
Extended version of paper appeared in: Foundations and Practice of Security. FPS 2017. LNCS 10723
(2018), 111-123. Springer, DOI https://doi.org/10.1007/978-3-319-75650-9_8.

Multi-level access control, directed graphs and partial

orders in flow control for data secrecy and privacy

Luigi Logrippo

Université du Québec en Outaouais

and University of Ottawa

Ottawa-Gatineau, Canada

luigi@uqo.ca

Abstract. We present the view that the method of multi-level access control, of-

ten considered confined in the theory of mandatory access control, is in fact nec-

essary for data secrecy (i.e. confidentiality) and privacy. This is consequence of

a result in directed graph theory showing that there is a partial order of compo-

nents in any data flow graph. Then, given the data flow graph of any access con-

trol system, it is in principle possible to determine which multi-level access con-

trol system it implements. On the other hand, given any desired data flow graph,

it is possible to assign subjects and data objects to its different levels and thus

implement a multi-level access control system for secrecy and privacy. As a

consequence, we propose that the well-established lattice model of secure infor-

mation flow be replaced by a model based on partial orders of components. Ap-

plications to Internet of Things and Cloud contexts are briefly mentioned.

Keywords: Security, Secrecy, Confidentiality, Privacy, Access control, Flow

control, Mandatory access control, Multi-level security, Multi-layer security, In-

ternet of Things, Cloud.

1 Introduction

We present the view that Multi-level (ML) access control methods, in the sense that

will be defined here, have fundamental importance for access control, data secrecy and

data privacy; in fact, any access control system that intends to provide secrecy and pri-

vacy must implement such methods. By using a result in directed graph theory, we

show that data flow graphs representing data flow networks are partial orders of maxi-

mal strongly connected components. By generating the data flow graphs of access con-

trol systems, one can see what ML systems they implement. By appropriately assigning

data to the strongly connected components of data flow graphs, one can implement ML

data security and secrecy.

Note that our use of the term data privacy in this paper refers to accessibility of

private data only. Other research, such as in privacy by design, has much wider moti-

vations and requirements [4] and is usually concerned with making it impossible to

identify personal information in data sets.Note also that the term confidentiality is often

2

considered to be a synonym of secrecy. We subscribe to the view by which "the funda-

mental nature of a privacy violation is an improper information flow" [15] and we pro-

pose new analysis and design methods to enable only proper flows. Data secrecy is a

prerequisite to data privacy, and the latter will be implied in the rest of this paper.

In Section 2, we present some established concepts on ML systems. In Section 3, we

present the mentioned result of directed graph theory. In Section 4 we show that it is

possible in principle to find the ML model implicit in any access control system that

can be represented by a data flow graph. In Section 5 we show how, given a desired

data flow graph, it is possible to populate it with subjects and objects thus realizing

secrecy-preserving data flows in concrete systems. In Section 6 we make a synthesis

of our results, with recommendations.

2 Data flow control and Multi-level access control methods

The study of data flows in access control networks was addressed, directly or indirectly,

in many papers in the early years of research on access control methods [14]. Such

research was based on the following main ideas:

 Distinction between secure or legal and insecure or illegal flows.

 State-based: following the famous Bell-La Padula model (BLP) proposed in

1973 [2,3], it was usually assumed that models for secure information flow could

be proved secure by reasoning in terms of state transitions, caused by reading

and writing operations.

 Lattice-based: following an equally famous 1976 paper by Denning [6], it was

usually accepted that secure data flows could be guaranteed by imposing a lat-

tice-structure on the data flow. Entities should be placed in the nodes of a lattice

and data should flow along the order relations of the lattice structure. So, much

research was directed to ensuring such lattice structuring in information systems

[24,20,10].

This research introduced models that implement both access control and flow con-

trol, with a single mechanism. These became known as the Mandatory access control

models (MAC) [23], and are usually considered to include the ML methods. However

MAC models seemed to be too restrictive for enterprise applications. Their realm of

application is often considered limited to the military or to operating systems, and even

there, with some relaxations. Subsequently, research moved on to flexible models ca-

pable of implementing in practice the access control needs of organizations, leading to

the Role based access control model (RBAC) [9] and to the Attribute based access con-

trol model (ABAC) [12]. Of these, many variants exist but they are mostly conceived

for access control and flow control requires further attention.

ML access control methods have been defined and used in the literature and practice

in different ways [25,23]. One of the best-known early proposal for such methods was

the BLP access control model, whose goal is to ensure that in an organization data can

move only upwards, from the less secret to the more secret levels. Many variants and

generalizations of this concept have been proposed.

3

In this work, we react to the limiting view of ML system by demonstrating the op-

posite view that being ML is an intrinsic property of any data flow; so secrecy must

implemented according to this ML structure, failing which the system will not imple-

ment secrecy. That is, any data security system that is not designed according to the

intrinsic ML structure of its data flow cannot implement secrecy. This holds for systems

specified in RBAC or ABAC or other models. We will see that this view implies a

significant correction to the view of ML structures as lattices.

We review briefly here other well-known concepts that lead to our conclusions, be-

fore presenting in the next section the graph-thoretical foundation for them.

In any data secrecy system, the following principles are generally accepted:

1) there are at least two types of data: the data to be protected (let us call them se-

cret) and the rest (let us call them public); they are usually segregated to differ-

ent databases.

2) there are at least two types of subjects: those that should be able to know secret

data, and the others.

This creates a two-level hierarchy of data and subjects. The extension to hierarchies

of n-levels is straightforward, and leads to the following well-known principles:

3) no read up: subjects at a given level of the hierarchy should be able to read at

their own or lower levels only;

4) no write down: subjects at a given level of the hierarchy should be able to

write at their own or higher levels only;

5) databases containing high secrecy data can also contain low secrecy data, but

not vice-versa.

Further, the theory of non-interference [22] is also based on the existence of at least

two levels of data secrecy.

Finally, in many organizations data are routinely classified according to sensitivity

levels and personnel are classified according to clearance, with policies defining what

clearance is necessary to read or write which data, given their sensitivity levels.

Therefore, ML methods are necessary for data secrecy, and also relate closely to

practical needs.

The combination of state-based concepts and relational concepts (as in the lattice

model) leads to complex proofs. In this paper, as in [16,17], we use relational concepts

only, while acknowledging that state-based concepts can be more expressive for mod-

eling attacks [12].

3 Data flow digraphs as partial orders of components

We use data flow graphs for abstract, relational views of data flows in systems. Data

flow graphs are represented here as directed graphs, or digraphs. In our first presenta-

tion of the theory, nodes in our data flow digraphs are entities that will represent in a

unified way the usual subjects and objects of access control systems. Edges between

two entities represent the fact that data can flow between the two entities, e.g. if entity

A is a subject and entity B is an object, then an edge from A to B means that A can write

on B, while an edge from B to A means that A can read from B. This simple view

4

enables us to present synthetically some results that can be adapted to several interpre-

tations and contexts. We also take a pessimistic assumption, common in security theory,

by which, if any data at all can flow from A to B, then any other data of A can also flow

to B. This leads to assuming the transitivity of the data flow relationship, i.e. if data can

flow from A to B and also from B to C, then it can flow from A to C. The transitivity of

data flows is a property that cannot be postulated in general [22], but, since it is based

on the mentioned pessimistic assumption, cannot lead to systems that are under-pro-

tected. Finally, it is reasonable to assume the reflexivity of data flows.

In Fig.1a), taken from [1] we represent an arbitrary digraph, where the arrows can

be interpreted to denote possible data flows among entities in a system, perhaps in an

Internet of Things context.This digraph does not represent a partial order (thus of course

not a lattice) because of the presence of symmetric relationships; however it is easy to

see that it defines a data flow where all data can end up in entities L,M,N.

Figure 1a) and 1b). A digraph showing allowed data flows in a network

 and its component digraph [1]

We see that entities A and B can send or receive data from each other. We conclude

that A and B can share all data they have or, the data that one can originate or receive

the other can also receive, so they can be considered to be one entity for access control

purposes. We will speak of a strongly connected component {A,B}, which is also max-

imal because it is not part of a larger strongly connected component. Henceforth, for

conciseness we will use the term component to denote a maximal strongly connected

component. By the same reasoning, entities F,G,H,I can receive data from each others,

and so they should be considered to form a component also. Proceeding in this way for

the whole digraph, we detect the components {C,D,E}, {L,M,N} and {J,K}. Since we

have assumed transitivity, all the edges in a component can be thought of as bidirec-

tional, and there is an implied bidirectional edge between F and H. Of course, there can

be singleton components consisting of only one node.

Using this information, we can derive the component digraph of Fig. 1a), shown in

Fig. 1b). We note that this second digraph preserves all the essential information of the

first, except for the fact that components have been condensed into one node: symmetric

relationships, which are equivalence relationships, have been encapsulated. Elementary

results of digraph theory [1,11] inform us that:

A B GI

F

H

D EC

M

N

L

J

K

C,D,E

L,M,N

A,B

J,KF,G,H,I

5

1. this construction is always possible and will always lead to an acyclic di-

graph, which represents a partial order because of the reflexivity and transi-

tivity we have assumed;

2. the component digraph has the same connectedness as the original one, in the

sense that there is a directed path from X to Y in the original digraph iff there

is such a path between components containing X and Y in the component di-

graph.
This leads us to conclude that any data flow digraph can be understood as a partial

order of components.

For access control systems and flow control systems this result is very useful because

the digraph of Fig.1b) shows more concisely the essential information in Fig. 1a. We

can also assume that each entity can have some data of its own (we say that these data

originate in the entity), which can be shared with other entities according to the data

flow relationships. The digraph of Fig. 2 shows concisely how data can flow in the

original digraph. A comparison between Fig. 1b) and Fig. 2 shows that the greater en-

tities in the partial order can have available more data, also that data originating higher

in the partial order can be available to fewer entities.

The nodes in the partial order of Fig. 2 can be thought of as security levels in a ML

model.

Figure 2. The data flow digraph of the digraphs of Fig. 1.

We can use this information in several ways. For example, if entities in a node of

Fig. 2 represent databases, we know that they can contain the same data and thus could

perhaps be merged; if they represent subjects, then they can have the same role in an

RBAC system; if they represent roles, they can perhaps be merged. Merging decisions

however should be conditional to administrator’s approval because there may be rea-

sons not to implement them. Also, the condensed digraph of Fig. 1b) shows us how to

reorganize the original digraph, see Fig.3a), where the original digraph is shown more

explicitly as a partial order of components, where each component can again be thought

of as a security level in a ML system. In Fig. 3b) one further transformation has been

done: only one edge between any two components has been selected, also relationships

between components are implied when they can be derived by transitivity. This could

be useful in practice if it is desired to place protection mechanisms in the edges that run

between components.Note that there is some amount of arbitrariness in Fig. 3b), for

example instead, or in addition to, the edge <A,I> we could have had any edge from

any of {A,B} to any of {F,G,H,I}. But the transitive closures of the digraphs of Figs. 1a)

All

C,D,E,J,K

C,D,EA,B

A,B,C,D,E
F,G,H,I

6

and 3, and of all possible digraphs similarly obtained, are the same, they all represent

the same data flows.

Each component in these figures represents a set of entities where there can be com-

plete data sharing, without any secrecy. But then data can also move to the next com-

ponent up in the partial order, if there is one. Data cannot move down in the partial

order, and this implements secrecy. This is the way data flow in ML networks, and so

we define ML networks as partial orders of components, leading to the conclusion that

any data flow digraph can be understood as a ML network.

Figures 3a) and 3b). The digraph of Fig. 1 reorganized and then simplified

Generic entities or subjects and objects can be associated with the nodes of Fig.3

just as they were assumed to be in Fig.1. The access control systems for these digraphs

can be constructed in the following way:

1) data flow is permitted between any two elements of a component;

2) data flow is permitted between two elements of different components accord-

ing to the partial order relationships represented by the paths in the original or

derived digraphs, for example data can flow, directly or indirectly, from B to

N.

Access control matrices will have to be constructed or roles with permission lists, or

other policies. If the digraph must be implemented as a distributed network, then rout-

ing lists will have to be constructed. Encryption mechanisms can also be used to estab-

lish different data flows. Depending on the method used, the reduced number of edges

in Fig. 3b) might make the task easier. These are the same things that should be done

to construct the access control system for the digraph of Fig. 1a), however our construc-

tion has made it possible to see clearly the underlying partial order logic.

There are efficient algorithms to obtain component digraphs. For example, the time

complexity of the well-known algorithm reported in [27] is linear on the number of

edges plus the number of nodes.

It is interesting to observe that similar methods have a history of being used for data

flow analysis in programs, where one of the main concerns is to identify the main com-

ponents in the data flows [19].

A B

HF

G

I

EC D

N LM

J

K

A B

HF

G

I

EC D

N LM

J

K

7

4 Finding levels in existing access control systems

Table 1 gives the permissions for a network with five subjects S1 to S5 and five objects

O1 to O5, using the notations CR for can read, and CW for can write [16,17].This an

arbitrarily constructed network, and not one constructed to prove our conclusions. Di-

agrams like this can be obtained for access control systems specified by means of access

control matrices, RBAC permissions [21], etc.

Table 1: Read-Write relationships for the network of Fig. 4

CR(S1,O1)

CR(S2,O2)

CR(S3,O4)

CR(S4,O3)

CR(S5,O2)

 CR(S5,O5)

CW(S1,O2)

CW(S2,O3)

CW(S3,O3)

CW(S4,O3)

CW(S4,O4)

CW(S5,O5)

Fig. 4 gives a digraph representation of this network, using ovals for subjects and

rectangles for objects.

Fig. 4. An access control network

For uniformity and to justify transitivity, we can think that all edges represent a sin-

gle transitive relationship can flow [21] rather than two distinct relationships as pre-

sented in Table 1.It remains that, in conformity with the concepts of access control, this

is a bipartite digraph of two different types of entities: subjects and objects. Earlier we

said that data can be available to entities; henceforth we will also say that subjects can

know data and objects can store them.

By using the principles we have presented, the digraph of Fig. 4 can be shown as in

Fig. 5a). In Fig. 5b) we see clearly the partial order of components implicit in Fig. 4.

Using the terminology of [16,17], from Fig. 5a) it is clear that databases O3 and O4 can

store the same data, thus possibly they can be merged. Subjects S3 and S4 also can

know the same data, and so it is possible to give them the same role.Thus this view has

implications for role engineering, but we will leave such considerations to future work.

S1

S2

S5

S3

S4

O1

O2

O3

O4

O5

8

Fig.5.a) and b). Components and data flow for the example of Fig.4

Assuming that all data are in the objects or databases O1-O5, we show where the

data of each of these databases can possibly be available in the network, by using the

terminology ‘area of’. We see that the data of O1 can be available anywhere in the

network, while the most secret data are the ones originating in objects O3, O4 and O5,

which can be available in the most internal (or topmost) areas only.This may not be

intended by the designers of the system of Table 1 or Fig. 4 but is a necessary conse-

quence of the structure of the data flow.

The concept of area can be used to define a formal notion of secrecy: the data in an

object are a secret of the subjects and objects in the area of the object.

Fig. 5b) is also useful to answer inference questions [7]: for example, assuming that

the combined knowledge of data in O1 and O5 can lead to further knowledge, who in

the system of Fig. 4 can achieve such knowledge? Clearly, it is only S5. Further, this

inferred information can be available only to S5 and O5.

Because of the efficient algoritms we have mentioned, this analysis can be done in

practice on systems of moderate size. Reference [26] presents this fact, analytically and

by simulation.

5 Constructing multi-level systems

The previous discussion has not been helpful from the design point of view. In the

example of the previous section, we have made some observations about the secrecy

status of some data, but this was an observation on a randomly generated network of

entities, it was not the result of design decisions. The initial representation of the system

O1,O2,
O3,O4

O1, O2

O1,O2,O5

O1

S3, S4

S5

S2,S3,S4,S5

All Subjects

S1

O1

O2

S2 S5 O5

O3

O4

S3S4

Area of O1

Area of O2 Area of O5

Area of O3,O4

9

of Fig. 4 did not show clearly that the data in O3, O4 or O5 have the least visibility,

thus are the most secret.

Once again, we will proceed by example. We wish to design an access control net-

work for the following application, possibly in a Cloud context. We have two banks in

conflict of interest, Bank1 and Bank 2. Bank1 has only one category of data, called B1,

which it wishes to keep private. However Bank 2 has public data labelled B2P that can

be available to any entity, and secret data B2S that should be available only to its own

entities. There is also a Company 1 that collaborates with Bank 2 and so shares all its

data C1 with Bank 2. However Bank 2 does not want its secret data B2S to be known

to Company 1, nor to Bank 1 of course. Note that here we have added another type of

entity, which we can call organization, and which will turn out to be a set of subjects

and objects. Note also that we have expressed both need to know and conflict require-

ments. A Boolean analysis of these requirements leads to the data flow diagram shown

in Fig 6.

Figure 6. Data flow in a hypothetical network

We now populate this data flow with subjects and objects, or employees and data-

bases.This can be done in different ways. We will use a very simple structure with one

database for each possible data contents and one employee for each database. We use

the following notation: Bob:{B1,B2P} means that employee Bob has clearance only to

read the data of the types indicated, and similarly Bk1:{B1,B2P} means that database

Bk1 can store only data of the types indicated. Taking Bob as an employee of Bank 1,

in charge of the bank’s database; Alice as an employee of Bank 2 in charge of making

available public data for Bank 2 from a database that she administers for this purpose;

Carla as an employee of Company 1 and Dave as an employee of Bank 2, the populated

diagram is shown in Fig. 7.

B2P, C1

B2S, B2P,
C1

B1,B2P

B2P

Bank2

Bank1

All orgs

Bank2,
Company 1

10

Figure 7. A network of entities and organizations for the data flow of Fig. 6

Arrows that can be inferred by transitivity are not shown in Fig. 7, i.e. we can imag-

ine that Alice is also authorized to write directly on Bk2S. This simplification can be

considered to be inadequate from the security point of view, since in Fig. 7 the transfer

of data from Alice to Bk2S depends on decisions by Carla. We have mentioned that

transitivity cannot be given for granted in data flow systems. However our data flow

diagrams show only the possibility of data flows, based on our pessimistic hypothesis.

Many other realizations of the original requirements are of course feasible, e.g. Bank

1 may wish to keep separate B1 and B2P data.

The classical BLP model can be obtained, in its essential aspects. as a special case

of our construction. If we wish a BLP system with three levels: Public, Confidential

and Secret, then the necessary labels are: {Public},{Public, Confidential}, {Public, Con-

fidential, Secret}.

This mechanism of constructing data flows by using label sets is powerful. We have

seen above how it can be used to express conflicts. It can be used to express other types

of constraints, but this is left to future papers.

6 Synthesis and conclusions

In conclusion, using a basic result of digraph theory, we have established intuitively the

following facts for access control and data flow systems that can be described as tran-

sitive, directed graphs:

 They define partial orders of components.

 These directed graphs and partial orders can be obtained efficiently from ac-

cess control policies in some practical cases.

 No data secrecy is possible within a single component, since in each compo-

nent, all entities can have available the same data.

 Data available in a component can also be available in the greater components

in the partial order; data originating in a component cannot be available in

lower components.

 As we move up in the partial order, the amount of data that can be available

there will monotonically increase; also the number of entities that can have

available data originating there will monotonically decrease.

Bk1:{B1,B2P}Bob:{B1,B2P}

Carla:{B2P, C1} Co1:{B2P,C1}

Dave:{B2S,B2P,C1} Bk2S:{B2S,B2P,C1}

Alice:{B2P} Bk2P:{B2P}

Bank 2

Company 1
Bank 1

Bank 2

11

 In order to have data secrecy, a system must have at least two components.

 Data secrecy can then be defined in terms of data being available only in some

components.

 For data secrecy, data must be distributed among the components according to

the desired levels of secrecy, with the most secret data originating in the top

components of the partial order (from where they cannot move down). This

will allow, all and only, legal or secure data flows.

While the sufficiency of some of these facts as principles for the design of data se-

curity systems has been understood for a long time, their necessity has been overlooked

(except for the acceptance in theory of the lattice model, to be further discussed below).

Any system that intends to protect data secrecy in this sense must implement appropri-

ate partial orders of components; this is done by construction in strict BLP systems and

similar ones, but must also be implemented in systems using other access control meth-

ods, such as RBAC or ABAC. Implementation can be done by using appropriate role

assignments [20], policies, access control matrices, encryption or, in truly distributed

systems, by using data forwarding policies.

As shown, these principles can be used not only for data protection within an organ-

ization, but also for networks of organizations (Section 4), in the Internet of Things and

in Cloud environments where data of different ownerships coexist.

Some difficulties present themselves, of course.

A common objection against ML methods is that the constraint of allowing data flow

in one direction only is impractical. However we have shown that all directed graphs

describe multi-level, unidirectional flows in their partial orders, and that this is neces-

sary for secrecy. But this was based on the pessimistic assumption that when a flow is

allowed between two entities, all data can move from one to the other by reading and

writing operations. This view can be refined by distinguishing among types of data,

limiting the operations to specific types of data and constructing different data flow

digraphs, with different partial orders, for different types of data. For example, in an

organization we could have tables showing salaries with names, and tables showing

salary statistics without names. Allowed data flows will normally be different for the

two types of data. The two concepts of data declassification and trusted subjects con-

tribute towards solutions [23,18]. In the process called sanitization sensitive data can

be transformed into less sensitive ones and declassified, with different data flow re-

quirements. Typically, salary tables with names could arrive at an office at the top of

one partial order, and this office (a trusted subject) could produce statistics available

for everyone, thus writing the data at the bottom of another partial order. Or, a director

general could receive secret information but, being trusted, can also place itself at a

lower level to distribute directives. Different data flow relationships for different types

of data can be specified with any access control method if one supposes that different

types of data are put in different objects. Access control systems with data labeling offer

more flexibility [5,18].

Another major difficulty is the fact that many modern access control systems do not

define fixed data flows. These can change by administrative changes or environmental

changes, leading to changes in the values of Boolean conditions. Graphs that describe

12

such flows can be complex, with edges labelled by conditions. Changes must be con-

ceived in a way that they do not modify essential partial order relationships. How to

achieve this appears to be an interesting research topic.

Established theory considers lattices as the basic structuring model for secure data

flows [6,10,24], however it seems that this view must be corrected. Lattices are restric-

tive, in the sense that they require the presence of joins and meets. Partial orders can be

extended to lattices but in order to do so, unnecessary entities may have to be intro-

duced. For example, to extend the partial order of Fig.6 into a lattice, it is necessary to

add a node containing both B1 and B2S, contradicting the requirements without any

advantage; such a node must be excluded from the solution of Fig. 7. Further, to extend

the partial orders of Fig. 1b) (or Fig. 5b) to lattices it is necessary to add superfluous

empty components that do not correspond to any entities. Lattices are also restrictive in

the sense that they forbid symmetric relationships, which in our model are encapsulated

in components. In [6] it is assumed that equivalent nodes can be merged, but in practice

this may not be possible. In contrast, partial orders of components always exist in data

flows that can be represented as digraphs, without any extensions.

Therefore, the ML model as outlined here should be seen as the obligatory design

pattern [8] for systems intended to enforce strict data secrecy.

Finally, it should be mentioned that data flow theory has many aspects, by which our

definitions can be considered to be very simplified. Still, this simplified view leads to

results of practical significance for the analysis and synthesis of secrecy systems, as

shown by our examples.

We have remained on an intuitive level, to avoid tying our discussion to a specific

formalism. We are continuing work towards a suitable formalism to reason about se-

crecy properties [17], for which a first version was presented in [16].

Acknowledgment. This work was partially supported by a grant of the Natural Sci-

ences and Engineering Research Council of Canada. The author is indebted to Sofiene

Boulares and Abdelouadoud Stambouli for many useful discussions, and to Guy-Vin-

cent Jourdan for useful comments on the draft copy.

References

1. J. Bang-Jensen, G.Z. Gutin. Digraphs. Theory, algorithms and applications, Springer, 2010,

p. 17 and Fig. 1.12.

2. D. E. Bell, L. J. La Padula. Secure computer systems: unified exposition and Multics inter-

pretation. TR MTR-2997 Rev.1, Mitre Corporation, 1976.

3. D. E. Bell. Looking back at the Bell-La Padula model. 21st Ann. IEEE Comput. Security

Appl. Conf., 2005 (on line, no page numbers).

4. A. Cavoukian. Privacy by design. The 7 foundational principles. White Paper, Information

and Privacy Commissioner of Ontario, Canada, 2009.

5. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati. A fine-grained access

control system for XML documents. ACM Trans. Inf. Syst. Secur. 5, 2 (2002), 169-202.

6. D.E. Denning. A lattice model of secure information flow. Comm. ACM 19(5), 1976, 236-

243.

13

7. C. Farkas, S. Jajodia. The inference problem: a survey. SIGKDD Explor. Newsl. 4, 2 (2002),

6-11.

8. E. Fernandez-Buglioni. Security patterns in practice. Wiley, 2013.

9. D.F. Ferraiolo, D.R. Kuhn, R. Chandramouli. Role-based access control. 2nd Ed. Artech

House, 2007.

10. S.N. Foley. Aggregation and separation as noninterference properties. Journ. Computer Se-

curity 1 (2), 1992, 159-188.

11. F.Harary, R.Z.Norman, D.Cartwright. Structural models. An introduction to the theory of

directed graphs. Wiley, 1966, Chapter 3.

12. V.C. Hu, D.R. Kuhn, D.F. Ferraiolo. Attribute-based access control. Computer, 48(2), 2015,

85-88.

13. M. Jaume, V. Viet Triem Tong, L. Mé. Flow based interpretation of access control: Detec-

tion of illegal information flows. Proc. 7th International Conference, ICISS 2011, LNCS

7093 (2011), 231-245.

14. C. E. Landwehr. Formal models for computer security. ACM Computer Surveys 13(3)

(1981) 247-278.

15. C. E. Landwehr. Privacy research directions. Comm. ACM 59(2) (2016) 29-31.

16. L Logrippo. Logical Method for Reasoning about Access Control and Data Flow Control

Models. Proc. of the 7th Intern. Symp. on Foundations and Practice of Security (FPS 2014),

LNCS 8930 (2015), 205–220.

17. L.Logrippo. A first-order logic formalism for access control and flow control,with applica-

tion to multi-level access control. In preparation.

18. A.C. Myers, B. Liskov. Protecting Privacy Using the Decentralized Label Model. ACM

Trans. Softw. Eng. Methodol. 9(4) (2000), 410-442.

19. F. Nielson, H.R. Nielson, C. Hankin. Principles of program analysis. Springer, 2004.

20. S.L. Osborn, R. Sandhu, Q Munawer. Configuring role-based access control to enforce man-

datory and discretionary access control policies. ACM Trans. Inf. Syst. Secur. 3(2) (2000),

85-106.

21. S.L. Osborn. Information flow analysis of an RBAC system, Proc. of the 7th ACM sympo-

sium on Access control models and technologies, (SACMAT 2002), 163-168.

22. J. Rushby. Noninterference, transitivity, and channel-control security policies. TR CSL-92-

02. Computer Science Lab., SRI International, Menlo Park, CA, 1992.

23. P. Samarati, S.De Capitani di Vimercati. Access control : policies, models and mechanisms.

Foundations of Security Analysis and Design (FOSAD 2000). Springer, 137-196.

24. R. Sandhu. Lattice-based access control models. Computer 26(11), 1993, 9-19.

25. R. Smith. Multilevel Security. In H. Bidgoli, editor, Handbook of Information Security:

Threats, Vulnerabilities, Prevention, Detection and Management, Vol. 3, Ch. 205. Wiley,

2005.

26. A. Stambouli, L. Logrippo. Data flow analysis from capability lists,with application to

RBAC. Information Processing Letters 141 (2019) 30–40. Modified version:

http://www.site.uottawa.ca/~luigi/papers/18_IPL.pdf

27. R. E. Tarjan. Depth-first search and linear graph algorithms, SIAM Journal on Computing,

1(2) (1972), 146–160.

https://scholar.google.ca/citations?view_op=view_citation&hl=en&user=BZEBnAYAAAAJ&citation_for_view=BZEBnAYAAAAJ:zYLM7Y9cAGgC

