Combining Graphical Scenarioswith a

Reguirements M anagement System

Bo Jiang

Thesis submitted to the
Faculty of Graduate and Postdoctoral Studies
in partial fulfillment of the requirements for the degree of

Master of Computer Science

Under the auspices of the Ottawa-Carleton Institute for Computer Science

_——

[T

University of Ottawa
Ottawa, Ontario, Canada
June 2005

© Bo Jiang, Ottawa, Canada, 2005

Abstract

Scenarios have gained in popularity for the description of functional requirements. How-
ever, scenarios cannot specify al types of requirements, and often they are expressed
separately from other requirements. In order for scenarios to be used in cooperation with
complementary genera requirements, both views must be linked in a way that supports
traceability, navigation, and analysis. This thesis proposes an approach to introduce
graphical scenarios (represented as Use Case Maps — UCMS) into a requirements man-
agement system (namely, Telelogic DOORS) and to maintain relationships from and to
external requirements as both views evolve over time.

In the first part of the thesis, an export mechanism is added to the Use Case Map
Navigator tool that enables the export of UCM models in aformat that can be understood
by the target requirements management system, i.e., DOORS.

In the second part of the thesis, DOORS is enhanced with an import mechanism
to create or update UCM models based on the information generated by the UCM tool.

Finally, the approach is illustrated with a case study (a supply chain management
business process) that demonstrates how the UCM model, the external requirements, and

their links can be kept consistent as both views evolve.

Acknowledgment

| would like to express my deepest gratitude to my supervisor, Dr. Daniel Amyot, who
provided invaluable help and unselfish support throughout the preparation of this thesis.
Without his pithy comments, insight suggestions, and extremely patient review, this the-
sis could never have been completed. Thank You, Daniel! It has been a most rewarding
learning experience to work under your guidance.

| would like to thank Professor Murray Woodside and Dorin Petriu for their work
and suggestions related to this research project, and especialy for the initial code pro-
vided by Dorin. | wish to thank Gunter Mussbacher who tested my implementation, fixed
many bugs, and gave me useful suggestions on setting up the experiment in this thesis. |
would aso like to express my gratitude to Professor Robert L. Probert, my co-supervisor,
for his heartful encouragements.

This research was supported by the Natural Sciences and Engineering Research
Council of Canada, through its programs of Collaborative Research and Development
Grants. | am grateful to Telelogic for making their tools available viathe ASERT lab, and
| would like to acknowledge the great technical support provided by Chris Sibbald and
histeam at Telelogic and by Jacques Sincennes here at the University of Ottawa.

Finally, | would like to express my eterna gratitude to my parents, for their end-
less love. | would like to dedicate this thesis to the most important people in my life: my

wife, Fengbing Zhang, and my daughter, Kaitlyn Jiang.

Table of Contents

N 015 1 = ToX RSP i
ACKNOWIEAGMENT ...t sr et e nreesre e e e i
TabIE Of CONTENTS... .ot st ii
IS o) 00 =SSR Vi
IS o = o =SSR viii
IS o) o 0])Y/ 1 SRRSO iX
(@4 gF=To 1 (= g I 1 oo 18 [ox i o] ISP 1
105 I |V o L1 oo 1
1.2. ThesisGoals and Suggested APProach..........ccooeriieeneniee e 2
1.3, TheSISCONLITDULIONS.......ccviieieeieeiesee et e et re e e 5
14, THESISOULIINEeieiiiiee e et re e 5
Chapter 2. BaCkgrOUNd.........ccueiieieiieiecsie e et eee e ste e s e e e s esseeeesneesseeneesneensens 6
228 RS o< 0 T= T o 8 (o) =11 o PSP 6
Nt R o= 1= 11 0 LT 6

A I U L Y 0rc S N 1Y o LTSS 6
22 0 T U L @11/ N S 9

2.2. Requirements Management SYSEMS........ccccveveeeereereseeseesre e e e e e 10
221 General CharaCleriStCS.....coureririeriirie et 10
222 TelelogiC DOORS...... .ottt eeste e b sreetesaeeneense e 10
A T I) S 13

2.3, SenariosS and RMS..........ooiee e et 14
231 SCENAMTO PIUS......oieiee ettt st e e e e 14
232 DOORSTANAYSL......voeeeeeeeeeeseeeeeeeeeeeeeeeeeeesseessesseese s ss st eeeseeeseee s ss e se e sseeeseseeens 16

24, Chapter SUMITIIYooeiiieieieerieeee et ee e sbessessseesse e e saeessesneesseenseens 18
Chapter 3. Exporting UCM Modeél from UCMNAVccceevviieneeie e 19
3.1, UCM ME@MOUEcceeiiieieiieieee et 19
311 Understanding UCMS ..ottt st s ee e 19
3.1.2 Creatingthe UCM Metamodelcooviieiiiiceee et 20
3.1.3 Principlesfor Exporting UCM MOEIS........c.cooeeeiiiicececee e 25

3.2, EXPOrting Srat@QIES......ccueeueieeerieeiesiesieeeeseese et te e e ese e sse e aesneesreenne e 28

3.21 Generating DXL Scripts Directly FFOmUCMNAYVccoooviieveieeece e 29
A N I (= 0T NS 1= = =SS 30
3.3. CoreElementsand Their ASSOCIAtiONS.........c.cuverererierieerieniesesie e seseeseseeeas 32
331 MEAMOAE ..ot 32
3.3.2 Class SPECITICALION........cueeeeieeiiriesiee st 32
3.3.3 Sampleof DXL Scriptson UCM Core MOcooeiiiciiiiiineneeeseeeeeee 34
34. Mapsand Their ASSOCIALIONS........ccuieerieriirriesieeieseesie e sree e neeseesee s 35
G A |V = = o o (= 35
3.4.2 Class SPECITICALIONSccueeeecieiiee ettt st re e 36
3.4.3 Sample of DXL Script for aMap Modeccovivieieiiiie e 38
35, Scenariosand Their ASSOCIALIONS........coueierierierererereeee e ese e 39
351 MEAMOAE ..ot 39
3.5.2 Class SPECITICALION. ...cccuii e 40
353 Sample of UCM SCENANOS SCHPLS.......coverrereerenieriesiesreseeseeseee e 44
3.6. Implementation of the EXPOIT.........cccceiirieiieieeeseese e e 45
3.7. Chapter SUMITIAIYoceeiieeieceesieeeeseesteeee e e sseeeesseessesseesseensesseesseessesneesseesseans 46
Chapter 4. Importing UCM Modelsin DOORS.........oooiiriinieneee e 48
4.1. Metamodel of the UCM model in DOORS..........ccocoeirinienenesesese s 48
4.2. DXL Library in DOORS........cccoiiiiiiiienieeiesee st ree e sse s nee s 50
R O o] £ PP 50
A \Y = o = TP UU RSP RPRPR 54
R TS o< 17 10 F PP RSPR 59
4.3, AUtoMatiC LINK Creation.........ccooiiiiiierienisie ettt 65
4.4, Chapter SUMIMAIYc.ccceeieeieeeesieeeeseeseeeeseesseessesseesseesaesseessesssessessseessesseessens 67
Chapter 5. Managing the Evolution of Scenarios and Requirements....................... 68
5.1. Linksfrom/to External ReQUIreMENTS........ccccevveeereerieseeseese e 68
5.2. Evolving UCM Models According to Changed Requirements.............cccoeenee... 71
521 Generating the Changed Requirements from DOORS.cccooininincncnieieeene 72
5.22 Evolvingthe UCM Modd iNn UCMNAVccccveieiiiice et 73
5.3. Evolving the DOORS View According to Changed UCMcccccovevevveennene. 74
5.3.1 Algorithm for Managing Evolving UCM Elements..........cccccevevieeveveceesie e, 75
5.3.2 Managing Evolving UCM Linkswith External Requirements.............cccccevvvevenene. 77
54. Chapter SUMITIAIYcceeiieieiieesieeieseesieeeeseesseeeesseessessessseessessessseessessessseesseans 78
Chapter 6. Case Study: Supply Chain Management...........cccoceverieneenenieseesesennens 79
6.1. Initial RequirementsSfor SCMccccovcceiieiice e 79
6.1.1 USEr REQUIFEMENTS.eiiticeeieceieie ettt sttt st et e s aae b sneetesneenneee e 80
6.1.2 SyStemM REQUITEIMENES.......cceiviieieie sttt sttt s nn e 82
6.1.3 TeSt REQUITEIMENES.....cuiitieeeieieieie ettt e e st e e saesneeeesneeneenee e 82

6.2. UCM MOE fOr SCM.......ocuiiiiireieeienee e 84

6.3. Managing Changesto the UCM MOdEcccoceiiriinieninieneeneeee e 88
6.3.1 Addition of New Maps and Core EIements...........ocovverireieinieneneseseeeeeeees 89

6.3.2 Addition Of NEW SCENAIIOS.cceririiriiieieieerieeie sttt 89
6.3.3 DEEioN Of MADS......ccoiiiiieieieiiee ettt st sre et s re e e e 91
6.3.4 DeElElion OF SCENAIOS.ieieieieieiesieee ettt st e e sreeeesae e enee e 92
6.3.5 MOdIfiCATION TO MEDS......cceeieiiriiriesiest et 93
6.3.6 MOdifiCatioN 0 SCENAIOS......c.coiriiriiriirierieee et 94

6.4. Managing Changesto External Requirements..........cccoceveevesieereernseeseeenenns 95
B.5. DISCUSSION ... ceiiiiiietieiesiee sttt et sre et et esaeesbe st e sreesseentesseesbeeeesneeseeenne e 96
6.5.1 Benefitsand LimitationS..........ccooiiereereneeese e 96
6.5.2 Comparison With Other TOOIS.......cciieie e e 97

6.6. Chapter SUMIMAIYcc.oiiiiieieeiesee ettt b e s re e e 99
Chapter 7. CONCIUSIONS......cuiiieieeiecieste et ste e te e e sreeee e e steentesneesseensesneensens 100
7.1, CONIIDULIONS ...t sr e e nne s 100
7.2, FULUME WO K. .ieiitiiieeiieieie ettt st 101
REFEIENCES ...ttt na e e e be e tesne e s re et e 103
Appendix A: System RequirementSof SCMcccecvieveeie e 106
Appendix B: Sample APl FUNCEION iN DXL ..cooiiiiiiiieeeee e 108
Appendix C: UCM Mode for the Supply Chain Management............ccccceveveveeennene. 110

List of Figures

Figurel

Figure2

Figure3

Figure4

Figure5

Figure 6

Figure7

Figure8

Figure9

Figure 10
Figurel1l
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure2l
Figure 22
Figure 23
Figure24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39

Iterative evolution of UCM models and requirements..........cccceecereeneseeeee 4
A SIMPIEUCM ...ttt eneenae s 8
UCMNAV, the Use Case Map Navigator t00lccocveevvreeneninnceneneeee 9
DOORS dat@haSe VIBWcc.erueruieiiieriesiesie st 11
View of formal MOTUIE..........cocoririiii e 12
SampPle Of DXL COUEcveveeieeie ettt ee et 13
Scenario PIUS: USE Case EITOrcoeeereeieeieeeesee e 15
Scenario Plus: Use case modulein DOORS..........cccoerieieneneneneseseee 15
DOORS/Analyst: Class diagram in €ditorcccceeeeveeneninneenesee e 16
DOORS/Analyst: Class diagram in forma module...........cccccovevereevieennee. 17
DOORS/Analyst: Sequence diagram in formal module............ccceevvvenieene. 18
Overview of the UCM metamodel based the Z.152 and scenario DTDs. ... 21
Top package of UCM metamodelcoooveeieniineeneee e 21
Path package of UCM metamodel (1)cccevveeevenie s 22
Path package of UCM metamodel (2)ccoovveenininnieeeeeeee e 23
Scenario package of UCM metamodelcccceeeveevievieveese e 24
Performance package of UCM metamodelccccoceveevvicieneenenee s, 25
Metamodel of exported UCM MOElS.........ccooviieieriniieeeeee e 27
Generating and importing DXL SCHPLS......ccvvereeieeseerie e ceesee e 30
DXL SCHPt @XamMPle....cceeeeeeeeee e e 30
Generating DXL SCrptS VIA XML ...cvveieeieieeeceseeie e 31
Core elements metamodel of exported UCMccoovviienieninnceneeiee 32
DXL script for the core elements in the Simple Telephone System............ 34
Map metamodel of exported UCMccooceriineinininneeeeee e 35
Root map in the Simple Telephone System.........ccccccvveevveieneere e, 38
DXL script generated for the Root map in the Simple Telephone System.. 39
Scenario metamodel of exported UCMccoeeeveevince e 40
Successful Basic Call Scenario in the Simple Telephone System............... 44
DXL script of the successful BasicCall Scenario.........ccceeveeereereseesieenenn 45
UCM metamodel in DOORS...........oooiiiiieieie e 49
Corefolder for the Simple Telephone example in DOORS..............ccc........ 53
Maps for the Simple Telephone System in DOORS.cccccoevveeviecnee 59
Scenarios for the Simple Telephone System in DOORS............ccccccvveneeee. 64
Internal linksin an imported UCM modelcccoooiiieneninnenneeee e 66
Links between a UCM model and external requirements............ccccevveeneee. 70
Suspect links between a UCM model and external requirements................ 72
Report on changed requirements generated by DOORS............ccccccevieeneee. 73
The modified UCM MOGE ..o 74
UCM MaPSTOr SCM ..ottt nne s 85

Vi

Figure 40
Figure4l
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure51

UCM SCENANTOS TOr SCIM ..ot e e e e e e e e neeee e 85

Traceability view from uSer reqUIreMENtS.........cccceveereeieneesese e 86
Scenarios traceability VIEWccvceeieeie e 87
New mMaps and COre BleMENTS..........cccoirriererieree e e 89
New scenarios after the update..........ccceeceeveeienceeve e 90
Adding links between new UCM maps to/from external requirements...... 91
Exceptions generated while deleting maps.........ccccveeeveeveeceneesesee e 92
Exceptions generated while deleting SCeNarios..........ccocevereneenieneesieeennn 92
Triggering suspect links in user reqUIreMENtS.........ccocveveveeveeceeseesie e 93
Triggering suspect out-links in system requirements..........ccoceeevveeneeeene 94
Triggering suspect out-liNkS N teSt CaSEScvvveveeveereeie e e 9
Reporting changed requirements to UCMNAVccoiieriinennienee e 95

Vii

List of Tables

Tablel
Table?2
Table3
Table4
Table5
Table6
Table7
Table8
Table9

Traceability between the UCM metamodel and the exported subset 28
Mapping from metamodel associations to DOORSIinks..........ccccccevveeneee. 66
Attributes not affecting histories, suspect links, and the notification bar 76
Actors participating to the USE CaSES.........cccvveereerierie e 80
Primary path of USE Case 3oocoiiriiiierereree e e 81
Exception path of USe Case 3........ooveveveeveeeeeee e 82
Functional requirements related with Use Case 3: Replenish Stock 82
Test casesfor SCM (adapted from [38]).....cccceveerrrieereeie e eee e 83
Changes applied on the first UCM model for SCMcccevvriineeneninne. 88

viii

List of Acronyms

Acronym
API
BMP
DOORS
DTD
DXL
EPS

ID

ITU
LQN
MSC
NFR
RMS
SCM
SD
UCM
UCMNAvV
UML
URN
WMF
WS
XMI
XML

Definition

Application Programming Interface
Windows Bitmap

Distributed Object-Oriented Requirements System
Document Type Definition
DOORS eXtended Language
Encapsulated PostScript

Identifier

International Telecommunications Union
Layered Queueing Network

M essage Sequence Chart
Non-Functional Requirement
Requirements Management System
Supply Chain Management
Sequence Diagram

Use Case Map

Use Case Map Navigator

Unified Modeling Language

User Requirements Notation
Windows MetaFile

Web Services Interoperability
XML Metadata Interchange
eXtensible Markup Language

Chapter 1. Introduction

This thesis describes and illustrates a tool-supported integration between a visual scenario
modeling language and a requirements management system. This chapter presents the

motivation for this work and highlights the thesis contributions.

1.1. Motivation

Requirements are expressions of ideas to be embodied in the system or product under
development and the conditions under which it will operate. Requirements for a given
product are frequently divided into user requirements, system requirements, and testing
requirements, and often we see a distinction between functional requirements and
non-functional requirements. Requirements are collected in unconstrained forms includ-
ing text, diagrams, tables, and equations or logical formulae. Requirements analysis then
uses various techniques to investigate the consistency, completeness, feasibility, and
consequences of the requirements. Nuseibeh and Easterbrook discuss integrated require-
ments engineering, combining a variety of techniques with automated tool support for
effective requirements management [25]. In particular, they identify the need to move
from contextual enquiry to élicit requirements, to more formal representations for analy-
Sis.

Reguirements do not exist in isolation. They may have various kinds of relation-
ships such as dependencies, refinement, or satisfaction, and these are often supported by
tools with typed traceability links. Changing one requirement may affect requirements
linked to it, hence the need for traceability relationships. In practice, requirements are
likely to change during the development process. To keep requirements consistent during
their evolution, a requirements management system (RMS) is often used to organize
those requirements with support for traceability, access control, and version control.

Scenarios are one form of interesting and popular requirement representation.
They describe sequences of operations to be carried out in response to given events, re-
guests, or interactions. Scenarios are known to help describing functional and operational

Combining Graphical Scenarios with a Requirements Management System 1

requirements, uncovering hidden requirements and trade-offs, as well as validating and
verifying requirements. Scenarios can also be applied to requirements for different de-
velopment stages, including user requirements, system requirements, and testing re-
guirements. Lamsweerde gives a thorough discussion on the relationships between sce-
narios and other requirements models[22]. Like many others, he noted that scenario
specifications are incomplete and cannot be used as substitutes for al types of require-
ments. Complementary non-functiona requirements, goals, quality attributes, and infor-
mal annotations are found in most requirements documents.

Scenarios, like requirements, often evolve over time. Scenario management and
scenario evolution, which are discussed thoroughly by Jarke et al. [21], face the issue of
maintaining traceability of related and evolving scenarios. To avoid an explosion in the
number of individual scenarios describing a complex system, several approaches have
been developed to capture common parts (often called episodes) and describe interde-
pendencies through relationships such as precedence, alternatives, inclusion, extension,
usage, etc., while at the same time improving consistency and maintainability. Breitman
and Leite provided an extensive case study on scenario evolution based on such relation-
ships, and they identified the need to develop suitable management systems that would
take into consideration scenario relationships[11]. However, how best to integrate
graphical scenarios with other types of requirements, with tool support, remains an issue.

Due to lack of requirements management mechanism, graphical scenarios tool
manage the evolution of scenarios by having different and separate versions, and by re-
cording the relationships with other requirements in natural language or with tables
through some text editor or word processor. This manual way cannot handle the man-
agement of requirements in complex systems properly. The completeness and consis-
tency of requirements become hard goals to achieve and require much manual work. The
links are also difficult to exploit during analysis.

1.2. Thesis Goals and Suggested Approach

In order for scenarios to be used in cooperation with general requirements, they must be

connected to each other in a way that supports efficient traceability, navigation, and

Combining Graphical Scenarios with a Requirements Management System 2

anaysis. Hence, this thesis proposes an approach to introduce graphical scenarios and
their elementsinto aRMS, where their links and their evolution will be managed.

In this approach, the evolution of scenarios and other requirements can be inter-
twined in many ways. Typically, scenarios will be used to discover requirements or to
provide an operational view of existing requirements for understanding and validation. In
turn, external requirements can also trigger the discovery or evolution of scenarios.

In order for this approach to be prototyped and validated, we have selected a spe-
cific scenario language and a specific requirements management system. Given its high
flexibility and its popularity, Telelogic DOORS is chosen as the RMS in this study.
DOORS is a collaborative application for requirements capture, management, and analy-
sis[32]. It can dso be easily extended through its proprietary scripting language called
DXL.

The Use Case Map (UCM) language [12][13][20] will act as the candidate sce-
nario notation in this thesis. UCMs describe multiple scenarios in a single, integrated
view, as well as the relationships between scenarios and their underlying architecture.
This promotes the understanding and reasoning about the system as a whole, as well as
the early detection of conflicting or inconsistent scenarios [7]. The most popular tool
supporting the UCM notation is the open-source UCM Navigator (UCMNAV, [24]).

Interestingly, Use Case Maps contain many of the relationships discussed by
Breitman and Leite [11] as first-class language constructs. Unfortunately, few substantial
results are available for either the management of graphical scenarios like UCMs, or their
integration to general requirements. This thesis hence intends to provide a tool-supported

framework where these concepts could be explored and researched further.

Combining Graphical Scenarios with a Requirements Management System 3

ScenarioTool:UCMNav RMS:.DOORS

ChangeReqts
NoChange

NoChange

[RegtAnaysis ImportReqts
¢ ¢

ReqgtsModul es: External Regts

ReportChangedReqts
¢

N

LinkAhalysis
ReqtsChanged

EvolveUCMs RegtsModules:UCMs ,

Expo&UCM ImportUCM

% UpdateLinks
CreateUCMs

Figurel Iterative evolution of UCM models and requirements

Y

Figure 1 gives a high-level process overview of the proposed approach, which
combines the powerful abilities of DOORS in requirements management and the expres-
sive power of UCM scenarios. UCMs are imported into DOORS from the UCMNAV tool,
and then they are manually linked with other requirements created in DOORS. Changes
to requirements linked to UCMs are reported to UCMNAV and may trigger modifications
to the original UCM model. New versions of the UCM model and of the requirements
can be generated iteratively and will evolve in a consistent manner viatool support.

Most tools have either good analysis/transformation capabilities and weak re-
guirements management functions, or the opposite. The approach proposed in this thesis
is trying to offer both sets of capabilities in one integrated set of tools. This approach
supports UCMs to integrate many scenarios and use cases as a high-level prototype of the
developed system, while offering an opportunity for completeness and consistency re-

guirements checking with DOORS.

Combining Graphical Scenarios with a Requirements Management System 4

1.3.

Thesis Contributions

Thisthesis offers four mgor contributions:

1.4.

Abstraction of aUCM metamodel from various sources (in collaboration with
Y .X. Zeng);

Definition of a UCM-to-DOORS export mechanism based on DXL and imple-
mented in UCMNAv;

Creation of a UCM import/update mechanism in DOORS, with analysis and re-
porting facilities;

Iustrative experiment involving a UCM model and other requirements that
evolve over time, and where the various links are maintained and exploited for

regquirements analysis.

Thesis Outline

Thisthesisis structured as follows:

Combining Graphical Scenarios with a Requirements Management System

Chapter 2 presents the general concepts, notations, and tools used in the thesis.
Chapter 3 details how UCMNAYV is enhanced to support the generation of DXL
scripts describing relevant aspects of UCM models as well as their relationships.
Chapter 4 describes the DOORS DXL library used to import UCM models de-
scribed as DXL scripts.

Chapter 5 describes how UCM models are linked with other requirementsin
DOORS, and how their evolutions affect each other.

Chapter 6 demonstrates the improvement of requirements consistency and com-
pleteness by applying the proposed approach on a supply chain management case
study.

Finally, chapter 7 recalls the main contributions of the thesis and provides some

directions for future research.

Chapter 2. Background

2.1. Scenario Notations

2.1.1 Scenarios

The term scenarios used in this thesis means sequences of actions a system performsin
various conditions. The concept is similar to the term use cases in UML [26]. However,
scenarios are usually more precise and concrete than use cases (the latter are often ab-
stract and include multiple scenarios). Scenarios can be used not only to describe func-
tiona requirements, but also to validate and verify requirements as test goals. More im-
portantly, scenarios can work as a start point to drive the design, the testing, the overall
validation, and the evolution of systems[4]. Scenario-based approaches are now widely
used in industry to specify various types of systems. The following section introduces the

requirement description techniqueis used in this thesis, namely Use Case Maps.

2.1.2 Use Case Maps

Use Case Map (UCM) [12][13] is a scenario-based and visual notation for gathering re-
quirements, specifying design, and conducting testing. UCM is used by a growing num-
ber of users to capture functional requirements and high-level designs of complex sys-
tems. The notation is also being proposed as an ITU-T standard as part of the User Re-
guirements Notation (URN) [2][19][20].

A UCM model can be constructed based on informal requirements or use cases. It
describes scenarios by using paths that causally link responsibilities, which can be bound
to components. UCM scenarios can be used to bridge the gap between requirements and
detailed design [6].

Responsibility is a generic term for many kinds of system behaviours, such as ac-
tions, operations, tasks, and functions to be performed, messages to be manipulated, and

Combining Graphical Scenarios with a Requirements Management System 6

so on. Causal relationships between responsibilities may be in sequence, alternatives, or
in parallel.

Components are the entities composing the system. They can be software entities
such as objects, processes, databases, and servers as well as non-software entities such as
hardware or actors. Components can be hosted by devices, which represent computing
units such as processors.

When paths become too complex to fit in one single UCM diagram, they can be
refined by adding another construct, called a stub. Stubs may contain separate sub-maps
called plug-ins, and the latter can be reused in many stubs. There are two kinds of stubs:

o Satic stubs: represented as plain diamonds, they contain only one plug-in.
* Dynamic stubs:. represented as dashed diamonds, they can contain several plug-ins,
whose selection is determined at run-time according to a selection policy.
Consequently, a UCM can be hierarchical. The top-level UCM s caled the root map.
The root map can include some containers (stubs) for sub-maps (plug-ins). Subs can be

contained in plug-ins.

Combining Graphical Scenarios with a Requirements Management System 7

Customer

start Select
Plug-in :

Roat Map < - Responsibility
Boak Store L
Component N e
p Custamer Casher-”
4~ Payment
satpoint__ | | Start 20 5SS : — Dynamic Stub
> *e——<
| e il
Static Sub™| 7 - L \bfork
End Poin/ Eipu}is | Conglition

CréditCardCompany Bank
start start

]
OR-fork SUCCERE
SUCCESS

Figure2 A simple UCM

Figure 2 illustrates most of the UCM concepts and notation elements to be expressed in
the RMS. Further information related to these concepts will be provided in Chapter 3.
UCMs have been found to be useful in describing and validating a wide range of
systems, including Wireless Intelligent Networks [3][40], Wireless ATM [10], GPRS[8],
agent systems[14], and Web applications [9]. They have been used in other types of ap-
plications such as program comprehension [15] and business process modelling [38][39].
UCM describes requirements of systems in views of scenarios. How to keep
UCMs traceable to and consistent with other requirements is a question addressed in the
approach described in thesis. Section 2.2 will introduce a generic system managing vari-

ous kinds of requirements.

Combining Graphical Scenarios with a Requirements Management System 8

2.1.3 UCMNAvV

UCMNAV [24] is agraphical tool for the edition and exploration of Use Case Map mod-
els (see Figure 3). The latest released version is UCMNAYV 2.2.

X Use Case Map ig: : ThesisApproach-Bo.ucm *

ScenarioTool UCMNav

ChangeReqts
NoChange NoChange

RegtsMadules: ExternalRegts
ReqtAnalysis ImportReqts] ReportChangedReqts
3¢ e e

S

Link Ahalysis
RegtsChanged

RegtsModules: UCMs

ExzportUCM ImportUCM

A o~ “UpdateLinks
CreateUCMs

Figure3 UCMNAv, the Use Case Map Navigator tool

UCMNAV provides the following functionalities:

« Create, navigate and edit UCMs.

« Load and save UCMsin XML format

« Export UCM diagramsin format of EPS, MIF, CGM, and SVG.

* Define and traverse scenarios and export scenarios in XML format.

» Export Message Sequence Charts (MSC) from UCMs.
As UCM are applied to more and more application domains in collaboration with other
notations, some tools have been developed to convert UCMs to other representations. For
instance, Petriu developed a UCM2LQN exporter that converts annotated UCM design
models into Layered Queueing Network (LQN) performance models [27]. Echihabi de-
veloped UCMEXPORTER, a tool that converts UCM scenarios to Message Sequence
Charts and to UML sequence diagrams in XMI [5]. Recently, Zeng extended UCMNAvV
to export UCM models to the Core Scenario Model representation [41]. The current the-

Combining Graphical Scenarios with a Requirements Management System 9

sis implements an export mechanism for UCMNAYV to transform UCM models into DXL
scripts [33], which can be recognized by a requirements management system (Telelogic
DOORS) [32].

2.2. Requirements Management Systems

2.2.1 General Characteristics

Requirements Management Systems (RMS) are collaborative applications for require-
ments capture, management, and analysis. They enable users to capture, link, trace, ana-
lyze, and manage changes to information to ensure a project’s compliance to specified
requirements and standards. In general, RM Ss support the following functionalities [30]:

* Traceability and Impact Analysis: Thisincludes the creation of logical links be-
tween requirements and often their view in agloba matrix. Users usually can
view the impact of any proposed change before it is made. Impacts are relayed
immediately to stakeholders so they may be proactively taken care of at that stage
rather than be discovered at alater stage in the lifecycle when it is far more ex-
pensive to address.

* Requirements Change Management: Because requirements are the basis for eve-
rything elsein a project, managing change to those requirementsis critical. All
informal changes should be recorded in a history and other dataimpacted by those
changes should be emphasized so that all stakeholders know that data might be
“suspect”.

» Basdline and Release Management: Requirements can be frozen at some point in
time, and then abaseline is created. Incremental changes are then defined against
this baseline. Several branches can often be supported as well.

» Security: RMSs often provide users management with access control.

2.2.2 Telelogic DOORS

DOORS, a widely used requirements management system, manages text objects, dia-
grams, or documents under revision control, and supports links between objects[32]. It
uses a client-server architecture where the requirements database can be accessed re-

Combining Graphical Scenarios with a Requirements Management System 10

motely by a number of clients. DOORS satisfies the functionalities requirements for
RMS candidates very well, therefore it is selected as the RM S to be used in collaboration
with UCM scenarios in the approach described in thisthesis.

DOORS structure
Severa important DOORS concepts need to be introduced at this point:

* DOORS Database: DOORS can connect to one database at atime. All of the data
goes into the DOORS database including folders, projects, and modules, as shown
in Figure 4.

» Folder: Folders are used to structure the data avail able within the DOORS data-
base. They may contain other folders, projects, and modules.

* Project: A projectisa“work ared’ for ateam. Projects are used by ateam to
manage a collection of datarelated to the team’s work effort. They may contain

folders, sub-projects, and modules.

| DODORS Database: /WSI Project - DOORS - |EI|5|

File Edit “iew Faworites Tools Help

EmEae | E (A RE e =

Favmites:l j Location: |IEElEE . j
@ D'OORS Database Mame | Type |
=[] ASERT Group Clucm Folder
DOORS Database |:| Distributed Systems Research Group ENsystem Requirements Formal
/gl“_"l UCM Research Group E"Test reguirements Formal
User Requirements Farmal
Eol der / ; P&S Project E i
j 8 WSI Project
/ Ell:l M
/ -1 core
Project (3 maps Module
‘[scenatios
[-(Z validation and verificaiton Research Group |4 | I _PI
’_ |Llsername: bojiang |Llser type: Database Manager | A

Figure4 DOORS database view

Requirements in DOORS
* Formal module: A formal module is acontainer for information (requirements,

graphics, etc). It istypically structured and displayed as a document. However, it
may also be structured and displayed as a datafile, which is how a UCM model

Combining Graphical Scenarios with a Requirements Management System 11

will be represented in DOORS. A forma module is a collection of objects, as
shown in Figure 5. In thisthesis, forma modules are often ssmply called modules.

* Object: Within formal modules, data are stored as objects. Objects may be used
for requirement text, headings, graphics or other information. An object may con-
tain other objects (e.g., under a given heading).

» Attributes: Attributes are additional characteristics of an object. Users may define
additional attributes to store their own data about objects, which is how properties
of UCM objects will be stored in DOORS.

Attributes

| Formal module */WSI Project/User Requirements’ current 0.1 - DODRS - Ellll

File Edit Yiew Insert Link Analysis Table Tools User Use Case Map UseCases Analyst Hel

HEF|[L 2R[¥[X V[=B 7 U a

EEEN AL NG
==

| [standard view = |Jattieves x| S 82 4 H%E = B vl | B \A
.':i s 1D | Use Cases El Modification D ate
=] 1 Actors
/J—‘I 1.1 Consumer: A party that S Actors 06 by 2005
| ; VAt | 927 7 1,1 Consumer. A party that wishes to shop for electrical goods. 0 My 2005
Obj T 1,3 Demo System: The compr
bjéct 1.4 Manufacturing System: 4 | 23t 1.2 Demo User:A party that is exercising the sample application via the 06 hlay 2005
“¥1.5 Retailer System: & party WS- web site.

-3 Use Case 1! Purchase Goods
A 4 Use Case 21 Source Goods: To and run the demo.
SUb'ObJec EI-S_Use Zase 3: Replenisl OckT

5.1 The Retailer Syskem con

/{].2Use Case Diagram: Figure 4-1: o3 1.3 Demo C‘, 1 :The p t of the r- rr.- " used to set up 06 hay 2005

—525—1.4 Manufacturing System: A party that manufactures electrical products. 06 May 2005

5.2 Place Order, The Retaik | 25 1.5 Retailer System: A party that sells electrical products to the general 06 May 2005
- 5.3 Validate Order public.
.4 Send an acknowledgeme uz g U c Di 06 May 2005
.5 The Manufacturing Syste se Lase Diagram
.6 The Manufacturing Syst Figure &1: Use Case Diagram of the three systems

\7 Wrhen the Retailer Syske | 112
+5,8 Upon receipt of the shipt
5.9 ALT1: Malformed Order «
-6 Use Case 4: Supply Finished ¢
-7 Use Case 5: Manufacture Fini:
-8 IUse Case 6: Periodic Replenis|

06 hlay 2005

T UG Sy Pt oty _

=

Clmeare
s Sapan ek

- ;
) ol

Tw\?ja.mm:@ i et |

KN I3 T |

|Usernama: bojiang |Exc\usiva edit mode

xLP_

Figure5 View of forma module

Traceability in DOORS
* Links: A link isatyped relationship between two objects in the DOORS database.

It connects a source object to atarget object. Link modules contain the instances
of links that share the same type. If a source or target object is modified after the
corresponding link is created or “cleared of suspicion”, thelink istriggered asa

suspect link. Suspect links indicate a change in one of the connected requirements

Combining Graphical Scenarios with a Requirements Management System 12

objects. Suspect links can be cleared manually after inspection. Further details
about suspect links and their use are provided in section 5.1.

2.2.3 DXL

As described in [33], DXL (DOORS eXtension Language) is a scripting language spe-
cially developed for DOORS. DXL is used in many parts of DOORS to provide key fea-
tures, such as file format importers and exporters, impact and traceability analysis, and
inter-module linking tools. DXL can also be used to develop larger add-on packages such
as CASE tool interfaces and project management tools. To the end user, DXL-developed
applications appear as seamless extensions to the graphical user interface. This capability
to extend or customize DOORS is available to users who choose to develop their own
DXL scripts. DXL takes many of its fundamental features from C and C++. In the ap-
proach described in this thesis, DXL is used to define an Application Programming In-
terface (API) for importing Use Case Map models into DOORS.

//function
voi d createCbject (Mdul e current Module, string ID, string Name, string theDescription)
{

bj ect current Cbj ect=create current Modul e

currentoject."ID'=ID

current oj ect. " Nanme" =Nane

current Obj ect. "t heDescri ption"=t heDescription

}

/1 Main program

Modul e current Modul e=creat e(" Test Module", "This is a test.","0", 1)
create object type "String" (default "") attribute "ID'

create object type "String" (default "") attribute "Name"

create object type "String" (default "") attribute "theDescription"

createoj ect (current Module, "1", "Cbjectl, "The first testing object")
createoj ect (current Modul e, "2", "Cbject2, "The second testing object")
createoj ect (current Modul e, "3", "Cbject3, "The third testing object")

Figure6 Sample of DXL code

In the sample DXL code in Figure 6, a void function is defined (createObject), together
with its typed parameters. DXL provides types for declaring and using basic DOORS
concepts such as objects and modules. The dot operator (.) is used to access or modify an
attribute of an object. Function invocations are also possible. The simple example in
Figure 6 shows how DXL handle modules and objects and how functions are caled. A
TestModule isfirst created, and then three attributes of type String are defined for all ob-

Combining Graphical Scenarios with a Requirements Management System 13

jects in this module. The function createObject is called three times to create and add
three objects (with their attributes) to TestModule.

In our approach, DXL scripts are generated by UCMNAV to export Use Case Map
models. DXL scripts invoke the functions of the DXL APl we defined for our project.
DXL scripts can be run within DOORS to create UCM objects and links and hence “im-
port” the UCM model in the requirements database.

2.3. Scenarios and RMS

This thesis describes an approach that combines UCM scenarios with the DOORS RMS.
UCMs are imported into DOORS and then connected to external requirements with links.
These links can be exploited for evolving scenarios, requirements, and designs. There
exist other tools that combine scenario notations with a RM'S, and the ones closest to our
approach are two plug-in tools for DOORS caled Scenario Plus and DOORSAnalyst.
Both are introduced here and will be revisited for comparison with our own tool in sec-
tion 6.5.2.

2.3.1 Scenario Plus

Scenario Plus[1] is a tool-supported, scenario-based approach developed by lan Alex-
ander. By introducing many kinds of scenario and related notations into DOORS (goal,
use case, dataflow, object relationship, €etc.), it helps generate various requirements for
development projects, spanning the complete range from initial mission definition and
stakeholder analysis to acceptance test definition. The creation of several types of dia-
grams is done directly within DOORS via DXL scripts. Figure 7 shows an example
where a use case diagram is edited. The graphica views are created from and synchro-

nized with amore conventional view where textual objects are structured (Figure 8).

Combining Graphical Scenarios with a Requirements Management System 14

| Use Case Diagrams in 'Use cases’ Module - DOORS — 10l x|

Show dctors: @ Al © Primary € Mone ‘ - i’i -» ases (% Al © Low Suface O High Owverview

[~ Actors as masks v ‘wide [+ Link names W Misuse Cases

%

. SubrrutOrder

Retaileriystem

Use Cases for Unnamed Use Case Diagram'

t Diagram E xport b etafile | Inzert Diagram into kModule | Save Settingz | Rearrange Actors | Fiearange seCazes | Cloze |

Figure7 Scenario Plus: Use case editor

| Formal module */ASERT Group/Yalidation and Yerificaiton Research Group ke — |El|ﬂ
File Edit Wiew Insert Link Analysis Table Tools User Use Case Map UseCases Analyst Help

WM SE| BV |X V[S5B 70|z E|¢FF|EYT 6|
||Primary5cenariosONLY j“.ﬂ.lllevels j|:|‘|':u: :ﬁ:ﬁ|§ |,¥{c@:l$%$|~|ﬁ[{?7|

El-Use cases)) In} | Usze Case Primary Scenarios ! | =
2 e Caso: T hapter ts] 2 Use Cases
- H pEer IsCs U
EI"2;1 Suppy Chain Managemer This chapter lists use case diagrams. Use Case names
21; :lrfcilrz:deegrmds included in the text and underlined can be navigated
i [#-2.1.3 Submit order automatically.
3 Global Non-Functional Requirer | 77 2.1 Suppy Chain Management Use Case Diagram
This section represents one use case diagram. It lists use
cases with associated information.
m 2.1.1 Purchase goods
el | 2.1.1.1 Primary Scenario
51 | Fulfitt order o
113 | Submit order -
% | 2.1.2 Fulfill order
97 | 2.1.2.1 Primary Scenario
93 IUndefined Step =
114 | 2.1.3 Submit order
113 | 2.1.3.1 Primary Scenario
RV] o
|Username: bajiang |Exc|usi\.-'e edit mode v

Figure8 Scenario Plus: Use case modulein DOORS

Unfortunately, Scenario Plus does not support the UCM notation. Diagrams need to be
created from the DOORS interface, which is not really meant to be a graphical editor.
Hence, diagram editing suffers from a lack of usability and performance. Diagrams cre-

ated by more specialized external tool cannot be imported.

Combining Graphical Scenarios with a Requirements Management System 15

2.3.2 DOORS/Analyst

DOORSAnalyst [31] is a plug-in that enables DOORS to use UML diagrams inside re-
guirements modules. As UML 2.0 is supported [26], this tool provides support for sce-
nario-based diagrams such as Use Case Diagrams and Sequence Diagrams. Taking ad-
vantages of UML diagrams, requirements can be captured more precisely in DOORS.

UML diagrams can be embedded in any module. Double-clicking on a diagram
brings up a convivia editor, which is actually the editor used in Telelogic Tau/Developer
G2. Any modification to a diagram is synchronized with the DOORS database when the
user leaves the editor. For example, Figure 9 shows the class diagram editor.

jpoHd|imBxe - or|toalat] |

[oa=
<<formaltodule==package 'Design {141}
Specificaiton’
- Class1 Classa
‘:'!

il [) -

component’? Classd — —

Usac3se
—C— usecases
—1 systemd
Packagel | *

Class diagram gl_

Figure9 DOORS/Anayst: Classdiagram in editor

When leaving the editor, a bitmap version of the diagram is embedded in the module, to-
gether with objects corresponding to the main elements of the diagram (Figure 10). These
objects can be linked to other requirements, hence providing traceability relationships

between UML artefacts and requirements.

Combining Graphical Scenarios with a Requirements Management System 16

[= Design Specificaiton Hl Dbiect Type -]
51

2 Class1 H 1 Class diagram
3 Packagel
4 systemd Class1 Class5
5 usecases
6 Classs
[+ 7 component?
",7
[7
component? Class4
CELSECASESS
L(—O—-) usecases

1 systemd
Package1
4 2 Class1 _ Class
5 3 Package1 | Iraceable objectsare Packsge |
© 4 system4 | created inthe module System
5 usecased Usecase
. 6 Class5 / “Class
il 7 component? Component
I [T ' _|:J
Username: bojiang :Extlusive edit mode 4

Figure10 DOORS/Analyst: Class diagram in forma module

However, not al UML diagram elements become DOORS objects. As shown in Figure
11, the UML 2.0 sequence diagram itself is imported back to the module, but its various
elements (objects, messages, etc.) are not converted to objects and hence are not linkable.

DOORS/Analyst provides the capabilities to export these diagrams to design tools,
such as Tauw/Architect and Tau/Developer, which is useful when moving from require-
ments to the design stage. However, once these diagrams are changed in the design tool,
the changes cannot be brought back to DOORS. DOORS/Analyst lacks a good update
mechanism for these diagrams.

Obvioudy, as DOORS/Analyst focuses on UML 2.0, it does not provide support
for expressing UCMsin DOORS.

Combining Graphical Scenarios with a Requirements Management System 17

| Formal module '/ASERT Group/¥alidation and Yerificaiton Research Group/test/Sequence Diag -10] x|
File Edit Yiew Insert Link Analysis Table Tools User UseCaseMap UseCases Analyst Help

| HESE| $ RV |X v|[=|B 7 Us|izEE | FmE B4 5= E |
||Ana|ystview j”nlllevels j|-}'.c ::: :{- | === E ”uf 'Cc 5@: g %l|~|@'E?|

Bl 5equence Diagram | E | Object Type ;I
= s>Table | B 1 Sequence diagram
Custorrer Retailer Warehouse
MavigateWeb
]] requestCatalog ()

No traceable object is

created in the module Catalog

(except the diagram)

Order ()
Order ()
Outof Stock ()
Reject ()

PYR—T T | o
:Username: bojiang Exclusive edit mode v

Figure1ll DOORS/Analyst: Sequence diagram in forma module

2.4. Chapter Summary

This chapter first introduced the scenarios notation used in this thesis, Use Case Maps,
together with the UCMNAYV tool (section 2.1). Then, section 2.2 presented a typical re-
guirements management system, Telelogic DOORS, with a special emphasis on its main
functionalities, structure, requirements view, and scripting language (DXL). Findly, this
chapter provided an overview of two existing tools that combine scenarios with a RMS:
Scenario Plus and DOORS/Analyst (section 2.3). The next chapter will explain how the

essence of UCM models can be exported by UCMNAYV in a format understood by
DOORS.

Combining Graphical Scenarios with a Requirements Management System 18

Chapter 3. Exporting UCM Model from UCMNAvV

This chapter describes a metamodel that represents the essence of the Use Case Map no-
tation. In section 3.1, a metamodel of the UCM notation is reverse-engineered from the
existing UCM file format supported by UCMNAYV as well as other sources. Section 3.2
then explains how UCM models are exported to the target RMS, namely Telelogic
DOORS, in aformat that the RMS can understand. Several exporting strategies and dif-
ficulties in the implementation are also discussed. Sections 3.3, 3.4, and 3.5 provide de-
tailed descriptions of the elements (core, maps, and scenarios) found in the metamodel,
their attributes and associations.

3.1. UCM Metamodel

3.1.1 Understanding UCMs

Currently, there is no standard metamodel for the UCM notation. However, there exist
several ways one can use to construct or recover such a metamodel. For instance, one can
use the source code of the UCM tool, UCMNAYV [34], or use the UCM file formats (ex-
pressed as XML 1.1 Document Type Definitions — DTD [35]) in UCMNAV and in the
draft UCM standard (Z.152 [20]).

The source code of UCMNAV provides extensive information on UCMs. However,
in that source code, the core UCM information is mixed with many other implementation
details found in various C++ classes. Reverse-engineering a class diagram from the
source code often leads to too many classes and attributes (e.g., related to layout or de-
sign patterns), and to too few relevant associations and other relationships between these
classes. For example, Rational Rose [18] was used to reverse-engineer such a diagram. It
was useful to understand the implementation of UCMNAYV, but it was indeed too complex
to extract a useful metamodel for UCMs because UCMNAYV does not clearly separate the
model from the visual or layout aspects.

Combining Graphical Scenarios with a Requirements Management System 19

The UCM draft standard [20] includes a specification of the UCM notation with a
DTD, where the UCM concepts are defined in terms of elements and their attributes. The
semantics of the language is described in natural language. This DTD proposes an
XML-based interchange format for UCM tools. Implementation details are absent from
this specification. This UCM DTD provides a more concise and understandable descrip-
tion of the nature of UCMSs than the source code of UCMNAYV, even if it also has limita-
tions related to the identification of associations between classes in the target metamodel.
It is aso more concise that the UCMNAv DTD, which includes several obsolete
UCMNAV features (such as UCM sets) irrelevant to the target metamodel.

There is aso another source of useful and complementary information worth con-
sidering. UCMNAV can export scenarios resulting from the traversal of a complex UCM
model according to scenario definitions. There exists another DTD describing the export
format, also in XML (not part of the Z.152 draft standard) [7]. Since these scenarios are
also relevant to the description of UCM models and since they can be exploited by RMS
tools (e.g., by linking them to test cases), we will combine this information to the one
from the UCM DTD.

3.1.2 Creating the UCM Metamodel

Using the Z.152 and the UCM scenario DTDs as a start point, reverse-engineering tools
can be used to help the automatic generation of the class diagram describing the current
UCM metamodel. Rationa Rose, which supports the reverse-engineering of models from
a DTD, was used in this thesis. This led to a flat class diagram, which was refactored
manually into several packages where the classes were sorted according to their purpose
(Figure 12). This reduced the complexity of the reverse-engineered class diagram. Sev-
eral class attributes were aso transformed to more meaningful associations in the meta-
model, associations that were not reverse-engineered properly by Rational Rose.

Combining Graphical Scenarios with a Requirements Management System 20

///7 \\%

Performance

Scenarios

Figure12 Overview of the UCM metamodel based the Z.152 and scenario DTDs.

The Top package contains the top-level class, UCM desi gn, and its sub-elements. The
Path package defines the UCM path notation used for the definition of causal scenarios.
In particular, it includes the “map” concept, expressed as nodel in the class diagram, and
its compositions. The Performance package contains the elements related to UCM per-
formance annotations. The Scenarios package defines the elements for UCM scenario
definitions in UCM, reverse-engineered from the DTD found in [7]. These packages are

presented in detail below.

Top package
A ucmdesi gn is composed of a collection of bool ean-vari abl es, a top level

r oot - map and, possibly, of a collection of pl ug-i n- maps, with their bindings (Figure
13). Both root maps and plug-in maps are kinds of nodel s. There are also collections of
conponent and responsi bi | ity definitionsin a UCM design. These definitions will
be referenced by paths in maps. Finaly, pl ugi n- bi ndi ngs describe the input/output

connections linking a stub in a parent map to the start and end points in a submap.

Figure 13 Top package of UCM metamodel

Combining Graphical Scenarios with a Requirements Management System 21

Path package

In this package, the path specification of a UCM model is described as a hyper gr aph

that represents the causal scenarios. A hyper gr aph isagraph structure specifying all the

elements, caled hyper edges, which make up the paths (Figure 14). The different types

of hyperedges include st art and end- poi nt S, wai ti ng- pl aces, responsibility

ref erences, OR-forks and OR-joins (classes fork and join), AND-joins and

AND-forks (caled synchroni zat i ons), | oops, aborts, st ubs, performance ti ne-

st anp- poi nt s, and connections (connect) for various asynchronous and synchronous

interactions between paths.

model
(from Top)

+ model-id : ID

+ model-name : string
+ title : string = No title
+ description : string

stub 0.1
+ type : (static | dynamic) = static aport hypergraph
+ shared : boolean = false
+ selection-policy : string {}
0..*
d-point
label-ali etn [(pmtn d | flush) hyperedge
+ label-alignment : (centere ust \D N
+ hyperedge-id : ID

+ hyperedge-name : string

timestamp-point
(from Performance)

+ orientation : string
+ reference : (previous| next)

fork

=4

+ orientation : string

synchroization

+ cardinality-source : string

< ——"" |+ cardinality-target : string

+timer: (yes| no)=no
+ wait-type : string

+ description : string
waiting-place / %

+ logical-condition : string connect

+timeout : string join

\

responsibility-ref

+ direction : string
+ arrow-position : string

start

loop

+ arrival : (exponential | deterministic | uniform | erlang | expert | none) = none
+ stream-type : (open | closed) = open
+ logical-condition : string

+ population-size : string

+ mean : string

+ value : string

+ low : string

+ high : string

+ kernel : string

+ expert-distribution : string

+ label-alignment : (centered | flush)

+ orientation : string
+ exit-condition : string

Figure14 Path package of UCM metamodel (1)

Combining Graphical Scenarios with a Requirements Management System

22

model
(from Top)
+ model-id : ID

plugin-binding +subma Parent |, model-name : string
(from Top) 2 0..1+ title : string = No title
+ plugin-binding : id + description : string
+ branch-condition : string
+ probability : number $
0.1

0.1 ‘ stub-entry ‘ ‘ hypergraph ‘

stub ihib/h stub-entry-id 11D | | |
+ type : (static | dynamic) = static

+stub-entry

+ shared : boolean = false f bindi 0.*
+ enforce-binding : id yperedge-connection

X
path-binding

0.
‘ postcondition ‘
‘+ composition : string = AND ‘

47 N
(from Performance)

condition entry + component-ref-id : ID 0..n
end-point

+ name : string 0.. + role : string
+ anchored : boolean = false
0..* + fixed : boolean = false
‘+ label-alignment : (centered | flush) e 0.1

+ description : string
- \ +component-parent
= hyperedge

+stub-exit

stub-exit

+ stub-exit-id : ID

0..*

component-ref

‘ precondition ‘ 0.* hyperedge-id | I responsibility-ref
+ composition : string = AND - waiting-place A - <+ direction : string
\ /D+ hyperedge-name : string + arrow-position : strin
+timer: (yes| no) = no + description : string d . 9
0.+ + wait-type : string
+ logical-condition : string
+ timeout : string
start

+ arrival : (exponential | deterministic | uniform | erlang | expert | none) = none
+ stream-type : (open | closed) = open
+ logical-condition : string

+ population-size : string

+ mean : string

+ value : string

+ low : string

+ high : string

+ kernel : string

+ expert-distribution : string

+ label-alignment : (centered | flush)

Figure 15 Path package of UCM metamodel (2)

As seen in Figure 15, a hypergraph also includes links between hyperedges, which are
called hyper edge- connecti ons. Different precondi ti ons and post condi ti ons
can be associated with various path elements. Additionally, stubs may contain constraints

on the plug-in maps (i.e., the sub-maps) that can be bound (enf or ced- bi ndi ngs).

Scenario package
Thescenari o-defini ti on element in the Top package defines a scenario by specify-

ing the start points and initial values for the Boolean variables used in the model. The
UCMNAV tool uses these definitions to highlight and export particular scenario traces.
However, to transform UCM scenarios to other scenario languages, a standal one scenario
representation is used as an intermediate representation. The class diagram in Figure 16

Combining Graphical Scenarios with a Requirements Management System 23

describes the syntax of that representation. A scenario is a partial order that can use of
sequence (seq) and parallel (par) operators recursively. The do element, which can be
of various types, describes each UCM element visited together with the component to
which it is allocated. The condi ti on element captures the conditions satisfied during

the traversal of the UCMs (e.g., a choice points and in dynamic stubs). Scenarios can
also be grouped.

do

+ name : String

+ type : (Resp | Start | End_Point | WP_Enter | WP_Leave | Connect_Start | Connect_End | Trigger_End | Timer_Set | Timer_Reset | Timeout)
+ description : String

+ component-name : String

+ component-role : String

+ component-id : String

0.*

condition
+ hyperedge-id : String
+ label : String hyperedge
+ expression : String (from Path)
seq / + hyperedge-id : ID
_ N + hypergdge-namg : string
+ description : string

ucm-design
scenario (from Top)

+ scenario-definition-id : String + design-id : ID

+ name : String + design_‘u-r!ame : ;tring
+ description : String + description : string

0.*
0.1
scenarios
group

+ date : String

+ ucm-file : String

+ design-name : String

+ ucm-design-version : String

+ group-id : String
+ name : String
+ description : String

Figure 16 Scenario package of UCM metamodel

Performance package
In Use Case Maps, performance annotations (Figure 17) are composed of re-

sponse-ti me-requi rement s which contain references to two t i nest anp- poi nt s
(starting and ending timestamp points). Devices are a necessary part of the execution en-
vironment of the performance models expressed in UCM. A devi ce could be a proces-
sor, a disk, a DSP (digital signal processing unit), or other. A device may aso have a
predefined speed factor.

Combining Graphical Scenarios with a Requirements Management System 24

responsibility ucm-design response-time-requirement

(from Top) 0. (from Top) + resptime-name : string
+ resp-id : ID <@+ design-id : ID + response-time : string
+ resp-name : string) + design-name : string 0..* |+ percentage : string
+ exec-sequence : string + description : string + description : string
+ description : string
T 0..n 0.n
0.*
service request +plugin +root hyperedge-ref
*+ requestumber : string 0. L Y(F:mm Pglh) +timestamp2 +timestampl
0.” model timestamp-point
(from Top) N . - - p-p
+ modelid - ID 0.. + orientation : stnrjg
. + model-name : string + reference : (previous | next)
device + title : string = No title
+ device-id : ID + description : string
+ device-type : (processor | disk | dsp | other)
+ device-name : string
+ description : string
+ op-time : string hyperedge
(from Path)
0.* 0.* + hyperedge-id : ID
0.* + hyperedge-name : string
component + description : string
(from Top) component-ref
+ component-id : ID 1..n |+ component-ref-id : ID
+ component-name : string + role : string 0..1
+ description : string +referenced-component |+ anchored : boolean = false +component-parent
+ type : (team | process | object | agent | ISR | other) + fixed : boolean = false
+ formal : boolean = false
0.0

Figure 17 Performance package of UCM metamodel

The class diagrams discussed in this section do not exhaustively cover al the elementsin
UCM. However, they are useful to UCM understanding, modifications, and future exten-

sions.

3.1.3 Principles for Exporting UCM Models

Most requirements management systems focus on structured textual requirements, with
support for traceability, access control, and version control. Structured textual require-
ments suffer from many limitations when expressing scenario information such as syn-
chronizations and interactions.

The Use Case Map notation, a scenario-oriented notation, describes multiple sce-
narios in a single, integrated view. This promotes the understanding and reasoning about
the system as awhole, as well as the early detection of conflicting or inconsistent scenar-
i0s. [7]

In this thesis, a subset of the UCM model is selected and transmitted to the RMS.
This subset focuses mainly on scenario elements that are potentially useful to establish

and exploit links to/from other types of requirements. There is no technical reason pre-

Combining Graphical Scenarios with a Requirements Management System 25

venting one from exporting all the elements found in a UCM model, however this would
take more space in the RM S database and reduce the overall performance of the approach
for no obvious benefit.

To select the subset of UCM to be exported to the RM S, the following principles are
considered, in accordance with the objectives of the thesis.

1. Essential concepts of UCMSs should be covered: Aswe want to establish and ex-
ploit links between scenarios and other types of requirements, basic behaviour
elements (responsibilities), basic structure elements (components), as well astheir
references in maps and their containment rel ationships must be preserved.

2. Traceability across maps should be preserved: As we want to explore transitive
relationships between external elements and various UCM el ements that could be
in different maps (e.g., for impact assessment), essential information related to
stub/plug-in relationships need to be exported.

3. Essential performance concepts should be included: Aswe want to enable analy-
sis between external requirements and scenarios from a performance perspective,
connections between elements and their respective devices must be exported.

4. Important scenarios should be preserved: Aswe want to explore transitive rela-
tionships between requirements and link UCM models to test cases, scenarios re-
sulting from the traversal of UCM models according to scenario definitions
should be included. This does not imply that we need to replicate the original hy-
pergraph structure with forks and joins (as this would cover al the scenarios,
many of which being uninteresting).

5. Aminimal number of UCM elements should be exported: Thisisto prevent per-
formance degradation in the RM S database.

Taking these principles into consideration, the class diagram in Figure 18 shows the se-
lected subset of the UCM metamodel which will be exported to the RMS tool. Compo-
nent, responsibility and their references are selected because they are the basic elements
in UCM and have tight relationships with requirements. Components describe the entities
or objects composing the system and responsibilities represent actions, tasks, or functions

to be performed in the system. All concepts in scenarios are selected because the UCM

Combining Graphical Scenarios with a Requirements Management System 26

scenario acts as an important role in expressing the functional requirements. Device is
selected because it is the core concept for performance modeling in UCM. The traceabil-
ity between the selected UCM elements for the DOORS database (shown in Figure 18)
and the UCM metamodel (shown in Figure 13 to Figure 17) is specified in —Table 1.
Note that the elements from the UCM metamodel that are not included in this table are
not transferred to DOORS according to principle 5 (minimality). The detailed informa-
tion about the selected UCM moddl is discussed in sections 3.3, 3.4, and 3.5.

; Object>> +container
<<Object>> +hostedByMap <<0ul +h
’ tedByM
ScenarioGroup Map 053 SyMap— g
* ..
<<Object>> %:, <<Object>> 0.1
Stub \Amapm +hostedByMap ComponentReference
0.1 0 0%
+enclosingComponent
0“*
<<Object>> 0.1 <<Object>>
; . ..
Scenario +parentID Par +referencedComponent
+parentID 0..* 0..* <<Object>>
- Component
<<Object>>
+parentiD ResponsibilityReference 0
<<Object>> 0.1 o
Seq @ 0.4 <<Object>> "
+parentID Condition
0.1
+ ID
o resp 0.1
- 0.* <<Object>> | 0.% | <<Object>>
<<Object>> <<Object>> Responsibility Device
DoElement < —] Resp

Figure 18 Metamodel of exported UCM models

Combining Graphical Scenarios with a Requirements Management System 27

Package UCM Metamodel | Exported Metamodel Justification
Class Class (Figure 18) (principles)

Path (Figure 14) model Map 1,2

Path (Figure 15) stub Stub 2

Path (Figure 14) responsibility-ref | ResponsibilityReference | 1
Performance (Figure 17) component-ref ComponenReference 1

Top (Figure 13) component Component 1

Top (Figure 13) responsibility Responsibility 1

Top (Figure 13) device Device 3

Scenario (Figure 16) group ScenarioGroup 4

Scenario (Figure 16) scenario Scenario 4

Scenario (Figure 16) seq Seq 4

Scenario (Figure 16) par Par 4

Scenario (Figure 16) do DoElement 4

Scenario (Figure 16) condition Condition 4

Tablel Traceability between the UCM metamodel and the exported subset

3.2. Exporting Strategies

The potential exporting process should enable the creation of a new UCM model in the
RMS when it is imported for the first time. Evolving UCM models would be updated in
the RM S simply by reimporting them. Links should be created and updated automatically
to capture the relations between UCM objects. Attributes of the requirement module
should be used to store properties information of UCM objects.

Telelogic DOORS can accept many file formats as input in order to create re-
qguirements modules, including Word, Rich Text Format, plain text, Interleaf, and
FrameMaker. However, such importing mechanisms have some limitations. Firstly,
DOORS can only create a new requirements model for the imported information and
cannot recognize and updated version of the source document (to the requirements mod-
ule cannot be updated accordingly). Secondly, DOORS cannot create links between the
imported objects. Last, DOORS cannot create attributes for the imported objects. These
formats hence are not good candidates for the importing and updating of UCM scenario

information in the DOORS repository.

Combining Graphical Scenarios with a Requirements Management System 28

We could import the XML files generated by UCMNAV into DOORS. However,
some information about the UCM model is not expressed in the XML file directly and
requires further analysis. For instance, figures of maps are not provided in the XML file
generated from UCMNAV. They can only be obtained by redrawing all items specified in
the XML file. Scenarios with concrete steps are also missing; only scenario definitions
are specified. Concrete scenarios steps can only be constructed by applying a complex
scenario traversal mechanism.

Another possibility is having UCMNAV export UCMs in another, more suitable,
XML format capturing the elements, attributes, and associations identified in Figure 18.
This could lead to afile format independent of DOORS and reusable but other tools (such
as Requisite Pro). However, XML files cannot be read by DOORS directly, and a
DOORS XML parser or a converter from XML to a format understandable by DOORS
would need to be created.

A better strategy would be to express UCM models as DXL (DOORS eXtension
Language) scripts, which have can be read and run by DOORS directly. DXL is a script-
ing language specialy developed for DOORS. It provides some key features, such asfile
format importers and exporters, impact and traceability analysis and inter-module linking
tools. Hence, from a DOORS perspective, DXL scripts become a ssmple format for han-
dling UCM models. However, there are several ways of generating DXL scripts, some of

which are explored in the following sub-sections.

3.2.1 Generating DXL Scripts Directly From UCMNAV

In this strategy, a DXL library is predefined and used to run DXL scripts exported from
UCMNAYV and imported in DOORS (Figure 19). In the DXL library, each classin the se-
lected subset of UCM model has a corresponding DXL function whose parameters store
the information of the class attributes and its associations to other classes. UCMNAYV can
be enhanced to have the ability to export DXL script files compliant to the selected subset
of UCM model which is proposed in section 3.1.3.

Combining Graphical Scenarios with a Requirements Management System 29

‘ }: b et XL Scripts
| e |
=
RMS

LICMNay (DOORS)
DXL Library

Figure19 Generating and importing DXL scripts

For each object in the selected subset of UCM model, the new UCMNAYV will export one
DXL script composed of a sequence of DXL function invocations containing a function
name (corresponding to a class name in Figure 18) together with parameters specifying
attribute data and associations with other objects. Figure 20 shows an example of afunc-
tion called from the DXL library as generated by UCMNAvV. Details about the function

call are explained in section 4.2.2.

respRef ("h12" ;230,344 ,"nD","cr1","r7","fwd_si g", "Forwards any signal received", "UP")

Figure20 DXL script example

3.2.2 Alternative Strategies

One alternative strategy isto use XML as the interchange format for the UCM model (see
Figure 21). UCMNAV could generate a XML corresponding to the UCM model. An in-
dependent XML to DXL converter could be implemented and used to handle the XML
file generated by UCMNAV. The converter could take advantages of XSLT processors to
parse and convert the XML file, given an XSLT definition of the transformation. A vari-
ant strategy would be to have a converter which is not based on XSLT (and that could be
integrated to UCMNAV).

Combining Graphical Scenarios with a Requirements Management System 30

Converter

T a—

L —— ML file XSLT processor
| S O o del)
I ==

TCM

Trams. XSL
|| XL Seripts

DXL Library

RMS
(DOORS)

Figure21 Generating DXL scriptsvia XML

There is another variation to the above strategies where DOORS would parse XML files
and generate the UCM model internally. In this strategy, the DXL library needs to be
supplemented with an XML parser, which is used to extract the model information out of
the XML file. However, implementing such a XML parser in DXL would require much
effort and, since DXL is an interpreted language, this would slow the import process.

All these strategies require invocations to the DXL library to be present in a script.
Having an XML representation of the UCM model in between would promote some in-
dependence from a specific RMS tool, but it would aso require the presence of another
tool (e.g., Xerces) to convert the XML filesto DXL. In this thesis, since we are targeting
only one RMS candidate (Telelogic DOORS), there is not much value in using XML as
an intermediate format. Therefore, the first strategy is adopted in this thesis to keep the
import process simple and easily implementable. Figure 3 shows the new “File -> Export
DXL” menu item we have added to UCMNav to trigger this export. This could be modi-
fied at alater time to support other RMStools, if required.

The following three sections will refine and detail the elements, attributes, and asso-
ciations of the metamodel found in Figure 18. Section 3.3 presents the core elements,

section 3.4 focuses on the individual maps, whereas section 3.5 presents the scenarios.

Combining Graphical Scenarios with a Requirements Management System 31

3.3. Core Elements and Their Associations

Core elements discussed in this section are not included in any map or scenario directly.

However, these definitions are fundamental elements of a UCM model. Responsibilities

show system behaviors referenced by scenarios and by maps. Components describe the

structural entities of a UCM model. Devices are used to express performance-related de-

ployment in the UCM model.

3.3.1 Metamodel

The metamodel in Figure 22 details some of the classes from Figure 18. Some of the at-

tributes found in the corresponding classes in Figure 13 have been removed while others
are added to meet the needs of creating UCM maps in DOORS. Note that the «Object»

stereotype used in the following diagrams indicates that instances of these classes will

correspond to DOORS objects.

<<Object>>
Component

- name : String
- ID : String
- type : String

- theDescription : String

<<Object>>
Responsibility

- ID : String

- name : String

- processorDemand : String
- theDescription : String

O..* O“*
0.1 0.*

Figure22 Core elements metamodel of exported UCM

3.3.2 Class Specification

Responsibility
Description

Responsibilities are processing tasks (e.g., procedures, functions, actions, etc.) that are

<<Object>>
Device

- ID : String

- name : String
- theDescription : String
- speedFactor : String

referenced by scenarios and by maps.

Combining Graphical Scenarios with a Requirements Management System

32

Attributes

ID: String

The identifier of the responsibility.

name: String

The name of the responsibility.

processorDemand: String

Quantifies the demand on the processor associ-
ated with the responsibility. Used for performance
anaysis.

theDescription: String

Description of the responsibility.

Associations

| device: device [0..1]

| A responsibility may request many devices,

Component
Description

Components represent, at the requirements level, abstract entities corresponding to actors,

processes, objects, containers, agents, and so on.

Attributes
ID: String The identifier of the component.
name: String The name of the component.
type: String The type of component (Team, Object, Process,

Agent, ...).

theDescription: String

Description of the component.

Associations

| device: device [0.1]

| A component is hosted by zero or one device.

Device
Description

A device can be a processor, a disk, a DSP or anything else (other). A device may also

have a predefined speed factor (corresponding to op-t i me inaUCM device).

Attributes
ID: String Theidentifier of the device.
name: String The name of the device.

theDescription: String

Description of the device.

speedFactor: String

Speed factor (operation time) of the device.

Combining Graphical Scenarios with a Requirements Management System 33

3.3.3 Sample of DXL Scripts on UCM Core Model

Begi nOf Cor el nport

/1 Devices

devi ce("d0", "DBase", "", "0")

devi ce("d1", "Disk", "", "0")

/1 Map "CND'

responsibility("r6", "display", "Displays the originat
/1 Map "CCS"

responsibility("r2", "checkOCs",

F.", "0")
responsibility("r5", "deny", "Denies the connection.
responsi bility("r3", "checkPIN', "Checks that the PIN
/1 Map "Term nating"
responsibility("r1", "busyTreatnent", "This user i s busy

endCF Cor el nport

"Checks whether the termnator is in the

originator's OCS list. chkOCS takes the value F*, "0")

responsi bility("r5", "deny", "Denies the connection. ", "0")

/1 Map "Origi nating"

responsibility("r10", "snd-req", "Send the connection request to the termnating
agent. ", "0")

responsibility("r0", "InitFeatures", "Initialisesthelist of features to be checked
according to their subscription information. For each feature F:
chkF takes the value of subF"', "0")

/1l Map "TeenLine"

conponent ("c1", "User", "Teant, ,

responsi bility("r4", "checkTine", "Checks that TeenLine is active, i.e. that the

connection is inthe pre-defined tinme range.

" von)

busy signal. ", "0")

responsibility("r9", "ringingTreatnment", "This user is avail abl e. Prepare ringback
signal. ", "0")

responsibility("r8", "ringTreatnment", "Prepare ring signal.", "0")

/1l Map "root"

conmponent ("c1", "User", "Teant, "", "")

component ("c0", "Agent", "Agent", "", "")

conponent ("cO", "Agent", "Agent", "", "")

conponent ("c1", "User", "Teani, "", "")

responsibility("r7", "fwd_sig", "Forwards any signal received fromtermnating
agents", "0")

responsibility("r7", "fwd_sig", "Forwards any signal received fromtermnating
agents", "0")

or's nunber.", "0")

chkTL takes t he val ue

isvalid", "0

and cannot answer. Pr epare

Figure23 DXL script for the core elementsin the Simple Telephone System

Details information about the functions used in Figure 23 are explained in section 4.2.1.

Combining Graphical Scenarios with a Requirements Management System

34

3.4. Maps and Their Associations

Maps define functiona requirements models as causal scenarios (paths). Maps contain
specifications for systems structure (component references), behavior (responsibility ref-
erences), as well as stubs. Only core maps concepts are exported to DOORS as well as
their relationships. The composition relationships between map with component refer-
ences and responsibility references will be represented as parent-child object relation-
shipsin DOORS. More information about expressing scenario in DOORS is discussed in

section 4.2.2.

3.4.1 Metamodel

Some classes are omitted from the metamodel from Figure 15 in order to simplify the
map model to be exported to DOORS. Some associations between classes are adjusted to
describe the map model more precisely. More attributes are added to classes in the map
metamodel to meet the needs of creating UCM maps in DOORS (Figure 24).

+container| <<Object>>
L ComponentReferehce <<Object>> +hostedByMap <<Object>>
componentRefiD : String Map /\ Stub
g :zigg: 0.* +hostedByMap D : String i 0.+ 1D : String
- nteg name : String " |f : Integer

0..1|width : Integer graphFileName : String fy : Integer

ight : +submaplD
Zﬁlgl’?;r'etlinfesg{er:’n title : String \p/ name : String
. 9 theDescription : String 0..* 0.1 stubType : String

name : String 0.1
role : String {} +hostedByMap
0.
0“*
+referencedComponent <<Object>>
ResponsibilityReference -
<<Object>> D - Suin <<Objec‘t‘>‘>
Component ; 9 Responsibility
- fx : Integer +1esplD_ 15~ stin
name : String fy : Integer s St S?'
ID : String enclosingComponent : String 0. name : String d: st
type : String name : String processo_rD_eman . String
theDescription : String theDescription : String theDescription : String
direction : String

Figure24 Map metamodel of exported UCM

Combining Graphical Scenarios with a Requirements Management System 35

3.4.2 Class Specifications

Map

Description

A Map is basically a collection of causal scenarios (paths). It contains specifications for

systems structure (component references), behaviour (responsibility references), as well

as stubs.
Attributes
ID: String The identifier of the map.
name: String The name of the map.
graphFileName: String The name of the graph file exported for the map.
title: String The title of map.
theDescription: String Description of the map.
Associations
stub : Stub [0..%] A map contains zero or more stubs.
compRef : ComponentRefer- | A map contains zero or more ComponentRefer-
ence [0..”] ence objects.
respRef : Responsibili- A map contains zero or more Responsibili-
tyReference [0..*] tyReference objects.
Stub
Description

In a UCM, stubs are used as containers for plug-in maps (i.e. sub-maps). Stubs can be
static or dynamic. While static stubs contain only one plug-in, dynamic stubs may contain
multiple plug-ins. X-Y coordinates are generated for future use (to enable clickable UCM
diagramsin DOORS).

Attributes
ID: String Theidentifier of the stub.
name: String The name of the stub.
fy: Integer The vertical (Y) coordinate of the stub on the
map.
fx: Integer The horizontal (X) coordinate of the stub on the
map.
stubType: String The type of stub (static or dynamic).
Associations
HostedByMap: map|0..*] A stub is contained by one map.
submaplD: mapl0..*] A stub contains zero or more plug-in maps.

Combining Graphical Scenarios with a Requirements Management System 36

ComponentReference
Description

A component reference refers to a component defined in the core model (section 3.3.2).
A component reference has its own role and responsibility list which references valid re-
sponsibility references. Again coordinates and sizes are captured for future usage.
Attributes

ID: String The identifier of the component reference.

name: String The name of the component reference.

fy: Integer The vertical (Y) coordinates of the component
reference on the map.

fx: Integer The horizontal (X) coordinates of the component
reference on the map.

width: Integer The width of the component reference on the
map.

height: Integer The height of the component reference on the
map.

anchored : String Indicates whether the object is anchored or not.

role: String The role of the component reference.

Associations

hostedByMap: Map[0..”] A component reference is contained by zero or
more maps.

referencedComponent : Com- | One or many component references can refer to

ponent the same Component.

container : ComponentRefer- | A component reference contains zero or more

ence(0..”] component references.

ResponsibilityReference
Description

A responsibility reference refers to a responsibility defined in the core model (section

3.3.2).
Attributes
ID: String The identifier of the responsibility reference.
name: String The name of the responsibility reference.
fy: Integer The vertical (Y) coordinates of the responsibility
reference on the map.
fx: Integer The horizontal (X) coordinates of the responsibil-
ity reference on the map.
theDescription: String Description of the responsibility reference.
direction: String The direction of responsibility ref. on the path.

Combining Graphical Scenarios with a Requirements Management System 37

Associations

hostedByMap: Map A responsibility reference is contained by one
map.

resplD: Responsibility One or many responsibility references can refer to
the same responsibility.

enclosingComponent: Com- A responsibility reference contains zero or more

ponentReference [0..1] responsibility references.

3.4.3 Sample of DXL Script for a Map Model

Agent: Orig Agent: Term
User:Orig User:Term
1:(1 S/m;if Sterm n'?g
1
notify D_W display
I
busy fwd_sig
] A7
' I- -
m?lamg fwrd_sig
I Land

Figure25 Root map in the Simple Telephone System

The root map in Figure 25 gives an overview of the requirement scenarios that the Simple
Telephone system supports. An originating user attempts a connection to a terminating
user. Both users have their own agent, which handles their features. The DXL script in
Figure 26 describes the root map information including its name, ID, graph, label and
description, as well as stub references, responsibility references and component refer-

ences.

Combining Graphical Scenarios with a Requirements Management System 38

map("nd", "root", "si npl et el ephone-sol -root. bnp", " Si npl e Connection", "Description")
respRef ("h12", 230, 344, "n0", "cr1","r7","fwd_si g", "Forwards any signal received from
term nating agents", "UP")
respRef ("h14" ,239,387,"nD","cr1","r7","fwd_si g", "Forwards any signal received from
term nating agents", "UP")
st ubRef ("h23" , 427 ,262 ,"n0", "Sterni, "static" ,"nB;")
st ubRef ("h24" ,218 ,263 ,"nm0", "Sorig", "static" ,"m4;")
conpRef ("cr0", 551, 231 ,98 ,164, "no","nD" ,"cl1","User","Terni,"")
conpRef ("cr1", 156, 187 ,162 ,272, "no","nD" ,"cO","Agent","Orig","")
conpRef ("cr2", 350, 187 ,163 ,271, "no","nD" ,"cO","Agent","Ternt,"")
conpRef ("cr3", 26, 231,99 ,176, "no","nmD" ,"cl","User","Orig","")

Figure26 DXL script generated for the Root map in the Simple Telephone System

3.5. Scenarios and Their Associations

Scenario traces generated from UCMs can capture the causal relationships between re-
sponsibilities for particular scenario instances. This is useful for understanding specific
situations, as well as for providing guidance for the development of validation test cases.
All the scenarios concepts are exported to DOORS including their relationships. However
links are not used to express the inter-relationships between scenario e ements in DOORS
because of the large quantity of inter-relationships in scenario. Instead, composition and
sequential relationships between DOORS objects are used for describing the in-
ter-relationships in scenario. More information about expressing scenario in DOORS is
discussed in section 4.2.3.

3.5.1 Metamodel

The metamodel is based on the UCM scenario DTD, version 1. Some associations be-
tween classes are adjusted to descript the scenario model more precisely. More attributes
are added to classes in the scenario metamodel to meet the needs of creating UCM sce-
nariosin DOORS.

Combining Graphical Scenarios with a Requirements Management System 39

<<Object>> <<Object>>
ScenarioGroup . Scenario
- name : String RO name : String
- ID : String - ID : String
- theDescription : String - theDescription : String

+parentID

0.1

0..* <<Object>>
Seq

- +parentIiD
- ID : String

e 0.1 Par

I +parentlD
0.1 +parentIiD 0..*

<<Object>>

- ID : String

- theDescription : String

- componentReferenceName : String
- componentReferencelD : String

- componentRole : String

- preSibling : String

<<Object>>
Condition
- ID : String
0.* - Label : String

<<Object>> - Expr_es.sion : Sltring
DoElement - presibling : String

- ID : String

- hyperEdgelD : String

<<Object>> - name : String
Resp - doType : String

Figure 27 Scenario metamodel of exported UCM

3.5.2 Class Specification

ScenarioGroup
Description

Related scenarios can be put in one scenario group.

Attributes
ID: String The identifier of the scenario group.
name: String The name of the scenario group.
theDescription: String Description of the scenario group.
Associations

| scenario : Scenario [0..*]

| A scenario group contains zero or more scenarios.

Combining Graphical Scenarios with a Requirements Management System

40

Scenario
Description

Scenario captures the causal relationships between responsibilities for particular scenario

instances.
Attributes
ID: String The identifier of the scenario.
name: String The name of the scenario.
theDescription: String Description of the scenario.
Associations
Par : Par [0..1] A Scenario contains zero or one Par root object.
seq : Seq [0..1] A Scenario contains zero or one Seq root object.
Constraints

» Scenario cannot contain aroot Par object and aroot Seq object at the same time.

Par
Description

Par isaparalel operator expressing that the relationships between elements under the Par

are parallel.
Attributes
| ID: String | Theidentifier of the par.

Associations

parentlD: String Parent of the current Par object.

par : Par [0..1] Par contains zero or more Par objects.

seq : Seq [0..1] Par contains zero or more Seq objects.
Notes

In the scenario DTD for UCM, version 1, the Par can contain DoElement objects and
Condition objects. Actually, this cannot happen when generating a scenario with
UCMNAvV. Therefore, in the scenario metamodel proposed in this thesis, Par objects

cannot contain DoElement objects and Condition objects.

Seq
Description

Seq is a sequence operator expressing that the relationships between elements under Seq
are sequential.

Combining Graphical Scenarios with a Requirements Management System 41

Attributes

ID: String The identifier of the seq.
name: String The name of the map.
graphFileName: String The name of the graph file exported for the map.
title: String The title of map.
theDescription: String Description of the map.
Associations
parentID: String Parent of the current seq.
par : Par [0..%] A seq contains zero or more Seq objects.
seq : Seq [0..*] A seq contains zero or more Par objects.
Conditions: Condition [0..*] A seg contains zero or more Condition objects.
DoElements: DoElement [0..*] | A seq contains zero or more DoElement objects.

Condition
Description

The condition element captures the conditions satisfied during the traversal of the UCMs

(e.g. at choice points and in dynamic stubs).

Attributes
ID: String Theidentifier of the condition.
label: String Label providing an intuitive interpretation of the
condition.
expression: String Defines the Boolean expression used in the se-
lected branch where the condition applied.
Presibling: String Defines the Boolean expression used in the se-
lected branch where the condition applied.
Associations
| ParentID: String | Parent of the current Condition object.
DoElement
Description

The DoElement, which can be of various types, describes each UCM element visited

while traversing the UCM model.

Combining Graphical Scenarios with a Requirements Management System 42

Attributes

ID: String The identifier of the doElement.

hyperEdgelD: String The identifier of the UCM hyperEdge referred by
the current object.

doType: String The type of element visited, which is one of the

set (Resp | Start | End_Point | WP_Enter |
WP_Leave | Connect_Start | Connect_End | Trig-
ger End | Timer_Set | Timer_Reset | Timeout).

theDescription: String Description of the current doElement.

parentlD: String Parent of the current DoElement object.

presibling: String Identifier of previous sibling of the current
doElement.

Notes
DoElement is not equal to a UCM HyperEdge. UCM Loop, Fork, Join, Synchronization,

and Stub hyperedges have no DoElement equivalent.

Resp
Description
A type of DoElement, expresses one visit of the responsibility reference in the map when

traversing the scenario.
Attributes
Associations

responsibilityRef:ResponsibilityReference | Many Resp objects can refer to the same
ResponsibilityReference object.

Combining Graphical Scenarios with a Requirements Management System 43

3.5.3 Sample of UCM Scenarios Scripts

Agent: Orig Agent Term
User: Orig User: Term
= SR o S e
- 1
]
| —s_.‘
busy Frrd_sig
[] g
1 €
e tog s
I / b
/ A\
l a) Root Map \
Sdispl:
[FeatureLeft] - fP» f’y ringTrestment SUCEESS
start 8 ,—9—)‘—9—‘
Sscreen) disp
start [nitFeatures o \ [NoFeatureLeft] snd-req Sumi . f?ﬂ busyTreatment
! A 1 I .
fail reportSuccess ringingTreetment
|
b) Sorig Plug-in Map \ ¢) Sterm Plug-in Map I
start continue start continue
- = I - =
) Default Plug-in Map) Defallt Plug-in Map

Figure 28 Successful Basic Call Scenario in the Simple Telephone System

The highlighted paths in Figure 28 describe the successful basic call scenario in a Simple
Telephone system. Upon the request of an originating user (req), the originating agent
selects the appropriate user feature in stub Sorig (no feature selected in this case). Then
the terminating agent selects another feature in stub Sterm (also no feature). The termi-
nating agent sends ringing signals to both originating and terminating users. The corre-

sponding DXL script is shown in Figure 29.

Combining Graphical Scenarios with a Requirements Management System 44

scenari oG oup ("BasicCall", "scenarioGoup-BasicCall" ,"")

scenario("BCsuccess", "scenarioG oup-BasicCall_scenario-BCsuccess","")

seq("seq0", "scenari oG oup- Basi cCal | _scenari o- BCsuccess")
doEl enent ("h0", "","req" ,"Start" ,"" , "User" , "cr3" , "Oig" ,"seq0","NULL")
doEl enent ("h50", "","start" ,"Connect_Start" ,"" , "Agent" , "crl1" , "Orig" ,"seq0","h0")
doEl enent ("h55", "","InitFeatures" ,"Resp" ,"" , "Agent" , "crl1" , "Oig" ,"seq0","h50")
condition("h65", "Default" ,"!(bv9+bv8)" ,"seq0", "h55")
doEl enent ("h34", "" "start", "Connect_Start", "" , "Agent" , "crl1" , "Oig" ,"seq0","h65")
doEl enent ("h36", "","continue" ,"Connect_End" ,"" , "Agent" , "crl" , "Orig" ,"seq0","h34")
condition("h57", "[NoFeatureLeft]" ,"!(bv9+bv8)" ,"seq0","h36")
doEl enent ("h49", "","snd-req" ,"Resp" ,"" , "Agent" , "crl" , "Oig" ,"seqO","h57")
doEl enent ("h51", "","success" ,"Connect_End" ,"" , "Agent" , "crl" , "Oig" ,"seq0","h49")
doEl enent ("h100", "","start" ,"Connect_Start" ,"" , "Agent" , "cr2" , "Ternt ,"seqO","h51")
condi tion("h104", "[notBusy]" ,"!bv6" ,"seq0","h100")

par (" par0", "seq0")
seq("seql", "par0Q0")
condi tion("h119", "Default" ,"!bv5" ,"seql", " NULL")

doEl enent ("h34" , "" "start" ,"Connect_Start" ,"" , "Agent" , "cr2", "Tern , "seql", "h119")
doEl enent ("h36" , "", "conti nue" , "Connect _End" ,"" , "Agent" , "cr2", "Ternt ,"seql", "h34")
doEl enent ("h116" , "","ringTreatnment" ,"Resp" ,"" , "Agent" , "cr2", "Tern! ,"seql", "h36")
doEl enent ("h101", "", "success", "Connect _End", "","Agent","cr2", "Tern ,h "seql","hl1l16")
doEl enent ("h1", "","ring","End_Point","", "User","cr0","Ternt, "seql", "h101")
seq("seq2", "par0")

doEl enent ("h99","","ringi ngTreat ment", "Resp","", "Agent", "cr2", "Term , "seq2", "NULL")
doEl enent ("h112","", "report Success", "Connect _End","", "Agent", "cr2",

"Ternt."sea2" ."h99")

Figure29 DXL script of the successful BasicCall scenario

This section discussed the scenario metamodel in DOORS. However, in some cases, sce-
narios may not be defined in the UCM model. Therefore, the scenario part can be absent
in the DXL script generated from UCMNAYV. Details information about the functions
used in Figure 29 are explained in section 4.2.3.

3.6. Implementation of the Export

To automate the proposed DXL export mechanism, UCMNAV was enhanced to support
new functionalities. A few difficulties were faced aong the way, especially given the ab-
sence of real architecture and documentation for the tool (hence the need to re-
verse-engineer ametamodel for UCMSs as explained earlier in this chapter).

The original UCMNAV functionalities were kept unchanged. However, new meth-
ods were added to many classes to generate DXL scripts from the internal object model.
Most of the new methods are based on existing code for saving UCM models to XML
files. For instance:

* AnOQut put DXL() method was added to several classesin order to generate DXL
function calls describing the core e ements and their associations (responsibilities,

components, devices), as shown in section 3.3.

Combining Graphical Scenarios with a Requirements Management System 45

e A SaveDXL() method was added to the Hyper edge class, which invokes the
SaveDXLDet ai | s() method of the specific hyperedge subclass where additional
information needs to be output (e.g. for responsibility references and stubs). The
SaveDXL() of the Map class callsthe SaveDXL() method on all the hyperedges
composing a particular map, and it also generates information on the map com-
ponents as well as on the file that contains the bitmap version of the map. These
new methods are used to export maps and their associations (section 3.4)

» Similar methods were added to the scenario classes, which are invoked by the
traversal mechanism during scenario generation. These methods, which are in-
spired from existing code that exports scenariosin XML [7], generate the DXL
code describing scenarios and their associations (section 3.5). The export mecha-
nism requires that the scenario definitions be valid (e.g., the traversal should not
stop prematurely due to a condition that cannot be met or to a non-deterministic
choice) for the DXL export to work properly.

The framework is hence in place to export new or different types of attributes or UCM
elements if needed. Specia attention was paid not to change the values of any class prop-
erty in UCMNAV in order to prevent undesirable feature interactions.

Despite our desire not to modify the existing functionalities, several bugs in
UCMNAV caused much inconvenience during the implementation of the DXL export
mechanism. For instance, identifiers for UCM objects (e.g., responsibilities and compo-
nents) kept changing each time a UCM model was saved and loaded. This in turn dis-
turbed the update of the UCM model in DOORS, because our model import approach (to
be discussed in the next chapter) relies on the fact that object identifiers do not change
from one version to the next. UCMNAYV was therefore improved, with the help of Gunter
Mussbacher, to ensure that identifiers remain unique and unchanged as the UCM model

evolves.

3.7. Chapter Summary

In this chapter, we have presented an approach to export UCMs from UCMNAV. The tool
was enhanced to export a selected subset of the UCM object model in the form of a DXL
script. As a start point, a UCM metamodel was reverse-engineered from existing XML

Combining Graphical Scenarios with a Requirements Management System 46

file formats and from other sources. A subset of that metamodel was selected for the ex-
port based on severa principles (section 3.1). In section 3.2, severa candidate export
strategies were explored and one based on the direct generation of DXL code was se-
lected. Sections 3.3, 3.4, and 3.5 gave detailed specifications of the formats used to de-
scribe the three major parts of the metamodel: core, maps, and scenarios. The implemen-
tation of this strategy in UCMNAYV was briefly discussed in section 3.6.

The next chapter will address the issue of importing in the DOORS requirements
management system the UCM models exported as DXL scripts.

Combining Graphical Scenarios with a Requirements Management System 47

Chapter 4. Importing UCM Models in DOORS

This chapter presents an approach to represent the metamodel discussed in Chapter 3 in
the target RMS, Telelogic DOORS, based on the DXL scripts generated from the
UCMNAYV tool. A DXL library is created to support the import of UCM models in
DOORS. This chapter then discusses traceability inside the UCM model and traceability
between the UCM model and other requirements.

This chapter is mainly focused on the first time import of a UCM model in
DOORS. The issues related to the updating of an existing UCM model are addressed
in Chapter 5.

4.1. Metamodel of the UCM model in DOORS

Projects, folders and forma modules compose the DOORS hierarchy. Projects are used
to manage the data related to a specific project, product or process for ateam. Folders are
used to structure the data within the database. Both projects and folders can contain
sub-folders, sub-projects, and forma modules. Formal modules are containers for re-
quirements information. Typicaly, forma modules are structured and displayed as a
document. However, a forma module also can be structured and displayed as a data file
by using user-defined attributes. This facility is used by the UCM import process pro-
posed in this thesis to store UCM objects information, including attributes and graphics,
into DOORS.

This thesis proposes that a UCM model be introduced into a target project for
better describing functional requirements and testing goals. Figure 30 shows the proposed
UCM metamodel as represented in DOORS. This metamodel adds DOORS structuring
elements (folders and modules) on top of the metamodel previously presented in Figure
18 (and further detailed in Figure 22, Figure 24, and Figure 27). To import a UCM model
into DOORS according to the proposed UCM metamodel, a specific folder, namely UCM

Combining Graphical Scenarios with a Requirements Management System 48

model, is created under the target project. The imported UCM mode is composed of
three sub-folders: Core, Maps and Scenarios.

The Core folder has three modules. Components, Responsibilities, and Devices.
These three modules list the three fundamental UCM element types we decide to preserve
in DOORS-specific term, i.e., as objects. The Maps folder contains one module, which
has the same name as the UCM design model. This module lists the maps and references
appearing in maps such as component references, responsibility references, and stubs.
The Scenarios folder also contains a module (named after the UCM model design name),

which contains grouped scenarios.

<<Folder>>

UCMmodel

\ <<Folder>>
Scenarios

L

i <<Folder>> <<Module>>
ssFolder>> Maps DesignScenarios
Core
\‘\ 0.
- <<Object>>
<<Mogu|e>> <<Module>> <<M.0du|e>> <<Object>> ScenarioGroup
Devices Components DesignMaps Stub
¢ ¢ 0.1
0..* 0“*
<<Obj_ect>> 0.1 <<Object>> +hosiedByMap 0.*
Device 0 Component 0.+ 0.* <<Object>> 0.1| <<Object>>
<<Object>> bmaniD Scenario [@— Par
R +submap
0 +referencedComponent Map rparentlD
+parentID{} 0.1 /0.
<<Module>> +hostedByMa -
Responsibilities 0. o NhOStEdBYMaP 0.1 ¢«
P <<Object>>
¢ 0. Osbff“ 0.1
<<Object>> 0.1 . <<Object>> q +parentiD
ComponentReference ResponsibilityReference +parentiD 0 +parentlD
. 0.4 0..ItenclosingComponent 0. *\0..*
0. 0.* : 0.* 0..
) +container - -
<<Object>> +resplD <<Object>> <<Object>> <<ObJ{a(}t>>
Responsibility Resp — DoElement Condition

Figure30 UCM metamodel in DOORS

DOORS links are created to represent the associations found in the UCM metamodel,
except for composition relationships. The latter are represented by the containment rela-
tionship between the DOORS database items, such as a folder containing modules or

other folders, a module containing objects, or an object containing sub-objects.

Combining Graphical Scenarios with a Requirements Management System 49

4.2. DXL Library in DOORS

A DXL library is created to accept the UCM model information captured in a DXL script
generated by UCMNAV. The DXL library helps to create and update the UCM mode in
the DOORS database. According to the three divisions (sub-folders) of the UCM meta-
model in the previous section, the DXL library is aso divided into three parts: core, maps
and scenarios.

The following subsections will present the various functions comprising the li-
brary. Boolean functions return true only if no exceptions are generated during their exe-

cution. Appendix B presents the details on one of these functions.

4.2.1 Core

bool begi nOf Cor el nport ()

Parameters:

* None
Description:
This function is the first function to be called in the import process. It mainly performs
the preparation of the import. For the first time import, this function will create the Core
folder, which is used to save the core part of the UCM model: responsibility module,
component module, and device module. Otherwise, this function will remove al the in-
ternal link modules at the beginning of the import. In DOORS, an object with an incom-
ing link in the module cannot be deleted until all the incoming links are removed, which
is the reason why all the internal link modules need to be removed before the updating of
the UCM model in DOORS. Further information about the updating of links in the UCM

model isexplained in section 5.3

Combining Graphical Scenarios with a Requirements Management System 50

bool responsibility(stringresponsibilitylD, stringresponsibilityNane,
string theDescription, string processorDenand)

Parameters:
responsibilitylD: String The identifier of the responsibility.
responsibilityName: String The name of the responsibility.
theDescription: String The description of the responsibility.
processorDemand: String The processor demand in the responsibility.
Description:

This function creates or updates one responsibility object in the responsibility module,
which is located under the Core folder. Each parameter defines the value of one attribute
of the object. Each responsibility object has a unique value of “responsibilitylD”, which
is the key attribute in the responsibility module. The DXL code of this function is pre-
sented in Appendix B.

bool conponent(string conponentl D, string conponent Nane,
string conmponent Type, string theDescription,
string hostedDevicel D)

Parameters:
componentID: String The identifier of the component.
componentName: String The name of the component.
componentType: String The type of the component.
theDescription: String The description of the component.
hostedDevicelD: String Theidentifier of the host device of the compo-

nent.
Description:

This function creates or updates one component object in the component module, which
islocated under Core folder. Each parameter defines the value of one attribute of the ob-
ject. Each component object has a unique value of “componentID” which is the key at-

tribute in the component module.

Combining Graphical Scenarios with a Requirements Management System 51

bool device(string devicel D, string deviceNane, string theDescription,
string speedFactor)

Parameters:
ID: String Theidentifier of the device.
name: String The name of the device.
theDescription: String The description of the device.
speedFactor: String The operation time of the device.
Description:

This function creates or updates one device object in the device module, which is located
under Core folder. Each parameter defines the value of one attribute of the object. Each
device object has a unique value of “devicelD” which is the key attribute in the device

module.

| bool endOF Corel nport ()

Parameters:

* None
Description:
This function is the end part of the Core model import. It parses the created or updated
modules and creates links between those modules according to the attributes which con-
tain the link information. For example, if a component object has a value for “hostedDe-
vicelD”, this function will create a link from the component object to the referred device
object in the DOORS database. Section 4.3 will provide more information about link
creation during the import. This function also customizes views of the responsibility,
component, and device modules to display more attributes, which are not displayed by
default in DOORS. If the import is not first time import but an updating, then this func-
tion will remove the objects marked as deleted at the end of the import (except for the
exceptions discussed in section 5.3).

Example
After importing the core part of a UCM model into DOORS, responsibility, component,

and device modules are created under the Core folder. For each module, the import proc-
ess defines conventional views automatically. These views list each category of objects

Combining Graphical Scenarios with a Requirements Management System 52

with a selection of attributes. Figure 31 presents an example of the list of responsibilities,
the list of components, and the list of devices in views created during the import process.
Note the presence of several triangles, which indicate incoming (<) or outgoing (»)
traceability links created and managed automatically by the DXL library. The pop-up
menu of the top part of the figure shows which UCM device is linked to the Simple
Telephone component. This information was generated automatically by our import

mechanism and can be maintained as the UCM evolves.

| Formal madule *ftest/core /Component Module' current 0.0 - DODRS 3 =131 x|

File Edit View Insert Lnk Analysis Table Tools User Use Case Map UseCases Analyst Help

IHSE | §BR (¥ |X (s B 7 Ua|izE=E |8 s we, (B == |

||Cumponanl g HNI lewels J‘ S ;.; | ==== H%"Cc ;_@_— S %l | Ee] | ﬁ oF ‘

El-Component Module Links EI |Dn I M ameDIComponent | TypeDfComponent | Host Device [0 | thel d
oL el Taer Team Mo contant MNa
f..ggggn[1 USEI’

2 Agent {Device Mos] e o
« | L'ﬂ
‘Username bajiang |E:<c|usnte edlt made A
— M=
||Dewcewew j”&llleve\s j|:uc:-cﬁ|§§§§”¥{c B ?%¢|‘I|EW|

=5 D?"ite Module Links |:|| i} | Mamel Device | thellezcription | Speed Factar I Su&[-:l
-1 DBase
& pik 1 DBase dd DEase Ho content a

H Disk Mo content 1]
- DOOR =100 x|
File Edit Yiew Insert Link Analysis Table Tools Ussr Use CaseMap UssCasss Analyst Help
HEE| LBl 5| X |55 B 10 =% |8 FFa|B 7 =
||Respon5|bllwty view J HAII lewels J‘ SBr -Ec :J& | EE=EEE |’¥"Ce L@; T El | ks | | E oF ‘

= RF’SDDHSib“itV Madule 2| | Links EI Ia] | W ame0 R espansibility | Prncesmrl theDescription Ii
-1 displ = m :

2 ELTE‘ZYOCS 1 dlsplay 16 dieplay u] Digplays the origitiator's namber. |
3deny ?2 checkOCS 2 checkDC2 0 Checks whether the tenmunator is in

i 4 snd-reg the otiginator's OC3 list. chkOC3

5 InitFeatures takes the value F

i B checkTime ?

H 3 15 deny u] Deties the connection.

i--7 checkPIM deny -~

Figure31 Corefolder for the Simple Telephone examplein DOORS

For each module listed in Figure 31, there is a tree-like explorer in the left, which pro-
vides the view for the structure of the module and for navigating to a specific object in
the module. UCM objects are shown in the right window of Figure 31. They can be dis-
played in different views that can customize different sorts, attributes, and filters for the

displayed objects. The columnsin the right window show attributes of the UCM module.

Combining Graphical Scenarios with a Requirements Management System 53

4.2.2 Maps

bool begi nOf Map(string ucnNane, string designlD)

Parameters:
ucmName: String The name of the UCM modd.
designID: String Theidentifier of the UCM mode!.
Description:

This function is the first function to be called in the maps import process. For afirst time
import, this function will create the Maps folder, which is used to save the maps module.

During an update, this function creates the map folder and the map module if necessary.

bool map(string nodel ID, string nodel Name, string graphFil eNane,
string title, string theDescription)

Parameters:
modellD: String The identifier of the map.
modelName: String The name of the map.
graphFileName: String The name of the graph (diagram) file of the map.
title: String Thetitle of the map.
theDescription: String The description of the map.
Description:

This function creates or updates one map object in the map module located under the
Maps folder. Each parameter defines the value of one attribute of the object. Each map
object has a unique value of “modelID”, which is the key attribute in the map module.
The graph file indicated by the “graphFileName” parameter is loaded into the heading
attribute of the map object. The diagram must be in Windows . bnp (bitmap) format and
located in the same directory as the DXL script file of the UCM model.

Combining Graphical Scenarios with a Requirements Management System 54

bool respRef(string ID, int fx, int fy ,string hostedByMap,
string contai nedByConponent, string resplD, string nane,
string theDescription, string direction)

Parameters:
ID: String The identifier of the responsibility reference.
fy: Integer Thevertical (Y) coordinate of the responsibility
reference on the map.
fx: Integer The horizontal (X) coordinate of the responsibil-

ity reference on the map.

hostedByMap: String

The map hosting the responsibility reference.

containedByComponent: String

The component hosting the responsibility refer-
ence.

resplD: String

The responsibility referred by the responsibility
reference

name: String

The name of the responsibility reference.

theDescription: String

The description of the responsibility reference.

direction: String

The direction of the responsibility reference (for
future use).

Description:

This function creates or updates one responsibility reference object in the map module
located under the Maps folder. Each parameter defines the value of one attribute of the

object. Each responsibility reference object has a unique ID vaue. “fx” and “fy” indicate

the position of the responsibility reference in the graphical map. In future work, this posi-

tion information could be used to identify the responsibility reference in the graph of map,

and enable clickable diagrams with hyperlinks (this is currently difficult to do with

DOORS). “hostedByMap” expresses the parent map which contains the responsibility

reference. “containedByComponent” shows the link from the responsibility reference to

the parent component reference. “resplD” isalink from the responsibility reference to the

referred responsibility definition in the Core folder.

Combining Graphical Scenarios with a Requirements Management System

55

bool conpRef(string conponentRefID, int fx, int fy, int width, int height,
string anchored, string hostedByMap,
string referencedConponent, string namne,
string parent Conponent)

string role,

Parameters:
ID: String The identifier of the component reference.
fy: Integer The vertical (Y) coordinate of the component ref-
erence on the map.
fx: Integer The horizontal (X) coordinate of the component

reference on the map.

width: Integer

The width of the component reference on the dia-
gram map (for future use).

height: Integer

The height of the component reference on the
map (for future use).

anchored: String

The object is anchored or not.

hostedByMap: String

The identifier of map which hosts the component
reference.

referencedComponent : String

The identifier of the component referenced.

parentComponent: String

The identifier of the parent of the component ref-
erence (if any).

name: String

The name of the component reference.

theDescription: String

The description of the component reference.

direction: String

The direction of the component reference (for fu-

ture use).

Description:

This function creates or updates one component reference object in the map module lo-
cated under the Maps folder. Each parameter defines the value of one attribute of the ob-
ject. Each component reference object has a unique value of “componentRefID”. “fx”,
“fy”, “width” and “height” indicate the position of the component reference in the
graphica map. In future work, this position information could be used to identify the
component reference in the graph of map, and enable clickable diagrams with hyperlinks
(thisis currently difficult to do with DOORS). “hostedByMap” expresses the map which
hosts the component reference. “referencedComponent” indicates the link from the com-
ponent reference to the referred component in the Core folder. “parentComponent” links

to the containing component reference in the same map, if any.

Combining Graphical Scenarios with a Requirements Management System 56

bool stubRef(string ID, int fx, int fy, string hostedByMap,
string nane, string stubType, string subnmaplD)

Parameters:
ID: String Theidentifier of the stub.
fy: Integer The vertical (Y) coordinate of the stub on the
map.
fx: Integer The horizontal (X) coordinate of the stub on the
map.
hostedByMap: String The identifier of the map which hosts the stub.
name: String The name of the stub
stubType: String The type of the stub.
submaplD: String Thelist of submaps contained in this stub.
Description:

This function creates or updates one stub object in the map module located under Maps
folder. Each parameter defines the value of one attribute of the object. Each stub refer-
ence object has a unique identifier. Again, “fx” and “fy” indicate the position of the stub
reference in the graphical map (for future clickable maps). “hostedByMap” refers to the
map that contains the stub. “submaplD” is a String that in fact contains a semico-
lon-separated list of map identifiers. It is used to create links from the stub to its plug-in

submaps.

bool endO Map(string ucnmNane, string designlD)

Parameters:
ucmName: String The name of the UCM modd.
designID: String Theidentifier of the UCM mode!.
Description:

This function indicates the end of the import of one map model. It parses the created or
updated modules and creates links between those modules according to the attributes
which contain the link information. For example, if one component reference object has a
value set for “referencedComponent”, this function will create a link from the component

reference object to the referred component object. Section 4.3 discusses automatic links

Combining Graphical Scenarios with a Requirements Management System 57

creation in more details. This function also customizes views of the map module to dis-
play more important attributes which are not displayed by default in DOORS. If the im-
port is not afirst-time import but an updating, then this function will remove the objects
marked as deleted. Some exceptions may occur during such deletion, and section 5.3 will

discuss their handling.

Example
After a first-time import into DOORS, a map module (whose name is that of the UCM

design) is created under the Maps folder. A suitable user-defined view, where each cate-
gory of objectsis listed with selected attributes, is created by the import functions. Figure
32 illustrates the list of maps, component references, responsibility references and stubs
in the pre-defined view for the simple telephone UCM. Note that the name of each map is
used in the overview tree widget on the left, and that the elements of each map are aso
accessible from this view.

In the left of Figure 32, a tree-like explorer provides the view for the structure of
the map module and for navigating to a specific object in the module. For each map, a
bitmap figure is loaded to show the map information visually, as seen in the column Map.
DOORS provides support for picture objects in Windows bitmap (BMP) and Windows
Meta File (WMF) formats. Unfortunately UCMNAYV does not support the export of maps
in these formats. However UCMNAYV supports, among others, the export of maps in En-
capsulated PostScript (EPS). In the approach described by this thesis, Ghostview [15] is
used to convert the EPS map files generated by UCMNAV to BMP files readable by
DOORS during the import. A simple batch file is provided to automate this conversion

for al the mapsin adirectory.

Combining Graphical Scenarios with a Requirements Management System 58

B} SDLfarum?0.ucm Map D I Tupe |
[+ 1 designi44 - -
B 1.1 root: <Picture 1.5 Terminating map
-- 1.2 0CS: <Picture > <Picture>
..1.3 Originating: <Picture Bl
[l 1.4 TeenLine: <Picture: aw [oetBmy] e M mﬂ‘am :
= 1.5 Terminating: <Picture> ury] oy o
.5.1 busyTreatment il
: 5.2 Finging Treakment L
- 1.5.3 ringTreatment B e
- 1.5.4 Sdisplay !
1.5.1 busyTreatment ¥ tespRef
1.5.2 ringingTreatment ¥ tespRef
1.5.3 ringTreatment ¥ respRef
1.5.4 Sdisplay stubRef
LN y
Username: bojiang |E><-:Iusive edit mode o

Figure32 Mapsfor the Simple Telephone System in DOORS

4.2.3 Scenarios

All the scenarios concepts from our metamodel are exported to DOORS, including their
relationships. However DOORS links are not used to express the inter-relationships be-
tween scenario elements because there is a large quantity of such relationships in any
given scenario. This would slow down the import and update processes and take more
space for no apparent benefit. Instead, composition and sibling relationships between

DOORS objects are used for describing these inter-rel ationships in scenario.

bool begi nOf Scenari o(string ucnName, string designlD)

Parameters:
ucmName: String The name of the UCM modd.
designID: String Theidentifier of the UCM mode!.
Description:

“designed’ is used to identify the UCM model. This function is the first function to be
called in the scenario import process. It mainly performs the preparation of the import of

scenarios. During the first-time import, this function creates the Scenarios folder, which

Combining Graphical Scenarios with a Requirements Management System 59

is used to save the scenario module. During an update, this function deletes all the sce-
nario elements and marks other objects, such as scenari oG oup and scenari o, as
“deleted”.

bool scenari oG oup(string Name, string ID, string theDescription)

Parameters:
ID: String The identifier of the scenario group.
name: String The name of the scenario group.
theDescription: String The description of the scenario group.
Description:

This function creates or updates one scenario group object in the scenario module. Each
parameter defines the value of one attribute of the object. Each scenario group object has
aunique identifier, which is the key attribute in the scenario module. A group can contain

multiple scenarios, which are created using the scenari o function.

bool scenario(string Nane, string ID, string theDescription)

Parameters:
ID: String Theidentifier of the scenario.
name: String The name of the scenario.
theDescription: String The description of the scenario.
Description:

This function creates or updates one scenario object in the scenario module. Each pa-
rameter defines the value of one attribute of the object. Each scenario object has a unique
identifier which is the key attribute in the scenarios module. Scenarios contain many

types of elements organized in sequence or in parallel.

Combining Graphical Scenarios with a Requirements Management System 60

bool seq(string ID, string parentlD)

Parameters:
ID: String The identifier of the seq.
parentID: String The parent of the seq.
Description:

This function creates one sequence object for the current scenario in the scenario module.
Sequence objects are not updated; they are recreated at every update. Each parameter de-
fines the value of one attribute of the object. Each sequence object has a unique identifier,
which is the key attribute in the scenario module. Sequences contain various elements

and sub-parallel sequences.

bool par(string ID, string parentlD)

Parameters:
ID: String Theidentifier of the par.
parentlD: String The parent of the par.
Description:

This function creates one par object in the scenario module. Par objects are not updated,;
they are recreated at every update. Each parameter defines the value of one attribute of
the object. Each par object has a unique identifier, which is the key attribute in the sce-

narios module. Par objects contain sub-sequences of various types of elements.

Combining Graphical Scenarios with a Requirements Management System 61

bool doEl enent(string ID, string hyperEdgel D, string Nane,
string doType, string theDescription,
string parentID, string preSibling)

Parameters:

ID: String

The identifier of the doElement.

hyperEdgelD: String

Theidentifier of the original UCM hyperedge re-
ferred by the doElement.

doType: String

The type of hyperEdge referred by the doElement.

Thetype is one of the following: Resp, Start,
End Point, WP_Enter, WP_Leave, Con-
nect_Start, Connect_End, Trigger_End,
Timer_Set, Timer_Reset, or Timeout.

theDescription: String

The description of the doElement.

ParentlID: String

The identifier of the parent (seq or par) of the
doElement.

Presibling: String

The identifier of the previous sibling of the
doElement.

Description:

This function creates one doElement object in the scenario module. doElement objects

are not updated; they are recreated at every update. Each parameter defines the value of

one attribute of the object. Each doElement object has a unique identifier, which is the

key attribute in the scenario module. “hyperEdgelD” indicates the original UCM element

referred by the doElement. However, only one kind of hyperedge referred by doElement

objects is currently imported into the map module, namely responsibility reference. The

“hyperEdgelD” parameter for elements of type Resp hence trandates to a DOORS link

from the doElement to the referred responsibility reference in the Maps folder. “paren-

tID” and “preSibling” are used to locate the position of the doElement in the scenario,

which is represented as atree. They are not converted to DOORS links

Combining Graphical Scenarios with a Requirements Management System

62

bool condition(string ID, string |abel, string expression,
string parent|l D, string preSibling)

Parameters:
ID: String The identifier of the condition.
label: String The label attached to the condition.
expression: String The Boolean expression used in the selected sce-
nario branch, where the condition applied.
parentlD: String The identifier of the parent (seq or par) of the
condition.
presibling: String The identifier of the previous sibling of the condi-
tion.
Description:

This function creates one condition object in the scenario module. Condition objects are
not updated: they are recreated at every update. Each parameter defines the value of one
attribute of the object. Each condition object has a unique identifier, which is the key at-
tribute in the scenarios module. “parentID” and “preSibling” are used to locate the posi-
tion of the condition in the scenario, which is represented as a tree. They are not con-
verted to DOORS links.

bool endO Scenario(string ucmNane, string designliD)

Parameters:
ucmName: String The name of the UCM mode.
designID: String Theidentifier of the UCM mode!.
Description:

This function is the end part of the scenario model import. It parses the created or up-
dated modules and creates links between those modules according the attributes which
contain relevant link information. For example, if the one doElement object has a value
of “hyperEdgelD” and the “doType’ is “Resp”, then this function will create a link from
the doElement object to the referred responsibility reference object in the Maps folder.
Section 4.3 discusses link creation in more depth. This function also customizes the view
of the scenario module to display important object attributes which are not displayed by
default in DOORS. If the import is updating a previously model, then this function will

Combining Graphical Scenarios with a Requirements Management System 63

remove the objects marked as “deleted” at the end of the import. Some exceptions may

occur, which are described in section 5.3.

Example
After the first-time import of the scenario part of a UCM model into DOORS, the sce-

nario module is created under the Scenarios folder. A scenario view, where objects are
listed with selected attributes, is created during the import process. Figure 33 illustrates
the list of scenarios and their sequential and parallel elements and conditions (with some
of their attributes) of the Simple Telephone UCM. The tree list in the left part of the fig-
ure shows the structure of scenarios in the Simple Telephone Example. Note the triangles
on the side of some of the scenario elements; they indicate outgoing traceability links
from the scenario steps to the referred path elements traversed by this scenario. This links
information was generated automatically by our import mechanism and can be main-

tained as the UCM evolve.

| Formal module */test/scenarios /SDLforumi0.ucm’ current 0.0 - DOORS = Iﬂlﬂ
File Edit Wiew Insert Link #Analysis Table Tools User Use Case Map UseCases Analyst Help
IHESE| & BB [X «[==|8 £ 0= = |8 [E o 5= |
|Iscenario wiew LI ”AII lewels Lll e o5 of | === = |[EE £ B 7 A | B |
E'SELFD”-"”_ID'“”” 21 | Scenario Step E | D | Type | doType ;I
[:l--l_deslgn14§ 1.1.2 BC busy seenarioGrougp- goenatio Mo content x|
L tDasicesl o BasicCall scenario-
- 1.1.1 BCsuccess EChusy i
= 1.1.2 BChusy
=-1.1.2.1 seqlzg 1.1.2.1 seq129 seql2d seq Mo content.
- 1.1.2.1.1req
- 1,1.2,1.2 stark
- 1.1.2.1.3 InitFeatures 1.1.2.1.1 req i oo Sharl
1.1.2.1.4 Default 1.1.2.1.2 start hs0 do Connect_Start
-~ 1.1.2.1,5 skark = >
- 1.1.2.1.6 continue 1.1.2.1.3 InitFeatures™ k53 da Resp
-+ 1.1.2.1.7 [MoFeatureleft] 1.1.2.1.4 Default hés condition Mo content
- 1,1.2.1.8 snd-req
1.1.2.1.9 success 1.1.2.1.5 start hi4 do Connect_Start
1.1.2.1.10 skart 1.1.2.1.6 continue h3d do Connect_End
-+ 1,1,2,1,11 [Busy] —
1.1.2.1.12 busyTreatment | | 1.1.2.1.7 [NoFeature = h37 condition Ho content
o 1.1.2.1.15 fail Left]
- 1,1.2.1,14 Fred_sig 1.1.2.1.8 snd-req ® hao do Resp
- 1.1.2,1.15 busy
B 1.2005 1.1.2.1.9 success hi1 do Connect_End
E]--1.2.1 O Ssuccess 112110 start hion do Connect Start -
| [#-1.2.2 DCsbusy =N | ;
|Username: bojiang [Exclusive edit mode 4

Figure 33 Scenarios for the Simple Telephone System in DOORS

This section discussed the scenario library in DOORS, which supports DOORS importing
scenarios defined UCM. However, UCM models do not always contain scenarios. In

some cases, the UCM model may not contain scenarios.

Combining Graphical Scenarios with a Requirements Management System 64

4.3. Automatic Link Creation

Links are a feature of DOORS essential for creating and navigating traceability relation-
ships between requirements, which are represented as objects in forma modules. The re-
lationship between two objects in the DOORS database is established using a link. By
definition, a link goes from the source object to the target object. However, links can be
followed in either direction and DOORS provides tools that facilitate this navigation. If
an object is the target object of alink, thislink is called an incoming link of the object. If
an object is the source object of alink, thislink is called an outgoing link of the object.

In the proposed DOORS representation for UCMSs, links are divided into internal
links and external links according to their different scopes. The links between the objects
inside the UCM model are called internal links. Otherwise, the links are called the exter-
nal links. Interna links implement the associations found in the metamodel of Figure 18.
They are created and updated automatically while importing a UCM model into DOORS.
The internal links tightly combine the three parts of the UCM model, i.e., the core, the
maps, and the scenarios. Since only internal links are created when a UCM is imported,
the discussion about external links will be left to next chapter, where links between the
imported UCM model and other requirements will be created, and analyzed, and main-
tained.

To describe precisely the nature of links, DOORS allows the definition of link at-
tributes. By taking advantage of this DOORS functionality, internal links are assigned
different types according to the various relationships between the linked UCM objects.
For example, a component can have a “hosts’ link to a device, indicating the host device
of a particular component. Figure 34 gives an overview of the various types of internal
links created during the import, whereas Table 2 establishes the correspondence between
these links and the original associations from the metamodel (Figure 30). These links
help DOORS users to understand and exploit the relationships between different UCM
objects.

Combining Graphical Scenarios with a Requirements Management System 65

respl

stti
COI‘E compl)steday requestting
referring [] device1
eferri
—
\ compRefl compRef2
contaipedBy
Map resﬁ N 1 ‘contained By
referr ir}g\ Scenariol
Seql
Start
. - \ respRef?
Scenario e—»—

respRef-dolI Parl
respRefl
Par2

-\+I respRef?

respRef?

Figure 34 Interna linksin animported UCM model

Link type (DOORS) Source class (metamodel) Destination class (metamodel)
referring ResponsibilityReference Responsibility

referring ComponentReference Component

referring Resp ResponsibilityReference
hostedBy Component Device

requesting Responsibility Device

containedBy ResponsibilityReference ComponentReference
containedBy ComponentReference ComponentReference

Table2 Mapping from metamodel associations to DOORS links

Through the internal links, relationships such as assignment of responsibility references

to component references, containment amongst component references, or request of re-

sponsibilities to devices can be quickly visualized and explored using existing DOORS

functionalities. DOORS uses small triangles to indicate the existence of incoming (<) or

outgoing (») links. Clicking on such triangles brings the lists of link types and their

linked objects. Links can aso be exploited by queries or transformationsin DXL scripts.

Combining Graphical Scenarios with a Requirements Management System

66

4.4. Chapter Summary

This chapter discussed the mechanisms used to import a UCM model into DOORS for
the first time. In section 4.1, a class diagram is used to illustrate the metamodel of Use
Case Maps as represented in DOORS. Section 4.2 described the DXL library supporting
the import of UCM models into DOORS. Section 4.3 presented how the interna links
implement the associations of our metamodel, hence enabling exploration of various
UCM elements and their relationships as a whole. The next chapter will focus on evolu-
tion management by presenting how external requirements are linked to the UCM model,
how evolving requirements will be reported back to UCMNAV to update the UCM model,
and how an evolving UCM model is updated in DOORS.

Combining Graphical Scenarios with a Requirements Management System 67

Chapter 5. Managing the Evolution of Scenarios
and Requirements

This chapter discusses how to manage the evolution of scenarios and requirements during
the development process. Section 5.1 presents how UCM model elements are linked to
externa requirements in the target RMS. Section 5.2 shows how evolving requirements
can trigger modifications to the UCM model. Finaly, section 5.3 explains how the
DOORS database is automatically updated when re-importing a new version of a UCM
model, after modifications.

5.1. Links from/to External Requirements

Having been imported into DOORS, a UCM model can be used as a supplement to exist-
ing requirements, including user requirements, system functional requirements, perform-
ance requirements, and testing requirements. Requirements engineers who are familiar
with both the UCM notation and DOORS can analyse the relationships between the
original textual requirements in DOORS and the imported UCM model, and then create
appropriate links between them. These links combine the UCM model and other textual
requirements to express more precise and compl ete requirements for the target system.

External links also can be used to preserve the consistency between aUCM model
and other requirements. Once requirements or the UCM model are changed, DOORS will
flag the external links connecting these two views automatically as suspect links. These
suspect links act as change notifications for the requirements. These proactive suspect
links ensure that each user knows about changes made by another user.

In practice, links could be created between external requirements and any object
in the imported UCM model. However, DOORS users are encouraged to create links only
to objectsin a UCM model that are automatically maintained during the import. Some of
the objects, although they are part of the UCM model, are deleted and recreated at each

Combining Graphical Scenarios with a Requirements Management System 68

import. This is the case for al the elements composing scenarios (par, seq, doElements,

and conditions). Hence, links should not be created from/to these objects.

Guiddinesto create external links from/to the UCM modél

Component references and responsibility references represent specific usages of
elements part of the system structure and behaviour. Most parts of system re-
guirements can be linked to component references or responsibility referencesin
the UCM model.

A map is used to describe a system or a sub-system including its structure and
behaviour. It can be considered as avisual use case. Therefore, it could be linked
to afunctional requirement or to a use case in the user requirements.

A stub is often used for the decomposition of the UCM model. It isareferenceto
sub-systems. Dynamic stubs could be used for a product family. Requirements
should not be linked to a static stub directly. Instead, it is suggested to link re-
guirements to the corresponding map referred by the stub.

Components and responsibilities are used to describe specific elements of the sys-
tem structure and behaviour. References to these elements can appear in many
placesin aUCM model. Links from system requirements are encouraged, but not
to/from user requirements.

If arequirement is related to a performance resource such as a processor, a disk,
or another type of service in a system and the resource is described as adevicein
the UCM model, then alink between the requirement and the corresponding de-
vice should be created.

Regarding test requirements, related test cases could be grouped as test suites and
linked to the corresponding scenario group in the UCM model.

Scenarios in the UCM model could be linked to the related functional require-
ments or from test goals for the target system. However, individual scenario step
should not be linked to external requirements or test steps because a scenario is
usually viewed as a unit of functional requirement or atest goal and should not be
broken up. If arequirement is related to a system action during the scenario path,

it should be linked to the responsibility reference referred by that scenario step.

Combining Graphical Scenarios with a Requirements Management System 69

» Linksareusually created from requirements to higher-level requirements (e.g.,
from system requirements to user requirements). That is the model supported by
the link access policy in DOORS: a user must have “Read” and “Modify” access
rights at the source object in order to create alink. In most cases, the higher-level
reguirements are read-only to the UCM modellers. Since UCM modellers must
have “Modify” accessright to in order to create alink, they can only create links
from the UCM model, where they have write access, to the higher-level require-
ments. Therefore, the default type of links created between the UCM model and
external requirements are “ Satisfies’.

* The UCM modellers are not encouraged to created links from the UCM objects to
lower level requirements. All of the links in the project should follow in the same
direction for traceability analysis purpose, which is bottom up in our case. There-
fore, “ Satisfies’ links should be created from lower level requirements to the
UCM model by whoever is responsible of those lower level requirements.

Following these guidelines, a UCM model should be linked to higher-level requirements
such as user requirements. It also can be linked from system requirements and functional

tests requirements as shown in Figure 35.

User |I
requirements

Functio |
tests

Figure 35 Links between a UCM model and external requirements

Combining Graphical Scenarios with a Requirements Management System 70

5.2. Evolving UCM Models According to Changed Requirements

Reguirements are very likely to be changed during the development process. This section
discusses how to evolve the UCM model when its linked requirements are modified in
the RMS.

In general, once a requirement is changed, lower level requirements (e.g., at the
software level) that are linked to it should be checked and kept consistent with its new
version. Furthermore, higher-level requirements (e.g., a the user level) that are linked
from it also need be checked for satisfaction. People may argue the higher-level require-
ments do not have to be checked because a requirement should aways be consistent with
its higher-level requirements when it is changed. That argument is based on the assump-
tion that the maintainer of the requirement understood the higher-level requirements cor-
rectly. However, since requirements are expressed in nature language and may be created
by different people, maintainers may have different understandings of the same require-
ment. This drawback of reguirements expressed in nature language encouraged many
people to advocate in favour of formal requirements specification, which are outside the
scope of this thesis. Another reason to check higher-level requirements is that the latter
may be refined and clarified when creating or updating lower level requirements.

Tracking the traceability between various requirements and keeping them consis-
tent has always been a difficult requirements management issue. As mentioned in sec-
tion 4.3, requirements management systems use links to manage requirements evolution.
As discussed in the last section, a UCM model could be linked to and from various re-
guirements such as user, test, and system requirements. If user requirements are changed
after some refinements, e.g., resulting from further communications with customers or
other stakeholders, the linked UCM objects will be triggered as having suspect outgoing
links by the RMS. If lower level requirements, such as test requirements or system re-
guirements, are refined, then the changes may have an impact on the linked UCM objects.
From the UCM point of view, the links between them will be triggered as suspect in-
coming links. The suspect links, including incoming and outgoing links, indicate the
UCM objects that need to be verified according to the changed requirements, and
changed if necessary. In the DOORS representation of the UCM model, suspect links are

Combining Graphical Scenarios with a Requirements Management System 71

defined as attributes in the pre-defined views customized by the import process, as shown

in Figure 36.
| Formal module */test /maps;/SDLforum10.ucm’ current 0.0 - DDORS P Lo |EI|5|
File Edit Wiew Insert Link Analysis Table Tools User Use CaseMap UseCases Analyst Help
| S| $EBR| ¥ (X v =t=B £ ua|=EE | we @ =E=|
|||||a|_|vi|:w j“n‘:\"ld\ﬂ:b d| Sar Jﬁ :nﬁ | === = ?;‘g: {E :@: S le | e | | ﬁ EF
Map HJ SuzpectOutlinks | Suzpectinlinks ;I
1.7 Terminating ftestUser Reqis.: Ohject 39
= Last modified on 04/21/05
Shictes 104328
e moaE Suspicion has never been
et [otHiie] I ‘. E 5 : cleared.
iy] disp
L bapy Trestment __'_'l
npingTreatment
3
RL gt
1.7.1 busyTreatment
1.7.2 ringingTreatment ¥ ftest/User Regis.: Ohject 48
Last modified on 042105
10:43:49.
Suspicion has never hasn
cleared. g
1.7.3 ringTreatment % =
| | 2
|Username: bajiang |Exclusive edit made i

Figure36 Suspect links between a UCM model and external requirements

5.2.1 Generating the Changed Requirements from DOORS

If the linked external requirements are changed, the UCM model should be verified and
may need to be modified to match the new requirements. However, the UCM model
should not be modified from DOORS. The approach described in this thesis does not im-
plement a UCM editor in DOORS as such functionality is best supported in an externa
tool like UCMNAYV. Therefore, modifications need to be done outside of DOORS, in
UCMNAV.

To provide guidance in the update of the UCM model, a report is generated by
DOORS that emphasizes detailed information about the changed requirements and their
related UCM objects. Our approach provides an automated report generation function
implemented in DXL.

The report function is available from a new menu item in DOORS, which appears
in al the views. This function parses all the UCM objects in the current project. For those
UCM objects with suspect links, the report function extract their names, types, identifiers,
suspect link types, old object content and new object content as shown in Figure 37. All

Combining Graphical Scenarios with a Requirements Management System 72

these modifications are reported in atext file that can then be opened by the UCM model
maintainer in any text editor. One thing to be emphasized is that we are not generating a
list of modifications to the UCM model, but a list of changes from the requirements
linked to the UCM model.

SDLforum10.ucm

/Ichanged requirements:

Terminating (map m6) has suspect Outlinks

sugpect M odule/test/User Reqgts. Object:39 Object Text modify Object 04/21/05 10:43:49

Preconditions; -> Preconditions: The Calee does not select Cdl Forward feature.

ringingTrestment (respRef h99) has suspect Outlinks
sugpect M odule/test/User Reqgts. Object:48 Object Text modify Object 04/21/05 10:43:49

---The Cdler getsringsignas. -> ---The Caler gets ring signals no longer than 3 minutes.
Otherwiset ler gets timeOut signals.

Q)Id reguirement new requirement |

Figure 37 Report on changed requirements generated by DOORS

5.2.2 Evolving the UCM Model in UCMNAV

UCM models can be improved gradually during the development process to show a more
precise high-level architecture of the target system. These may be caused by changed re-
guirements or any other reason. In particular, once we have linked the UCM model to
externa requirements, modifications to these the requirements may trigger changes to the
UCM model. This section mainly discusses how DOORS-generated reports on changed
external requirements may accelerate the improvement of the UCM model in UCMNAV.

Reports generated by DOORS do not include the entire UCM model but they
specify the UCM model name. The UCMNAV user can hence load the corresponding
UCM model.

If a UCM object has a suspect outgoing link, which indicates a change in a
higher-level requirement, then it needs to be checked and kept consistent with the new
requirement. For instance, according to the report in Figure 37, a precondition was

changed and the selection policy of the sub-map “Terminating” should be changed ac-

Combining Graphical Scenarios with a Requirements Management System 73

cordingly. Also, the requirement of the responsibility “ringingTreatment” has been
changed to “The Caller gets ring signals no longer than 3 minutes. Otherwise the caller
gets timeout Signals’ instead of “The caller getsring signals’. Therefore, atimer is added
before “ringingTreatment”, the timeout exception sends “TimeOut” signas to both the
caller and the callee through “ringTimeOutTreament” .

TlmleO ut ringTimeOutTreatment
—
Sdispl
[notBusy] 'ingi IN1 Spay OUTI ringTreatment ~ SUCCESS
start ‘
° usy] ouT2 disp
fail
| busy Treatment
1
reportSuccess ringingTreatment

I
Figure38 The modified UCM model

If aUCM object has a suspect incoming link, which indicates a changed in a lower-level
requirement, then the UCMNAV user needs to check that the updated requirement till
satisfies the UCM. If thisis the case, then no action is required on the UCM model. Oth-
erwise, if the updated requirement clarifies the UCM object, then the UCM model should
be refined accordingly, or else the user who modified the linked requirement needs to be
informed of the inconsistency.

5.3. Evolving the DOORS View According to Changed UCM

The last section discussed how the UCM model can evolve during the developing process.
New versions of the UCM model can be saved in different files, if desired, to preserve the
history of modifications. However, the identifier of the UCM model, the design name,
will remain unchanged in each version, which ensures the right UCM model in DOORS
will be updated. The new version of the UCM model can be re-exported to DOORS
through the DXL script generated from UCMNAYV. The DXL script may use a new file
name according to the new version of the UCM model. This section explains how an ex-
isting UCM model in DOORS is updated while executing the new DXL script.

Combining Graphical Scenarios with a Requirements Management System 74

5.3.1 Algorithm for Managing Evolving UCM Elements

When the new DXL script is loading and executing in DOORS, the UCM model is up-
dated in DOORS according to the following a gorithm, which is composed of four steps:

Sep 1. Pre-process the UCM model.

Before updating concrete objects, some pre-processing needs be performed on the exist-
ing UCM mode!:

Remove internal linksinside the UCM model. Interna links shows the relation-
ships between the UCM objects. In the update process, internal links may affect
the updating of UCM objects due to arestriction when deleting an object in
DOORS: an object cannot be deleted when it has an incoming link. This restric-
tion prevents a requirement object from being deleted when there are other re-
quirements “depending” on it. For instance, if one component in the UCM model
has some incoming links from some structure objects in the system requirement,
which provides more detailed information about the component, then it cannot be
deleted. Otherwise, those structure objects in the system requirement would be-
come irrelevant to upper-level requirements. Fortunately, we have total control
over the links between the UCM model elements, and they can hence safely be
removed.

Delete all the scenario steps, such as seq, par, doElement, condition. They are
always recreated at each update. The reason to do this pre-processing is that sce-
nario steps do not exist asindividual requirements but describe bits and pieces of
one requirement: a scenario. Moreover, changes of scenario steps can be tremen-
dous at each update. For instance, if one a scenario step is changed, then all the
following scenario steps will be affected. Links from external requirements
should be created to scenarios, not to their steps.

Set the® deleted” attribute of all UCM objectsto “ true” . DOORS does not pro-
vide a function to recognize the objects that should be removed after having up-
dated the UCM model. The update process proposed here uses an additional Boo-
lean attribute deleted for determining the status of UCM objects.

Combining Graphical Scenarios with a Requirements Management System 75

Step 2: Update UCM objects.
After having pre-processed the existing UCM model in the DOORS database, the update

process loads and executes DXL function calls for e ements from the new version of the
UCM model. For each object listed in the DXL script, the updating process searches the
UCM model using the value of the key attribute which is unique in the UCM moddl. If
the object is found in the existing UCM model, the values of its attributes are compared
with the corresponding parameters in the function call for this object. All relevant attrib-
utes with different values are updated. Then the deleted attribute is changed to false. If
the object listed in the DXL script is not found in the existing UCM model, then a new
object will be created with all the attributes defined in the DXL script. The default value
of the deleted attribute in new UCM object isfalse. The deleted attribute is used to record
the status of UCM objects by the update process.

Some of the attributes of UCM objects record their position information in a dia-
gram or other information not so relevant from a requirements viewpoint (see Table 3).
Changed values for these attributes will not affect the modification history of the UCM
object, trigger suspect links to linked requirements, or change the notification bar in the
UCM module.

AttriOde'eS Core Device Component | Maps Scenarios
Deleted Deleted Deleted Deleted Deleted
hasIncomingLink hasIncomingLink hasIncomingLink hasIncomingLink hasIncomingLink

fx

fy
width
height

direction
stubType

Table3 Attributes not affecting histories, suspect links, and the notification bar

Sep 3: Remove objects that have disappeared in the new UCM model.
After al the new objects in the DXL script have been imported into the DOORS database,

a post-processing step is performed. The deleted attribute of al the UCM objects in
DOORS will be checked. The “deleted” objects (where the value is true) without incom-
ing links are removed from the UCM model. The “deleted” objects with incoming links
cannot be deleted due to the restriction in DOORS. Their hasincomingLink attribute is

however set to true during the update process. Their on-empty set of incoming links in-

Combining Graphical Scenarios with a Requirements Management System 76

dicates that some lower-level requirements depend on them. The UCM model user may
inform the requirements manager of those lower-level requirements and request the re-
moval of the links between those lower-level requirements and the “deleted” UCM ob-
jects. Once those links are removed, the UCM model manager can eliminate “deleted”
objects manually.

Sep 4: Createinternal links

This step is concerned with the creation of internal links between the related UCM ob-
jects according to their association attributes. Adding or removing internal links does not
trigger suspect links to/from external requirements because DOORS does not consider
them as major changes to requirements.

As mentioned in section 4.1, the composition relationships between UCM objects
are represented by containment relationships between the DOORS database objects. If
there is a parent-child relationship between an updated UCM object and its parent UCM
object, then the updating process does not have to verify whether the relationship is
changed or not. That is due to the fact that UCMNAV does not provide a mechanism to
move objects to other hosting objects. For instance, a component reference cannot be
moved to another map. Also, a scenario cannot be moved to another scenario group.

5.3.2 Managing Evolving UCM Links with External Requirements

As mentioned in section 5.2, modifications to external requirements cause suspect links
in the linked UCM objects. Some UCM objects with suspect links are very likely to re-
quire some changes in a new iteration of the development cycle. When they are
re-imported into DOORS, their new description will clear their suspect links. In DOORS,
changing one requirement will cause its linked requirements to have suspect links. If its
linked requirements are modified after getting suspect links, then these suspect links will
be cleared. The update process may also update some UCM objects without suspect links.
If these objects have external links to/from other requirements, then their new description
will cause suspect links in their linked requirements, which in turn will suggest that the
external requirements should be revisited.

Combining Graphical Scenarios with a Requirements Management System 77

5.4. Chapter Summary

This chapter presented how UCMs are linked with other requirements in the RMS and
how their inter-dependencies can be managed as they evolve. Since UCMs are introduced
into the RMS as traceable objects, they can be connected with various external require-
ments through different types of links. Principles for creating useful links were mainly
discussed in section 5.1. In section 5.2, we introduced a report mechanism for the RMS
which summarizes changed requirements in order to promote the evolution of the UCM
model. Section 5.3 described an algorithm for updating UCMs in the RMS and discussed
the impact to the existing requirements during the update process. The next chapter will
illustrate and validate the approach from end-to-end with a supply chain management

case study.

Combining Graphical Scenarios with a Requirements Management System 78

Chapter 6. Case Study: Supply Chain
Management

In this chapter, our approach is applied to and validated against a Web Services Interop-
erability (WS-I) case study, which contains a Supply Chain Management (SCM) business
process [36][37]. Our case study illustrates how our approach can improve the overal
quality of requirements management by introducing a UCM model into the target RMS
and, more importantly, how both views can be kept complete and consistent as they
evolve. The UCM model used in chapter is based on the model created by Weiss and
Amyot [38][39].

SCM models aretailer system that offers goods to consumers. To fulfill orders, the
retailer has to manage stock levelsin its warehouses. When an item in stock falls below a
certain threshold, the retailer must restock the item from the relevant manufacturer’s in-
ventory. In order to fulfill aretailer’s request, a manufacturer may have to execute a pro-
duction run to build the finished goods [36].

In section 6.1, initial informal requirements are provided for SCM. Then a UCM
model for SCM is created and exported to the RMS in section 6.2. Section 6.3 presents
how changes to the UCM model affect the RMS database and links to other related re-
guirements. Section 6.4 describes how the UCM model is in turn affected by changes to
related requirements in the RMS. A discussion of the main benefits and a comparison

with existing tools follow in section 6.5.

6.1. Initial Requirements for SCM

In this case study, user requirements, system reguirements and test requirements are used
to describe the supply chain management system in the target RMS. They are adapted
and simplified from the requirements listed in [36][37]. In general, requirements man-
agement systems can import requirements from various sources, including word proces-

sors. For instance, we can import the original SCM requirements into DOORS, leading to

Combining Graphical Scenarios with a Requirements Management System 79

an initial database of requirements objects. These requirements objects can be more or

less structured, depending on the quality of the source document.

6.1.1 User Requirements

Use cases are an effective and widely used technique for describing user requirements.
They can help capture the high level requirements of a system from a user’s viewpoint.
This case study adapts the SCM use cases listed in [36] as a basis for user requirements.
Since this document contains twenty-seven pages and cannot be entirely reproduced in
this thesis, most of use cases in [36] are abstracted to single-paragraph descriptions ex-
cept for Use Case 3, which will be described in detail and fully linked with the UCM
model for SCM.

The actors of the system, which will be referenced in the upcoming use cases, are

summarized in Table 4.

Actor Description

Administrator A party that monitors and administers the system.
Consumer A party that wishes to shop for goods and products.
Monitoring System A party that logs and checks the events.
Manufacturing System A party that manufactures products.

Retailer System A party that sells products to the general public.

Table4 Actors participating to the use cases
The main use cases are summarized here. Table 5 describes the normal path Use Case 3
in more detail, and Table 6 describes an exceptional path for the same use case. These
will be modified in our UCM model.
* UseCasel - Purchase Goods: A Consumer goes to the Retailer Web site with
the intent of purchasing electronic products.
* UseCase 2 — Source Goods: The Retailer System locates the ordered goodsin a
warehouse and requests shipment.
* Use Case 3 — Replenish Sock: The Retailer System orders goods from a manu-
facturer to replenish its stock for a particular product in a particular warehouse.
» Use Case 4 — Supply Finished Goods: The Manufacturing System processes a

purchase order from a warehouse.

Combining Graphical Scenarios with a Requirements Management System 80

Use Case 5 — Manufacture Finished Goods. The Manufacturing System initiates a

production run to replenish the stock levels of a specified product.

Use Case 6 — Log Events: The Monitoring System logs events related to the exe-

cution of other use cases.

Use Case 7 — View Events. The Administrator views the event logs by setting

certain criteria.

Step Actor Description Branches
Condition Location
1. Retailer The Retailer System constructs a purchase order
System for the product with the necessary quantity to bring
the product up to its maximum level for that ware-
house.
2. Retailer Place Order. The Retailer system submits the pur-
System chase order to the relevant Manufacturing System
(Brandl, Brand2 or Brand3) as dictated by the
product.
3. Manufacturing Validate Order. Malformed ALT 1
System order or
invalid
product or
invalid quan-
tity
4, Manufacturing Send an acknowledgement back to the Retailer
System System.
5. Manufacturing The Manufacturing System constructs a shipment Uncondi- Use Case
System of the requested quantity of product. tional 4
6. Manufacturing The Manufacturing System ships the goods and
System sends a shipping notice to the warehouse. The
shipping notice is the business level reply to the
purchase order.
7. Retailer When the Retailer System receives the shipping
System notice, an acknowledgement is sent back to the
Manufacture.
8. Retailer Upon receipt of the shipment, the warehouse up-
System dates its product inventory level based on receipt of
the shipped order.

Table5 Primary path of Use Case 3

Combining Graphical Scenarios with a Requirements Management System

81

Step Actor Description Branches
Condition Location

1. Manufacturing The Manufacturing System rejects the order either
System due to a malformed order, a request for a product
that does not exist, or a request for an invalid
guantity (e.g. zero or more than the max level for
that product). A reply, containing an application
error message, is sent back to the Retailer System.

Table6 Exception path of Use Case 3

6.1.2 System Requirements

The system requirements used in this case study are not component-based. Detailed ar-
chitecture information is not provided. It mainly describes what functions the SCM sys-
tem should provide.

The entire system requirements are listed in Appendix A. Since in our example
we plan to apply changes to the Replenish Stock functionality in the UCM model, system
requirements related to Replenish Stock arelisted in Table 7.

System Requirements

Retailer System The warehouse should be able to build the order for a manufacturer.

Retailer System The warehouse should be able to select the appropriate manufacturer.

Retailer System The warehouse should be able to place the order to the selected manufacturer.

Retailer System The warehouse should be able to receive the products shipped by the manufacturer.

Retailer System The warehouse should be able to update its stock upon receipts of goods.

Retailer System The warehouse should be able to send acknowledgement back to the manufacturer
after receiving goods.

Retailer System The warehouse should be able to determine the replenishment is time out or not.

Table7 Functional requirements related with Use Case 3: Replenish Stock

6.1.3 Test Requirements

Test requirements contain test cases and test scenarios whose goal is to validate the SCM
system. They are adapted from the validation scenarios defined in [38][39]. To simplify
the test requirements, concrete steps in validation scenarios are not provided in Table 8
since they will not be linked to scenariosin the UCM model.

Combining Graphical Scenarios with a Requirements Management System 82

Test C

ase and Validation Scenario

Description

Test G

roup 1: RejectOrder

The product order gets rejected (because the product does not
exist or because none of the goods can be found in any of the
warehouses).

ProductDoesNotExist

The order is rejected because the product does not exist.

InsufficientStock1WH1Iltem

The order is rejected because the desired quantity of goods is not
available in the single warehouse.

0

b InsufficientStocklWH2Iltems | The order is rejected because the warehouse has insufficient

8 stocks for all the desired products.

é InsufficientStock2WH1ltem The order is rejected because none of the warehouses have suf-

ficient quantities of the desired product.
InsufficientStock2WH2ltems | The order is rejected because none of the warehouses has suffi-
cient stocks for any of the desired products.

Test Group 2: ShipmentConfirmed Tests where the shipment is done.

PrimaryScenario The warehouse has the desired item.
ShipmentWithReplenish- The warehouse has the desired item. Replenishment with suffi-
mentSufflnv cient inventory.

[%)]

b ShipmentCannotReplen- The warehouse has the desired item. However, during replen-

O ishinvalidOrder ishment, the order is judged invalid.

é ShipmentWithReplenish- The warehouse has the desired item. During replenishment, the
mentinsufflnv inventory is insufficient and manufacturing gets involved.
ShipmentByNextWarehouse | The first warehouse has insufficient stocks but the second one

provides the shipment.

Test Group 3:PeriodicReplenishment | Tests for the periodic replenishment architectural alternative.
StopRightAway The periodic replenishment is stopped right away.
CheckButStocksSufficient The periodic replenishment is checked but stocks are sufficient.

o CheckAndStocklInsufficient The periodic replenishment is checked and stocks need to be

% increased. The order is valid and the inventory is sufficient.

% CheckAndStockinventory- The periodic replenishment is checked and stocks need to be

2 Insufficient increased. The order is valid and the inventory is insufficient.
CheckAndStocklInsuffi- The periodic replenishment is checked and stocks need to be
cientinvalidOrder increased. The order is however invalid (malformed. invalid

product or invalid quantity).

Test Group 4: ViewEvents Scenarios for the viewing of the events log.

CanAccesslLog The request for viewing the events is valid and the relevant
events are listed.
CannotAccessLog The request for viewing the events is invalid.

Test Group 5: LogRequests Scenarios checking the event log mechanism.
EventLogged Primary scenario where the event is logged.

§ InvalidLogRequest The event log request is invalid and denied.

@

8 InvalidLogRequestNoRepo The event log request is invalid. The system attempts to log the

@ request but cannot because the repository is unavailable.

|_

ValidLogRequestNoRepo

The valid log request fails because the repository is unavailable.

Table8 Test casesfor SCM (adapted from [38])

Combining Graphical Scenarios with a Requirements Management System

6.2. UCM Model for SCM

This case study takes advantage of the UCM model defined in [39] and adapts it to the
UCM model for SCM, based on user requirements described in 6.1.1. The UCM model
for SCM is created using our modified version of UCMNAV. Then it is exported as a
DXL script by using the new feature of UCMNAV discussed in Chapter 3. The DXL
script is interpreted and executed to create the UCM model for SCM in DOORS, using
the DXL library discussed in Chapter 4. The initial UCM model for SCM in DOORS is
shown (in part) in Figure 39 and Figure 40, whereas the complete model can be found in
Appendix C.

Figure 39 shows the UCM maps for SCM, as seen from DOORS. On the | eft side,
a tree-like explorer provides the view for the structure of the map module and for navi-
gating to a specific object in the module. UCM map objects are shown in the right panel.
They can be displayed in different views where we can customize different sorts, attrib-
utes, and filters for the displayed objects. The Map column shows diagrams for UCM
maps as well as the names of the objects they contain. The Type column indicates the ob-
ject types. For objects having links to/from objects in other modules, DOORS also pro-
vides the facility to display information about their traced objects. Thus, the Referred
Component column is used to display the linked components from the core module for
compRef objects in the maps module. In the same way, the column Referred Responsi-

bilities displays names of the linked responsibilities from the core module.

Combining Graphical Scenarios with a Requirements Management System 84

- \A:'SI.ucm Map H | Type | Refered Eomponentsl Referred Hesponsibilitiesd
=1 design1z1 ReplenishStock —
[#-1.1 BusinessProcessk 1.7 Replenis oc 13
[#- 1.2 PeriodicReplenishn | <Picture>
[#- 1.3 Checkavailability:
- 1.4 Defaulk: <Picture Pl
[1.5 Fulfilorder: <Pict . L~ "— Plocecrin
- 1.6 ManufactureFinist SelctMml it v
[=-1.7 Replenishatack: <
- 1.7.1 Build !J':' Toa\omtes]
- 1.7.2 SelectManu 2
- 1.7.3 PlaceOrder .l— rows
-1.7.4 ValidateWH .
- 1,7.5 AckTowH Upshatcstock F— o
- 1.7.6 SupplyFinist w
- 1.7.7 Warehouse AT 1
- 1,78 Manufactur ¥
-1,7.9 5hip - _
~1,7.10Rejectord | 1.7.1 Build respRef Build
clnliRecsive | g 7 9 SelectManufacturer % respRef SelectManufacturer
-1,7.12 Updateste »
~1.7.13 AckTaMan | 1.7.3 PlaceQrder respRef PlaceOrder
18 SourceGonds: <F | 4 7 4 ValidateWHorder ® respRef ValidateWHorder
[#- 1.9 SumbitOrder: <Pi o
-1.10 SupplyFinisheds | 1.7.5 AckToWH respRef AckToWH
1.7.6 SupplyFinishedGoods * stubRef
1.7.7 Warehouse LA compRef Warehouse
1.7.8 Manufacturer ¥ compRef Manufacturer
1.7.9 Ship ¥ tespRef Ship
i — - e
|Username: bajiang |Exc|usive edit mode v

Figure39 UCM mapsfor SCM

UCM scenarios for SCM are shown in Figure 40. As this is the initial UCM model for
SCM, only internal links are created between UCM objects.

B WSLucm Scenarios Hl Type | theD escription i’
[= 1 designi23 =
B- 1.1 RejectOrder 1 dES|gn1 23 UCH modsl
= 1;1'1 ProductDoeshotExst | 4 q RejectOrder scenarioCroup The product order gets
E-1.1.1.1 seqd the goods can be fourw
- L.L1.1.1 Purchase 1.1.1 ProductDoesMotExist scenatio The ordet is rejected be
1.1.1.1.2in1
-1.1.1.1.3 Mavigate
1.1.1.1.4 Present
.1.1.1 seq0 se
1.1.1.1.5 Enterre 1114 9 4
1.1.1.1.6 Receivel
1.1.1.1.7 oukl
1.1.1.1.8in2
LLLlavaldateC) 4 4 4 19 PurchaseGoods da
1.1.1.1.10 [Mosucl .
- 1,111 11 aut2 1.1.1.1.2in1 da
CLLLLIZRetC 4 4 4 4 3 NavigateToSite " do
[#-1,1.2 Insufficient Stockl W -
- 1.1.3 InsufficientStackiwr | 1.1.1.1.4 PresentCatalog do
[#-1.1.4 InsufficientStock2WwWt 1.1.1.1.5 EnterOrderinfo LAF
[#-1,1.5 Insufficient Stockz'wh - -
[1.2 ShipmentConfirmed 1.1.1.1.6 ReceiveOrder do
- 1.3 PeriodicReplenishment 1.1.1.1.7 out do
1.1.1.1.8 in2 do
1.1.1.1.9 ValidateOrder ¥ 4o
1.1.1.1.10 [NoSuchProduct] condition |

Figure40 UCM scenariosfor SCM

Combining Graphical Scenarios with a Requirements Management System

85

After being imported into DOORS, the UCM model elements need be linked to user re-
quirements and from system requirements. In this case study, UCM maps and component
reference under them are linked to the matching Use Case in the user requirements. Re-
sponsibility references are linked to concrete steps in a Use Case. Each piece of system
requirements is linked to the corresponding responsibility reference in UCM maps.

By using the traceability column feature provided by DOORS, a traceability view
can be used in the user requirements module to show relationships to UCM maps and,
indirectly, to system requirements (Figure 41). For each user requirement, the traceability
view shows the information about objects in UCM maps (column UCM Requirements)
that are linked to it. In the same way, system requirements that link to UCM objects are

shown in column System Requirements.

AV - a4 -

System Regquirements | UCM Requirements | User Requirements E | D ;I
ReplenishStock 5 Use Case 3: Replenish Stock 387
icture
Warehouse The Fetailer System orders goods from a marmifacturer to replenish stock

for a particular product in a particular warehouse.

The watehouse should he Build 5.1 The Retailer System constructs a purchase order for the« 36 |
able to buidd the order for a : . .
manufackurer. product with the necessary quantity to bring the product

up to its maximum level for that warehouse.

The warehouse should be SelectManufacturer 5.2 Place Order. The Retailer system submits the 30

::aii;azf:;z: the appropriate FlaceOrder purchase order to the relevant Manufacturing System

The warehouse should be [Brand1, Brand2 or Brand3] as dictated by the product.
able to place the order to the
zelected marafacturer.

o N
v

|Username: bajiarg |Exc|usive edit made

Figure4l Traceability view from user requirements

The imported UCM scenarios are aso linked from test cases in test requirements as
shown in Figure 42. Column “In-links from Test Cases’ indicates the test case or test
group which describes the linked scenario or scenario group. Note that concrete scenario

steps are hidden in the traceability view in Figure 42 by specifying afilter.

Combining Graphical Scenarios with a Requirements Management System 86

& WSI'UC"“_ Scenarios E Irinks fram T est Cazes =
= IFTEISIQIHRIZS tord 1.1 RejectOrder Test case: FejectOrder.
s EIRCY der The product erder geis rejected (hecause the
" 1.1.1 ProductDoesNotE> product does not exist or hecause none of the
[1.1.2 InsufficientStockl! gzoods cat be found in any of the warehouses)
B+ 1.1.3 InsufficientSkockL!
" 114 InsuFF!c!entStockZ: 1.1.1 ProductDoesMotExist Test 3cenario: ProductDoest otExist.
G- 1.1.5 InsufficientStockz The order is rejecied because the product do
B-1.2 ShiprentConfirmed ot exist.
[1.2.1 PrimaryScenario
" 1.z.2 ShpmenththRepl 1.1.2 InsufficientStock1WH1ltem Test Acenario: InsufficientStock] WH1Iter
" 1.2.3 ShipmentCannotf The order is rejected because the desired
B 1.2.4 ShipmentiithRepl quantity of goods is not available in the singl
- 1,2.5 ShipmentByNextiy warehouse.
E-1.3 PeriodicReplenishment
o Sommaaney | 1.1.3 InsufficientStock1WH2ltems < Test Scenario
" o BCRBLESTOCkSSY Insufficient3tock] WH2ltems.
(- 1,3.3 CheckAndstocking The order is rejecied hecause the warehouse
- 1.3.4 CheckAndStockn. has insufficient stocks for all the the desired
#-1.3.5 CheckandStockIng products.
1.1.4 InsufficientStock2WH1Iltem Test Bcenario: InsufficientStockd WHI1Iter
The order is rejecied hecause none of the
warehouses have sufficient yuantities of the .
N I 24 | 3
|Llsername: bojiang |E><clusive edit mode i

Figure42 Scenariostraceability view

After creating links between the UCM model and external requirements, user require-
ments, system requirements, and test requirements of are connected through the UCM
model with relations shown in Figure 35. By exploring links between them, the com-
pleteness and consistency of requirements can be checked. For instance, UCM maps can
be validated against their linked use cases and system requirements, as shown in Figure
41, as well as UCM scenarios being validated against their linked test cases as shown in
Figure 42.

Links can be used asfilter conditions to find out isolated requirements. For exam-
ple, in our first version of the UCM model, the map periodic replenishment and its ob-
jects have no links to user requirements. This is detected by applying the following filter
condition to the map module: Not (Has out-links through /WS-link with
regts./maps/satisfies)). This could become a reason to remove the map periodic replen-
ishment in the next version of the UCM model. Also, the use cases “Log Events’ and
“View Events’ from the user requirements have no support in the UCM model. This can
be detected by applying the following filter condition: Not (Has in-links through
/WS-link with reqgts/maps/satisfies). This could justify the addition of new maps for
these two use cases in the next version of the UCM model.

Combining Graphical Scenarios with a Requirements Management System 87

6.3. Managing Changes to the UCM Model

As we discussed in last section, validating the first version of the UCM model for SCM

to other requirements may lead to the detection of incomplete UCM models and incon-

sistencies with other requirements. This (or other reasons) can be a start point for the next
version of the UCM model. Once the UCM model is modified in UCMNAV, anew DXL
script is generated to update the UCM model in DOORS. This section uses a hew version
of the UCM model for SCM to validate the update mechanism discussed in section 5.3.

The following changes in Table 9 are applied on the first UCM model for SCM to

obtain the second version. They cover the addition, modification, and deletion of objects

and attributes from the Core, Maps, and Scenarios packages in the metamode!.

Core Maps Scenarios
Add Responsibility: LogEventsRoot (Map): ViewEvents:
ValLogRequest ValLogRequest (respRef) CanAccessLog
LogToRepository LogToRepository (respRef) CannotAccessLog
LoglInvalidRequest LoglnvalidRequest (respRef) LoaR is:
EnterCriteria MonitoringSystem (compRef) OgRequests.
ValidateRequest) Even_tLogged
ViewEventsRoot(Map): InvalidLogRequest
Component: EnterCriteria (respRef) InvalidLogRequestNoRepo
MonitoringSystem ValidateRequest (respRef) ValidLogRequestNoRepo
Administrator MonitoringSystem (compRef)
Administrator (compRef)
Modify | Change speed factor | ReplenishStock(Map): Change the description of Pri-
of ConsumerProc Move PlaceOrder (respRef) from maryScenario (Scenario) in
(Device) from 2to 1 Manufacturer (compRef) to Ware- ShipmentConfirmed (Sce-
house (compRef) narioGroup)
Rename Build(respRef) to Buil-
dOrder and change description
Move ValidateWHorder(respRef)
position within same component.
Move SelectManufacturer(respRef)
position within same component.
Delete | Responsibility: PeriodicReplenishment (Map): PeriodicReplenishment:

TEST-Timeout

TEST-Timeout (respRef)
Replenishment (Stub)
Warehouse (compRef)

StopRightAway
CheckButStocksSufficient
CheckAndStocklInsufficient
CheckAndStockinventory-
Insufficient
CheckAndStockInsuffi-
cientinvalidOrder

Combining Graphical Scenarios with a Requirements Management System

Table9 Changes applied on the first UCM model for SCM

88

The rest of this section will present the new UCM model after applying the changes listed
in Table 9, including its interactions with other requirements.

6.3.1 Addition of New Maps and Core Elements

As shown in Figure 43, maps LogEventsRoot and ViewEventsRoot were added into the
map module for SCM, including responsibility references and component references un-
der them. Referred components and responsibilities are also listed in traceability columns
New Components in core and New Responsibilities in core. Only new objects in the map
module are shown in Figure 43 by applying a filter to select objects having no links
to/from external requirements.

M ap H | Type | Mew Components in c0r4 Mew Responzibilities in (=
1 design117 root
1.11 LogEventsRoot thap
<Picture>
Smatagpd
oot T [o] s
L“I-Ihﬂ :‘

n —_,_\\)

H— =
1.11.1 ValLogRequest " respRef Vall ogRequest
1.11.2 LogToRepository ¥ respRef LogTcRepository
1.11.3 LoglnvalidRequest P tespRef LoglnvalidRe gque st

>

1.11.4 MonitoringSystem compRef MonitoringSystem

1.12 ViewEventsRoot map

<Pictute>

TS)

1.12.1 EnterCriteria %

1.12.2 ValidateRequest ¥ tespRef ValidateRequest
>
»

tespRef EntetCritetia

1.12.3 Administrator compRef A dministrator

1.12.4 MonitoringSystem compRef MMonitoringiystem

>

Figure43 New maps and core elements

6.3.2 Addition of New Scenarios

New scenario groups and their scenarios were added to the scenario module in the UCM
model for SCM, as shown in Figure 44. Scenarios with links from test requirements and

Combining Graphical Scenarios with a Requirements Management System 89

concrete steps of new scenarios are filtered out by defining a filter for the scenario mod-

uleview. This provides a clear view focusing on new scenarios in the scenario module.

Scenarios Hl Type | theDescription =
1.4 ViewEvents seenatiofroup Scenatios for the viewing of the
events log.
1.4.1 CanAccessLog grenatio
1.4.2 CannotAccessLog scenario
1.5 LogRequests scenatioCroup Scenatios checking the event log
mechatistm.
1.5.1 EventLogged scenatio
1.5.2 InvalidLogRequest scefnatio
1.5.3 InvalidLogRequestNo scenatio
Repo
1.5.4 ValidLogRequestNoR scenatio L
epo
4 I I L|_I
|Llsername: bajiang |E><clusive edit mode 4z

Figure44 New scenarios after the update

New UCM maps, core elements, and scenarios added into the UCM model are isolated
with respect to other requirements. They have to be linked manually with externa re-
quirements. The traceability view in Figure 45 shows that new links were created from
system requirements to use cases through the new UCM maps. Test requirements should

also be linked to the new UCM scenarios.

Combining Graphical Scenarios with a Requirements Management System Q0

A&7 B a4 -

desired selection critetia

The retailer system should provide the
ahility for the administrator to validate
the log viewing request,

K|

The goal of this use case is to dlow the Demo Uset to view the log of
events that aceurred as a result of ninning the demo

|Username: bojiang

|E><c\usive edit mode

Sypstern Regquirements I LICH Requirements I Uzer Requirements E | ID A
The monitoring system should ahility VallogRequest 8 Use Case 7: Log Events o34
to walidate the log recuest LogToRepository -
The monitoring system should abilty LoglnvalidRequest Ty, goal of this use case is to log events relating to the execution of
tolog the event ta the repository. other use cases for the putpose of enabling a Demo User to view these
The monitaring system should ability events, [n this way the Demo User will be able io see which web
tolog the mrvalid request services have been consumed by a given operation and the outcomes
of those web services.
The events should be able to be viewed at any time. This may mean
that for asynehronous operations one of more web services may still be
exeouting,
The retailer system should provide the EnterCriteria q Use Case 8: View Events o35
ability for the administrator to enter the ValidateRequest)

I
.=

Figure45 Adding links between new UCM maps to/from external requirements

6.3.3 Deletion of Maps

Map PeriodicReplenishment and its objects should be removed from the map module

while importing the new version of the UCM model. However, exceptions were gener-

ated during the update process. A responsibility reference TEST-Timeout cannot be de-

leted by the update process because it has an incoming link from one system requirement,

which indicates that this system requirement depends on it. Map PeriodicReplenishment

also cannot be deleted because its child TEST-Timeout still exists. The update process of

the UCM model reports these problems in an exception view, as shown in Figure 46. To

remove these two objects in the report, the link between TEST-Timeout and system re-

guirements needs to be manually removed first. Then TEST-Timeout and its parent map

can be deleted, either manually or by re-executing the update process.

Combining Graphical Scenarios with a Requirements Management System

91

ap EJ Type | Can't delete | in-Links from Systern Reguirements 1=
1.2 PeriodicReplenishment map True
<Picture=

1.21 TEST-Timeout reepRef Trae MAFEI-chatge TCI Sy atetm
Requirements
The watehouse should be able to
determinie the replenishment is
tithe out or fot.

| | _’ILI
4

|Llsername: bajiang |Exc|usive edit mode

Figure 46 Exceptions generated while deleting maps

6.3.4 Deletion of Scenarios

In Figure 47, the scenario group PeriodicReplenishment and its contained scenarios are
also reported as “Can't delete” by the update function, as indicated by the column of the
same name. They have incoming links from test cases in the test requirements. To re-
move them, links from the test requirements need to be removed first.

Scenarnios E | Type | Can't deletel indlinkz from T est requirements =l
1.3 PeriodicReplenishment seenario True Scenarios for the periodic replenishment
Croup architectural alternative.
1.3.1 StopRightAway seenatio True The periodic replenishment is stopped hefore
heing performed even once.
1.3.7 CheckButStock=sSufficient scenario True The periodic replenishment is checked hut

stocls ave sufficient.

1.3.3 CheckAndStockinsufficient s scenatio True The periodic replenishment is checked and
stocks need to he increased. The order is

valid and the imventory is sufficient.

1.3.4 CheckAndStockinventoryl scenario True The periodic replenishment is checked and
stocks need to be increased. The order is

nsufficient valid and the imventory is insufficient.
1.3.5 CheckAndStocklnsufficient scenario True The periodic replishment is checked ans ~ —
; stocks need to he increased. The order is
InvalidOrder I 1 inovalid (malformed. invalid product
or invalid quantity).
i s
|Username: bojiang |Exc|usive edit mode 4

Figure 47 Exceptions generated while deleting scenarios

Combining Graphical Scenarios with a Requirements Management System 92

6.3.5 Modification to Maps

Although there are four changes, listed in Table 9, applied to the map Replenish Stock,
not all of them will lead to suspect links in the user requirements. The later two changes
do not trigger suspect links because they only change values of position attributes of ob-
jects under the map Replenish Stock. Position attributes are included in Table 3. The first
two changes affect the meaning of responsibilities Build and PlaceOrder by modifying
associations or attributes not included in Table 3. They cause related links to be suspected

in the user requirements, as shown in Figure 48.

Usger Requirements E | Suszpect In-inks from LICH :I

5 Use Case 3. Replenish Stock

The Retailer System orders goods from a marafacturer to replendsh stock
for a particular product in a particular warehouse.

5.1 The Retailer System constructs a purchase order for the« /W5kchange UCM/maps/W5Lucm:

. . . Object 031
product with the necessary quantity to bring the product Last modified on 0509/05 110316,
up to its maximum level for that warehouse. Suspicion has never heen cleared.
5.2 Place Order. The Retailer system submits the WSl-change UCM/maps/WSLucm:
Object 033

purchase order to the relevant Manufacturing System Last modified on 0509/05 110316,
[Brand1, Brand2 or Brand3] as dictated by the product. Suspicion has never been cleared

5.3 Validate Order
5.4 Send an acknowledgement back to the Retailer System

5.5 The Manufacturing System constructs a shipment of the
requested quantity of product.

E R The Manufacturinn Syvctem chine the annde and cende -
o y
|Username: bojiang |Exc|usive edit mode 4

Figure48 Triggering suspect linksin user requirements

Since the two modified UCM objects, Build and PlaceOrder, also have links from system
requirements, suspect out-links are triggered in related system requirements by their new

definitions, as shown in Figure 49.

Combining Graphical Scenarios with a Requirements Management System 93

| ISuspect out-lirks j ||F\II levels j | o 22 55 | ’% =EEE | e kT 8] | L] | o
[n] | EI Suspect Dutinks to UCM model |;|
12 1.3 Functional requirements for:

Replenish Stock
19 The warehouse should be able to build the order fora] MW 5L-change UCKM maps/ Y5 Lucm:
marmfacturer. Ohject 031
Last modified on 05/02/035 20:54:15.
Suspicion has never been clearad.
20 The warehouse should be able to select the appropriate
marmafacturer.
21 Thewarehouse should be able to place the order to the selected W AN SI-change UCM maps/ W5 Lucm:
marfacturer. Ohject 033
Last modified on 05/02/03 20:54:1%.
Suspicion has never been cleared.
43 The warehouse should be able to receive the products shipped »
by the manufacturer.
44 The warehouse should be able to update its stock upon the &
recipts of goods.
45 The warehouse should be able to send acknowledgement back ¥
LI A . = |
|Username: bajiang |E><c|usive edit riade 4

Figure49 Triggering suspect out-links in system requirements

The modified UCM objects should be validated to their linked external requirements. The
validation process may lead to further modifications of the UCM model or its linked ex-
terna requirements, until everything is stable and consistent.

6.3.6 Modification to Scenarios

The new description of the scenario PrimaryScenario may have changed its meaning,

hence causing two suspected links in their linked test scenarios, as shown in Figure 50.

The test cases

should be validated against the revised scenarios. Further modifications

may be required from the UCM scenario or the test requirements, depending on the vali-

dation result.
1] | Test Cazez EI Changes in UCK Scenarios | ;I
= L3

¢ 2 Test case: ShipmentConfirmed.
Scenarios where the shi is done.with or without r

224 Test Scenario: PrimaryScenatrio. g fWSI-chuflge UCcM s Obioct 0150

. . scenarios/scenarios. e Ohject
The warehouse has the desired iiem. Last modifisc on 0309/05 110354
Suspicion has never been cleared
2.2 TestScenario: d
ShipmentWithReplenishmentSuffinv.

The warehouse has the desived ftem. Replenishment with sufficient
inventory.

1123 TestScenario: "

ShipmentCannotReplenishinvalidOrder.

The warehouse has the desived item. However. during replishment. the
order is judged imvalid.

e - .- - -

K| 3
|USername: bojiang |E><c|us|ve edit mode v

Figure50 Triggering suspect out-linksin test cases

Combining Graphical Scenarios with a Requirements Management System 94

6.4. Managing Changes to External Requirements

When externa requirements are changed, their linked UCM model elements may be af-
fected. Adding new externa requirements often lead to the addition of corresponding
UCM objects or scenarios. Removing part of system requirements and test requirements
often make the linked UCM objects either irrelevant or unsupported at the lower level.
User requirements cannot be deleted when they have links form the UCM model. The
links between them and the UCM model should be cleared prior to removal. Such delete
actions can make part of the UCM model having no links to user requirements, thus the
latter may have no further reason to exist in the UCM model. Modifying external re-
guirements will trigger the evolution of the UCM model. Our approach provides a DXL
function that generates a report for changed requirements related to the UCM model, in-
cluding their previous definitions. Figure 51 shows the report of changed requirements
linked to/from the UCM maodel, including user requirements, system requirements, and

test cases.

WSl
/lchanged requirements:

BuildOrder (respRef hl142) hassuspect Inlinks

suspect Module:/WSI- change regts./System Requirements Object:19 Object Text modifyObject
05/11/05 03:29:34

The warehouse should be able to build the order. -> The warehouse should be able to build the order
for a manufacturer.

ValidateWHorder (respRef hl47) hassuspect Outlinks

suspect Module:/WSI- change regts./User Requirements Object:889 Object Heading modifyObject
05/11/05 03:27:30

Check whether the order is valid or not. -> Validate the order placed by the warehouse is valid or not.

ProductDoesNotExist (scenario scenarioGroup-RejectOrder_scenario-ProductDoesNotExist) has
suspect Inlinks

suspect Module:/WSI- change reqgts.//Test requirements Object:3 Object Text modifyObject
05/11/05 03:26:02

The order is rejected. -> The order is rejected because the product does not exist.

Figure51 Reporting changed requirementsto UCMNAvV

The report in Figure 51 can work as an effective way of triggering and guiding the evolu-
tion of the UCM models to adapt to changesin their related requirements.

Combining Graphical Scenarios with a Requirements Management System 95

6.5.

Discussion

The case study presented in this chapter has illustrated the usage of a UCM model in
combination with the DOORS RMS. It mainly shows the interaction between the UCM

model and other requirements when one of them is changed. Keeping the traceability and

consistency in requirementsis one of the most important benefits of our approach.

6.5.1 Benefits and Limitations

The approach described in this thesis can bring interesting benefits to requirements engi-

neers during requirements elicitation, validation, and management:

Introducing UCM into DOORS. The Use Case Map notation can describes multi-
plevisual scenariosin asingle, integrated view. This promotes the understanding
and reasoning about the system as awhole. Also a UCM model can collaborate
well with other requirements, such as user requirements, system requirements and
test requirements.

Integration of suitable tools. Our approach defines a mechanism to import and
update a UCM model from the best UCM tool currently available (UCMNAV) to a
popular commercial RMS (DOORS). Each tool can be used to perform the tasks
that they do the best. For instance, UCMNAYV can be used to modify the UCM

model efficiently, or to transform it to other representations.

The current approach al so suffers from some limitations:

No direct modification of a UCM model in DOORS. Any change to the UCM
model needs be performed in atool separate from the RM S, which brings some
inconveniences to regquirements engineers.

Lack of support for more traceable UCM objects in the RMS. More UCM objects
should be added into RM S to express a UCM model more completely. For in-
stance, adding more UCM-related performance concepts into the RMS would en-
able the UCM model to be more easily linked to non-functional performance re-
guirements. However, the framework suggested in this thesis can easily be ex-
tended to support new types of objects and attributes from the UCM metamodel.

Combining Graphical Scenarios with a Requirements Management System 96

6.5.2 Comparison with Other Tools

Scenario Plus
Scenario Plusis a plug-in for DOORS which was introduced in section 2.3.1. It enables

requirement managers to create awide variety of visua models within DOORS:

* UseCaseDiagrams

* Goal Models

* Domain Knowledge Models

» Entity Relationship Models

* DOORSstyle Information Model Diagrams

» Graham-style Agent Interaction Models

* Yourdon-style Dataflow Diagrams

* Kilov-style Object Relationship Diagrams

» Decision Trees

e i* Srategic Dependency Diagrams (for NFRs)

e Toulmin-style Argumentation Models

* Onion Models of Sakeholder Relationships
This tool provides some advantages to the requirements manager in RMS. For instance,
the above models and diagrams can be modified through the Scenario Plus plug-in in
DOORS, without relying on external tools. Also, the elements used in these diagrams are
traceable objects, which can be linked to/from other requirements. In this tool however,
these diagrams and models cannot be exported to and imported from other tools, which
would be more efficient to modify them and derive more useful information (e.g. design
information) from them. The usability of the diagram editors is very limited, and the per-

formances rather slow. It also does not support expressing UCM scenariosin DOORS.

DOORS/Analyst
DOORSAnalyst is a plug-in for DOORS which was introduced in section 2.3.2. It en-

ables users to visualize requirements using the following UML 2.0 diagrams:
* UseCaseDiagrams
* Sequence Diagrams

* ClassDiagrams

Combining Graphical Scenarios with a Requirements Management System 97

* Flow Chart Diagrams

» Sate Chart Diagrams

* Architecture Diagrams
These diagrams can be modified inside the RMS through DOORS Analyst, which pro-
vides a user interface with good performance and usability. Some specific elements in
diagrams can be linked to/from other requirements. Therefore, traceability can be estab-
lished between requirements and detail parts of these diagrams, in a way similar to our
approach.

This tool can export UML diagrams inside DOORS to other professional model-
ling tools but it does not provide an import mechanism. UCMNAV can transform UCM
models to a variety of other representations (MSC, sequence diagrams, LQN, etc.), and
UCM models are meant to be importable to DOORS. Other limitations of this tool in-
clude the lack of support for UCM models for selecting which diagram elements should
be transformed into linkable objects.

Implementations
DOORS/Analyst is not implemented in DXL. It is actually adapted from the UML dia

gram editor from Telelogic Tau G2 (without the analysis or transformation capabilities
found in Tau). DOORS/Anayst works as a separate executable program and uses the
DOORS API to embed the diagrams created in DOORS/Analyst into the DOORS data-
base. This implementation provides a professional diagram editor inside DOORS as well
as excellent performance for integrating diagrams and traceable items. However, thisim-
plementation is tightly coupled and does not provide the user with flexible ways to
changeit (e.g., viaauser-oriented API).

Scenario Plus implements a scenario diagram editor inside DOORS in DXL. Due
to the limitation of DXL in diagram expression, the performance of the diagram editor is
very limited.

Both plug-ins provide diagram editors inside DOORS, which are more convenient
for users than our approach. However, the lack of flexibility of DOORS/Analyst and the
limited DXL performance when drawing diagrams convinced us to give up the idea of an

internal UCM editor. Instead, our approach uses a fully functional but external scenario

Combining Graphical Scenarios with a Requirements Management System 98

editor, UCMNAvV, and focuses more on expressing scenarios into traceable requirements

items.

Complementary Usage
It is worth mentioning that our tool can be seen as complementary to Scenario Plus and

DOORS/Analyst. They can all cohabit within DOORS, and our tool brings a UCM per-
spective that is currently missing. This can aso provide an opportunity to explore and
exploit links between UCM models and other types of requirements and design models.
Additionally, by having access to the UCMNAYV TOOL, information other than just UCM
scenarios (e.g., test goals, MSCs, and performance models), can be derived from the
UCM mode.

6.6. Chapter Summary

Through a Supply Chain Management case study, we demonstrated that our approach is
applicable to arealistic example, and beneficial. First, UCMs give a complementary sys-
tem view, where visual scenarios are integrated, to requirements engineers and designers.
Then, the RMS manages al requirements as a whole, including UCMs, using various
links between them. The completeness of requirements can be checked by using the filter
functions provided by the RMS. The consistency of requirements is preserved by verify-
ing requirements that have suspect links. The case study also checked the correctness and
robustness of the DXL library by covering al the creation, modification, and deletion

functions on core, map, and scenario elements.

Combining Graphical Scenarios with a Requirements Management System 99

Chapter 7. Conclusions

This chapter reviews the contributions of the thesis and discusses further work arising

from several issues encountered along the way.

7.1. Contributions

This thesis presents an extensible framework used to combine scenarios and other re-
quirements in a RMS. The key issue in this framework is introducing visua scenarios
(UCMs) into aRMS (DOORS). Through the implementation of this key issue, this thesis
makes three main contributions, with a fourth one that relates to the validation of the

framework.

Contribution 1: Abstraction of a UCM metamodel from various sources.

Based on the draft ITU.T Z.152 [20] and the UCM scenario DTDs|[7], the class diagram
describing the current UCM metamodel was generated semi-automaticaly by using re-
verse-engineering tools. This UCM metamodel, created in collaboration with Y .X. Zeng,

was valuable in conducting the improvements to UCMNAvV accomplished in thisthesis.

Contribution 2: Addition of a DXL export mechanism in UCMNAv

UCMNAV was extended with a new functionality to export Use Case Map models as
DXL scripts which can be understood and executed by the target RMS tool, DOORS.
Only a subset of the UCM model information is exported, which is defined and explained
with ametamodel (see Chapter 3).

Contribution 3: Development of an extensible import/update mechanism for UCM
modelsin DOORS

A DXL library was created for DOORS, which supports the creation and update of UCM
model in DOORS using DXL scripts generated by UCMNAYV (see Chapter 4 and Chapter

Combining Graphical Scenarios with a Requirements Management System 100

5). The update of UCM models in DOORS may cause interactions with other require-
ments, at a higher level (user requirements) or at a lower level (system or test require-
ments). Change analysis is provided with various filters and views when the UCM model

is updated or external requirements are changed.

Contribution 4: lllustrative experiment on the interactive and iterative evolution of
UCM models and other requirements

A case study was produced to validate our framework. The framework is applied on a
Supply Chain Management system. The case study demonstrates that UCMs and other
reguirements can be checked for consistency and completeness, even as they evolve over
time (Chapter 6).

7.2. Future work

Although we have made a number of significant achievements, our framework can be

further improved. Suggestions for future work include:

I ntroduce other relevant UCM elementsinto the RMS

When using UCMs for high-level design, many UCM elements other than those in our
metamodel could be imported into the RMS as traceable objects. For instance, UCM
timestamp points and response-time requirements could be important to express per-
formance requirements. The framework could easily be extended to support such ele-

ments, if they are proved to be relevant.

Export UCM related requirements from DOORS to UCMNav

In the current approach, the link from DOORS to UCMNAYV is somewhat weak. Only
changes to UCM-related requirements are exported in atextua report. The export process
could be enhanced by exporting al UCM-related requirements from DOORS to
UCMNAvV and saving them as properties of the corresponding UCM elements in
UCMNAV. To achieve this goal, the current requirements report mechanism needs to be
improved to include all UCM related requirements in the report. Furthermore, UCMNav

should be improved to understand these requirements properties and enable their usage

Combining Graphical Scenarios with a Requirements Management System 101

for traceability and navigation (e.g., via pop-up menus accessible from UCM elements, a
laDOORS).

Link UCM elements with other types of requirements

In our case study, UCMs act as a bridge linking user requirements, system requirements,
and tests. Obviously, UCMs could be used at a lower level of abstraction. More detailed
UCM models could be used to refine system requirements as we move towards software
requirements, component-based system requirements, and detail design specification. We
believe that the framework is generic enough to support such application, but this remains
to be verified.

I ntegration with other tools, especially DOORS plug-ins

Asdiscussed in section 6.5.2, our tool could be used in collaboration with complementary
DOORS plug-in such as DOORS/Analyst and Scenario Plus. The feasibility and useful-
ness of such combination deserves further exploration.

Combining Graphical Scenarios with a Requirements Management System 102

References

[1] Alexander, |.: Scenario Plus - Tools for Requirements Engineering.
http://www.scenarioplus.org.uk. Accessed March 2004.

[2] Amyot, D.: Introduction to the User Requirements Notation: Learning by Example.
In: Computer Networks, 42(3), 285-301, 21 June 2003.

[3] Amyot, D. and Andrade, R.: Description of Wireless Intelligent Network Services
with Use Case Maps. In: SBRC'99, 17" Smpésio Brasileiro de Redes de Compu-
tadores, Salvador, Brazil, May 1999, 418-433.

[4] Amyot, D. and Eberlein, A.: An Evaluation of Scenario Notations and Construction
Approaches for Telecommunication Systems Devel opment. In: Telecommunica-
tions Systems Journal, 24.1, September 2003, 61-94.

[5] Amyot, D., Echihabi, A., He, Y.: UCMEXPORTER: Supporting Scenario Transfor-
mations from Use Case Maps. In: NOuvelles TEchnnologies de la REpartition
(NOTERE' 04), Saidia, Morocco, June 2004, 390-405.
http://ucmexporter.sourceforge.net

[6] Amyot, D. and Mussbacher, G.: Bridging the Requirements/Design Gap in Dy-
namic Systems with Use Case Maps (UCMs). Tutorial in: 23rd International Con-
ference on Software Engineering (ICSE'01), Toronto, Canada, May 2001.
http://www.UseCaseM aps.org/pub/icse0l.pdf

[7] Amyoat, D., He, X., He, Y. and Cho, D.Y.: Generating Scenarios from Use Case
Map Specifications. In: Third International Conference on Quality Software
(QYC'03), Dallas, November 2003, 108-115.

[8] Amyot, D. and Logrippo, L.: Use Case Maps and LOTOS for the Prototyping and
Vaidation of aMobile Group Call System. In: Computer Communication, 23(12),
2000, 1135-1157.

[9] Amyat, D., Roy, J.-F., and Weiss. M.: UCM-Driven Testing of Web Applications.
In: A. Prinz, R. Reed, and J. Reed (Eds.) 12th SDL Forum (SDL 2005), Grimstad,
Norway, June 2005. LNCS 3530, Springer, 247-264.

[10] Andrade, R.: Applying Use Case Maps and Formal Methods to the Development of
Wireless Mobile ATM Networks. In: Lfm2000: The Fifth NASA Langley Formal
Methods Workshop, Williamsburg, Virginia, USA, June 2000.

[11] Breitman K. and Leite J.C.S.P.: Scenario Evolution: A Closer View on Rela-
tion-ships. In: Proc. of the Fourth Intl Conf. on Requirements Engineering (ICRE
2000), Schaumburg, USA, 2000, 95-105.

[12] Buhr, R.J.A. and R. S. Casselman: Use Case Maps for Object-Oriented systems.
Pretice-Hall, 1996.

References 103

[13] Buhr, R.J.A.: Use Case Maps as Architectural Entities for Complex Systems. In:
|EEE Trans. on Software Engineering, Vol. 24, No. 12, Dec. 1998, 1131-1155.

[14] Elammari, M. and Lalonde, W.: An Agent-Oriented Methodology: High-Level and
Intermediate Models. In: Proc. of the 1st Int. Workshop. on Agent-Oriented Infor-
mation Systems (AOIS 99), Heidelberg, Germany, June 1999.

[15] Ghostscript, Ghostview and GSview. http://www.cs.wisc.edu/~ghost/. Accessed
May 2005.

[16] Hamou-Lhadj, A., Braun, E., Amyot, D., and Lethbridge, T.: Recovering Behav-
ioral Design Models from Execution Traces. 9" European Conference on Software
Maintenance and Reengineering (CSMR), Manchester, UK, March 2005. IEEE
Computer Society, 112-121.

[17] He, Y., Amyot, D., and Williams, A.: Synthesizing SDL from Use Case Maps. An
Experiment. In: 11th SDL Forum (SDL'03), Stuttgart, Germany, July 2003. LNCS
2708, 117-136.

[18] IBM, Rational Rose Enterprise Edition 2003,
http://www-306.ibm.com/software/awdtool s/devel oper/rose/. Accessed April 2005.

[19] ITU-T: Recommendation Z.150, User Requirements Notation (URN) — Language
Requirements and Framework. Geneva, Switzerland, 2003.

[20] ITU-T, URN Focus Group: Draft Rec. Z.152 — UCM: Use Case Map Notation
(UCM). Geneva, Switzerland, Sept. 2003. http://mwww.UseCaseM aps.org/urn/

[21] Jarke M., Bui X.T., and Carroll J.M.: Scenario Management: An Interdisciplinary
Approach. In: Requirements Engineering, 3(3/4), 1998, 155-173.

[22] Lamsweerde A.v.: Requirements Engineering in the Year 00: A Research
Per-spective. In: Proc. of 22nd Intl Conference on Software Engineering (ICSE).
Limerick, Ireland, ACM press, 2000, 5-19.

[23] Layered Queueing Resource Page. http://www.layeredqueues.org/. Accessed May
2004.

[24] Miga, A.: Application of Use Case Maps to System Design with Tool Support.
M.Eng. thesis, Dept. of Systems and Computer Engineering, Carleton University,
Ottawa. October 1998. http://www.UseCaseM aps.org/tools'ucmnav/

[25] Nuselbeh B. and Easterbrook S.: Requirements Engineering: A Roadmap. In: A.
Finkelstein (Ed), The Future of Software Engineering, ICSE 2000, ACM Press,
2000, 35-46.

[26] Object Management Group, UML 2.0 Super structure Specification, OMG Adopted
Specification, April 30, 2004.

[27] Petriu, D.B.: Layered Software Performance Models Constructed from Use Case
Map Specifications. M.Eng. thesis, Dept. of Systems and Computer Engineering,
Carleton University, Ottawa, Canada, May 2001.

References 104

[28]

[29]

[30]
[31]
[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

Petriu, D.B., Amyot, D., and Woodside, M.: Scenario-Based Performance Engi-
neering with UCMNAV. In: 11th SDL Forum (SDL'03), Stuttgart, Germany, July
2003. LNCS 2708, 18-35.

Petriu, D.B., Amyot, D., Woodside, M, and Jiang, B.: Traceability and Evaluation
in Scenario Analysis by Use Case Maps. To appear in: S. Leueand T. Systa (Eds.)
Scenarios. Models, Algorithms and Tools, LNCS 3466, Springer, 2005.

SpeedDev Inc., From Requirements Gathering to Product Release,
http://www.speedev.com/requirements-management.htm, accessed May 2005.

Telelogic AB, DOORS Analyst, http://www.tel el ogic.com/products/doorsers/. Ac-
cessed May 2004.

Telelogic AB, DOORSERS, http://www.tel el ogic.com/products/doorsers/. Ac-
cessed May 2004.

Telelogic AB: DXL Reference Manual of DOORS 7.0, 2004.

UCM User Group: Use Case Maps Navigator 2 (UCMNAvV),
http://www.usecasemaps.org/tool Sucmnav/index.shtml. Accessed April 2005.

UCM User Group: UCMNAv XML DTD, version 0.23, November 2001
http://www.usecasemaps.org/xml/dtdindex.html.

WS- — Web Services Interoperability Organization: Supply Chain Management:
Use Case Model, Version 1.0, 2003. http://www.ws-i.org

WS- — Web Services Interoperability Organization: Supply Chain Management:
Sample Application Architecture, Version 1.0.1, 2003. http://www.ws-i.org

Weiss, M. and Amyot, D.: Designing and Evolving Business Models with URN.
Montreal Conference on eTechnologies (MCeTech), Montréal, Canada, January
2005, 149-162.

Weiss, M. and Amyot, D.: Business Process Modeling with URN. In: International
Journal of E-Business Research, 1(3), 63-90, July-September 2005.

Yi, Z.: CNAP Specification and Validation: A Design Methodology Using LOTOS
and UCM. M.C.S. thesis, SITE, University of Ottawa, Canada, 2000.

Zeng, Y .X.: Transforming Use Case Maps to the Core Scenario Model Representa-
tion. M.C.S. thesis, SITE, University of Ottawa, Canada, 2005.

References 105

Appendix A: System Requirements of SCM

Retailer System

Functional requirementsfor Purchase Goods:

Theretailer system should provide the ability for the consumer to navigate the Web site.

Theretailer system should presents its catalogue to the consumer

Theretailer system should provide the ability for the consumer to input the order informa-
tion

Theretailer system should receive an order from the consumer that contains a list of items

Theretailer system should generate the list of items shipped.

Theretailer system should validate the order by checking that the requested products exist.

Functional requirementsfor Source Goods:

Theretailer system should present list of requested items to the first warehouse

Theretailer system should present remaining list of requested items to the next warehouse.

Theretailer system should present records the items shipped.

The retailer system should provide the ability for the warehouse to get the next item re-
guested in the list of goods.

The retailer system should provide the ability for the warehouse to decrements the stocks
by the requested quantity.

The retailer system should provide the ability for the warehouse to ship the requested
items to the consumer.

The retailer system should provide the ability for the warehouse to test whether there are
more items requested.

Theretailer system should allow the second warehouse to have sufficient stocksif desired.

Functional requirementsfor Replenish Stock:

The warehouse should be able to build the order for a manufacturer.

The warehouse should be able to select the appropriate manufacturer.

The warehouse should be able to place the order to the selected manufacturer.

The warehouse should be able to receive the products shipped by the manufacturer.

The warehouse should be able to update its stock upon the receipts of goods.

The warehouse should be able to send acknowledgement back to the manufacturer after
receiving goods.

The warehouse should be able to determine whether the replenishment has timed out.

Appendix A: System Requirements of SCM 106

Manufacturing System

Functional requirementsfor Supply Finished Goods:

The manufacturer should be able to reject an order either due to a malformed order or a
request for an invalid quantity.

The manufacturer should be able to ship goods to the warehouse.

The manufacturer should be able to validate an order received from awarehouse.

The manufacturer should be able to send acknowledgement to a warehouse.

The manufacturer should check the inventory for the requested product.

The manufacturer should ship the products for the order from the warehouse.

The manufacturer should update its inventory after shipping products.

Functional requirementsfor Manufacture Finished Goods:

The manufacturer should have the ability to determine the parts (and their quantities) re-
quired to produce the finished product.

The manufacturer should have the ability to produce the requested product.

The manufacturer should have the ability to stack finished goods in (manufacturer's)
warehouse.

Appendix A: System Requirements of SCM 107

Appendix B: Sample APl Function in DXL

The following function is meant to illustrate the details of one function of the DOORS
API for UCM import, in order to give an idea of the complexity of this API. The respon-
sibility function (discussed in section 4.2.1) is used to create or update one responsibility
object in the responsibility module. Responsibility attributes are specified by parameters.
“responsibilitylD” is a key attribute whose value is unique. In the beginning of the func-
tion, we try to open aresponsibility module in edit mode. If thisfails, an error message is
displayed. If this is successful, the function scans all responsibilities in this module to
find out the responsibility specified by the key “responsibilitylD”. If the responsibility
exists in the module, al its attributes are verified according to the values passed through
the parameters of this function. Any new value of the responsibility’s attributes will be
updated. Notice that its pre-treated attribute “ Deleted” is restored to false. If the specified
responsibility is not found in the module, then it is created with the attributes specified by

the function parameters in the invocation.

bool responsibility (string responsibilitylD,
string responsibilityName,
string theDescription,
string processor Demand)

oj ect current Obj ect

bool hasFound

string tenpString

Modul e respModul e=edi t (" Responsi bility Mdule", fal se)

if(!'(null respMdule)){
hasFound=f al se
for currentObject in respMdul e do{
tenpStri ng=current Gbject."I D"
if (tenmpString==responsibilitylD){
hasFound=t r ue
tenpStri ng=current Cbj ect. " NameOf Responsi bility"
i f(tenpString! =responsibilityNane){
current Gbj ect. "NaneOf Responsi bility"=responsi bilityNanme
current Gbj ect. " Obj ect Headi ng"=responsi bilityName
}

tenpStri ng=current Cbj ect."Processor Demand"

Appendix B: Sample API Function in DXL 108

i f(tenmpString! =processor Denand) {
current Gbj ect. " Processor Demand" =pr ocessor Denand
}

tenpString=current Cbj ect."theDescription”
i f(tenmpString! =theDescription){
current Gbj ect. "t heDescri ption"=t heDescri ption

}
current Qbj ect. "Del et ed"=f al se
}
}
i f (!hasFound){
int i=0
for currentObject in respMdul e do{
i ++
}
if (i==0){
current Obj ect =creat e resphdul e
}
el se{

current Obj ect =creat e current Obj ect

current Obj ect. " hj ect Headi ng"=responsi bilityName
currentQbject. "I D'=responsibilitylD

current Obj ect. " NaneCOf Responsi bility"=responsi bilityNanme
current Obj ect. " Processor Denand"=processor Dermand
current Obj ect. "t heDescription"=theDescription

current Qbj ect. "Del et ed"=f al se

}
}
el se {
errorBox(" Responsibility nodul e does not exist")
}

return true

Appendix B: Sample API Function in DXL 109

Appendix C: UCM Model for the Supply Chain
Management

This is the first version of the UCM model used in the case study. The model content,
generated asa UCMNAV report, is presented in the following pages.

Appendix C: UCM Model for the Supply Chain Management 110

