
Towards a Process for Legally Compliant Software
Waël Hassan

Privacy in Design
Toronto, ON, Canada

whassan@privacyindesign.org

Luigi Logrippo
Université du Québec en Outaouais and University of Ottawa

Ottawa-Gatineau, Canada
luigi@uqo.ca

Abstract— We propose a method and a process for legal

software requirements extraction and compliance checking. We
describe a requirements extraction model, a set of rules for
specifying the format of the extracted information, a set of
UML-based principles for translating the extracted information
into a language based on predicate logic, and finally, a tool that
analyzes the resulting logic model and displays the results of the
analysis. The translation principles are based on a Governance
Analysis Model (GAM) which is described in UML; the lan-
guage is our Governance Analysis Language (GAL) and the tool
is our Governance Analysis Tool (GAT). MIT’s logic analyzer
Alloy is the engine on which GAT runs. GAL is translated into
assertions in Alloy’s language and the Alloy tool can find coun-
terexamples indicating situations of non-compliance.

Index Terms— Software requirements, formal method, legal
compliance, logic analysis, software design process, privacy law

I. INTRODUCTION
Increasingly, organizations use software products, such as

web services, to gain efficiency and consistency in govern-
ance. Electronic governance software products must comply
with legal requirements; in addition they must comply with
the requirements of the organization. Organizational require-
ments must comply with legal requirements as well. There-
fore, we have a triangle of entities that should be in relation-
ships of mutual compliance: legal requirements, organiza-
tional requirements, and software product. It seems natural
then to think of software engineering methods that can be used
to develop software where these relationships are taken into
consideration during construction. Such methods are part of
the idea of Privacy by Design (PbD) [8]. This concept guides
the research reported here. Our method consists of processes
that are well understood in software engineering and can be
adapted for the purpose.

This paper is organized as follows. Section II introduces
the general framework for the method. We propose here a
process for the development of legally compliant software.
Section III introduces our concepts of compliance which, for
the purpose of this paper, is essentially consistency. Section
IV presents the UML-based GAM model that is the founda-
tion of our method. Section V and VI provide examples to
illustrate how the method can be applied, Section VII presents
discussion of related work. Section VIII concludes the paper.
Appendix I presents Alloy and Appendix II presents our lan-
guage GAL.

II. OVERVIEW OF THE PROCESS AND ITS STEPS
Fig. 1 outlines the main steps of the method and process

that we propose, which will be illustrated in the rest of this

paper. On the left side of Fig. 1 we are concerned with the
legal normative, that is, legal requirements as specified first in
the legal texts and then in some software-oriented requirement
language. On the right-hand side we see the organizational
requirements, their specification in a software-oriented re-
quirements language and then the resulting software that must
comply with both legal and organizational requirements.

Figure 1: The main steps of a generic process

We shall see that, in order to facilitate the software pro-
cess, it is convenient to represent the software requirements
in a formal language based on a formal model, in our case
GAL and GAM. This yields the following refined process, to
which we shall refer henceforth:

Figure 2: Our refined process

A. The Legal Area
Two parallel normative worlds are relevant for the devel-

opment of software for an organization. One is the legal sys-
tem of the jurisdiction, and the other is the system of policies
and regulations of the organization. The second must be legal-

Legal
requirements for

software

Organization
requirements for

software

Law Organization
Policy

Software

extract extract

legal compliance

logical compliance

implement & validate

verify

Legal area

Software
area

GAL GAL

Law Organization
Policy

Software

extract extract

legal compliance

logical compliance

implement & validate

verify

Legal area

Software
area

Legal
requirements for

software

Organization
requirements for

software

transform transform

ly compliant with the first. For example, organizational re-
quirements and policies must comply with the law with re-
spect to privacy. Checking and ensuring this compliance is a
legal process that must be completed by legal and administra-
tive experts before the software process starts. In other words,
we assume that before the software development process
starts, organizational policies have been brought into line with
the applicable laws.

B. The Software Area: Overview
To start the software process, legal and organizational re-

quirements have to be stated in terms understandable to both
legal experts and software experts. This extraction process,
represented in Fig. 2 by steps 1 and 2, is best carried out by a
joint team of legal and software experts, or a team of people
equally comfortable in both worlds.

In the extraction process of our method, the elements of
organizational structures and their relationships are specified
using our Governance Analysis Model (GAM) (Section IV).
The process is comprised of three passes. In the first pass,
elements of organizational structures are extracted and nor-
malized. In the second pass, the relationships among pairs of
elements are extracted and normalized. In the third pass, gaps
are mitigated and inconsistencies are solved.

For automatic processing, it is necessary to express the re-
sulting models into a formal language. In our Steps 3 and 4,
which are collectively called the transformation steps, the
elements and relationships extracted during the extraction step
are expressed in the Governance Analysis Language (GAL), a
language capable of expressing many types of legal and or-
ganizational requirements. Details about the language are
given in Appendix II. The result of Step 4 is a precise, soft-
ware-oriented specification for the software product. The
result of Step 3 is a series of statements representing the legal
requirements.

One could assume that the requirements specified by Step
4 are necessarily aligned with the law, because of the work
that was done in the legal area. We propose, however, that a
second compliance check be done in the software area, not
only because the extraction and transformation steps can in-
troduce errors, but also because some situations of non-
compliance can be more easily discovered at this point. Soft-
ware tools are available to double-check that the precise soft-
ware requirements are consistent with a precise interpretation
of the legal requirements (Step 5, Section V).

Our Governance Analysis Tool (GAT), a compiler from
GAL to the language of the Alloy logic analyzer, uses Alloy
functionalities in order to display the result of this check. In
the ideal case, Step 5 will simply confirm that the ‘legal com-
pliance’ step and the extraction processes have led to the de-
velopment of legally compliant software requirements. Oth-
erwise, GAT will yield counterexamples showing cases where
GAL organizational requirements are not compliant with GAL
legal requirements, probably leading to corrections in the
former, even as far back as the organization policy. This pro-
cess may require several iterations.

Once this process is terminated, Step 6 initiates the imple-
mentation and validation process. The methods used can fol-
low established software practice. “Validation” here means

checking that the implemented software meets the organiza-
tional requirements. It could then be assumed that the result-
ing software will be compliant with legal requirements. We
expect, however, that in the last step of the process – Step 7 –
the software will be again checked against the legal require-
ments. Such final checks are common in engineering. For
example, a bridge that has been developed according to speci-
fications and engineering principles and which therefore
should be safe, receives final tests by having very heavy loads
passed over it, up to the requirements initially specified. Simi-
larly, in Step 7, test cases could be extracted from the legal
requirements and used to ensure that the software does, in
fact, measure up to requirements [29].

III. COMPLIANCE AND CONSISTENCY CHECKING
In normative and legal texts, ‘compliance’ is a term often

used but rarely defined. There is some literature describing
how the notion of compliance in law can be understood in
terms of formal logic, normative concepts, and software re-
quirements. From the point of view of software requirements,
Zowghi and Gervasi [38] make the point that compliance can
be understood either as a combination of consistency and
completeness, or, more pragmatically, as satisfaction of busi-
ness goals. This second view agrees with the one of Cannon
and Byers [7], who state that “Compliance is simply about
ensuring that business processes are executed as expected.”
According to Governatori and Sadiq [14][33], the term com-
pliance “is often used to denote and demonstrate adherence of
one set of rules … against another set of rules”. The authors
continue to say that, “ensuring compliance of business pro-
cesses with a normative document means ensuring consisten-
cy of norms stated in normative documents and rules covering
the execution of business processes”. To rephrase this idea, a
normative statement A is compliant with a normative state-
ment B if the logical formula expressing A is consistent with
the logical formula expressing B: their conjunction is satisfia-
ble, which means that it does not imply False. Neither A nor B
needs to imply the other. In practice, our consistency checking
tool will be the logical analyzer Alloy, presented in Appendix
1.

The requirements (whether legal or organizational) can be
internally inconsistent or contradictory. Based on Alloy, our
tool will detect any such inconsistencies at the outset and will
make it impossible to proceed further until they are repaired.

An important shortcoming of our definition is that it does
not address completeness: a normative statement could be
vacuously compliant with another, for example if it says noth-
ing or if it addresses different concerns. This means that, in its
current formulation, our method can be used to check whether
some selected requirements are satisfied, but it cannot provide
assurance that all significant requirements are satisfied. Sev-
eral methods for identifying all requirements have been pro-
posed in the literature [4][11][37].

It can happen that the legal requirements and the organiza-
tional requirements are expressed at such different levels of
abstraction or in such different terms that the logical compli-
ance concept that we explore here is not clearly applicable.
Other researchers are investigating similar situations
[4][5][11].

Figure 3: Alternative view of Steps 1 to 5

With these points in mind, Fig. 3 shows another view of
the first five steps of Fig. 2, where the two bottom steps of
Fig. 3 detail Step 5 of Fig. 2. The requirements, legal and
organizational, are extracted and then transformed into an
appropriate formal language, such as our GAL. The resulting
statements are transformed into an appropriate logical nota-
tion, such as the Alloy language. The Alloy tool can then be
used to analyse and filter for logical consistency.

To facilitate a direct comparison between legal and organ-
izational requirements, when this is possible, a single model
and language should be used for both. This is a common ap-
proach among researchers in the area [9][12][33][36].

IV. THE GAM MODEL FOR THE EXTRACTION PROCESS
We enter now in the details of our method. Preliminary

versions of parts of what follows were presented in [16] [17]
and a more complete version in [18]. However this paper does
not follow Reference [18] exactly, since our thinking has
evolved in the meantime.

As mentioned, our language GAL is based on an UML
model of organizational concepts, called GAM. We will pre-
sent now some concepts that are at the basis of GAM and
GAL. The primary responsibility of the model layer is to
define a language that describes the information domain.

Figure 4: The SVO meta-model

Figure 5: The GAM model

Meta-model: A meta-model is a layer of abstraction that
contains a minimal set of concise and precise components. A
meta-model can be refined in multiple models, and there can
be multiple meta-models associated with a model. A model is
an instance of a meta-model.

Base-model: The base-model (a meta-model) proposed in
this paper includes three primitive components: Subject, Verb
and Object (Fig. 4). A subject represents a rights holder. A
verb is an action or a right given to a subject. An object is the
object of a right. While of course this base-model is too re-
stricted for general legal thinking, it works well in the area we
have selected, as we shall see.

Our extraction process is based on the organizational con-
cepts expressed in the Governance Analysis Model or GAM,
of which a significant portion is shown in Fig. 5. The GAM is
a refinement of the SVO meta-model of Fig. 4, where User
corresponds to Subject, Activity corresponds to Verb and
Object corresponds to Object.

This diagram attempts to capture some concepts often
found in organizational laws and regulations. Using the dia-
gram, one can recognize in the model the main elements of
organizational structures and their relationships. Tables 1 and
2 capture essential information about those entities and about
the relationships that exist between pairs of elements.

Note that each organization will have its own diagram,
corresponding to its policies. In our diagram, there is a rela-
tion Separation of Concerns for Process. This could be im-
plemented by a constraint preventing any user from being
assigned two processes subject to the policy of separation of
concerns. However, if Role Based Access Control (RBAC) is
implemented in an organization, Separation of Duties (SoD)
could be stated as a relation between Roles [3][10].

Table 1: Elements of organizational structure

Table 2: Relationship Table

Relationship The two elements
connected Explanation

Access Activity & Object An activity grants access to
an object

Acts User & Role User acts in a role
AssignedTo Role & Activity A role is assigned to an

activity
Assumes User & Process A user can be associated

with a process
Composed Of Department & Role A department can have many

roles
Object & Object An object can be composed

of objects
Department & Legal
Entity

A legal entity contains many
departments

Legal Entity
&Process

A legal entity contains many
processes

Contains Activity & Process An activity is contained in a
process

Includes Department &
Department

A department can consist of
many sub-departments

IsDelegated Role & Role A role can be delegated to
another role

Next Activity & Activity An activity starts after an-
other activity is finished

SepOfConcern Process & Process Two different processes
cannot be associated with the
same user

Following the structure of entities and relationships pre-
sented in this diagram, a number of requirements have been
specified and checked, as will be seen in the following exam-
ples.

Many related formalisms and models can be found in the
literature [28], but these are not targeted to the extraction tasks
required by our method.

V. SPECIFYING AND CHECKING THE RELATIONSHIPS
The ‘Contains’ relationship of Fig. 5 is used to describe

how activities are contained within processes. In a very small
organization, the relationship could be as follows:

Contains (Loans, PublishApplication)
Contains (Loans, ReceiveFilledApp)
Contains (Loans, Wapplication)

Contains (Loans, JReceiveFilledApp)
Contains (Loans, ConsentClient)
Contains (Loans, LegalReasonException)
Contains (Loans,ThankClient)
Contains (Loans, DisposeData)
Contains (OrderMgt, ReadApplication)
Contains (OrderMgt, ValidateInfo)
Contains (OrderMgt,SaveInfo)

Already we can check some very simple properties, for

example: Does the Loan activity contain a process DisposeDa-
ta? Formally, this amounts to checking whether the set of
relationships specified above is consistent with a property

Contains (Loans, DisposeData)
which is trivially true because the set of relationships im-

mediately includes this property, but one can think of organi-
zations where processes and activities are deeply nested and
an automatic checking tool can find the answer.

The following specifies the “Next” relationship of Fig. 5
between activities:

Next (ValidateInfo, SaveInfo)
Next (ReadApplication, ValidateInfo)
Next (Wapplication, JreceivedApp)
Next (JReceivedApp, ConsentClient)
Next (JReceivedApp, LegalReasonException)
Next(ThankClient, DisposeData)
Next (PublishApplication, ReceiveFilledApp)
Next (ReceiveFilledApp,Wapplication)
Next (ValidateInfo, WApplication)
Next (WApplication, ReadApplication)

On the basis of these relationships, we can check the fol-

lowing legal requirement:
PIPEDA1 Requirement:
The fifth principle of PIPEDA expressed in provision 4.5.3

requires that personal information shall be retained only as
long as the purpose of collection is not reached.

In other words:
Validate that no information is retained once its purpose is

achieved. This requirement can be validated by using the
following GAL statement:

Activity-Trace-All(ReceiveFilledApp,DisposeData)
This statement checks whether in all traces, the activity

ReceiveFilledApp is followed by the activity DisposeData.
The diagram in Fig. 6 is an edited version of the diagram

that was obtained by running Activity-Trace-All. The organi-
zation may be in violation of Provision 4.5.3. It can be seen
that the step WApplication leaks information to the process
OrderMgt. The scenario check has found that Received-
FilledApp is not followed by DisposeData in this second
process. The related assertion has failed and this has caused
the production of this diagram, which shows that the main
process on the left correctly disposes of the data, while the
process on the right saves it.

Alloy has a filtering facility that is useful to select the in-
formation that will be displayed.

1 PIPEDA is Canada’s Personal Information Protection and
Electronic Documents Act

Elements Explanation
Activity A function that a person participates in
Department A distinct, usually specialized division of a large

organization
Legal Entity An association, corporation, partnership, proprietor-

ship, trust, or individual that has legal standing
Object The purpose of an activity
Process A series of actions or steps taken to achieve a result
Role The function assumed by a person
User A person who uses or operates an application, equip-

ment, or system

Figure 6: Result of "Next" relationship check

We briefly describe here other examples that we have de-
veloped in our work.

1. PIPEDA requires that organizations name individu-
als as privacy officers. This is a structural completeness re-
quirement. One way to satisfy this requirement is to include in
the definition of the organization an Acts statement that
assigns a named user to the role of Privacy Officer. The
existence of this user can be checked by using
CheckActs(Label, PrivacyOfficer, ANY).

2. The same law also requires the existence of a privacy
process in the organization. This is also a structural complete-
ness requirement. One way to satisfy this criterion is to
include an appropriate ComposedOf statement in the structure
of the organization. The presence of this statement can be
checked by using Process-Includes.

3. Separation of concerns motivates a whole family of
other examples such as the following: In an organization, it
could be stated that individuals who have access to ProcessA
cannot have access to ProcessB. In GAL, this can be
expressed by a Separate statement. As mentioned in [10] the
duties ‘Check Preparation’ and ‘Check Issuing’ are often
separated, i.e. they cannot be assigned to the same user. In an
organization, this constraint could be represented by two pro-
cesses in the relation of Separation of Concerns. If a user’s
role allows the user to be assigned an activity that can contain
both processes, then the constraint is violated. This will be
shown by our tool as a counterexample to a relational con-
straint expressed by the relational operator Separate; see Ap-

pendix II Section 3. A similar result is obtained if Separation
of Concerns can be violated by way of delegation.

Again, although these checks can be performed easily by
hand if there are only a few rules in an organization, computer
assistance will be very helpful for larger sets of rules.

It could be asked, what do diagrams such as the one of Fig.
6 really indicate, given the fact that they omit many details.
As in similar application areas, including some types of error
messages provided by compilers, our tool’s diagnostics do not
necessarily imply the presence of compliance issues. They
should rather be interpreted as warnings for which further
checking should be carried out.

VI. PERSONAL HEALTH INFORMATION PRIVACY
The applicability of our method for legal compliance audits

is further shown by the following real-life example. Suppose
a person has been tested HIV-positive, and his lab report has
been stored in the Ontario Laboratory Information System
(OLIS) [30]. As a result of his condition, he has been pre-
scribed several medications, including a drug that stalls re-
production of HIV. His medication history is stored in the
Ontario Drug Benefit (ODB) [31] database, which contains
prescription claims data for eligible recipients. This person is
worried about his employment prospects given that he is
HIV-positive, so he places a consent directive (a policy to
deny access) to block access to his test results, and the OLIS
does so accordingly. However it may be possible to learn
about the patient’s HIV positive status by accessing the pa-
tient’s medication history through the ODB database.

This example has characteristics similar to the example of
Section V. An auditor can discover this possible leak by
modeling the law, the healthcare institution, and patient con-
sent policies. In this example, the User is the patient, the
Activity is “block-access”, and the Object is all HIV-related
information. Following this discovery, the auditor can rec-
ommend that the organization create an object structure that
binds HIV-lab results with HIV-Medication. Therefore, a
block to disclosure of HIV-related information would result
in blocking both OLIS and ODB records.

VII. RELATED WORK
The problem we are addressing is quite generic, and many

approaches are possible. Several of the methods that we list
below are mutually orthogonal or complementary and can be
expected to merge as the field matures.

Antòn, Bertino et al. [1] propose that the specification and
analysis of legal requirements be done through the develop-
ment of a formal language, supporting information flow anal-
ysis based on policies. This paper follows another paper by a
related team [19] where a semi-automated method was pre-
sented to identify inconsistencies between requirements speci-
fications, database design, and organizational security and
privacy policies. Their ReCAPS method is based on a number
of heuristics quite different in nature from ours. Related work
was presented in References [23][4].

To support specification of requirements, Hruby [20] pro-
vides a meta-model based on resources, events, and agents
(REA); REA was originally proposed by McCarthy [27] as a
generalized accounting model. Similarly, Brodie et al. [6]

discuss regulatory compliance. They propose that formal
compliance validation requires a rigorous method based on
formally defined syntax and semantics in addition to a formal
validation method. This method was applied to industrial case
studies recognizing the ability of computing systems in the
compliance validation process [24].

Many authors have proposed first order logic abstractions
of legal concepts. Sartor [34] contains an extensive study of
various types of legal statements with first-order logic inter-
pretation. Many authors have also demonstrated the use of
deontic logic in this context. Deontic logic is more appropriate
than first-order logic for expressing deontic concepts, however
many legal concepts can be efficiently expressed in simple
first-order logic. An interesting tool based on deontic logic has
been presented by Governatori et al. in several papers [12]
[13][14].

Formal methods for capturing the concepts of laws have
been surveyed by Otto et al. [32]. This paper lists several
techniques including the use of symbolic logic, knowledge
representation using PROLOG, deontic logic using LEGOL,
defeasible logic, first-order temporal logic, direct access con-
trol, markup-based representations, and goal modeling. Other
related work is presented under the banner of legal program-
ming [35]. An important work is Barth et al. [2]. Their work
presents a temporal logic implementation of what they define
as contextual privacy. Their approach uses linear temporal
logic to define privacy model as agents, attributes, and mes-
sages. In addition, they model contextual integrity using
roles, context, and traces.

Elgammal and Turetken [9][36] introduce the concept of
compliance constraints, based on the notion of compliance
patterns, leading to root-case analysis. They also demonstrate
the use of Linear Temporal Logic with the model-checker
SPIN to check compliance requirements. Undoubtedly, SPIN
is a more powerful tool than Alloy to find behavioral counter-
examples such as the one of Fig. 6, and in the future we are
planning to explore the use of SPIN. However SPIN will be
less powerful than Alloy in the discovery of purely logical
inconsistencies.

A related approach, using Linear Temporal Logic with au-
tomata, was presented in [25].

Ghanavati, Amyot et al. [11] have dealt with the issue of
compliance with requirements from the point of view of goal
satisfaction, which is different and complementary with re-
spect to the aims of this paper. Their approach can be used to
identify completeness requirements, see Section III.

From a strategy perspective, we fulfill the goals proposed
by Antòn, Bertino et al. [1]. We are also in line with the ap-
proach suggested by Cannon et al. [7], by which the first re-
search priority is consolidating policy management and the
second is automating compliance. From a modeling perspec-
tive, our high-level model compares to the REA model, how-
ever ours is more refined since it specifies more precisely
resource control.

Our approach shares some principles with Hambrick et al.
[15], which lays out the importance of the relationship be-
tween enterprise components, such as formal structure and
behavioral process on one hand, and legal and normative
compliance on the other hand.

VIII. CONCLUSIONS
We have outlined issues related to the development of le-

gally compliant software in organizations, and we have pro-
posed a development process consisting of a number of steps,
or sub-processes, which are based on well-known software
engineering concepts. We have adopted a definition of com-
pliance based on the concept of logical consistency. We have
then focused on the process of establishing compliance be-
tween organizational requirements and legal requirements.
Compliance checking is done by translating both groups of
requirements into GAL, our Governance Analyst Language.
The translation from organizational and legal requirements
into GAL is done by using GAM, a UML model of organiza-
tional concepts. GAL is then translated into the language
Alloy and the Alloy tool is used to check for logical con-
sistency, thus compliance, between the two groups of re-
quirements. Although logic model checking is considered to
be a computationally inefficient process, so far we haven’t
found a property that could not be checked in a matter of
seconds (at most), and we refer to [18] for a systematic study
of performance. See also [26] for discussion of progress in the
efficiency of logical satisfiability algorithms.

With respect to other related methods existing in the litera-
ture, our method is characterized by the use of UML model-
ing, Alloy, and the specialized language GAL, which contains
many useful constructs for compliance checking, and which
can be directly mapped into the Alloy language. We have
shown how our tool can find situations of non-compliance,
and we have closed with considerations on how our process
could be used for compliance auditing in the area of Personal
Health Information Privacy.

The main strengths of our method are
• Systematic: the extraction method is based on the

UML organizational model, an ontology of legal con-
cepts which can be extended according to need.

• Expressive: since GAL can represent many types of
legal requirements, and is extensible.

• Repeatable: the method is repeatable and has been
tested for federal and provincial laws in conjunction
with hospital and electronic health organizations.

• Adaptable: the model embedded in the method is ge-
neric and can be updated to reflect changes in the laws
and regulations.

This will be further documented in forthcoming publica-
tions and work is underway to quantify the above metrics.

However our method is not always directly applicable.
The necessary model may be quite different from our GAM,
in which case a different UML model and different logic rela-
tionships will have to be developed. Or it may be difficult to
express the requirements in a way that they can be logically
checked (Section V). Further, our method needs to be com-
plemented by a method addressing completeness (Section III).

ACKNOWLEDGMENT
This work was funded in part by grants of the Natural Sci-

ences and Engineering Research Council of Canada. We thank
the anonymous referees for useful suggestions. We also thank

the open software community for their contributions to Alloy,
Graphviz, KodKod, Python, and ArgoUML.

APPENDIX I - ALLOY FORMAL METHOD
The Alloy formal method [21] consists of a language and a

logic analysis tool. The Alloy language is a structural model-
ing language based on first-order logic. It has four basic con-
structs: Signatures, Facts, Predicates, and Assertions. A sig-
nature introduces a basic type and a collection of relation-
ships; this is suitable for representing hierarchical specifica-
tions. Facts are explicit constraints that must be satisfied in
order for the Alloy tool to be able to generate a model in-
stance. Predicates are expressions that are used to express
constraints on generated objects; these are not pervasive as
facts, and Alloy will generate an instance with examples even
if a predicate is violated. Finally, assertions specify whether
constraints are validated.

The Alloy-42 Analyzer is a logic analyzer and model find-
er, which accepts as input specifications written in the Alloy
language. The tool can generate instances of invariants, simu-
late the execution of operations, and check user-specified
properties of a model. Alloy-4 is modular and extensible. It
has a core relational logic engine that incorporates up-to-date
optimization techniques. The logic engine can be accessed in
two ways: a compiler allows the model to be expressed in
textual form, and a set of Java™ API methods allow the mod-
el to be constructed, queried, and analyzed dynamically. Addi-
tional interfaces can be easily written to integrate it into an-
other analysis framework.

The Alloy tool produces not only the visual result that we
have seen, but also a DOT language representation and an
XML representation. These can be useful for other types of
displays and validation.

The Alloy Analyzer 4 uses Kodkod, an efficient SAT-
based analysis engine, for first order logic with relations,
transitive closure, and partial instances. Optimizations are
performed first at the Alloy level, and the reduced problem is
then given to Kodkod.

Formal constraints can start from a minimal representation
of the rules and be incrementally strengthened, adding con-
straints until the rules are completely specified; this method is
called incremental validation. However, since we are validat-
ing legal compliance, the model is restricted to the enterprise
structure, whereas the legal rules are asserted for validation. If
the enterprise model fails, then the auditor should look for
conflicting policies. Once the enterprise model is conflict free,
assertion validation can be done incrementally. An auditor
can aggregate multiple statements in joint predicates. The use
of the analyzer in an interactive fashion assists the users in
making the incremental changes and checking their validity.

Given that an enterprise structure is discrete at the time of
validation, Alloy’s bounded-exhaustive analysis implies that
its results are valid with respect to the given instance only,
that is, if the analyzer fails to validate an assertion of an Alloy
predicate, this result is limited to the current enterprise in-
stance. Alloy has the ability to create randomized instances;
however, such a feature is not necessary in the analysis given

2 http://alloy.mit.edu/alloy4/

that an enterprise instance is constant during the period of
analysis.

One of the tenets at the basis of Alloy’s method is what the
author calls the “Small Scope Hypothesis” [21], which essen-
tially states that most software design errors have small coun-
terexamples, which can be generated automatically. We dare
to extend this concept to the legal domain by hypothesizing
that many violations of law can be detected by exploring small
legal scenarios.

APPENDIX II – GAL – GOVERNANCE ANALYSIS LANGUAGE
The following list shows the currently implemented GAL

statements according to their type. This set is open-ended and
other statements can be added as needed.

In what follows, literal entities such as Process, Activity,
Role, etc. are variables that must be instantiated with the
names of actual processes, activities, and roles.

Note that the statements have been simplified for clarity.
Among others, for traceability, each statement can include a
literal comment indicating the normative statement from
which it is obtained. This literal is output when a situation of
non-compliance is detected.

1. Construction

ComposedOf (Object, Object)
Asserts that an object includes another object
ComposedOf (Process, Process)
Asserts that a process includes another process
Contains (Process, Activity)
Asserts that a process contains an activity
Includes (Department, Department)
Asserts that a department includes another department

2. Equivalence

EquActivity (Activity, Activity)
Asserts that two activities are equivalent (one can replace

the other)
EquProcess (Process, Process)
Asserts that two processes are equivalent
EquRole (Role, Role)
Asserts that two roles are equivalent
EquDepartment (Department, Department)
Asserts that two departments are equivalent

3. Relational

Access (Activity, Object)
Asserts that an activity leads to accessing a particular ob-

ject
Acts (Role, User)
Asserts that a user acts in a particular role
AssignedTo (Role, Activity)
Asserts that a user has been assigned a particular role
Assumes (User, Process)
Asserts that a user assumes a process
Delegate (User|Role, User|Role, Role|Activity|Process)
Asserts that a role or user delegatesan activity or process to

another role or user
Next (Activity, Activity)

http://alloy.mit.edu/alloy4/

Asserts a sequence between activities
Separate ((Activity|Process, Activi-

ty|Process)[(Activity|Process, Activity|Process)]…)
Asserts that users or roles who have access to certain ac-

tivities or processes cannot have access to certain other activ-
ities or processes

4. Assignments

CanAct (Allow|Deny, User, Role)
Allows or denies a user the possibility of acting in a role
CanAssignTo(Allow|Deny, Activity, Role)
Allows or denies a role the possibility of being assigned an

activity
CanAssume (Allow|Deny, Process, User)
Allows or denies a user the possibility of being assigned a

process
CanDelegate(Allow|Deny, User|Role, User|Role,

Role|Activity|Process)
Allows or denies a user or role the possibility of delegat-

ing an activity or a process to another user or role

5. Checks

Activity- Predecessor (Activity, Activity)
Checks if the immediate predecessor of an activity is an-

other activity
Activity-Process-Pred (Process, Activity, Activity)
The predecessor check is limited to a particular process
Activity-Process-Trace-Exist (Process, Activity, Activi-

ty)
Checks if within a process there is a trace starting with an

activity and containing another activity later
Activity-Trace-Exist (Activity, Activity)
Checks if there is a trace starting with an activity and end-

ing with another activity
Activity-Process-Trace-All (Process, Activity, Activity)
Checks if within a process all traces starting with an activ-

ity contain another activity later on
Activity-Trace-All (Activity, Activity)
Checks if all traces starting with an activity contain an-

other activity later on
checkActs (Role, User)
Checks if a user acts in a particular role
checkAssignedTo (Role, Activity)
Checks if an activity is assigned to a role
checkAssumes (User, Process)
Checks if a user has access to a process
checkDelegate (User|Role, User|Role,

Role|Activity|Process)
Checks if it is possible to delegate a role or activity or

process from a user or role to another user or role
checkInstance (User | Process | Department|Role| Ac-

tivity)
Checks that a specific class instance exists
Dept-Includes (Department|Role, Department|Role)
Checks if a Department or Role includes another Depart-

ment or Role (directly or indirectly)
Process-Activity (Process, Activity)
Checks if a process includes the specified activity
Process-Includes (Process, Process)

Check if a process includes another (directly or indirectly)

REFERENCES
[1] Antón, A. I., Bertino, E., Li, N., Yu, T. A roadmap for comprehensive

online privacy policy management. Comm. ACM 50, 7, 2007, 109-
116.

[2] Barth A., Datta A., Mitchell J., Nissenbaum H. Privacy and
Contextual Integrity: Framework and Applications. IEEE Symposium
on Security and Privacy 2006: 184-198.

[3] Botha, R.A., Eloff, J.H.P. Separation of duties for access control
enforcement in workflow environments. IBM Systems Journal, 40 (3),
2001, 666-682.

[4] Breaux, T. D., Vail, M. W., and Antòn, A. I. Towards Regulatory
Compliance: Extracting Rights and Obligations to Align
Requirements with Regulations. Proc. 14th IEEE international
Requirements Engineering Conference (RE'06) IEEE Computer
Society, 46-55.

[5] Breaux, T.D., Antón, A.I., Boucher, K., Dorfman, M. Legal
requirements, compliance and practice: an industry case study in
accessibility. IEEE 16th Int. Requirements Engr. Conf., 2008, 43-52.

[6] Brodie, C. A., Karat, C., Karat, J. An empirical study of natural
language parsing of privacy policy rules using the SPARCLE policy
workbench. In SOUPS '06, ACM Internat. Conf. Proc. Series Vol.
149, 8-19.

[7] Cannon, J. C., Byers, M. Compliance deconstructed. Queue 4(7) 2006,
30-37.

[8] Cavoukian, A., Chanliau, M. Privacy and Security by Design. 2013.
Retrieved May 2013 from http://www.privacybydesign.ca

[9] Elgammal, A., Turetken, O., van den Heuvel, W.J. Using Patterns for
the Analysis and Resolution of Compliance Violations. Intern. J. of
Cooperative Information Systems. 21 (1), 2012, 31–54

[10] Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R. Role-Based Access
Control. Artech House, 2007.

[11] Ghanavati, S., Amyot, D., Peyton, L., Siena, A., Perini, A., Susi, A.
Integrating business strategies with requirement models of legal
compliance. Intern. Journ. Electronic Business 8(3), 2010, 260-280.

[12] Governatori, G., Shek., S. Regorous: A business process compliance
checker. International Conference on Artificial Intelligence and Law
(ICAIL) 2013.

[13] Governatori, G. Law, Logic and business processes. Third
International Workshop on Requirements Engineering and Law,
RELAW 2010, 1-10.

[14] Governatori, G., Sadiq, S. The Journey to Business Process
Compliance. In Jorge Cardoso and Wil van der Aalst, editors,
Handbook of Research on BPM, IGI Global, 2009.

[15] Hambrick, D.C., Werder, A.v., Zajac, E.J. New Directions in
Corporate Governance Research. Organization Science, 19(3) 2008,
381-385,

[16] Hassan, W., Logrippo, L. Requirements and Compliance in Legal
Systems: a Logic Approach. In Proc. IEEE 16th International
Requirements Engineering Conference (RE'08): RELAW Workshop.
Barcelona, Spain. Sep. 2008.

[17] Hassan, W., Logrippo, L. A Governance Requirements Extraction
Model for Legal Compliance Validation. Intern. Workshop on
Requirements Engineering and Law, RELAW 2009, 7-12.

[18] Hassan,W. Validating Legal Compliance - Governance Analysis
Method. University of Ottawa, PhD thesis in Computer Science, 2009.

[19] He, Q., Otto, P., Antòn, A. I., Jones, L. Ensuring Compliance between
Policies, Requirements and Software Design: A Case Study. Proc. 4th
IEEE international Workshop on information Assurance, IWIA2006.
IEEE Computer Society, 79-92.

[20] Hruby, P. Model-Driven Design Using Business Patterns. Springer
2006.

[21] Jackson D. Software Abstractions: Logic, Language, and Analysis.
MIT Press. Cambridge, MA. 2006.

[22] Kajan, E., Stoimenov, L. Toward an ontology-driven architectural
framework for B2B. Comm. ACM, 48 (12), 2005, 60-66.

[23] Kiyavitskaya, N., Zeni, N., Breaux, T. D., Antón, A. I., Cordy, J. R.,
Mich, L., Mylopoulos, J. Extracting rights and obligations from
regulations: toward a tool-supported process. Proc. 22nd IEEE/ACM
international Conference on Automated Software Engineering, ASE
2007, ACM, 429-432.

[24] Kudo, M., Araki, Y., Nomiyama, H., Saito, S., and Sohda, Y. Best
practices and tools for personal information compliance management.
IBM Syst. J. 46(2), 2007, 235-253.

[25] Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.
Monitoring Business Constraints with Linear Temporal Logic: An
Approach Based on Colored Automata. Business Process
Management. LNCS 6896. Springer 2011, 132-147

[26] Malik, S., Zhang, L. Boolean Satisfiability, from Theoretical Hardness
to Practical Success. Comm ACM 52(8), 2009, 76-82.

[27] McCarthy, W.E. The REA Accounting Model: A Generalized
Framework for Accounting Systems in a Shared Data Environment.
The Accounting Review, 57 (3), 1982, 554-578.

[28] Mili, H. Tremblay, G. Jaoude, G.B. Lefebvre, E., Elabed, L., El-
Boussaidi, G. Business process modeling languages: Sorting through
the alphabet soup. ACM Comput. Surv. 43(1): Art. 4 (2010).

[29] Morrison, P., Williams, L., Holmgreen, C., Massey, A. Proposing
Regulatory-Driven Automated Test Suites for Electronic Health Record
Systems. 5th Intern. Worksh. on Softw. Engineering in Health Care
(2013).

[30] Ontario Laboratory Information System (2013). Retrieved May 1,
2013, from http://www.ehealthontario.on.ca/en/initiatives/view/olis

[31] Ontario Ministry of Health and Long-Term Care. (2013). The Ontario
Drug Benefit (ODB) Program. Retrieved May 1, 2013, from
http://www.health.gov.on.ca/en/public/programs/drugs/programs/odb/
odb.aspx

[32] Otto P. N. and Antón A. I. Addressing Legal Requirements in
Requirements Engineering, 15th IEEE International Requirements
Engineering Conference, 2007, 5-14.

[33] Sadiq, S., Governatori, G. A Methodical Framework for Aligning
Business Processes and Regulatory Compliance. In: Brocke, J.,
Rosemann, M. (eds.) Handbook of Business Process Management.
Springer (2009)

[34] Sartor, G. Legal Reasoning, a cognitive Approach to the Law. Vol 5
in: Pattaro, E. A Treatise of Legal Philosophy and General
Jurisprudence. Springer, 2005.

[35] Subirana, B. and Bain, M. Legal programming. Comm. ACM 49(9),
2006, 57-62.

[36] Turetken, O., Elgammal, A., van den Heuvel, W.J., Papazoglou M.P.
Capturing Compliance Requirements: A Pattern-Based Approach.
IEEE Software 29(3), 2012, 28-36.

[37] Young Schmidt, J., Anton, A., Earp, J.B. Assessing identification of
compliance requirements for privacy policies. Proc. of RELAW 2012,
52-61.

[38] Zowghi, D., Gervasi, V. On the Interplay betweem Consistency,
Completeness, and Correctness in Requirement Evolution. Inform.
and Softw. Technol. 46 (2004) 763–779.

	I. Introduction
	II. Overview of the process and its Steps
	A. The Legal Area
	B. The Software Area: Overview

	III. Compliance and Consistency checking
	IV. The GAM model for the extraction process
	V. Specifying and checking the relationships
	VI. Personal Health Information Privacy
	VII. Related work
	VIII. Conclusions
	ACKNOWLEDGMENT
	Appendix I - Alloy formal method
	Appendix II – GAL – Governance Analysis Language
	References

