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Abstract

In traditional multi-level security systems, trust and risk values are pre-computed. Any change in these values requires manual
intervention of an administrator. In many dynamic environments, however, these values should be auto-adaptive, and auto-tunable
according to the usage history of the users. Moreover, occasional exceptions on resource needs, which are common in dynamic
environments like healthcare, should be allowed if the subjects show a positive record of use towards resources they acquired in
the past. Conversely, access of authorized users, who have negative record, should be restricted. These requirements are not taken
into consideration in existing risk-based access control systems. In order to overcome these shortcomings and to meet different
sensitivity requirements of various applications, we propose two dynamic risk-based decision methods for access control systems.
We provide theoretical and simulation-based analysis and evaluation of both schemes. Also, we analytically prove thatthe proposed
methods, not only allow exceptions under certain controlled conditions, but uniquely restrict legitimate access ofbad authorized
users.
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1. Introduction

Commonly used access control systems, e.g., Role-based Access Control (RBAC) [1] systems, and multi-level
security systems, e.g., Bell-LaPadula (BLP) [2] are rigid and require establishing the clearance of a requester, which
is a manual and time consuming procedure [3–5]. In these systems, security policies are typically hard coded into
decision logic [6] and are the result of pre-computed trade-off analysis between various organizational objectives [7].
Furthermore, these traditional systems do not consider uncertainty and risk in access control decisions, and this makes
them inflexible and difficult to adapt to changing circumstances. Due to these limitations, these systems are not very
suitable for dynamic environments, like healthcare, emergency services and the military. This motivates us to work in
the area of dynamic risk-based decision methods for security and access control systems.

Consider a hospital environment, with various levels of clearance for technicians and doctors and various levels
of sensitivity for resources (drugs, equipment, type of treatment). A newly hired technician may be assigned to a
low clearance level. As she asks for access to resources, initially access is allowed taking into consideration her
clearance level and the sensitivity classification of the resources, as well as possibly recommendations coming from
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previous experiences with her. After each resource access,her performance in using the resource is evaluated by a
supervisor. Her history of performance with respect to eachresource is recorded: a technician may be very good in
dispensing drugs, less good in dispensing certain specialized treatment. In consideration of this history, her access
rights with respect to specific resources may be raised or lowered, but remain bound to maximum and minimum
values determined by her initial clearance (e.g., a junior technician can never be allowed to handle a resource reserved
to a senior technician or to a doctor). After some experiencewith her, her clearance level may be adjusted, for example
she may be promoted to a senior role, but this will be done by administrators.

In more general terms, a flexible risk-based access control decision system should keep track of the outcomes of
allowing access of users to resources, and determine futureaccess decisions on the basis of these outcomes. For each
user and resource, access of the user to the resource should be respectively relaxed or restricted if the user has shown
a positive or negative record of use towards the resource. Recently proposed risk-based access control methods such
as [4–6,8,9] do not take into consideration such variability. The objective of this work is to incorporate such variability
in the access control decision systems.

In our proposed method, we consider two values, for a given (subject, resource) pair, one that represents how much
can we trust the subject towards the resource, and another one that represents the risk of assigning the resource to the
subject. A positive record of use of the subject for the resource at the same time increases the trust and decreases the
risk of the subject towards the resource; a negative record of use has the opposite effect. We show in Section 3 that the
’record of use’ can be implemented by maintaining a history variable which records reward and penalty points for each
(subject, resource) pair. Each time a subject requests access to a resource, the history variable is used to determine risk
and trust values associated with the request, and these in turn are used to determine whether access should be granted.
If access is granted, an obligation service is executed to decide whether the outcome of the action of the subject on
the object was positive or negative, resulting in the assignment of new reward or penalty points. These points are used
to update the history variable, and the process continues. As defined here, the method is conceived to be implemented
in a Multi-Level Security system (MLS)[2].

In a dynamic, highly responsive environment, it may be desired to change access rights quickly in response to recent
changes in evaluations; in more conservative environments, it may be desired that these changes be more gradual. To
this effect, in a refinement of this technique we propose a EWMA (Exponentially Weighted Moving Average)-based
dynamic risk-based decision method for access control systems (See Sec. 4). In this method, we show that it is possible
to give more or less importance to recent history with respect to older history.

The rest of the paper is organized as follows. Section 2 presents related work and we briefly highlights the methodol-
ogy, pros and cons of existing approaches. Section 3 presents our first proposed dynamic risk-based decision method.
This section presents the process flow, the mathematical formulation of trust and risk concepts, and decision mech-
anism. Section 4 presents the EWMA-based dynamic risk-based decision method. In this section, we have not only
provided the mathematical formulation of trust and risk concepts but also provided a comparison of the two ap-
proaches. Section 5 presents a theoretical and simulation-based analysis and evaluation of the two proposed methods.
This section also includes the security resiliency analysis of both risk-based decision methods against threats of al-
lowing illegitimate accesses and restricting legitimate accesses. Finally, Section 6 concludes the paper.

2. Related Work

Incorporating consideration of risk in access control systems has recently gained the attention of researchers [4–
6,8–10]. A brief overview of some of the existing work is given below.

McGraw [6] has proposed a Risk-Adaptable Access Control (RAdAC) mechanism. Firstly, the system determines
a security risk associated with granting access. Secondly,the system compares the measured risk with the access
control policy that identifies the acceptable level of risk for the object being accessed. Thirdly, the system verifies the
operational need. If all the requirements for operational need, as specified in the policy, are met then access is granted.
RAdAC provides a high-level infrastructure for the granting of exceptions, but it does not itself contain a risk model.
The author does not provide details about how to quantitatively measure risk and operational need.

Zhanget al. [4] have proposed a Benefit and Risk-based Access Control (BARAC) model. In this model, transac-
tions are associated with risk and benefit vectors. Based on the configuration, an allowed transactions (AT) graph is
constructed. Transactions are allowed if the total system benefit outweighs the total system risk and certain properties
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of the graph are satisfied. The state is largely static and updating a state leads to intractable problems [9].
Chenget al. [8] have proposed a Fuzzy MLS access control model. It quantifies the risk associated with an access.

The system will dynamically control risky information flowsbased on its current operational needs, risk tolerance and
environment. They calculate risk based on a value of information and probability of unauthorized disclosure. Similarly,
Qun Ni et al. [5] have proposed risk-based access control systems based on fuzzy inferences. They show that fuzzy
inference is a good approach for estimating access risks. They introduce fuzzy membership functions for subjects
and objects. In order to implement risk-based BLP systems tosatisfy simple security properties, they introduce pre-
defined “if antecedent then consequent” rules. For example,if the subject security label isnot unclassifiedand the
object security label isclassified, then the access risk is low. In both these works, the past behavior of users is not
considered to measure risk.

Wang and Jin [10] have proposed a quantified risk-adaptive access control method to protect patient privacy in health
information systems. In their model, accessing information (irrespective of whether it is public or highly confidential)
that is not required for one’s job leads to a high risk score, while accessing relevant information results in a low one.
In their model, relevance between medical record and a purpose is determined with a relevance-relation functionθ.
The authors have mentioned in their paper that the concrete form of the functionθ is never known, which makes their
approach less generic.

As compared to the state-of-the-art work, including [4–6,8,9], our proposed methods have the following three
unique features:

(i) In our methods, trust and risk values are auto-tunable according to the past behavior of the users (Section 3).
(ii) The proposed EWMA-based method is suitable for both conservative and highly responsive environments as

compared to the methods that we have cited, that only work in conservative environments (Section 4).
(iii) Our methods, not only allow exceptions under certain controlled conditions, but uniquely restrict legitimate

access of bad authorized users (Section 5) .
We provide theoretical and simulation-based analyses and evaluation of both methods (See Sec. 5). These analyses
show that indeed our methods have the characteristics we have described.

3. Risk-based Decision Method

Traditionally, whenever a Policy Decision Point (PDP) receives an access request from a requester, it first requests
additional information from the Policy Access Point (PAP) and Policy Information Point (PIP) and then makes a
decision. In our proposed method, the PDP requests information about the trust and risk values associated with the
particular subject and object and then takes the decision. The process flow of the proposed risk-based decision method
is shown in Figure 1. This framework is a modification of the standard eXtensible Access Control Markup Language
(XACML) framework [11]. All the new components that we have added are highlighted with dotted lines. When the
Policy Enforcement Point (PEP) receives an access request from the subject (Step 1), it forwards it to the PDP for an
evaluation (Step 2). The PDP first checks the organizationalpolicy (Step 3), e.g., for the current request, should the
system make a decision based on the trust and risk values? After that the PDP fetches attributes relevant to the access
request from the PIP (Steps 4 to 6). Once all required information is received, the PDP sends a query to the policy
risk and trust evaluator point (PRTP) (Step 7). The PRTP evaluates the trust and risk values based on the past behavior
of the user (Step 8). The past behavior is evaluated based on the history of reward and penalty points. If the system
does not have an adequate history then the PRTP evaluates both values based on recommendations. The current trust
and risk values associated with the particular subject-object pair are returned to the PDP (Step 9). Based on the trust
and risk values, the PDP makes the decision. This decision isforwarded to the PEP, which enforces it (Step 10). If
the access is granted, the PEP informs (Step 11) the obligation service that will decide whether to assign reward or
penalty points to the user (Step 12).

Details about assignment of reward and penalty points, calculation of trust and risk values, and how trust and risk
values are used in decision making are given below.
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Fig. 1. Process flow of Risk-based Decision Method

3.1. Step 1: Awarding Reward and Penalty Points

After access is given, an obligation service is executed in the system that will decide (based on the evaluation of the
context) whether to assign reward or penalty points to usersas shown in Figure 2. If the result of an evaluation is good
then the system will assign reward points, and if the result of an evaluation is bad then the system will assign penalty
points. In practice, the obligation service is applicationdependent. Therefore we will not attempt to describe generic
mechanisms through which a system can decide whether to assign reward or penalty points to users.

Fig. 2. Data flow for assignment of reward / penalty points
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Let us take an example of an e-purse scenario [12,13], where users pay e-cash for using some service such as a
subway. Assume that a person wants to use the subway for traveling from one station to another. In this case, the
subway registers users when they board, and charges the users’ e-purse when they disembark. In this scenario, the
validation of the e-cash process can be the obligation service. If e-cash is successfully redeemed, then the system
will assign reward point(s) to the subject with respect to the service. If e-cash is not successfully redeemed due to
insufficient funds or any other reason, then the system will assign penalty point(s).

3.2. Step 2: Trust Calculation

Our method of dynamically calculating trust values has beendesigned to satisfy the following intuitively described
requirements:
– Property 1: If neither penalties nor rewards are available then the trust value is set to a default value.
– Property 2: Reward points increase the trust value.
– Property 3: Penalty points decrease the trust value.
– Property 4: In the presence of both rewards and penalties, the trust value is always bound between minimum and

maximum values.
– Property 5: If only penalties are available then the trust value is set to a minimum value.
– Property 6: If only reward points are available then the trust value increases more quickly with the increase in

reward points but never exceeds a maximum value.
These properties of trust are inspired by the observation ofreal world examples such as the following one, presenting

a scenario of trust relationship evolution between a clientand a credit card company.
(i) If client is new then credit card company sets default credit limit for the client. From this observation we derived

property 1.
(ii) If client pays bills on time, then his credit limit may beincreased. From this observation we derived property 2.
(iii) If client misses some payment deadlines, then his credit limit may decrease. From this observation we derived

property 3.
(iv) Based on the type of credit card (e.g., gold, silver), maximum and minimum credit limits are set. Based on the

bill payment history, the credit limit is set, but always bound between minimum and maximum credit limits.
From this observation we derived property 4.

(v) If client always pays bills late then his credit limit is set to the minimum value according to the type of the credit
card. From this observation we derived property 5.

(vi) If client A has been paying bills on time for the last 12 months and clientB has been paying bills on time for the
last 24 months, then the credit limit of clientB should be higher than the credit limit of the clientA. From this
observation we derived property 6.

Note that these properties are generic and are not limited tothis example.
Mayeret. al. [14] have defined trust as a function of trustee’s behaviour that includes its ability, benevolence and

integrity and of the trustor’s propensity to trust. In this paper, we determined trustee’s behaviour with the help of a
reward point historyH+(s, o), and trustor’s propensity to trust with a subject clearancelevel ls. Based on these two
factors, we calculate the trust valueTv for the subject-object pair(s, o) in the following manner.

Tv(s, o) = ls ×
[

1 +H+(s, o)
]

(1)

In this equation we multiply the subject clearance levells by the factor1 +H+(s, o). We have added 1 inH+(s, o)
because whenever the system does not have the record of reward pointsH+(s, o), then it sets the trust value to the
default value which isls.

Let us first discuss the derivation of parameters used in the calculation of trust value, and then we will discuss
whether the required properties are retained in this equation.

Our method of calculating the reward points historyH+(s, o) attempts to mimic the way trust builds up in real life:
we use a measurement based on rewards and penalties, which wecall the Local Reward History (LRH), and possibly
a measurement based on positive and negative recommendations, which we call the External Reward History (ERH).
The LRH for a pair(s, o) is calculated in the following manner:
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LRH(s, o) =

(

R

R+ P

)

α
1

R+1 ; 0 < α < 1. (2)

whereR andP represent the total number of reward and penalty points respectively for the pair(s, o), which the
system stores locally. The expressionRR+P simply represents the percentage of reward points among thetotal points.
This expression is enough when we have both reward and penalty points. To make the LRH value grow gradually in
the absence of penalty points, we have multiplied theRR+P expression withα1/(R+1), whereα represents the rate at
which the trust value increases with the increase in reward points.

The External Reward History (ERH) is obtained via recommendation of trusted peers. Getting recommendations is
an optional step. These can be considered only when the system does not have an adequate local history. The ERH for
a pair(s, o) is calculated in exactly same manner as the LRH(s, o), the only difference is that the values ofR andP
are obtained from the recommenders:

ERH(s, o)k =

(

Rk

Rk + Pk

)

α
1

R
k
+1 ; 0 < α < 1. (3)

whereRk andPk represent the total number of reward and penalty points respectively for the pair(s, o), which are
sent by the recommenderk.

In general, theH+(s, o) is calculated in the following manner:

H+(s, o) =



























w0LRH(s, o) +

m
∑

k=1

wkERH(s, o)k if history is available

0 otherwise

(4)

wherem represents the total number of the recommenders. Each recommender may have different weightw values.

However, the sum of all weight values (w0 +
m
∑

k=1

wk) is 1. When recommendations are not needed or not available,

then the value ofw0 is set to 1. In the absence of local and external reward histories the value ofH+(s, o) is set to
zero.

Based on the clearance, subjects can be classified in numerous ways. For example, many organizations employ a
hierarchical range of classifications, and one of the following clearance levels can be assigned to a subject.

Security levels= {Top Secret, Secret, Confidential, Unclassified}.

Other security labels may also be used. Whatever labels are used, we first sort them according to their sensitivity level
and we map them on in ordered sequence of numbers. For example, we can assign numbers to the above mentioned
security labels in the following manner.

Security levels= {Top Secret=4, Secret=3, Confidential=2, Unclassified=1}.

Let LS : S → L be the maximum clearance level each subject can have. HereS represents a set of subjects andL

represents a set of security levels. Letls : S → L be the current clearance level of a subjects, which must bels ≤ LS

(i.e.LS must dominatels).
The graph shown in Figure 3 is obtained by equation 1. This illustrates that the required properties are retained in

equation 1. For example, the index (0,0) of Figure 3 shows that in absence of both reward and penalty points, the trust
value is set to the default value, which in this example is 4. This satisfies property 1. The right most side of Figure 3
shows that with the increase in reward points the trust valuealso increases. This satisfies property 2. The left most
side of Figure 3 shows that with the increase in penalty points the trust value decreases. This satisfies property 3. The
values between the index (1,1) to (100,100) of Figure 3 show that when both rewards and penalty points are available,
the trust value is bound between minimum and maximum values,which in this example are 4 and 8 respectively. This
satisfies property 4. The right side of Figure 3 shows that in the presence of only penalty points, the trust value is set
to a minimum value, which in this example is 4. This satisfies property 5. The left side of Figure 3 shows that in the
presence of only reward points, the trust value increases more quickly with the increase in rewards points but never
exceeds the maximum value, which in this example is 8. This satisfies property 6.

Proposition 1: The range of trust value is always between[ls, 2× ls].
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Fig. 3. Trust behavior:ls=4

Proof: SeeAppendixA.1.
�

Proposition 2: The default trust valueT def
v (s, o) is ls.

Proof: SeeAppendixA.2.
�

Note that in our approach, the minimum and default trust values are the same. We keep them the same for simplicity.
However, different values could also be used with minor tuning in equation 1. Tuning can be performed in many ways
but the following condition must be kept:

Tmin
v (s, o) ≤ T def

v (s, o) ≤ Tmax
v (s, o).

3.3. Step 3: Risk Calculation

Our method of dynamically calculating risk values has been designed to satisfy the following requirements:
– Property 7: If neither reward nor penalty points are available then therisk value is set to a default value.
– Property 8: Penalty points increase the risk value.
– Property 9: Reward points decrease the risk value.
– Property 10: In the presence of both rewards and penalties, the risk value is always bound between minimum and

maximum values.
– Property 11: If only reward points are available then the risk value is set to a minimum value.
– Property 12: If only penalty points are available then the risk value increases more quickly with the increase in

penalty points but never exceeds a maximum value.
The USA National Institute of Standards and Technology (NIST) [15] has defined risk as a function of threat

likelihood and impact. At a high-level, we adopt the same definition. We determine the threat likelihood based on
the penalty point history and the impact based on the object sensitivity level. If the sensitivity level of the object is
high then the impact will be high also. For example, impact ofdisclosure of top secret information can range from
jeopardizing national security to disclosure of privacy act data [15].

Based on the penalty point historyH−(s, o), and sensitivity level of the objectlo, we calculate the risk valueRv

for the subject-object pair(s, o) in the following manner:
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Rv(s, o) = lo ×
[

1 +H−(s, o)
]

. (5)

Let us first discuss the derivation of the parameters used in the calculation of risk value, and then we will discuss
whether the required properties are retained in Equation 5 or not.

As in case of the reward point history, the penalty points history H−(s, o) factor is also composed of two sub-
factors: 1) Local Penalty History (LPH) and 2) External Penalty History (EPH). The LPH for a pair(s, o) is calculated
in the following manner:

LPH(s, o) =

(

P

R+ P

)

α
1

P+1 ; 0 < α < 1. (6)

Note that we have used the expressionPR+P that represents the percentage of penalty points among the total points,

whereas in LRH we used the expressionRR+P which represents the percentage of reward points among the total points.
The EPH is obtained via recommendation of trusted peers and is calculated in the following manner:

EPH(s, o)k =

(

Pk

Rk + Pk

)

α1/(Pk+1); 0 < α < 1. (7)

In general, theH−(s, o) is calculated in the following manner:

H−(s, o) =



























w0LPH(s, o) +
m
∑

k=1

wkEPH(s, o)k if history is available

0 otherwise

(8)

Based on the sensitivity, objects can also be classified in numerous ways. It is the responsibility of the owner
of an object to assign an appropriate level to it. Note that subjects and objects should be labeled according to the
same classification method. For example, if subjects are classified into four categories: 1) Top secret, 2) Secret, 3)
Confidential, and 4) Unclassified, then objects should also be classified into the same four categories.

Let LO : O → L be the maximum sensitivity level an object can have. HereO represents a set of objects and
L represents a set of security levels. Letlo : O → L be the current sensitivity level of an objecto, which must be
lo ≤ LO (i.e.LO must dominatelo).

The graph shown in Figure 4 is obtained by equation 5. This illustrates that the required characteristics are retained
in equation 5. For example, the index (0,0) in Figure 4 shows that in absence of both rewards and penalty points, the
trust value is set to the default value, which in this exampleis 4. This satisfies property 7. The right side of Figure 4
shows that with the increase in penalty points the risk valuealso increases. This satisfies property 8. The right most
side of Figure 4 shows that with the increase in reward pointsthe risk value decreases. This satisfies property 9. The
values between the index (1,1) to (100,100) of Figure 4 show that when both rewards and penalty points are available,
the risk value is bound between minimum and maximum values, which in this example are 4 and 8 respectively. This
satisfies property 10. The left side of Figure 4 shows that in the presence of only rewards points, the risk value is set to
a minimum value. This satisfies property 11. The left most side of Figure 4 shows that in the presence of only penalty
points, the risk value increases more quickly with the increase in penalty points but never exceeds the maximum value,
which in this example is 8. This satisfies property 12.

Proposition 3: The range of risk value is always between[lo, 2× lo].
Proof: SeeAppendixA.3.

�

Proposition 4: The default risk valueRdef
v (s, o) is lo.

Proof: SeeAppendixA.4.
�

As in the case of trust, the minimum and default risk values are the same. In order to use different values the
following condition must be kept:

Rmin
v (s, o) ≤ Rdef

v (s, o) ≤ Rmax
v (s, o).
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Fig. 4. Risk behavior:lo=4

3.4. Step 4: Decision Mechanism

Conceptually, trust and risk zones are created for each subject-object pair(s, o) as shown in Figure 5. Both trust
and risk values always fall inside their respective zones. Once the trust and risk values are calculated, the system will
make a decision based on the equation below.

D(Tv(s, o), Rv(s, o)) =







Permit ifTv(s, o) ≥ Rv(s, o)

Deny otherwise
(9)

If the current trust valueTv(s, o) is greater or equal to the current risk valueRv(s, o) then the system will permit
access, otherwise the access request will be denied.

Let us assume that the system will assign rewards and penaltypoints to users according to the policies specified in
Table 1: if the user accesses an object from a secure public network, then the system will assign one reward point, and
so on. Assume that Joe with clearance level 3 has accessed a level 3 object in the following sequence:
– from secure public network,
– from insecure public network,
– from secure private network, and
– from insecure private network.
In total Joe receives 2.5, and 3 reward and penalty points respectively. Assume thatα = 0.2. When the system receives
a new read access request from Joe, it computes the trust and risk values, which are 3.86 and 3.95 respectively. The
current trust value is less than the risk value, so the systemwill deny read access. Note that in a traditional MLS
security system, Joe would always get read access to the object because his clearance level is equal to the sensitivity
level of the object.

4. Second Proposed Method

So far, our proposed method of calculating reward and penalty histories has been based on the assumption that the
recent and old history have equal weight. The consequence ofthis assumption is that the method may be unable to
detect small changes in recent behavior of a subject in a timely manner. One of the approaches to solve this problem is
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Fig. 5. Trust and Risk zones

Table 1
Sample reward and penalty assignment policy

Secure networkInsecure network

Public network 1 reward 2 penalties

Private network 1.5 reward 1 penalty

to assign different weight values to the recent and past behavior. This can be done in many ways. One of the common
methods used in statistics isExponentially Weighted Moving Average(EWMA) [16]. In the EWMA approach, the
weighting for older data points decreases exponentially, but never reaches zero. The EWMA is calculated as follows:

Zt = λXt + (1− λ)Zt−1 (10)

whereZt represents the EWMA at timet, Xt represents the most recent data point,Zt−1 represents the immediate
preceding point, andλ is a weighting factor 0 to 1 (exclusive). Settingλ = 0 means that we are completely ignoring
the most-recent transaction, and settingλ = 1 means that we are not considering old transactions at all. Therefore,
the value ofλ should be between 0 and 1. If the value ofλ is high (close to 1), then we are giving more importance
to recent transactions as compared to the old ones. If the value of λ is low (close to 0), then we are giving more
importance to old transactions as compared to the most-recent ones.

We can apply the EWMA in our method for calculating rewards point historyH+(s, o) in the following manner:

H+
t (s, o) =



























































λ(Xt) + (1− λ)

[

w0LRH(s, o) +
m
∑

k=1

wkERH(s, o)k

]

if t ≥ 2

w0LRH(s, o) +

m
∑

k=1

wkERH(s, o)k if t = 1

0 otherwise

(11)

whereH+
t (s, o) represents the rewards point history at timet for the subject-object pair (s, o), andXt represents the

result of the most recent transaction. Note that we can use this approach only when we have more than one historical
instance available. In other cases, the reward point history will be calculated in exactly same manner as discussed in
the previous section. In order to calculate a trust value, weonly need to replaceH+(s, o) with H+

t (s, o) in equation 1,
as shown below.
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Tv(s, o) = ls ×
[

1 +H+
t (s, o)

]

(12)
Similarly, the concept of EWMA can easily be integrated in our penalty historyH−(s, o) method in the following

manner.

H−

t (s, o) =



























































λ(Xt) + (1− λ)

[

w0LPH(s, o) +
m
∑

k=1

wkEPH(s, o)k

]

if t ≥ 2

w0LPH(s, o) +
m
∑

k=1

wkEPH(s, o)k if t = 1

0 otherwise

(13)

A risk value is calculated by replacingH−(s, o) with H−

t (s, o) in equation 5, as shown below.

Rv(s, o) = lo ×
[

1 +H−

t (s, o)
]

(14)

Note that when we calculateH+
t (s, o) in a situation where the penalty was assigned in the most-recent transaction,

then the value ofXt could either be set to zero or a negative sign should be added with the number of penalties
received in the last transaction. This is required because penalty points should not play a role in increasing the value
of the reward point historyH+

t (s, o). The same procedure should be adopted for calculatingH−

t (s, o).
In order to analyze the differences of simple and EWMA based approaches, let us take again the example of

Section 3.4. When the new access request comes, then according to the EWMA-based method (λ = 0.2), the trust and
risk values are 3.24 and 4.22 respectively. In the simple risk-based decision method, the trust and risk values were 3.86
and 3.95 respectively. Note that in the last transaction, Joe gets a penalty. Due to this, the risk value increases more
quickly in the EWMA-based approach as compared to the simplemethod. These values indicate that the EWMA-
based approach responds more quickly to the recent change ascompared to the simple method.

For detailed analysis, we have performed numerical simulations. The results of the simulation are shown in Figure 6.
In this figure, the history of reward and penalty points are shown with bars. If the direction of the bar is positive, a
reward point is assigned. If the direction of the bar is negative, a penalty is assigned. One can see that the EWMA-
based approach reflects abrupt and recent changes in the behavior more quickly (depending on the value ofλ) as
compared to the simple approach. For example, in Figure 6(a), only penalty points are assigned during the period
between 16 and 19. In this period, the EWMA based approach decreases the trust value more quickly as compared
to the simple approach. Similarly, in Figure 6(b), for the same period, the EWMA based approach increases the risk
value much faster than the simple approach.

Proposition 5: In the EWMA approach, the range of trust value is always between[ls (1 + λ(Xt)) ,
ls (2 + λ(Xt − 1))].

Proof: SeeAppendixA.5.
�

Proposition 6: In the EWMA approach, the range of risk value is always between [lo (1 + λ(Xt)) ,
lo (2 + λ(Xt − 1))].

Proof: SeeAppendixA.6.
�

In the EWMA approach, the default values of trust and risk will remain same as in the simple approach.

5. Analysis and Evaluation

5.1. Security Resiliency Analysis

In this section, we analyze the resiliency of both risk-based decision methods against threats of allowing illegitimate
accesses and restricting legitimate accesses. Depending on the underlying multi-level security systems (MLS), access
means read only or write only. As we have mentioned earlier, our proposed methods are loosely based on multi-
level security systems (MLS). If the underlying MLS system is based on the Bell-LaPadula (BLP) confidentiality
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(a) Trust

(b) Risk

Fig. 6. Comparison:λ = 0.2

model [2] then access means read only. If the underlying MLS system is based on the BiBa integrity model [17] then
access means write only. Note that if we are assuming the Bibamodel, then the terms clearance level of a subject
and sensitivity level of a object are replaced with the termsintegrity level of a subject and integrity level of a object
respectively.

We begin with the definition ofillegitimateaccesses.

Definition 1: Access is considered to be illegitimate if
(i) ls < lo, and
(ii) Subjects is permitted to access objecto.

where,ls represents the clearance level of the subject andlo represents the sensitivity level of the object.
As we have mentioned earlier, the general objective of risk-based access control systems is to achieve flexibility.

This is achieved by allowing exceptions in situations when regular conditions are not satisfied, for example when a
subject with low clearance level is granted access to an object of high sensitivity level. Such exceptions should be
allowed under controlled conditions. In this section, we will identify these conditions.

There are four possible scenarios:
(i) There are neither rewards nor penalties (H+(s, o) = 0 andH−(s, o) = 0).
(ii) There are only penalties (H+(s, o) = 0 andH−(s, o) 6= 0).

12



(iii) There are only rewards (H+(s, o) 6= 0 andH−(s, o) = 0).
(iv) There are both rewards and penalties (H+(s, o) 6= 0 andH−(s, o) 6= 0).
Claim 1: The proposed risk-based decision method does not allow illegitimate accesses if no reward and penalty

histories are available.
Proof: SeeAppendixB.1.
In this scenario, the control condition for granting accessis ls ≥ lo. This satisfies the simple security property of

the BLP confidentiality model which states that a subject at agiven security level may not read an object at a higher
security level. Also, it satisfies the⋆(star)-property of the Biba integrity model that states that a subject at a given level
of integrity must not write to any object at a higher level of integrity.

Claim 2: The proposed risk-based decision method does not allow illegitimate access if only penalty history is
available.

Proof: SeeAppendixB.2.
In this scenario, the control condition for granting accessis ls ≥ 2 × lo. One can note that in the presence of only

penalty points, our proposed system will tighten the security control by increasing the control condition fromls ≥ lo
to ls ≥ 2× lo. Like scenario 1, our proposed method satisfies the simple security property of the BLP confidentiality
model and the⋆-property of the Biba integrity model.

Claim 3: If only the reward history is available then the proposed risk-based decision method allows illegitimate
access only whenls ≥ lo

2 .
Proof: SeeAppendixB.3.
In this scenario, the control condition for granting an access isls ≥ lo

2 . This shows that if the user’s behavior is
positive then system will grant access to the subject by relaxing the security control condition fromls ≥ lo to ls ≥

lo
2 .

Claim 4: If both reward and penalty histories are available then the proposed risk-based decision method allows
illegitimate accesses only when

ls ≥ lo

(

H−(s, o)

H+(s, o)

)

.

Proof: SeeAppendixB.4.

In this scenario, the control condition for granting an access isls ≥ lo

(

H−(s,o)
H+(s,o)

)

. From this condition, we conclude

that if the number of penalties is higher than the rewards then the system will tighten the security control as compared
to the default condition, whereas if the number of rewards ismore than the penalties then the system will slightly relax
the security control condition.

Definition 2: Access is considered to be legitimate if
(i) ls ≥ lo, and
(ii) Subjects is permitted to access objecto.
Users having legitimate access can be broadly categorized into two types:goodusers andbad users. Authorized

users are classified into these two categories based on the history.

Definition 3: An authorized user is considered to begoodif

H+(s, o) ≥ H−(s, o).

Definition 4: An authorized user is considered to bebad if

H+(s, o) < H−(s, o).

Claim 5: The proposed Risk-based decision method restricts legitimate accesses of bad users and allows legitimate
access of good users.

Proof: Access is granted only when
Tv(s, o) ≥ Rv(s, o).

From equation 1 and 5, we replace the values ofTv andRv in the following manner

ls ×
[

1 +H+(s, o)
]

≥ lo ×
[

1 +H−(s, o)
]

.

According to definition 2, a user is authorized ifls ≥ lo. Therefore, in order to get to the lower limit, we can replace
ls with lo or vice versa. We get the following result.

= ls ×
[

1 +H+(s, o)
]

≥ ls ×
[

1 +H−(s, o)
]
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=
[

1 +H+(s, o)
]

≥
[

1 +H−(s, o)
]

= H+(s, o) ≥ H−(s, o).

According to definition 4, for a bad authorized user,H+(s, o) should be less thanH−(s, o). But this is not possible
in this case. This shows that, in order to get access,H+(s, o) must be at least equal toH−(s, o). This proves that the
legitimate access of the bad user is always restricted. The above result also confirms that the legitimate access of the
good user (Definition 3) is always allowed.

�

Note: All the above mentioned five claims that are presented for thesimplerisk-based decision method also hold
for the EWMA-based method. We only need to replace the formulas ofH+(s, o) andH−(s, o) with H+

t (s, o) and
H+

t (s, o) respectively. We prove here scenario 2 and we leave the otherscenarios as an exercise for the reader.
Claim 6: The proposed EWMA-based decision method does not allow illegitimate access if only the penalty history

is available.
Proof: Access is granted if

Tv(s, o) ≥ Rv(s, o).

This can be written as:

ls ×
[

1 +H+
t (s, o)

]

≥ lo ×
[

1 +H−

t (s, o)
]

.

Since no reward history is available,H+
t (s, o) = 0, and we get:

ls ≥ lo ×
[

1 +H−

t (s, o)
]

.

With the help of equation 13, the above equation is transformed into the following:

ls ≥ lo ×

[

1+

{

λ(Xt) + (1− λ)

[

w0

(

P

R+ P

)

α
1

P+1 +

m
∑

k=1

wk

(

Pk

Rk + Pk

)

α
1

P
k
+1

]}]

.

Since the reward history is not available, the value ofR become 0. So we get:

ls ≥ lo ×

[

1+

{

λ(Xt) + (1 − λ)

[

w0

(

P

0 + P

)

α
1

P+1 +

m
∑

k=1

wk

(

Pk

0 + Pk

)

α
1

P
k
+1

]}]

ls ≥ lo ×

[

1 + λ(Xt) + (1− λ)

(

w0α
1

P+1 +
m
∑

k=1

wkα
1

P
k
+1

)]

.

As we know that lim
P→∞

(

1
P+1

)

= 0. So,α0 = 1. Therefore, we get:

ls ≥ lo ×

[

1 +

{

λ(Xt) + (1− λ)

[

w0 +
m
∑

k=1

wk

]}]

.

Since as we mentioned earlier, the sum of all weight valuesw0 +
m
∑

k=1

wk is 1, we get:

ls ≥ lo × [1 + {λ(Xt) + (1− λ)}]

ls ≥ lo × [2 + λ(Xt − 1)] .

Here,Xt represents the most recent penalty point. Let us assume thatthe single penalty point is represented with 1,
then we get:

ls ≥ 2× lo.

Again, we getls ≥ 2× lo. Hence in the absence of reward points, illegitimate accessis not possible.
�
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5.2. Simulation

In this section, we will see how trust and risk values increase or decrease with the change in user past behavior.
After that, we will see how such changes in trust and risk values will affect the access rights of the users.

For this purpose, we have performed a numerical simulation in Microsoft Excel for a single userswho periodically
tries to access the same objecto. After the completion of every transaction, we randomly assign reward and penalty
points. Based on the total number of reward and penalty points, users may be categorized asgood(Definition 3) or
bad (Definition 4) user. This setup is executed in the following three scenarios for both proposed approaches:

(i) Scenario 1: The subject clearance level (ls) is equal to the object sensitivity level (lo).
(ii) Scenario 2: The subject clearance level (ls) is less than the object sensitivity level (lo).
(iii) Scenario 3: The subject clearance level (ls) is greater than the object sensitivity level (lo).
In Figure 7 the history of reward and penalty points is shown with bars. If the direction of the bar is positive, a

reward point is assigned. If the direction of the bar is negative, a penalty is assigned. Figure 7 shows that in each
scenario, trust and risk values gradually increase or decrease with respect to the number of reward and penalty points.
Figure 7(a), Figure 7(b) and Figure 7(f) show that access of users having proper clearance level may be restricted if
the behavior of the user wasbad in the past. Figure 7(c) and Figure 7(d) show that a user having lower clearance level
may get access to an object of high sensitivity level if his past behavior wasgood. Note that the behavior of the two
curves is complementary, when one moves up, the other moves down. However, the rate of change at both ends is
mainly dependent on the values ofls andlo.

The results of numerical simulation prove that our proposedrisk-based access control decision methods are adaptive
and moderately increase or decrease all users’ access rights to resources based on their past behavior.

6. Conclusion and Future Work

In traditional access control systems, policies are typically hard coded and are the result of pre-computed trust
and risk values associated with subjects and objects respectively. Such approach is rigid and inflexible for dynamic
environments. In order to overcome this limitation, researchers have started developing dynamic risk-based access
control systems. However, recently proposed risk-based schemes have two major limitations: they do not consider the
past behavior of users in dynamic decision making, which is necessary to differentiate good and bad authorized users,
and they are not very suitable for highly responsive environments.

The goal of this work was to overcome both limitations. Our methods are based on the history of reward and penalty
points, which are assigned to users after the completion of transactions. First, we have presented a simple risk-based
decision method, which overcomes the first limitation (Section 3). To address the second limitation, we have proposed
a method based on an Exponentially Weighted Moving Average (Section 4). In both methods, trust and risk values are
dynamically calculated for each subject-object pair, and reflect the past behavior of users.

We have provided a security resiliency analysis of our proposed methods. Results show that they may allow occa-
sional exceptions under certain controlled conditions which are described below.

(i) When no history is available then our proposed methods grant access only if the subject’s clearance level dom-
inates the object’s sensitivity level (Appendix B.1). Thiscondition is consistent with similar conditions defined
in Multi-Level Security systems such as the simple securityproperty of the BLP model.

(ii) When only the penalty history is available then our proposed methods will tighten the default security control
condition. In order to get access, a subject’s clearance should be at least twice the object’s sensitivity level
(Appendix B.2). This condition helps restrict illegitimate accesses, and also provides some degree of protection
against bad authorized users.

(iii) When only the reward history is available then our proposed methods will grant access to subjects by relaxing
the default security control condition up to a certain degree (Appendix B.3). This condition will help achieve
flexibility in the access decisions.

(iv) When both reward and penalty histories are available then our proposed methods will grant access only if the
ratio of rewards and penalties is greater than the ratio of the object’s sensitivity level and the subject’s clearance
level (Appendix B.4). This condition provides all the benefits listed in the above mentioned scenarios.

Our methods can be modified and adapted to different needs, bychoosing appropriate parameters or changing
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(a) Scenario 1: Simple approach (b) Scenario 1: EWMA-based approach

(c) Scenario 2: Simple approach (d) Scenario 2: EWMA-based approach

(e) Scenario 3: Simple approach (f) Scenario 3: EWMA-based approach

Fig. 7. Numerical simulations:λ = 0.2

the formulas in various ways. However such changes should becarefully introduced and in each case the desired
properties should be checked. In the current formulation, the methods can be used to control upward accesses such
asno read up(simple property of the BLP model) orno write up(⋆-property of the Biba model). For controlling
downward direction accesses likeno write down(⋆-property of the BLP model) orno read down(simple property
of the Biba model) modifications are required in the decisionmechanism (Section 3.4). This will be left to future
research.
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Appendix A. Proof of Propositions

A.1. Proposition 1: The range of trust value is always between[ls, 2× ls].

Proof: From equation 1, we have:

Tv(s, o) = ls
[

1 +H+(s, o)
]

= ls

[

1 + w0LRH(s, o) +

m
∑

k=1

wkERH(s, o)k

]

= ls

[

1 + w0

(

R

R+ P

)

α
1

R+1 +
m
∑

k=1

wk

(

Rk

Rk + Pk

)

α
1

R
k
+1

]

. (A.1)

In the worst case, when a subjects does not have any reward points, thens will get minimum trust value. Since
there are no reward points, the values ofR andRk become 0 in equation A.1. Therefore, we get:

= ls

[

1 + w0

(

0

0 + P

)

α
1

0+1 +
m
∑

k=1

wk

(

0

0 + Pk

)

α
1

0+1

]

.
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So, the minimum trust valueTmin
v (s, o) a subjects can get is:

Tmin
v (s, o) = ls [1 + 0] = ls. (A.2)

In the best case, when the subjects does not have penalty points then the subject will get a maximum trust value.
In this case, the values ofP andPk become 0 in equation A.1. Therefore, we get:

= ls

[

1 + w0

(

R

R+ 0

)

α
1

R+1 +
m
∑

k=1

wk

(

Rk

Rk + 0

)

α
1

R
k
+1

]

= ls

[

1 + w0α
1

R+1 +

m
∑

k=1

wkα
1

R
k
+1

]

.

Since we know thatlim
R→∞

(

1
R+1

)

= 0, thenα0 = 1. Therefore, we get:

= ls

[

1 + w0 +

m
∑

k=1

wk

]

.

Since as we mentioned earlier, the sum of all weight values (w0 +
m
∑

k=1

wk) is 1, the maximum trust valueTmax
v (s, o)

a subjects can get is:
Tmax
v (s, o) = ls × [1 + 1] = 2× ls. (A.3)

�

A.2. Proposition 2: The default trust valueT def
v (s, o) is ls.

Proof: In order to obtain default trust valueT def
v (s, o) (when the subjects has neither reward nor penalty points)

we need to replace the value ofH+(s, o) with zero in equation 1. Therefore, we get:

T def
v (s, o) = ls × [1 + 0] = ls.

�

A.3. Proposition 3: The range of risk value is always between[lo, 2× lo].

Proof: From equation 5, we have:
Rv(s, o) = lo ×

[

1 +H−(s, o)
]

.

This can also be written as:

= lo

[

1 + w0LPH(s, o) +
m
∑

k=1

wkEPH(s, o)k

]

= lo

[

1 + w0

(

P

R+ P

)

α
1

P+1 +

m
∑

k=1

wk

(

Pk

Rk + Pk

)

α
1

P
k
+1

]

. (A.4)

In the best case, when a subjects does not have any penalty point for an objecto, then the minimum risk value will
be associated witho. Since there are no penalty points, the value ofP andPk become 0 in equation A.4. Therefore,
we get:

= lo ×

[

1 + w0

(

0

R+ 0

)

α
1

0+1 +
m
∑

k=1

wk

(

0

Rk + 0

)

α
1

0+1

]

.
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So, the minimum risk valueRmin
v (s, o) for an objecto will be:

Rmin
v (s, o) = lo × [1 + 0] = lo. (A.5)

In the worst case, when a subjects does not have any reward points for an objecto then the maximum risk value
will be associated with an objecto. Since there are no reward points, the value ofR andRk become 0 in equation A.4.
Therefore, we get:

= lo ×

[

1 + w0

(

P

0 + P

)

α
1

P+1 +
m
∑

k=1

wk

(

Pk

0 + Pk

)

α
1

P
k
+1

]

= lo ×

[

1 + w0α
1

P+1 +

m
∑

k=1

wkα
1

P
k
+1

]

.

Since we know thatlim
P→∞

(

1
P+1

)

= 0, thenα0 = 1. Therefore, we get:

= lo ×

[

1 + w0 +
m
∑

k=1

wk

]

.

Since as we mentioned earlier, the sum of all weight values (w0 +
m
∑

k=1

wk) is 1, the maximum risk valueRmax
v (s, o)

that can be associated with an objecto is:

Rmax
v (s, o) = lo × [1 + 1] = 2× lo. (A.6)

�

A.4. Proposition 4: The default risk valueRdef
v (s, o) is lo.

Proof: In order to obtain the default risk valueRdef
v (s, o) (when the subjects has neither reward nor penalty points)

we need to replace the value ofH−(s, o) with zero in equation 5. Therefore, we get:

Rdef
v (s, o) = lo × [1 + 0] = lo.

�

A.5. Proposition 5: In the EWMA approach, the range of trust values is always between[ls (1 + λ(Xt)) ,
ls (2 + λ(Xt − 1))].

Proof: From equation 12, we have:

Tv(s, o) = ls
[

1 +H+
t (s, o)

]

= ls

[

1+

{

λ(Xt) + (1− λ)

(

w0LRH(s, o) +

m
∑

k=1

wkERH(s, o)k

)}

]

Tv(s, o) = ls

[

1+

{

λ(Xt) + (1− λ)

(

w0

(

R

R+ P

)

α
1

R+1 +

m
∑

k=1

wk

(

Rk

Rk + Pk

)

α
1

R
k
+1

)}

]

. (A.7)

In the worst case, when the subjects does not have any reward points, thens will get minimum trust value. Since
there are no reward points, the values ofR andRk become 0 in equation A.7. Therefore, we get:

Tv(s, o) = ls

[

1+

{

λ(Xt) + (1− λ)

(

w0

(

0

0 + P

)

α
1

0+1 +
m
∑

k=1

wk

(

0

0 + Pk

)

α
1

0+1

)}

]
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So, in the EWMA method, the minimum trust valueTmin
v (s, o) a subjects can get is:

Tmin
v (s, o) = ls [1 + λ(Xt)] (A.8)

In this case,Xt represents the most-recent penalty point(s). As we mentioned in Section 4, when we calculate a
trust value in a situation where penalties were assigned in the most-recent transaction, a negative sign will be added
to the number of penalties received in this transaction.

In the best case, when the subjects does not have penalty points then the subject will get a maximum trust value.
In this case, the values ofP andPk become 0 in equation A.7. Therefore, we get:

Tv(s, o) = ls

[

1 +

{

λ(Xt) + (1− λ)
(

w0

(

R

R+ 0

)

α
1

R+1 +

m
∑

k=1

wk

(

Rk

Rk + 0

)

α
1

R
k
+1

)

}

]

= ls

[

1 +

{

λ(Xt) + (1 − λ)

(

w0α
1

R+1 +

m
∑

k=1

wkα
1

R
k
+1

)}]

.

Since we know thatlim
R→∞

(

1
R+1

)

= 0, thenα0 = 1. Therefore, we get:

Tv(s, o) = ls

[

1 + λ(Xt) + (1− λ)

(

w0 +

m
∑

k=1

wk

)]

.

Since as we mentioned earlier, the sum of all weight values (w0 +
m
∑

k=1

wk) is 1, the maximum trust valueTmax
v (s, o)

a subjects can get is:

Tmax
v (s, o) = ls [1 + λ(Xt) + (1− λ)]

Tmax
v (s, o) = ls × [2 + λ(Xt − 1)] .

�

A.6. Proposition 6: In the EWMA approach, the range of risk values is always between[lo (1 + λ(Xt)) ,
lo (2 + λ(Xt − 1))].

Proof: From equation 14, we have:

Rv(s, o) = lo
[

1 +H−

t (s, o)
]

= lo

[

1+

{

λ(Xt) + (1− λ)

(

w0LPH(s, o) +
m
∑

k=1

wkEPH(s, o)k

)}

]

Rv(s, o) = lo

[

1+

{

λ(Xt) + (1− λ)

(

w0

(

P

R + P

)

α
1

P+1 +

m
∑

k=1

wk

(

Pk

Rk + Pk

)

α
1

P
k
+1

)}

]

. (A.9)

In the best case, when a subjects only received rewards for an objecto, then the minimum risk value will be
associated witho. Since there are no penalty points, the values ofP andPk become 0 in equation A.9. Therefore, we
get:

Rv(s, o) = lo

[

1+

{

λ(Xt) + (1− λ)

(

w0

(

0

R+ 0

)

α
1

P+1 +

m
∑

k=1

wk

(

0

Rk + 0

)

α
1

P+1

)}

]

So, in the EWMA method, the minimum risk valueRmin
v (s, o) that an objecto can get is:

Rmin
v (s, o) = lo [1 + λ(Xt)] (A.10)

In this case,Xt represents the most-recent rewards point(s). As we mentioned in Section 4, when we calculate a risk
value in a situation where rewards were assigned in the most-recent transaction, then a negative sign is added with the
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number of rewards received in this transaction. In this way,the risk value will decrease with the increase in reward
points.

In the worst case, when a subjects only received penalties for an objecto then the maximum risk value will be
associated witho. Since there are no reward points, the value ofR andRk become 0 in equation A.9. Therefore, we
get:

Rv(s, o) = lo

[

1 +

{

λ(Xt) + (1 − λ)
(

w0

(

P

0 + P

)

α
1

P+1 +
m
∑

k=1

wk

(

Pk

0 + Pk

)

α
1

P
k
+1

)

}

]

= lo

[

1 +

{

λ(Xt) + (1− λ)

(

w0α
1

P+1 +

m
∑

k=1

wkα
1

P
k
+1

)}]

.

Since we know thatlim
P→∞

(

1
P+1

)

= 0, thenα0 = 1. Therefore, we get:

Rv(s, o) = lo

[

1 + λ(Xt) + (1− λ)

(

w0 +
m
∑

k=1

wk

)]

.

Since as we mentioned earlier, the sum of all weight values (w0 +
m
∑

k=1

wk) is 1, the maximum trust valueRmax
v (s, o)

that can be associated with an objecto is:

Rmax
v (s, o) = lo [1 + λ(Xt) + (1− λ)]

Rmax
v (s, o) = lo × [2 + λ(Xt − 1)] .

�
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Appendix B. Proofs of Claims

B.1. Claim 1: The proposed risk-based decision method does not allow illegitimate accesses if no reward and
penalty histories are available.

Proof: Access is granted if:
Tv(s, o) ≥ Rv(s, o).

From equation 1 and 5, we replace the values ofTv andRv in the following manner:

ls ×
[

1 +H+(s, o)
]

≥ lo ×
[

1 +H−(s, o)
]

.

According to the equations 4 and 8, if reward and penalty histories are not available thenH+(s, o) andH−(s, o) are
zero. Therefore, we get:

ls × 1 ≥ lo × 1 ⇔ ls ≥ lo.

Here, note that the subject clearance level should be greater than equal to the object sensitivity level. Therefore, in the
absence of reward and penalty points, illegitimate access is not possible.

�

B.2. Claim 2: The proposed risk-based decision method does not allow illegitimate access if only penalty history is
available.

Proof: Access is granted if:
Tv(s, o) ≥ Rv(s, o).

This can be written as:
ls ×

[

1 +H+(s, o)
]

≥ lo ×
[

1 +H−(s, o)
]

.

Since no reward history is available,H+(s, o) = 0, and we get:

ls ≥ lo ×
[

1 +H−(s, o)
]

.

With the help of equation 8, the above equation is transformed into the following:

ls ≥ lo ×

[

1 + w0LPH(s, o) +
m
∑

k=1

wkEPH(s, o)

]

ls ≥ lo ×

[

1 + w0

(

P

R+ P

)

α
1

P+1 +

m
∑

k=1

wk

(

Pk

Rk + Pk

)

α
1

P
k
+1

]

Since the reward history is not available, the value ofR andRk become 0. So we get:

ls ≥ lo ×

[

1 + w0

(

P

0 + P

)

α
1

P+1 +

m
∑

k=1

wk

(

Pk

0 + Pk

)

α
1

P
k
+1

]

ls ≥ lo ×

[

1 + w0α
1

P+1 +

m
∑

k=1

wkα
1

P
k
+1

]

.

Since we know thatlim
P→∞

(

1
P+1

)

= 0, thenα0 = 1. Therefore, we get:

ls ≥ lo ×

[

1 + w0 +

m
∑

k=0

wk

]

.

Since as we mentioned earlier, the sum of all weight valuesw0 +
m
∑

k=1

wk is 1, we get:

ls ≥ lo × [1 + 1]
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ls ≥ 2× lo.

Again, we getls ≥ 2× lo. Hence in the absence of reward points, illegitimate accessis not possible.
�

B.3. Claim 3: If only reward history is available then the proposed risk-based decision method allows illegitimate
access only whenls ≥

lo
2 .

Proof: Access is granted if:
Tv(s, o) ≥ Rv(s, o).

This can be written as:
ls ×

[

1 +H+(s, o)
]

≥ lo ×
[

1 +H−(s, o)
]

.

Since no penalty history is available, soH−(s, o) = 0 and we get:

ls ×
[

1 +H+(s, o)
]

≥ lo.

With the help of equation 4, the above equation is transformed into the following:

ls ×

[

1 + w0LRH(s, o) +

m
∑

k=1

wkERH(s, o)

]

≥ lo

ls ×

[

1 + w0

(

R

R+ P

)

α
1

R+1 +

m
∑

k=1

wk

(

Rk

Rk + Pk

)

α
1

R
k
+1

]

≥lo.

Since the penalty history is not available,P andPk are 0. So, we get:

ls ×

[

1 + w0

(

R

R+ 0

)

α
1

R+1 +
m
∑

k=1

wk

(

Rk

Rk + 0

)

α
1

R
k
+1

]

≥lo

= ls ×

[

1 + w0α
1

R+1 +

m
∑

k=1

wkα
1

R
k
+1

]

≥lo.

Since we know thatlim
R→∞

(

1
R+1

)

= 0, thenα0 = 1. Therefore, we get:

ls ×

[

1 + w0 +

m
∑

k=1

wk

]

≥ lo.

Since as we mentioned earlier, the sum of all weight values (w0 +
m
∑

k=1

wk) is 1, we get:

= ls × [1 + 1] ≥ lo

= ls ≥
lo

2
.

This implies that, in the presence of only reward history, the system will allow access to the resource ifls ≥
lo
2 .

�

B.4. Claim 4: If both reward and penalty histories are available then the proposed risk-based decision method
allows illegitimate accesses only when

ls ≥ lo

(

H−(s, o)

H+(s, o)

)

.
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Proof: This proof is straightforward. According to definition 1, an illegitimate access is only possible whenls < lo
ands is permitted to access objecto. In our proposed method, this is only possible whenTv(s, o) ≥ Rv(s, o). This
can also be written as:

ls ×
[

1 +H+(s, o)
]

≥ lo ×
[

1 +H−(s, o)
]

=
1 +H+(s, o)

1 +H−(s, o)
≥

lo

ls

≈
H+(s, o)

H−(s, o)
≥

lo

ls
= ls ≥ lo

(

H−(s, o)

H+(s, o)

)

.

�
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