150-156.

Group-Based Distributed Computing 181

[54]

[53]

[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]

[63]

[66]

[67]

[68]

[69]
[70]
[71]
[72]

[73]

Chanson, S.T., Neufeldm G.W., and Liang, L. A Bibliography on Multicast and Group
Communication. Operating S/stems Review, Vol. 23,No. 4,0ctober 1989, 20-25.

Navarathnam, S., Chanson, S., and Neufeld, G. Reliable Group Communication in Distributed
Systems. Proceedings of the 8th Inter nationd Conference onDistributed Computing Systems, San
Jose, California, June 1988, 439446.

Birrel, A.D., and Nelson, B.J. Implementing remote procedure cdls, ACM Transactions on
Computer Systems, Vol. 2,No. 1,February 1984, 39-59.

Ananda, A.L., and Tay, B.H. An Asynchronows Remote Procedure Call Facility. Proceedings of
11th Internationd Conference on Distributed Computing S/stems, May 1991, 172179.

Bershad, B.N., Anderson, T. E., Lazowska, E.D., andLevy, H. Lightweight remote procedure cal.
ACM Transactions on Computer Systems, 1990, 3755.

Martin, B., Bergan, C., andRuss B. Parpc: A systemfor paral el procedure cls. ICPP, 1988,449
452

Wilbur, S. and Bacarisse, B. Building dstributed systems with remote procedure alls. Sdtware
engineaingjournal, September 1987, 148159.

Yap,K.S., Jalote, P, andTripathi, S. Fault tolerant remote procedurecdl . Internationd Conference
on Distributed Computing Systems, 1988, 4854.

Johrson,D., andZwaenepoel, W. The Peregrine high-performance RPC system. Sdtware Practice
& Experience, Vol. 23,No. 2, 1993, 20R22.

Liskov, B.,andShrira, L. Promises: Lingustic Support for Efficient AsynchronowsProcedure Call s
in Distributed Systems. ACM S GPLAN Notices, Vol. 23,No. 7,July 1988.

Birman, K.P,, andvan Renesse, R. RPC Considered Inadequate. In Birman,K. andvanReness, R.
eds. ReliableDistributed Computingwith 1S SToadlkit, [EEEComputer Society Press, 1994, 6878.
Ramakrishna, S., Prasad, B., Thenmozhi, A., Samdarshi, S., Velaga, K., Shah, K., and Ravindran,
K. Design d broadcast programming pimitives for distributed systems. Computer
Communications, Vol. 16,No. 9, September 1993, 557567.

Hughes, L. A Multicast Resporse-Handli ngTaxonamy, Computer Comnunications, Vol. 12,No. 1,
February 1989, 3946.

Maffes, S. Distributed ProgrammingUsingObject Groups, | FI TR 93.38 Department of Computer
Science, University of Zurich, Zurich, Switzerland, September 1993.
Maffeis, S. A Flexible System Designto Support Object-Groups and Objed-Oriented Distributed

Programming. Procealings of the ECOOP'93 Workshop on Object-Based Distributed
Programming, Lecture Notes in Computer Science 791, Springer-Verlag 1994, 21324,

Birman, K.P,, Cooper, R., Gresman, B. Programming with ProcessGroups. Group and Multi cast
Semantics. TR-91-1185,Cornell University, Ithaca, USA, January 1991.

Cheriton, D.R. Request-resporse and multicast interprocess communication in the V kernel.
Lecture Notes in Computer Science 248, Springer-Verlag, 1986.

Hagsand, O., Herzog, H., Birman, K., and Cooper, R. Objed-Oriented Relaible Distributed
Programming. IEEEWbrkshop onObjed-Orientationin Operating Systems, September 1992.

vanReness, R.,andBirman,K.P,, Fault-Tolerant Programming wusingProcessGroups. InF. Brazer
and D. Johansen, eds., Distributed Open Systems, IEEE Computer Society Press 1994,

Zhou, W. A Fault-Tolerant Remote Procedure Call System for Open Distributed Processng.
Proceedings of the Internationd Conference onOpen Distributed Processng, Brisbane, Australia,
February 1995.

Group-Based Distributed Computing 182

[74]

[73]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]
[84]

[83]

[86]

[87]

[88]

[89]

[90]

[91]

Wood,M.D. Repli caed RPC using Amoeba d osed groupcommunication. Proceedings of the 13th
Internationd Conference on Distributed Computing Systems, Pittsburgh, 1993.

Cooper, E.C. Programming Language Support for Multicast Communication in Distributed
Systems. Proceedings of the Internationd Conference on Distributed Computing Systems, 1990,
450457.

WEelling,G., andBadrinath, B.R. An Architecture of aThreaded Many-to-Many Remote Procedure
Call. Procedlings of the 12th Internationd Conference on Distributed Computing Systems. 1992,
504511.

Pardyak, P., andBershad, B.N. A GroupStructuring M echanism for a Distributed Object-Oriented
Language. Proceedings of the 14th Internationd Conference on Dlstributed Computing Systems,
199, 312319.

Hilturen, M.A., and Schlichting, R.D. Constructing a Configurable Group RPC Service.
Proceedings of the 15th International Conference on Distributed Computing Systems, 1995,288
295,

Wang, X., Zhao, H.,andZhu,J. GRPC: A Communication Cooperation Mechanismin Distributed
Systems. ACM SIGOPS, January 1995, 7586.

Farooqu, K.,andLogrippo,L. Grouplnterrogation: A GroupProgrammingPrimitive. Proceedings
of the IFIP/IEEE Internationa Conference on Open Distributed Processng and Distributed
Platforms, May 1997, Toronto, Chapman & Hall (1997, 34-47.

Méliar-Smith, PM., Moser, L.E., and Agrawala, V. Broadcast protocols for distributed systems.
|IEEE Transactions on Parall el andDistributed Systems, Vol. 1,No. 1,January 1990, I/-25.

Reiter, M.K. Secure agreement protocols: Relaible and atomic group multicast in Rampart. In
Proceedings of 2nd ACM Conference on Computer and Communications Seaurity (Fairfax,
November 1994, 68-80.

Whetten, B. A reliable multicast protocol, In Theory and Practice of Distributed Systems. K.P.
Birman, F. Mattern,and A.Schiper, eds., Lecture Notesin Computer Science938, Springer-Verlag.

Birman, K., Schiper, A., and Stephenson, P. Lightweight causal and atomic groupmulticast. ACM
Transactions on Computer Systems, Vol. 9,No. 3,August 1991, 272314

Hadzilacos, V., and Toueg, S. Fault-tolerant broadcastsandrelated problems. In S. Mullender, ed.,
Distributed Systems, Addison-Wesley, Reading, Mass, 1993.

Birman, K., Schiper, A., and Sephenson, P. Lightweight causal and atomic group multi cast. ACM
Transactions of the ACM, Vol. 36,No. 12,37-53.

Navaratnam, S., Chanson, S.T., and Neufeld, G. Reliable group communication in Distributed
Systems, In Proceedings of the 8th Internationd Conference on Distributed Computing Systems,
June 1988,CS Press Los Alamitos, California, 439-446.

Schiper, A.andSandaz, A. Uniform RelaibleM ulti cast inaVirtuall y Synchronows Environment. In
Proceedingsof 13th Internationd ConferenceonDistributed Computing Systems, May 1993, 501
568

Nakamura, A., and Takizawa, M. Priority-Based Total and Semi-Total Ordering Broadcast
Protocols. Proceedings of the Internationd Conference on Distributed Computing Systems, 1992,
178185.

Luan,SW.andGilgor, V.D. A Fault-Tolerant Protocol for Atomic Broadcast. IEEETransactionson
Parallel andDistributed Systems, Vol. 1,No. 3, 1990, 272285.

Kaashoek, M.F., Tanenbaum, A.S., Hummel, S.F., and Bal, H.E. An Efficient Relaible Broadcast
Protocol, ACM Operating Sstems Review, Vol. 23,No. 4, 1989, 519.

Group-Based Distributed Computing 183

[92]

[93]

[94]

[93]
[96]

[97]

[98]

[99]

[100
[101
[102

[103

[104
[103
[106
[107
[109

[109

Ezhilchelvan, PD., Macedo, R.A., and Shrivastava, S.K. Newtop: A Fault-Tolerant Group
Communication Protocol. Proceedings of the Internationd Conferenceon Distributed Computing
Systems, 1995, 296306.

Nakamura, A., and Takizawa, M. Causally Ordering Broadcast Protocol. Proceealings of the
Internationd Conference on Distributed Computing Systems, 1994, 4855.

Anceaume, E. A Comparison d Fault-Tolerant Atomic Broadcast Protocols. Proceedingsof the4th
Workshop onFuture Trends of Distributed Computing Systems, Lisbon,Portugal, September 1993,
|IEEE Computer Society Press 1993,166-172.

Reiter, M.K. A securegroupmembership protocol. In|EEE Transactionson Sdtware Engineering,
Vol. 22,No. 1,(January 1996, 31-42.

Jahanian, F., Fakhouri, S., andRa kumar, R. Procesor groupmembership protocols: Specificaion,
designandimplementation.In Proceedingsof the12th SympasiumonReliableDistributed Systems,
October 1993.

Diaz, M. and Villemur, T. Membership services and protocols for cooperative frameworks of
processes. Computer Comrrunications, Vol. 16,No. 9, September 1993, 548556.

Amir, Y., Dolev, D., Kramer, S.,, and Malki, D. Membership Algorithm for Multicast
Communication Groups. Proceedings of 6th Internationa Workshop onDistributed Algorithms,
November 1992, 292312.

Méliar-Smith, PM., Moser, L.E., and Agarwala, V. Membership Algorithms for Asynchronous
Distributed Systems. Proceedingsof Internationd Conference onDistributed Computing Systems,
May 1991, 480488.

Birman, K.P. and Joseph, T.A. Exploiting Virtual Synchrony in Distributed Systems. In 11th
Sympasium on Operating Systems Principles, November 1987, 123138.

Moser, L.E., Amir, Y., Mélliar-Smith, M., and Agarwal, D.A. Extended Virtual Synchrony.
Proceedings of 14th Internationd Conference on Distributed Computing Systems, 1994, 5665.

Schiper, A., and Sandoz, A. Uniform Relaible Multicast in aVirtually Synchronous Environment.
Proceedings of the 13th International Conference on Distributed Computing Systems, 1993,561-
568

Schiper, A. and Ricdardi, A. Virtually Synchronous Communication based on a weak failure
suspector. In Procealings of the 23rd Internationd Conference on Fault Tolerant Computing
Systems, June 1993]

Birman, K. and Cooper, R. The ISISProject: Real Experience with aFault-Tolerant Programming
System. ACM S GOPS Operating §stems Review, Vol. 25,No. 2, April 1991, 103107.

Birman, K.P,, and van Renesse, R. Reliable Distributed Computing with the ISS Tod Kit. IEEE
Computer Society Press Los Alamitos, California, ISBN 0-818653426, 1994.

Orbix + ISIS Rogrammer’s Guide, Document D071-00, ISIS Distributed Systems Inc., IONA
Tedhndogies Limited, 1995

van Renesse, R., Birman, K.P, and Maffeis, S. Horus. A flexible group communication system.
Communications of ACM, Vol. 39,No. 4,(April 1996, 76-83.

vanRenes, R., Birman,K.P, Friedman,R.,Hayden,M.,andKarr, D.A. A framework for protocol
compasition in Horus. In Proceedings of the 14th Symposium on the Principles of Distributed
Computing ACM (Ottawa, August 1995, 80-89.

Maffeis, S. Adding goup communication and fault-tolerance to CORBA. In Proceedings of the
19% USENIX Conference on Object-Oriented Techndogies (Monterey California, USA, June
19%).

Group-Based Distributed Computing 184

[110
[117

[112
[113
[114

[119
[116

[117

[118

[119
[129
[121]
[122

[123

[124

[129
[126

Maffeis, S., and Schmidt, D.C. Constructing Reli able Distributed Communication Systems with
CORBA. IEEE Comnunications, Vol. 35,No. 2,February 1997, 5661.

Kaashoek, M.F., and Tanenbaum, A.S. Groupcommunicaionin the Amoebadistributed operating
system. In Proceedings of the 11th IEEE Internationd Conference on Distributed Computing
Systems, May 1991, 222230.

Mullender, S., van Rosaim, G., Tannenbaum, A., van Reness, R., van Staveren, H. Amoeba - A
Distributed Operating System for the 1990s. IEEE Computer, May 1990.

Dolev, D., and Malki, D. The Transis Approach to High Availability Cluster Communication,
Communications of ACM, Vol. 39,No. 4,(April 1996, 6470

Amir, Y., Dolev, D., Kramer, S., and Maki, D. Transis. A communication sub-system for high
availability. In Procealings of the 22nd Annud Internationd Symposium on Fault-Tolerant
Computing (July 1992, 76-84.

Reiter, M K. Distributing Trust with Rampart Toadlkit, Comrmunications of ACM, Vol. 39, No. 4,
(April 1996, 71-74.

Reiter, M.K. The Rampart todlkit for buil ding high-integrity services. In K.P. Birman, F. Mattern,
and A. Schiper, eds., Theory and Practice in Distributed Systems (Lecture Notes in Computer
Science 938), 99-110. Springer-Verlag, 1995.

Moser, L. E., Mdlliar-Smith, P. M., Agarwal, D.A., Budhia R.K., Langley-Papadopouos, C.A.,
Totem: A Fault-Tolerant Multicast Group Communication System, Communications of the ACM,
April 1996, Vol.39,No. 4,54-63.

Babaoglu, O.,Davali, R.,Giachini,L.A.,andBaker, M.G. Relacs: A Communicationlnfrastructure
for Constructing Relaible Applicationsin Large-Scale Distributed Systems. In Proceedings of the
28th Hawaii Internationad Conference on System Sciences, January 19%, 612621.

Cheriton, D.R., and Zwaenepodl . Distributed ProcessGroupsin V Kernel. ACM Transactionson
Computing Systems, Vol. 3,No. 2,May 1985, 77107.

Mishra, S., Peterson, L., and Schlichting, T. Consul: A Communications Substrate for Fault-
Tolerant Distributed Programs, Distributed Systems Engineeing, Vol. 1, 1993, 87103.

Powell, D., ed. Delta-4: A Generic Architecture for Dependale Distributed Computing (1991).
ESPIRIT Research Reports, Springer-Verlag, Berlin.

Costa, FEM., and Madeira, E.R.M. An olject group model and its implementation to suppat
cooperative applications on CORBA. In A. hill, C. Mittasch, O. Spamol, andC. Popien, eds.,
Distributed Platforms, Chapman & Hill (Publishers), Proceedings of the IFIP/IEEE International
COnferenceon Distributed Platforms, 213229.

Bakker, H., andter Hofte, G.H. MORB, a Multi cast Object Request Broker for a CSCW software
platform, Internal Paper, Telematics Reseach Centre, PO. Box 589, 7500AN Enschede, The
Netherlands, 1997.

Farooqu, K. ODP-Based Distributed Platform: Policy-Driven Engineering Suppat for Mohileand
Group-OrientedDistributed Computing,Proceedingsof thel FIP/IEEEI nter nationd Conferenceon
Distributed Platforms - Industrial Sesson, Dresden 1996,290-297.

Farooqu, K.andLogrippo,L.GroupCommunicaionModels, Computer Communicaions, Vol. 19,
199%, 1276- 1288

Farooqu, K. and Logrippo, L. Group Suppat Platform: Middeware Support for Group-Based
Distributed Applicaions, Submitted to Middleware 98 - IFIP International Conference on
Distributed Platforms and Open Distributed Processing, The Lake District, England, September
1998.

Group-Based Distributed Computing 185

[127

[129

[129
[130
[131
[132

[133

[134
[139
[136
[137

[138
[139

[14Q
[141]
[142
[143

[144
[149

Moffet, J. and Sloman, M. Representation d Policies as System Objeds. In Proceedings of the
Conference on Organizationa Computer Systems, Atlanta, Georgia, November 1991.SIGOIS
Bulletin, Vol. 12,Nos. 2& 3, 171184.

Dean, G., Rodden, T., Sommervill g, 1., and Hutchinson, D. Distributed Systems Management asa
Group Activity, Technical Report, Department of Computing, Lancaster University, LA1 4YR,
U.K.

Koch, T. Policy-Based M anagement of Distributed Systems. Internal Paper, FernUniversitat, 58084
Hagen, Germany, 1996.

Sloman, M. Policy Driven Management for Distributed Systems, Journal of Network and §stems
Management, Plenum Press Vol. 2,No. 4, 1994.

Roos, J., Putter, P, and Bekker, C. Modeing Management Policy Using Enriched Managed
Objeds. Integrated Network Management, Vol. 3, North-Holland, 1993, 20215.

Alpers, B. and Plansky, H. Domain and Poli cy Based Management: Concepts and Implementation
Architecture, IFIP/IEEEWorkshop orDistributed SystemsOperationsandManagement, Toulouse,
October 1994.

Meyer, B., and Popien, C. Defining Policies for Performance Management in Open Distributed
Systems, IFIP/IEEE Workshop onDistributed Systems Operations and Management, Toulouse,
October 1994.

Popien, C. and Meyer, B. Service Request Description Language, FORTE’ 95.

Trevor, J., Rodden, T., andBlair, G. COLA: A Lightweight Platform for CSCW. In Proceedings of
theEuropeanConferenceonComputer Suppated CooperativeWork, September 1993 Milan, Italy,
15-30.

Shenker, S., Weinrib, A., and Schoder, E. Managing Shared Ephemeral Teleconferencing State:
Policy and Medhanism. Lecture Notes in Computer Science, Springer Verlag, 69- 88.

Bentely, R., and Dourish, P. Medium versus medanism: Suppating collaboration through
customisation. 4th European Conference on Computer Suppoted Cooperative Work, Kluwer-
Academic Publishers, 133148.

CoordinationLanguages andModels, Lecture Notesin Computer Science 1061,Springer-Verlag,
19%.

Berry, A. andKaplan, S. Language Suppat for Distributionin CSCW Systems. In Proceedings of
the Internationa Workshop onObject Oriented Groupware Platforms, (Part of ECSCW’ 97),
Lancaster, U.K., September 1997, 6167.

Putter, P, and Roos, J.D. From Policy to Spedfication. Proceedings of the IFIP Internationd
Workshop onOpen Distributed Processing, Berlin October 1991 North-Holland, (1992, 441-448.

Cortes, M. andMishra, P. DWCPL: A programminglanguagefor describingcollaboration.In ACM
199% Conference on Computer Suppated Cooperative Work, November 1996,ACM Press.

Papazoglou, M.P, Delis, A., Haghjoo, M., Bougtettaya, A. Language Suppat for Longlived
Concurrent Activities, Internationd Conference on Distributed Systems.
Frolund,S., and Agha, G. A Language Framework for Multi-Object Coordination. 7th European

Conference onObject-Oriented Programming (ECOOP’ 93) in Ledure Notesin Computer Science
707, Springer-Verlag, 1993, 346359.

RichardM. Adler, Distributed CoordinationM odel sfor Cli ent/Server Computing,Computer, April
19%, Vol. 28,No. 4,14-22.

Nehmer, J., and Mattern, F. Framework for the organisation d cooperative servicesin dstributed
client-server systems. Computer Comrrunications, Vol. 15,No. 4,May 1992, 261269.

Group-Based Distributed Computing 186

[146
[147
[148

[149
[15Q
[151

[152
[153
[154

Diaz, M. A logical model of cooperation. Proceedings of the 3rd IEEEWorkshop onFuture Trends
of Distributed Computing Systems, April 1992, 6470.

Kreifets, T., Pankoke-Babatz, U., Victor, F. A Model for the Coordination o Cooperative
Activities. In Proceedings of the Internationd Workshop onCSCW, Berlin 1991, 85100.

Kirsche, T.,Lenz, R., Luhrsen, H., Meyer-Wegener, K., Wedekind,H., Bever, M., Schaffer, U., and
Schottmuller, C. Communication suppat for cooperative work. Computer Communications, Vol.
16, No. 9, September 1993, 594602.

Gokhale, A.S., and Schmidt, D.C. Measuring the Performance of Communication Middeware on
High-Speed Networks, ACM S GCOMM Conference, 1996.

Gokhale, A.S., and Schmidt, D.C. Measuringand Optimizing Corba L atency and Scal abili ty Over
High-Speed Networks, |EEE Transactions on Computers, Vol. 47,No.4, April 1998.

Gokhale, A.S., and Schmidt, D.C. Optimizing a Corba Inter-ORB Protocol Engine for Minimal
Footprint Embedded Multimedia Systems, IEEE Journal on Slected Areas in Commnunications,
September 1999.

Schmidt, D.C., Levine, D.L., Cledand, C. Architeduresand Patternsfor High-Performance, Real -
time ORB Endsystems, Advancesin Computers, Academic Press Ed., Zelkowitz, M. (to appear).

Schmidt, D.C. and Gokhale, A. Tedhniques for Optimizing Corba Middeware for Distributed
Embedded Systems, Proceedings of INFOCOM'’ 99, March 1999.

Schmidt, D.C. Evaluating Architectures for Mult-threaded Corba Object Request Brokers,
Communications of ACM, Special Issue on Corba, Vol.41,No.10,October 1998.

Group-Based Distributed Computing 187

Group-Based Distributed Computing 188

Glossary of Abbreviations

. OPR-message: Operation message, section 1.5.2

. REP-message: Reply (or termination) message, sedion 1.5.2
. NTF-message: Notification message, sedion 1.5.2

. Gl: GroupInterrogation, section 3.2.

5. GSS:. Group Suppat Service, section 4.3

6. GSA: Group Suppat Agent, section 5.2
7
8

A WN P

. GSM: Group Suppat Machine, sedion 5.3

. GSP: Group Suppat Platform, section 5.4
9. Gll: GSM Invocation Interface, section 6.2.1.1
10.GMI: GSM Management Interface, section 6.2.1.2
11.GNI: GSM Network Interface section 6.2.2
12.DMI: Distributor Management Interface, section 6.2.1.2
13.CMI: Collator Management Interface, sedion 6.2.1.2
14.SMI: Synchroniser Management I nterface, section 6.2.1.2
15.FMI: Filter Management Interface, sedion 6.2.1.2
16.GPSL: GroupPolicy Spedfication Language, chapter 8
17.DPP: Distribution Policy Primitive, section 8.4.1,
18.CPP. Collation Policy Primitive, section 8.4.2
19. SPP: Synchronisation Policy Primitive, section 8.4.3
20.FPP: Filter Policy Primitive, sedion 8.4.4
21.1GP: Inter-GSM Protocol, chapter 9
22.GPDU: GroupProtocol Data Unit, section 9.4.

Group-Based Distributed Computing

189

Group-Based Distributed Computing 190

APPENDI X BNF of GroupPolicy Specificaion
Language (GPSL)

Group_Suppat_Policy Specificaion::= Distribution_Policy Spedfication
| Collation_Policy Specification
| Synchronisation Policy Specifcation
| Filtering_Policy_Speafication

Distribution_Policy Specifcation::= distribution_pdicy_spedfcation_symbad
for_specification
distribution_pdicy
end_pdicy_ symbal

Collation_Policy Specifcation::= collation_pdicy_specifcation_symbol
for_specification
collation_pdicy
end_pdicy_symbal

Synchronisation_Policy Specifcaion::= synchronisation_pdicy_specificaion_symbal
for_specification
sync_specification
synchronisation_pdicy
event_ndification_pdicy
end_pdicy symbal

Filtering_Policy Spedfcation::=filtering_pdicy_specification_symbal
for_specification
filtering_pdicy
end_pdicy_ symbal

distribution_pdicy::= DPP (* Distribution Policy Primitive *)

collation_pdicy::= CPP (* Collation Policy Primitive *)
| “(” collation_pdicy “followed_by” collation_pdicy “)”
| “(" collation_pdicy “interleaved with” collation_pdicy “)”
| “(” collation_pdicy “disabled_by” collation_policy “)”
| “(" collation_pdicy “choice” collation_pdicy “)”

Group-Based Distributed Computing 191

synchronisation_pdicy::= SPP (* Synchronisation Policy Primitive *)
| “(” synchronisation_pdicy “and” synchronisation_pdicy “)”
| “(" synchronisation_pdicy “or” synchronisation_pdicy “)”
| “(" synchronisation_pdicy “xor” synchronisation_pdicy “)”

filtering_pdicy::= FPP (* Filtering Policy Primitive *)

DPP::=“["
“distribute” message _specification
“to” membership_specification
“distribution_cardinality” cardinality _spedfication
“using” ordering_specification

“qr

CPR:="["
“deliver” message_specification
“from” membership_spedfication
“within” | “every” time_spedfication
“collation_cardinality” cardinality_specification
“collation_mode” collation_mode_specificaion

“r

SPP::=*["
“solicited_reception_of” | “unsolicited_reception_of” message speafication
“from” membership_spedfication
“within” time_specification
“sync_cardinality” cardinality_specificaion
u]n

FPP..=“["
“amongst” membership_specification
“filtering_cardinality” cardinality_specificaion
“filtering_criterion” filtering_criterion_spedfication
“filtering_properties’ filtering_properties_spedfication
ﬂ]n

sync_specification::= “sync” message spedfication “with”
event_ndification_pdicy::=“notify” NPP (* Notification Policy Primitive *)

NPP::=“[”

“sync_events’ message spedfication list
“to” membership_list
((]”
filtering_properties_specification::=“(" attribute_name _value pair_list “)”

Group-Based Distributed Computing 192

attribute_name _value _pair_list::= atribute_name value pair

| attribute_name _value pair “,” attribute_name _value _pair_list
attribute_name_value_pair::= attribute_name “=" attribute value

filtering_criterion_specification::=
filter_clause
|“(” filtering_criterion_specificaion®and” filtering_criterion_specification®)”
| “(” filtering_criterion_specification“or” filtering_criterion_spedfication“)”
| “ (" filtering_criterion_spedfication“xor” filtering_criterion_specification*)
| “(” “not” filtering_criterion_specification*)”

filter_clause::="(" attribute_name comparison_operator attribute value “)”

distribution_pdicy_specificaion_symbal::= “operation_distribution_policy”
| “notification_distribution_policy”
| “termination_distribution_policy”

collation_pdicy_specification_symbal::= “operation_collation_policy”
| “notification_collation_policy”
| “termination_collation_policy”

synchronisation_pdicy_specificaion_symbadl::= “synchronisation_policy”
filtering_pdicy_specificaion_symbadl::= “filtering_policy”
for_specification::= “for” message_name

message_specification::= message_signature
|“ REPLY "
|“_REPLIES”

membership_specification::= group_identifier
| member_name list
| member_role list

cardinality_specificaion::= “ATLEAST” “(” cardina_expresson*)”
| “ATMOST” “(” cardinal_expresson*)”
| “UNSPECIFIED”

cardinal_expresgon::= integer
| “POS” “(” integer_list “)”
| “ANY™ * (" integer, member_role “)”
| “ANY” “ (" integer, “POS’ “(” integer_list“)”

Group-Based Distributed Computing 193

ordering_specification::= “UNORDERED_MULTICAST”
| “SOURCE_ORDERED _MULTICAST”
| “DESTINATION_ORDERED_MULTICAST”
| “ATOMIC_ORDERED_MULTICAST”

time_specification::= time_units

coll ation_mode._specification::= “MATRIX” “(* “ORDERED” | “ANY-ORDER" * "
“FIRST” | “RECENT” | “ALL" *)"
|“LINEAR” “ (" “FIRST” | “RECENT” [“ALL" “)"

| “SINGLETON" (" “ORDERED” | “ANY-ORDER"

“ FI RS‘I‘H I “ RECENTH | HALLH u)n

Compariwn_om.aor::: “::” | 11 <n | 11 >n “ <:” 11 >:”

end_pdicy_symbadl::="“end_policy”

Group-Based Distributed Computing

194

	List Of Contents
	CHAPTER 1 Introduction to the Problem Domain 1
	Part-1: Distributed Programming Model: A Group Communication Primitive
	CHAPTER 2 Requirements of Programming-Level Group Communication Primitive 20
	CHAPTER 3 Group Interrogation: A Group Programming Primitive 32
	Part-2: Distributed Platform Model: Middleware Support for Group-Based Applications
	CHAPTER 4 Group Support Services: Requirements of the Group Support Platform 51
	CHAPTER 5 Group Support Machine: An Organisation of Group Support Services 59
	CHAPTER 6 An Abstract Model of Group Support Machine 65
	CHAPTER 7 Group Coordination Models: Platform Support and Policy Specification 77
	CHAPTER 8 Group Policy Specification Language: An Introduction 123
	CHAPTER 9 Inter-GSM Protocol 133
	CHAPTER 10 Group Support Platform: Implementation and Performance 149
	CHAPTER 11 Conclusions and Directions for Future Work 173
	CHAPTER 1 Introduction to the Problem Domain
	1.1 Introduction
	1.2 Group-Based Distributed Computing: Emergence of a New Paradigm
	Fig. 1.1 Group-Based Distributed Computing Model: Synergy of Client-Server Model & Object-Group M...

	1.3 Relationship with Distributed Systems Architectures
	1.3.1 RM-ODP Viewpoint Model
	1.3.1.1 Enterprise Model
	1.3.1.2 Information Model
	1.3.1.3 Computational Model
	1.3.1.4 Engineering Model
	1.3.1.5 Technology Model
	1.3.2 Relationship to RM-ODP Viewpoint Models

	1.4 Review of Existing Object Group Models
	1.4.1 Object Group Terminology
	1.4.1.1 Object Group
	1.4.1.2 Interface Group
	1.4.1.3 Group Member
	1.4.1.4 Member Name
	1.4.1.5 Member Role
	1.4.1.6 Group Identifier
	1.4.1.7 Group Administrator
	1.4.2 Object Group Classification Schemes
	1.4.2.1 Client and Server Groups
	1.4.2.2 Open and Closed Groups
	1.4.2.3 Active and Passive Groups
	1.4.2.4 Transparent and Non-Transparent Groups
	1.4.2.5 Replica and Heterogeneous Groups
	1.4.2.6 Static and Dynamic Groups
	1.4.2.7 Anonymous and Explicit Groups
	1.4.2.8 Source and Sink Groups
	1.4.3 General Applications

	1.5 Review of ODP Client-Server Interaction Model
	1.5.1 ODP Computational Model Communication Primitives
	1.5.1.1 Interrogation
	1.5.1.2 Announcement
	1.5.2 Operation, Notification, and Termination Message Signatures

	1.6 Scope of Group-Based Distributed Computing: Application Domains
	Fig. 1.2 Modeling of Conventional Distributed Applications as Group-Based Distributed Application...
	Fig. 1.3 Group-Based Distributed Computing: Application Domains

	1.7 Group-Based Distributed Computing: Dual Levels of Support
	Fig. 1.4 Area of Research: Lightly Shaded Areas

	1.8 Scope and Aim of Thesis
	1.8.1 Programming-Level Support for Group-Based Distributed Computing
	1.8.2 Distributed Platform Support for Group-Based Distributed Computing

	1.9 Related Work and Differences
	1.9.1 Programming Level
	1.9.2 Distributed Platform Level

	1.10 Structure of Thesis

	CHAPTER 2 Requirements of Programming-Level Group Communication Primitive
	2.1 Introduction
	2.2 Client Group and Server Group: Definition & Properties
	2.2.1 Client and Server Interfaces
	2.2.1.1 Client Interface
	2.2.1.2 Server Interface
	2.2.2 Client and Server Groups
	2.2.2.1 Server Group
	2.2.2.2 Client Group
	2.2.2.3 How are Client Groups Formed
	Fig. 2.1 Homogeneous Client Group: Each member invokes instances of the same operation signature

	2.2.2.4 Client Group Invocation Properties
	Fig. 2.2 Heterogeneous Client Group: Each member invokes an instance of different operation signa...

	2.2.3 Categories of Client and Server Groups
	2.2.3.1 Replica Client Group
	2.2.3.2 Homogeneous Client Group
	2.2.3.3 Heterogeneous Client Group
	Table 2.1: Categories of Client Group

	2.2.3.4 Replica Server Group
	Table 2.2: Categories of Server Group

	2.2.3.5 Homogeneous Server Group
	2.2.3.6 Heterogeneous Server Group

	2.3 Programming-Level Communication Requirements of Group-Based Applications
	2.3.1 ‘Singleton-client’ and ‘Server-group’ interaction requirements
	Fig. 2.3 Client object interrogates a server group

	2.3.2 ‘Singleton-Server’ and ‘Client-Group’ interaction requirements
	Fig. 2.4 Client Group interrogates a server object

	2.4 Limitations of ODP Interrogation Primitive
	Table 2.3: Limitation of ODP Interrogation primitive

	2.5 Conclusion

	CHAPTER 3 Group Interrogation: A Group Programming Primitive
	3.1 Introduction
	3.2 ODP-Based Group Programming Primitives
	3.2.1 Group Interrogation
	3.2.2 Group Announcement
	3.2.3 Group (Operation | Termination) Message

	3.3 Semantics of Group Interrogation
	3.3.1 Multiple Invoker and Multiple Invokee semantics
	3.3.2 Group Invocation Semantics
	3.3.3 Message collation semantics
	3.3.4 Controlled Reply Delivery Semantics
	3.3.5 Terminable Reply Delivery Semantics
	3.3.6 Invocation Completion Reporting Semantics or Variable Reply Delivery Semantics

	3.4 Signature of Group Interrogation
	Fig. 3.1 Interrogation Signature

	3.5 Group Message Construction: Collation Schemes
	3.6 Basic Group Message Construction Schemes
	3.6.1 Matrix-mode message collation
	3.6.1.1 Group-Application-1: Managed Group - Manager Object Application
	Fig. 3.2 Matrix-mode message collation: An example of Manager Object and Managed Group Interaction

	3.6.1.2 Group Application-2: Modified Group Application-1
	3.6.1.3 Principles of Matrix-Mode Message Collation
	Fig. 3.3 Group Message Stub Using Matrix-Mode Collation: Array Structure Implementation

	3.6.1.4 Implementation of matrix-mode message collation
	3.6.2 Linear-mode message collation
	Fig. 3.4 Linear-mode message collation: An Example of Group Computing

	3.6.2.1 Group Application-3: Group Computing
	3.6.2.2 Group Application -4: Parallel Computing Group
	3.6.2.3 Principles of Linear-Mode Message Collation
	3.6.2.4 Observations of Linear-mode invocation collation

	3.7 Group Interrogation vs. Group Transparency
	Table 3.1: Comparison of Matrix and Linear mode Collation Schemes

	3.8 Comparison between Interrogation and Group Interrogation
	Table 3.2: Interrogation vs. Group Interrogation

	3.9 Need for Group-Oriented Objects
	3.10 What is a Group-Based Distributed Application
	3.11 What is a Group-Oriented (Client | Server)
	Fig. 3.5 Group-Based Distributed Application and the Group Support Platform.
	Table 3.3: Group-Oriented (Clients | servers)

	3.12 Identification of Group Invocations in Group-Oriented (Client | Server)
	3.12.1 Invocation Instance Identifier
	3.12.2 Unique Identifiers

	3.13 Communication between Group-Oriented (Clients | Servers) and Local Proxy
	3.13.1 Client Side
	3.13.2 Server Side
	3.13.2.1 Single reply to all the clients based upon the group input
	3.13.2.2 Individual reply to each client based upon the group input
	3.13.3 Reply Handling Protocol between the Server object and Proxy object
	Fig. 3.6 Protocol between group-oriented (client | server) and proxy

	3.14 Conclusion

	CHAPTER 4 Group Support Services: Requirements of the Group Support Platform
	4.1 Introduction
	4.2 Why Middleware Support for Group-Based Distributed Applications
	4.3 What Middleware Services in the Group Support Platform and Why
	Fig. 4.1 Group Support Platform: Middleware & Group Communication Services
	4.3.1 Basic Group Support Services
	4.3.2 Secondary Group Support Services
	4.3.3 Group Management Services:

	4.4 Basic Issues of Group Support Services: Elements of Group Support Policy
	4.4.1 Issues of Message Distribution: Elements of Distribution Policy
	4.4.2 Issues of Message Collation: Elements of Collation Policy
	4.4.3 Issues of Message Synchronisation: Elements of Synchronisation Policy
	4.4.4 Issues of Message Filtering: Elements of Filtering Policy

	4.5 Conclusion

	CHAPTER 5 Group Support Machine: An Organisation of Group Support Services
	5.1 Introduction
	5.2 Group Support Agents: Realisation of Group Support Services
	5.3 Group Support Machine: Configuration of Group Support Agents
	Table 5.1: Group Support Services Requirement on the Client and Server side
	5.3.1 Parallel Configuration of Group Support Agents
	Fig. 5.1 Group Support Machine (GSM): Configuration of Group Support Agents

	5.3.2 Functioning of Group Support Machine

	5.4 Group Support Platform: A Parallel Configuration of Inter-Communicating GSMs
	Fig. 5.2 Group Support Platform (GSP): A Distributed Agent Model

	5.5 Agent-Based Approach and Separation of Communication Functions
	5.6 Group Support Machine: An External, Configurable, and Programmable Architecture
	5.6.1 Separation of group-coordination aspects from application aspects
	5.6.2 Extensible and configurable architecture
	5.6.3 Programmable and policy-driven architecture
	5.6.4 Support for group transparency and group awareness

	5.7 Conclusion

	CHAPTER 6 An Abstract Model of Group Support Machine
	6.1 Introduction
	6.2 Middleware Box Between Group Member and Network: External Interfaces of GSM
	6.2.1 GSM - Group Member Interface
	6.2.1.1 GSM Invocation Interface (GII):
	6.2.1.2 GSM Management Interface (GMI)
	Fig. 6.1 A Model of Group Support Machine (GSM)

	6.2.2 GSM - Network Interface

	6.3 GSM Components
	6.3.1 G-Agent
	6.3.2 D-Agent
	6.3.3 C-Agent
	Fig. 6.2 A Model of Policy-Driven Group Support Machine

	6.3.4 S-Agent
	6.3.5 F-Agent
	6.3.6 MM-Agent
	6.3.7 P-Agent

	6.4 Interaction between GSAs in the GSM: Internal Interfaces of GSM
	6.4.1 Interaction between D-Agent and C-Agent: Coordination between basic group support functions
	6.4.2 Interaction between D-Agent and S-Agent: Synchronise before message distribution
	Table 6.1: Interaction of D-Agent with other Agents before & after message distribution

	6.4.3 Interaction between D-Agent and F-Agent: Insert the filtering constraints before message di...
	6.4.4 Interaction between C-Agent and S-Agent: Synchronise before message delivery
	Table 6.2: Interaction of C-Agent with other Agents before message delivery to (Client | Server)

	6.4.5 Interaction between C-Agent and F-Agent: Filter the received messages before delivery
	6.4.6 Interaction between MM-Agent and other GSAs: Communicate group membership information

	6.5 Conclusion

	CHAPTER 7 Group Coordination Models: Platform Support and Policy Specification
	7.1 Introduction
	Fig. 7.1 Group Coordination Model: Combination of coordination behavior and group organisation

	7.2 Basic Group Coordination Models
	7.3 Basic Issues in Group Coordination Models
	7.4 The Basic Message Distribution Model
	7.4.1 Group Application-1: Stock Exchange Application
	Fig. 7.2 Stock Exchange Application: A Group-Based Distributed Application

	7.4.2 Message Distribution Requirements & Policy Specification
	Fig. 7.3 Message Distribution Policy Specification

	7.5 Advanced Message Distribution Models: Smart D-Agents
	7.5.1 Splitting Transformation
	7.5.2 Message Splitting Requirements & Policy Specification
	Fig. 7.4 Splitting Policy Specification

	7.5.3 Renaming Transformation
	7.5.4 Group Application-2: Parallel Computational Group
	Fig. 7.5 A Parallel Computational Group

	7.5.5 Renaming Requirements & Policy Specification
	Fig. 7.6 Renaming Policy Specification

	7.6 Reply Collation and Delivery Models
	Table 7.1: Reply Collation and Delivery Schemes
	7.6.1 Group Application-3: Stock Inventory System
	Fig. 7.7 Stock Inventory System

	7.6.2 Delivery of Group Termination of a Single Reply Type: Matrix-Mode Collation
	7.6.2.1 Reply Collation Requirements & Policy Specification
	Fig. 7.8 Reply collation and delivery policy of a single group termination (matrix-mode)

	7.6.2.2 Transparency and Policy Interpretation
	7.6.3 Delivery of Group Termination of a Single Reply Type: Linear-Mode Collation
	7.6.3.1 Reply Collation Requirements & Policy Specification
	Fig. 7.9 Reply collation and delivery policy of a single group termination (linear-mode)

	7.6.3.2 Transparency & Policy Interpretation
	7.6.4 Unordered Delivery of Singleton Terminations of a Reply Type
	7.6.4.1 Unordered Reply Delivery Requirement and Policy Specification
	Fig. 7.10 Unordered delivery of singleton terminations of a reply type

	7.6.4.2 Transparency & Policy Interpretation
	7.6.5 Ordered Delivery of Singleton Terminations of a Reply Type
	7.6.5.1 Ordered Reply Delivery Requirement & Policy Specification
	Fig. 7.11 Ordered delivery of singleton terminations of a reply type

	7.6.5.2 Transparency & Policy Interpretation
	7.6.6 Unordered Delivery of Multiple Reply Types as Singleton Terminations
	7.6.6.1 Reply Collation & Delivery Requirements and Policy Specification
	Fig. 7.12 Policy Specification for interleaved delivery of instances of multiple reply types

	7.6.6.2 Transparency & Policy Interpretation
	7.6.7 Unordered Delivery of Multiple Reply Types as Group Terminations
	Fig. 7.13 Policy specification for Unordered Delivery of Multiple Reply Types as Group Terminations

	7.6.7.1 Reply Collation & Delivery Requirement and Policy Specification
	7.6.7.2 Transparency & Policy Interpretation
	7.6.8 Ordered Delivery Multiple Reply Types as Singleton Terminations
	7.6.8.1 Reply Collation & Delivery Requirement and Policy Specification
	Fig. 7.14 Policy Specification for Ordered Delivery of Multiple Reply Types as Singleton Terminat...

	7.6.8.2 Transparency & Policy Interpretation
	7.6.9 Disabling the Delivery of Other Reply Types by a Preferred Reply Type
	7.6.9.1 Group Application-4: Mobile Telecommunications
	Fig. 7.15 Group Interrogation in Mobile Telecommunications

	7.6.9.2 Reply Collation & Deliver Requirement and Policy Specification
	7.6.9.3 Transparency & Policy Interpretation
	Fig. 7.16 Policy Specification for Disabling the Delivery of Other Reply Types by a Preferred Rep...

	7.6.10 Choice between Multiple Reply Types
	7.6.10.1 Group Application-5: Group Survey
	Fig. 7.17 Policy Specification for Choosing between reply types based upon cardinality requirements

	7.6.10.2 Reply Collation & Deliver Requirement and Policy Specification
	7.6.10.3 Transparency & Policy Interpretation
	7.6.10.4 Group Application-6: Scheduling Group Meeting
	7.6.10.5 Reply Collation & Deliver Requirement and Policy Specification
	Fig. 7.18 Policy Specification for Choosing between reply types based upon sender identity

	7.6.10.6 Transparency & Policy Interpretation

	7.7 ‘Group-Service’ Request Models: Service Request Collation Models
	7.7.1 Group Application-7: Network Management Application
	Fig. 7.19 Group Interrogation in Telecommunications Network Management

	7.7.2 Constructing a ‘Group-Service’ Request: Matrix-Mode Collation & Policy Specification
	Fig. 7.20 Operation Collation Policy Specification

	7.7.3 Transparency & Policy Interpretation
	7.7.4 Group Application-8: Target Location Acquisition Sonar System
	Fig. 7.21 Group Interrogation in Sonar System

	7.7.5 Constructing a Service Request from Partial Service Requests: Linear-Mode Collation & Polic...
	Fig. 7.22 Linear-Mode Collation of partial service requests

	7.8 Replies to Group-Service Request: Reply Distribution Models
	7.8.1 Multiple Replies to Group-Service Request
	Fig. 7.23 Multiple Replies Distribution Policy

	7.8.2 Transparency & Policy Interpretation
	7.8.3 Single Reply to Group-Service Request
	Fig. 7.24 Single Reply Distribution Policy

	7.9 Synchronised Invocation Model
	7.9.1 Why Synchronised Invocation in the Client Group
	7.9.2 What are Synchronisation Events in Client Groups
	7.9.3 What are Synchronisation Messages
	7.9.4 Communication between the Client Object and the S-Agent
	7.9.5 Group Application-9: Coordinated Testing Application
	Fig. 7.25 Coordinated Testing Application

	7.9.6 Synchronisation Requirements & Policy Specification
	Fig. 7.26 Synchronisation Policy Specification for the S-Agent of TAdmin
	Fig. 7.27 Synchronisation Policy Specification for the S-Agent of TA-1
	Fig. 7.28 Synchronisation Policy Specification for the S-Agent of TB-1, TB-2
	Fig. 7.29 Synchronisation Policy Specification for the S-Agent of TC-1
	Fig. 7.30 Synchronisation Policy Specification for the S-Agent of TE-1
	Fig. 7.31 Synchronisation Policy Specification for the S-Agent of TAdmin - (for Grade-B() message)
	Fig. 7.32 Synchronisation Policy Specification for the S-Agent of TAdmin (for Object_Partially_Te...

	7.9.7 Interaction between GSM Agents to Support Synchronised Message Distribution from Client
	Fig. 7.33 Synchronised Message Distribution Policy
	Fig. 7.34 Coordination between GSM Agents to Support Synchronised Message Distribution from Client

	7.9.8 Transparent & External Support for Synchronised Invocation in the GSM

	7.10 Filtered Message Delivery Model
	7.10.1 Why Filtered Message Delivery in the Server Group
	7.10.2 Communication between the Server Object and F-Agent
	7.10.3 Group Application-10: A Printer-Pool
	7.10.4 Filtering Requirements & Policy Specification
	Fig. 7.35 Client’s Filtering Policy Specification
	Fig. 7.36 Server’s Filtering Policy Specification

	7.10.5 Interaction between GSM Agents to Support Filtered Message delivery to Server Object
	Fig. 7.37 Coordination between GSM Agents to Support Filtered Message Delivery (Server Side)

	7.10.6 Transparent & External Support for Filtered Invocation

	7.11 Conclusion

	CHAPTER 8 Group Policy Specification Language: An Introduction
	8.1 Introduction
	8.2 Why Group Policy Specification Language
	8.3 Basic Elements of GPSL
	Table 8.1: Relationship between Basic issues of Group Support Services and Elements of GPSL

	8.4 Syntax and Semantics of Group Policy Primitives
	8.4.1 Distribution Policy Primitive
	8.4.1.1 DPP Syntax
	8.4.1.2 DPP Semantics
	8.4.2 Collation Policy Primitive
	8.4.2.1 CPP Syntax
	8.4.2.2 CPP Semantics
	8.4.3 Synchronisation Policy Primitive
	8.4.3.1 SPP Syntax
	8.4.3.2 SPP Semantics
	8.4.4 Filtering Policy Primitive
	8.4.4.1 FPP Syntax
	8.4.4.2 FPP Semantics

	8.5 Syntax and Semantics Of GPSL Elements
	8.5.1 Message Specifier Elements
	8.5.2 Membership Specifier Elements
	8.5.3 Cardinality Specifier Elements
	8.5.4 Time Specifier Elements
	8.5.5 Combination Mode Specification Elements
	8.5.6 Attribute Combination Specification Elements
	8.5.7 Message Ordering Specification Elements
	Table 8.2: Semantics of Collation Operators
	Table 8.3: Combined Semantics of Collation Time, Collation Cardinality, and Collation Mode

	8.6 Conclusion

	CHAPTER 9 Inter-GSM Protocol
	9.1 Introduction
	9.2 Why Protocol between GSMs
	9.3 Peer GSAs in Inter-GSM Protocol
	9.4 A General Format of the Inter-GSM Protocol Data Unit
	Fig. 9.1 A General Format of GSM Protocol Data Unit (GPDU)

	9.5 Encoding of GPDUs
	9.6 Inter-GSM Protocol between D-Agent and C-Agent
	9.6.1 Application Message Communication between D-Agent & C-Agent
	Fig. 9.2 Inter-GSM Protocol between D-Agent & C-Agent

	9.6.2 Marshalling of Application Messages in GPDUs
	9.6.3 Group Exception Handling Protocol Between C-Agents

	9.7 Inter-GSM Protocol between Peer S-Agents
	Fig. 9.3 Inter-GSM Protocol between S-Agents
	9.7.1 Solicited Synchronisation Protocol
	9.7.2 Unsolicited Synchronisation Protocol
	Fig. 9.4 S-NTF-GPDU Format

	9.8 Inter-GSM Protocol between Peer F-Agents
	Fig. 9.5 F-PAR-GPDU Format
	Fig. 9.6 F-RES-GPDU Format
	Fig. 9.7 Inter-GSM Protocol between F-Agents

	9.9 Inter-GSM Protocol between Peer MM-Agents
	9.9.1 Distributed Membership Monitoring
	9.9.2 Membership Change Notification
	Table 9.1: A Catalogue of GPDUs

	9.10 Inter-GSM Protocol over Multicasting Protocol
	9.10.1 Group Communication Layer
	Fig. 9.8 Inter-GSM Protocol over Multicast Protocol

	9.10.2 GSM - GCL Interface

	9.11 Conclusion

	CHAPTER 10 Group Support Platform: Implementation and Performance
	10.1 Introduction
	10.2 Implementation Details
	10.2.1 Implementation of GSM Agents
	10.2.1.1 GSM Class
	Fig. 10.1 Which Agents are implemented

	10.2.1.2 G_Agent Class
	10.2.1.3 D_Agent Class
	Fig. 10.2 GSM Implementation: GSM Agents and their Interaction

	10.2.1.4 C_Agent Class
	10.2.1.5 P_Agent Class
	10.2.2 Implementation of Inter-Agent Invocations
	10.2.3 Implementation of Inter-GSM Communication
	10.2.4 Implementation of Inter-GSM Protocol
	10.2.5 Implementation Distribution and Collation Policies
	10.2.6 Implementation of an API for Group Interrogation Primitive
	10.2.6.1 Implementation of Unsolicited Group Reply Delivery - API
	10.2.6.2 Implementation of Solicited Multiple Reply Delivery - API
	10.2.6.3 Implementation of Unsolicited, Multiple and Terminable Reply Delivery - API

	10.3 Performance Aspects
	10.3.1 Message count
	10.3.2 Message Complexity
	10.3.3 Communication Network Speed
	10.3.4 Message Marshalling and Un-marshalling Overhead
	10.3.5 Intra-GSM Invocations Overhead
	10.3.6 Internal Buffer Sizes and Queue Lengths Considerations
	10.3.7 Concurrency and Multi-threaded architecture aspects
	10.3.8 Timers
	10.3.9 Collation Processing Overhead
	10.3.10 Other Group Processing Overhead
	10.3.11 Reliability and Robustness
	10.3.12 Scalability
	10.3.13 Ease of Use
	10.3.13.1 Ease of use of GSM Invocation (GII) Interface and Group Interrogation primitive
	10.3.13.2 Ease of use of Group Policy Programming Interface

	10.4 Comparison of Group Support Platform with CORBA Middleware
	10.4.1 Comparison at Programming-Level
	10.4.1.1 Group Interrogation vs. Remote Procedure Call
	Table 10.1: Corba vs. GSP: How do they compare w.r.t. Crucial Performance Metrics

	10.4.1.2 Ease of group request invocation
	10.4.1.3 Support for Advanced Programming-level facilities in GSP vs. Corba
	Table 10.2: GSP vs. Corba: What are the Other Trade-Offs

	10.4.2 Comparison at Platform-Level
	10.4.2.1 Middleware functions of GSP vs. Corba
	10.4.2.2 Platform programmability Capability in GSP vs. Corba

	10.5 Case Studies
	10.5.1 Case Study-1: Group Reply Delivery, Matrix-Mode Collation
	10.5.2 Case Study-2: Group Reply Delivery, Linear-Mode Collation
	10.5.3 Case Study-3: Solicited Reply Delivery
	10.5.4 Case Study-4: Group Request Deliver and Reply Distribution

	CHAPTER 11 Conclusions and Directions for Future Work
	11.1 Conclusion and Contribution of Thesis
	11.1.1 Contribution at the Programming-Level
	11.1.2 Contribution at the Platform-Level

	11.2 Directions for Future Work
	11.2.1 Research on Group-Oriented Programming Languages & Systems
	11.2.2 Integration of GSM Model in CORBA
	11.2.3 Extension of GSM Model
	11.2.4 Extension to Group Policy Specification Language

	List of References
	[1] International Standard ITU-T X.901 / ISO 10746-1: Basic Reference Model of Open Distributed P...
	[2] International Standard ITU-T X.902 / ISO 10746-2: Basic Reference Model of Open Distributed P...
	[3] International Standard ITU-T X.903 / ISO 10746-3: Basic Reference Model of Open Distributed P...
	[4] Draft International Standard ITU-T X.904 / ISO 10746-4: Basic Reference Model of Open Distrib...
	[5] Farooqui, K., Logrippo, L., and de Meer, J. The ISO Reference Model for Open Distributed Proc...
	[6] Farooqui, K., and Logrippo, L. Architecture for Open Distributed Software Systems. In Zomaya,...
	[7] Linington, P.F., Introduction to the Open Distributed Processing Basic Reference Model, Proce...
	[8] Herbert, A. The Challenge of ODP, Proceedings of the IFIP International Workshop on Open Dist...
	[9] ANSA Reference Manual, Volume A, B, C., Release 01.01, Architecture Projects Management Limit...
	[10] ANSA Computational Model, AR.001.01, Architecture Projects Management Limited, Cambridge, U....
	[11] ANSA: An Application Programmer’s Introduction to the Architecture, TR.017.00, Architecture ...
	[12] ANSA: An Engineer’s Introduction to the Architecture. TR.03.02, Architecture Projects Manage...
	[13] ANSA: A System Designer’s Introduction to the Architecture. RC.253.00, Architecture Projects...
	[14] ANSA Technical Report, Management in Object-Based Federated Distributed Systems, TR.39.00, A...
	[15] Edwards, N. Open Dependable Distributed Systems, ANSA Phase 3 Technical Report APM. 1145.01,...
	[16] RACE Open Service Architecture, 13th Deliverable, The ROSA Handbook, Release 2, RACE Project...
	[17] Schoo, P., and Tonnby, I. The ROSA Object Model, Proceedings of the IFIP International Works...
	[18] Object Management Group, “The Common Object Request Broker: Architecture and Specification”,...
	[19] Open Software Foundation. (1994) OSF DCE Application Development Guide. Open Software Founda...
	[20] The Component Object Model Specification Microsoft (1995).
	[21] Open Services Architecture within Integrated Services Engineering, CASSIOPEIA RACE Ref: R204...
	[22] Iggulden, D., Rees, O., and van der Linden, R. Architecture & Frameworks, ANSA Phase 3 Techn...
	[23] Taylor, C.J. Object-Oriented Concepts in Distributed Systems, Computer Standards and Interfa...
	[24] Jul, E. Separation of Distribution and Objects, Proceedings of the Workshop on Object-Based ...
	[25] TINA-C Deliverable, Overall Concepts and Principles of TINA, Version 1.0, Document Label: TB...
	[26] TINA-C Deliverable, Service Architecture Version 2.0, Document Label: TB_MDC.012_2.0_95, Tel...
	[27] TINA-C Deliverable, TINA-C Service Design Guidelines, Version 1.0, Document Label: TP_JS_001...
	[28] TINA-C Deliverable, Computational Modeling Concepts, Version 2.0, Document Label: TB_A2.HC.0...
	[29] TINA-C Deliverable, Engineering Modeling Concepts (DPE Architecture), Version 2.0, Document ...
	[30] TINA-C Deliverable, Management Architecture, Version 2.0, Document Label: TB_GN.010_2.0_94, ...
	[31] TINA-C Deliverable, Connection Management Architecture, Document Label: TB_JJB.005_1.5_94, T...
	[32] TINA-C Deliverable, TINA Object Definition Language (TINA-ODL) Manual, Version 1.3, Archivin...
	[33] ISO/IEC 13244 / ITU-T Draft Rec. X.703, Open Distributed Management Architecture, 1997.
	[34] Oskiewicz, E., and Edwards, N. A Model for Interface Groups. ANSA Phase 3 Technical Report, ...
	[35] Achmatowicz, R. Object Groups For Groupware Applications: Application Requirements and Desig...
	[36] Watanabe, T., and Yonezawa, A. An actor-based meta-level architecture for group-wide reflect...
	[37] Matsuoka, S., Watnabe, T., and Yonezawa, A. Hybrid group reflective architecture for object-...
	[38] Zweiacker, M. The Persistent Object Group Service-An approach to fault tolerance of open dis...
	[39] Pardyak, P. Group Communication in an Object-Based Environment. Proceedings of the 2nd Inter...
	[40] Murata, S., Shionozaki, A., Tokoro, M. A Network Architecture for Relaible Process Group Com...
	[41] Glade, B.B., Birman, K.P., Cooper, R.C., and van Renesse, R. Lightweight process groups. Pro...
	[42] Maffeis, S. The Object Group Design Pattern. Proceedings of the 1996 USENIX Conference on Ob...
	[43] Versimmo, P. and Rodrigues, L. Group Orientation: A Paradigm for Distributed Systems of the ...
	[44] Powell, D., ed. Delta-4: A Generic Architecture for Dependable Distributed Computing (1991) ...
	[45] Birman, K.P. The process group approach to reliable distributed computing. Communication of ...
	[46] Liang, L, Chanson, S.T., and Neufeld, G.W. Process groups and group communications: classifi...
	[47] Achmatowicz, R. Object Groups For Groupware Applications: Application Requirements and Desig...
	[48] Benford, S. and Palme, J. A Standard for OSI Group Communication. Computer Networks and ISDN...
	[49] Cosquer, F.J.N. and Versimmo, P. The Impact of Group Communication Paradigms on Groupware Su...
	[50] Rodrigues, L., and Versimmo, P. Replicated Object Management using Group Technology, In Proc...
	[51] Babaoglu, O., and Schiper, A. On Group Communication in Large-Scale Distributed Systems. In ...
	[52] Prinz, W. Survey of Group Communication Models and Systems. In Computer Based Group Communic...
	[53] Szyperski, C., and Ventre, G. Efficient Group Communication with Guaranteed Quality of Servi...
	[54] Chanson, S.T., Neufeldm G.W., and Liang, L. A Bibliography on Multicast and Group Communicat...
	[55] Navarathnam, S., Chanson, S., and Neufeld, G. Reliable Group Communication in Distributed Sy...
	[56] Birrel, A.D., and Nelson, B.J. Implementing remote procedure calls, ACM Transactions on Comp...
	[57] Ananda, A.L., and Tay, B.H. An Asynchronous Remote Procedure Call Facility. Proceedings of 1...
	[58] Bershad, B.N., Anderson, T. E., Lazowska, E.D., and Levy, H. Lightweight remote procedure ca...
	[59] Martin, B., Bergan, C., and Russ, B. Parpc: A system for parallel procedure calls. ICPP, 198...
	[60] Wilbur, S. and Bacarisse, B. Building distributed systems with remote procedure calls. Softw...
	[61] Yap, K.S., Jalote, P., and Tripathi, S. Fault tolerant remote procedure call. International ...
	[62] Johnson, D., and Zwaenepoel, W. The Peregrine high-performance RPC system. Software Practice...
	[63] Liskov, B., and Shrira, L. Promises: Linguistic Support for Efficient Asynchronous Procedure...
	[64] Birman, K.P., and van Renesse, R. RPC Considered Inadequate. In Birman, K. and van Renesse, ...
	[65] Ramakrishna, S., Prasad, B., Thenmozhi, A., Samdarshi, S., Velaga, K., Shah, K., and Ravindr...
	[66] Hughes, L. A Multicast Response-Handling Taxonomy, Computer Communications, Vol. 12, No. 1, ...
	[67] Maffeis, S. Distributed Programming Using Object Groups, IFI TR 93.38, Department of Compute...
	[68] Maffeis, S. A Flexible System Design to Support Object-Groups and Object-Oriented Distribute...
	[69] Birman, K.P., Cooper, R., Gresman, B. Programming with Process Groups: Group and Multicast S...
	[70] Cheriton, D.R. Request-response and multicast interprocess communication in the V kernel. Le...
	[71] Hagsand, O., Herzog, H., Birman, K., and Cooper, R. Object-Oriented Relaible Distributed Pro...
	[72] van Renesse, R., and Birman, K.P., Fault-Tolerant Programming using Process Groups. In F. Br...
	[73] Zhou, W. A Fault-Tolerant Remote Procedure Call System for Open Distributed Processing. Proc...
	[74] Wood, M.D. Replicated RPC using Amoeba closed group communication. Proceedings of the 13th I...
	[75] Cooper, E.C. Programming Language Support for Multicast Communication in Distributed Systems...
	[76] Welling, G., and Badrinath, B.R. An Architecture of a Threaded Many-to-Many Remote Procedure...
	[77] Pardyak, P., and Bershad, B.N. A Group Structuring Mechanism for a Distributed Object-Orient...
	[78] Hiltunen, M.A., and Schlichting, R.D. Constructing a Configurable Group RPC Service. Proceed...
	[79] Wang, X., Zhao, H., and Zhu, J. GRPC: A Communication Cooperation Mechanism in Distributed S...
	[80] Farooqui, K., and Logrippo, L. Group Interrogation: A Group Programming Primitive. Proceedin...
	[81] Melliar-Smith, P.M., Moser, L.E., and Agrawala, V. Broadcast protocols for distributed syste...
	[82] Reiter, M.K. Secure agreement protocols: Relaible and atomic group multicast in Rampart. In ...
	[83] Whetten, B. A reliable multicast protocol, In Theory and Practice of Distributed Systems. K....
	[84] Birman, K., Schiper, A., and Stephenson, P. Lightweight causal and atomic group multicast. A...
	[85] Hadzilacos, V., and Toueg, S. Fault-tolerant broadcasts and related problems. In S. Mullende...
	[86] Birman, K., Schiper, A., and Sephenson, P. Lightweight causal and atomic group multicast. AC...
	[87] Navaratnam, S., Chanson, S.T., and Neufeld, G. Reliable group communication in Distributed S...
	[88] Schiper, A. and Sandoz, A. Uniform Relaible Multicast in a Virtually Synchronous Environment...
	[89] Nakamura, A., and Takizawa, M. Priority-Based Total and Semi-Total Ordering Broadcast Protoc...
	[90] Luan, S.W. and Gilgor, V.D. A Fault-Tolerant Protocol for Atomic Broadcast. IEEE Transaction...
	[91] Kaashoek, M.F., Tanenbaum, A.S., Hummel, S.F., and Bal, H.E. An Efficient Relaible Broadcast...
	[92] Ezhilchelvan, P.D., Macedo, R.A., and Shrivastava, S.K. Newtop: A Fault-Tolerant Group Commu...
	[93] Nakamura, A., and Takizawa, M. Causally Ordering Broadcast Protocol. Proceedings of the Inte...
	[94] Anceaume, E. A Comparison of Fault-Tolerant Atomic Broadcast Protocols. Proceedings of the 4...
	[95] Reiter, M.K. A secure group membership protocol. In IEEE Transactions on Software Engineerin...
	[96] Jahanian, F., Fakhouri, S., and Rajkumar, R. Processor group membership protocols: Specifica...
	[97] Diaz, M. and Villemur, T. Membership services and protocols for cooperative frameworks of pr...
	[98] Amir, Y., Dolev, D., Kramer, S., and Malki, D. Membership Algorithm for Multicast Communicat...
	[99] Melliar-Smith, P.M., Moser, L.E., and Agarwala, V. Membership Algorithms for Asynchronous Di...
	[100] Birman, K.P. and Joseph, T.A. Exploiting Virtual Synchrony in Distributed Systems. In 11th ...
	[101] Moser, L.E., Amir, Y., Melliar-Smith, M., and Agarwal, D.A. Extended Virtual Synchrony. Pro...
	[102] Schiper, A., and Sandoz, A. Uniform Relaible Multicast in a Virtually Synchronous Environme...
	[103] Schiper, A. and Ricciardi, A. Virtually Synchronous Communication based on a weak failure s...
	[104] Birman, K. and Cooper, R. The ISIS Project: Real Experience with a Fault-Tolerant Programmi...
	[105] Birman, K.P., and van Renesse, R. Reliable Distributed Computing with the ISIS Tool Kit. IE...
	[106] Orbix + ISIS Programmer’s Guide, Document D071-00, ISIS Distributed Systems Inc., IONA Tech...
	[107] van Renesse, R., Birman, K.P., and Maffeis, S. Horus: A flexible group communication system...
	[108] van Renesse, R., Birman, K.P., Friedman, R., Hayden, M., and Karr, D.A. A framework for pro...
	[109] Maffeis, S. Adding group communication and fault-tolerance to CORBA. In Proceedings of the ...
	[110] Maffeis, S., and Schmidt, D.C. Constructing Reliable Distributed Communication Systems with...
	[111] Kaashoek, M.F., and Tanenbaum, A.S. Group communication in the Amoeba distributed operating...
	[112] Mullender, S., van Rossum, G., Tannenbaum, A., van Renesse, R., van Staveren, H. Amoeba - A...
	[113] Dolev, D., and Malki, D. The Transis Approach to High Availability Cluster Communication, C...
	[114] Amir, Y., Dolev, D., Kramer, S., and Malki, D. Transis: A communication sub-system for high...
	[115] Reiter, M.K. Distributing Trust with Rampart Toolkit, Communications of ACM, Vol. 39, No. 4...
	[116] Reiter, M.K. The Rampart toolkit for building high-integrity services. In K.P. Birman, F. M...
	[117] Moser, L. E., Melliar-Smith, P. M., Agarwal, D.A., Budhia, R.K., Langley-Papadopoulos, C.A....
	[118] Babaoglu, O., Davoli, R., Giachini, L.A., and Baker, M.G. Relacs: A Communication Infrastru...
	[119] Cheriton, D.R., and Zwaenepoel. Distributed Process Groups in V Kernel. ACM Transactions on...
	[120] Mishra, S., Peterson, L., and Schlichting, T. Consul: A Communications Substrate for Fault-...
	[121] Powell, D., ed. Delta-4: A Generic Architecture for Dependable Distributed Computing (1991)...
	[122] Costa, F.M., and Madeira, E.R.M. An object group model and its implementation to support co...
	[123] Bakker, H., and ter Hofte, G.H. MORB, a Multicast Object Request Broker for a CSCW software...
	[124] Farooqui, K. ODP-Based Distributed Platform: Policy-Driven Engineering Support for Mobile a...
	[125] Farooqui, K. and Logrippo, L. Group Communication Models, Computer Communications, Vol. 19,...
	[126] Farooqui, K. and Logrippo, L. Group Support Platform: Middleware Support for Group-Based Di...
	[127] Moffet, J. and Sloman, M. Representation of Policies as System Objects. In Proceedings of t...
	[128] Dean, G., Rodden, T., Sommerville, I., and Hutchinson, D. Distributed Systems Management as...
	[129] Koch, T. Policy-Based Management of Distributed Systems. Internal Paper, FernUniversitat, 5...
	[130] Sloman, M. Policy Driven Management for Distributed Systems, Journal of Network and Systems...
	[131] Roos, J., Putter, P., and Bekker, C. Modeling Management Policy Using Enriched Managed Obje...
	[132] Alpers, B. and Plansky, H. Domain and Policy Based Management: Concepts and Implementation ...
	[133] Meyer, B., and Popien, C. Defining Policies for Performance Management in Open Distributed ...
	[134] Popien, C. and Meyer, B. Service Request Description Language, FORTE’95.
	[135] Trevor, J., Rodden, T., and Blair, G. COLA: A Lightweight Platform for CSCW. In Proceedings...
	[136] Shenker, S., Weinrib, A., and Schooler, E. Managing Shared Ephemeral Teleconferencing State...
	[137] Bentely, R., and Dourish, P. Medium versus mechanism: Supporting collaboration through cust...
	[138] Coordination Languages and Models, Lecture Notes in Computer Science 1061, Springer-Verlag,...
	[139] Berry, A. and Kaplan, S. Language Support for Distribution in CSCW Systems. In Proceedings ...
	[140] Putter, P., and Roos, J.D. From Policy to Specification. Proceedings of the IFIP Internatio...
	[141] Cortes, M. and Mishra, P. DWCPL: A programming language for describing collaboration. In AC...
	[142] Papazoglou, M.P., Delis, A., Haghjoo, M., Bouguettaya, A. Language Support for Long-lived C...
	[143] Frolund, S., and Agha, G. A Language Framework for Multi-Object Coordination. 7th European ...
	[144] Richard M. Adler, Distributed Coordination Models for Client/Server Computing, Computer, Ap...
	[145] Nehmer, J., and Mattern, F. Framework for the organisation of cooperative services in distr...
	[146] Diaz, M. A logical model of cooperation. Proceedings of the 3rd IEEE Workshop on Future Tre...
	[147] Kreifelts, T., Pankoke-Babatz, U., Victor, F. A Model for the Coordination of Cooperative A...
	[148] Kirsche, T., Lenz, R., Luhrsen, H., Meyer-Wegener, K., Wedekind, H., Bever, M., Schaffer, U...
	[149] Gokhale, A.S., and Schmidt, D.C. Measuring the Performance of Communication Middleware on H...
	[150] Gokhale, A.S., and Schmidt, D.C. Measuring and Optimizing Corba Latency and Scalability Ove...
	[151] Gokhale, A.S., and Schmidt, D.C. Optimizing a Corba Inter-ORB Protocol Engine for Minimal F...
	[152] Schmidt, D.C., Levine, D.L., Cleeland, C. Architectures and Patterns for High-Performance, ...
	[153] Schmidt, D.C. and Gokhale, A. Techniques for Optimizing Corba Middleware for Distributed Em...
	[154] Schmidt, D.C. Evaluating Architectures for Mult-threaded Corba Object Request Brokers, Comm...

	APPENDIX BNF of Group Policy Specification Language (GPSL)

