
UACML: Unified Access Control Modeling

Language

Nadera Slimani, Hemanth Khambhammettu, Kamel Adi, Luigi Logrippo

Department of Computer Science and Engineering

Université du Québec en Outaouais, Canada

{slin02, khamhe01, kamel.adi, luigi.logrippo}@uqo.ca

Abstract

Incorporating security requirements into system design models is
receiving increasing interest. Access control requirements are an im-
portant part of overall system security requirements. Existing ap-
proaches that incorporate access control requirements into system de-
sign models have directly been developed on top of specific access
control models. In these approaches, there exists a tight-coupling be-
tween the modeling language and underlying access control model(s)
on which the modeling language is developed. Consequently, these ap-
proaches can only support security requirements for the access control
model(s) on which they were developed.

We propose an alternative approach in this work by adopting a
“metamodel of access control” as a basis for developing a UML-based
modeling language. The usage of a metamodel of access control offers
at least two benefits: (i) our modeling language is able to represent
a variety of access control requirements in a generic way and (ii) our
modeling language is independent of specific access control models.
By using examples, we demonstrate that our approach is useful for
developing a generic modeling language of access control that is simple,
yet powerful for representing a variety of access control models.

1



1 Introduction

Model driven architecture (MDA) is a well known “model-centric” approach
for supporting the software development process [8]. Model Driven Security
(MDS) is a methodology, based on the MDA approach, for developing secure
systems [2]. MDS allows designers to specify system models along with their
security requirements and use tools to automatically generate system archi-
tectures from system models. An important advantage of using the MDS
approach is the development of secure system models that are both reusable
and evolvable.

Access control is the means to enable or restrict the ability of subjects
to access protected resources. Typically, a subject may be a user, process
or program. Access control policies are an important component of informa-
tion security policies, which ultimately translate into access control mech-
anisms [5]. An access control policy specifies high-level rules according to
which a system must govern access to its protected resources.

Over the last four decades, various approaches to access control have been
developed. The following are three such approaches to access control which
have been widely discussed in the literature.

• Discretionary access controls (DAC) governs access to protected re-
sources based on the identity of users or groups to which they be-
long [16].

• Mandatory access control (MAC) enforces access control on the basis
of regulations mandated by a central authority [14].

The Bell-LaPadula model [3] is the best known MAC model for enforc-
ing information flow controls.

• Role-based access control (RBAC) offers an efficient way for represent-
ing organizational structures and also provides the basis for an efficient
access control mechanism that simplifies security administration [15].
Hence, role-based models are appropriate for enforcing policies based
on organization job functions and are most useful to simplify adminis-
tration.

The access control requirements of organizations have become increas-
ingly complex in recent years, making access control mechanisms based on
a single (traditional) access control model either inefficient or inappropriate.

2



Consequently, modern access control systems typically require that access
control requirements be specified (and enforced) by using a combination of
access control models. We refer to policies that are based on combination of
access control models as “hybrid” access control policies.

We use the unified modeling language (UML) that is a widely used lan-
guage for visual modeling [11]. UML is a well founded language with a set of
relevant diagrams and their associated concepts for modeling systems. UML
has become the de-facto standard for building object-oriented software. We
believe the current UML specification is ready to be extended to support
access control systems design. In addition, system designers are able to vali-
date UML-diagrams by using a dedicated and formal language, called object
constraint language (OCL) [10].

The aim of our work is to develop a UML-based visual modeling language
that provides support for a wide range of access control models in a “generic”
way and still is as simple as possible. The key idea of our work is to use a
“metamodel of access control” for the modeling language that we propose.

Adopting a metamodel of access control as a basis for our modeling lan-
guage offers at least two benefits: (i) it simplifies the syntax of our modeling
language and (ii) it provides policy authors with a general framework for
representing a variety of access control requirements [1]. Consequently, the
modeling language that we develop by using a metamodel of access control
will be a simple, yet powerful, language to model several different types of
access control policies; both individually and combined.

Recently, Barker proposed a metamodel of access control [1]. However,
Barker’s metamodel does not provide support for resource hierarchies and
action hierarchies, which are useful for specifying high-level access rules. In
order to better maintain resources and their data, resources are often or-
ganized in hierarchies, where a resource may contain another resource(s).
Furthermore, in order to simplify security administration, it is often desir-
able to provide support for policies by which authorization to access a re-
source implies an authorization to access all its sub-resources.1 Consider, for
example, a user u who has a privilege Full Access for subject Computer

Science of a digital library. Then, u will implicitly be authorized for priv-
ilege Full Access to all “subdisciplines” of subject Computer Science ,

1Several commercial software products, the IBM Websphere Portal [4], for example,
provide support for resources to be organized in a hierarchical structure, such that the
access control configuration of a given resource is propagated to all of its child resources.

3



such as Bioinformatics , Software Engineering , and Security and

Cryptology .
As well, action hierarchies have been shown to be useful for generating

high-level access rules by defining composite actions [2]. The semantics of
a composite action state that the right to perform an action implies the
right to perform any of the (transitively) contained subordinate actions. For
example, a composite action Full Access of a ‘digital library’ may imply
actions on screen read, download and print all parts of documents stored
in the repository, whereas an action Guest Access may only imply action
on screen abstract read.

Rather than developing yet another metamodel of access control, we ex-
tend the metamodel of access control proposed by Barker to provide sup-
port for resource hierarchies and action hierarchies. Essentially, our work
proposes a “generic” modeling language for access control through a meta-
metamodel that can be instantiated to derive metamodels, which will specif-
ically represent well known access control models, such as MAC and RBAC,
and also combinations of access control models for supporting hybrid access
control models.

The rest of the paper is organized as follows. In Section 2, we describe
the motivating example to our work. Our UML-based modeling language for
access control is described in Section 3. In Section 4, we compare the contri-
butions of this paper against the most representative work of literature within
the domain of UML-based modeling languages for access control. Section 5
summarizes the contributions of the paper and outlines future directions.

2 Motivation

In this section, we motivate the need to develop a generic modeling language
that is based on a metamodel of access control. We present an example of
a scenario that requires the specification of a hybrid access control policy.
Consider, for instance, that subsequent to receiving a request for proposal
(RFP), staff within an organization prepare and submit a “bid” for some
(proposed) work to be completed. Let us assume that the following three
tasks must be performed for preparing a bid.

Task T1: Provide relevant inputs for the work to be completed within a
Input RFP document.

4



Task T2: Combine the inputs provided and prepare a response to RFP
(resp RFP) document.

Task T3: Prepare a bid proposal (Bid RFP) document by appending financial
information, such as billing and costs, to the resp RFP document.

Further, the policy of the organization may require that the following
rules be enforced while performing the above three tasks.

Rule R1: Only members of the concerned project (say, Project 1) must be
able to access the above documents.

Rule R2: Every member of the project must perform task T1.

Rule R3: Tasks T2 and T3 must be performed by a team leader and a man-
ager, respectively.

Rule R4: Only certain senior or trusted members may have access to sensi-
tive information, such as resp RFP and Bid RFP documents.

Of the above policy rules, R1 and R2 could be enforced by providing sup-
port for group-based mechanisms, whereas R3 could be enforced by employ-
ing RBAC mechanism and R4 that requires assignment of sensitivity levels to
resources and trust levels to users, could be enforced by MAC mechanisms.
Note, in particular, that an RBAC mechanism (by itself) can not provide
support for limiting access to resources based on sensitivity and trust levels
of resources and users respectively. In other words, no single access control
model is sufficiently able to enforce all of the above requirements. Hence, we
need to use a combination of access control models for supporting all of the
above policy rules.

Recently, in order to incorporate requirements of hybrid access control
policies into system design models, several visual modeling languages have
been proposed, which are directly built on top of specific access control mod-
els [2, 7, 9, 12, 13, 17]. We note that, in order to provide support for new
access control requirements, recent modeling languages of access control ei-
ther propose ad-hoc extensions, which are appropriate for their requirements,
to their preceding modeling languages or simply consider a combination of
access control models as a basis for developing their modeling language. A
“generic” modeling language of access control, from which a variety of ac-
cess control models could naturally be derived and combined, would be a

5



more useful and simpler approach than existing approaches. However, such
a generic modeling language requires a metamodel of access control as its
basis.

3 Modeling Access Control Policies

Before proceeding further, we clarify the usage of termsmodel andmetamodel
in this paper. In particular, in the security community, an access control
model describes a language for specifying access control policies. However,
in the model community, such a language is called a metamodel. Hence,
the term model in the access control community is analogous to the term
metamodel in the model-driven community.

This means that, in modeling languages, an “access control model” is
represented as a metamodel and a “metamodel of access control” is repre-
sented as a meta-metamodel. Since our work proposes a modeling language
for access control and is closer to model-driven approaches, we chose to use
the terminology of the model community.

In this section, we first describe our meta-metamodel and subsequently
explain how specific metamodels are derived by instantiating our meta-
metamodel.

3.1 Meta-metamodel

As mentioned earlier, the syntax of our modeling language is based on an
extension of Barker’s metamodel of access control [1]. Figure 1 illustrates our
meta-metamodel. Essentially, the semantics our language mean that every
association edge depicted between classes defines a relation on the classes.

Subject Category ActionResource

AuthorizationConstraint

Figure 1: A visual representation of our meta-metamodel

6



The central component of our modeling language is the notion of a cate-
gory that is instrumental to abstract key components of various access control
models, such as groups, security levels and roles. Essentially, categories pro-
vide means to associate subjects and permissions, which are represented as
<resource,action> pairs. Note that the class Category is defined as an
abstract class (represented by italicized font). Hence, the class Category

must be specialized for creating specific categories, such as groups, roles and
security levels, to which subjects or resources can be assigned.

The left-side of class Category shows a class Subject that represents
entities within the system that are able to initiate access request(s). The
class Subject has an association with class Category.

The right-side of class Category shows two classes: Resource and Action.
The class Resource represents protected resources within the system and is
associated with the class Category. Such an assignment is useful to represent
which resources are accessible by a given category.

The class Action represents operations that can be performed on pro-
tected resources. The class Resource has an association with class Action;
thus, representing which actions can be performed on given resources.

It is sometimes desirable, for certain applications, to combine different ac-
cess control models within a single application for supporting hybrid access
control policies. Our modeling language provides support for hybrid access
control policies by allowing categories to be associated with other categories
(represented, in Figure 1, as a self-association edge on class Category). Fur-
thermore, our language also allows to specify hierarchical relationships be-
tween categories by aggregating appropriate categories (represented, in Fig-
ure 1, as a self-association edge with a diamond head on class Category).

Note that our meta-metamodel also provides support for creating re-
source hierarchy and action hierarchy by aggregating resources and actions,
respectively. Such hierarchical relationships are represented by an aggrega-
tion association (depicted in Figure 1 association edge with a diamond head)
on classes Object and Action. Finally, the class AuthorizationConstraint
is used to represent constraints that specify restrictions on subject-category
assignments, category-resource assignments and resource-action assignments.

3.2 Deriving metamodels

We derive metamodels, which represent access control models, by instanti-
ating the meta-metamodel. Recall that the class Category is defined as an

7



abstract class can be associated with other categories. Hence, by specializ-
ing the class Category, we can derive several different metamodels each of
which represents group-based, mandatory or role-based access control, and
even a combination of such metamodels for representing hybrid access control
policies.

Figure 2 illustrates various ways to specialize the abstract class Category.
Specifically, Figures 2(a), (b) and (c) illustrate the specialization of abstract
class Category into classes Group, SecurityLabel and Role, respectively.
Figure 2(d) illustrates the metamodel of a hybrid access control that as-
sociates specialized categories Group, Role and SecurityLabel with each
other.

The “contains” relationship between categories is useful for modeling hi-
erarchies of specialized categories; groups, security levels and roles, for ex-
ample. In practice, however, it is unlikely that an instance of a specialized
category contains instance(s) of other specialized categories.

Subject Category Resource Action

Group

AuthorizationConstraint

(a) Group-based access control

Subject Category Resource

SecurityLevel

AuthorizationConstraint

(b) Mandatory access control

Subject Category Resource Action

Role

AuthorizationConstraint

(c) Role-based access control

Subject Category Resource Action

Group Role SecurityLevel

AuthorizationConstraint

(d) Hybrid access control

Figure 2: Examples of metamodels by specializing class Category

8



3.3 Generating models

In this section, we describe the modeling of access control policies by in-
stantiating the metamodels described in the previous section. Consider, for
example, Figure 3 that illustrates an authorization state for the “bid sub-
mission” example introduced in Section 2. Figures 3(a), (b) and (c) show a
role hierarchy, permission-role assignments and user-role assignments, respec-
tively. Figure 3(d) illustrates a group hierarchy and Figure 3(e) illustrates a

Manager

Consultant Team
Leader

(a) Role hierarchy

Permission Role

Consultant
Team Leader
Team Leader
Team Leader
Manager
Manager

(Write,Input_RFP)
(Read,Input_RFP)
(Write,Resp_RFP)
(Read,Resp_RFP)
(Write,Bid_Prop)
(Read,Bid_Prop)

(b) Permission-role assign-
ment

User Role

Consultant
Consultant
Consultant
Team Leader
Team Leader
Manager

Alice
Bob
Carol
Dave
Eve
Flora

(c) User-role assign-
ment

Project 1A

Project 

Project 1 Project 2

Project 1B

(d) Group hierarchy

User Group

Project 1A
Project 1B
Project 2
Project 1
Project 2
Project 1
Project 2

Alice
Bob
Carol
Dave
Eve
Flora
Flora

(e) User-group as-
signment

Figure 3: An example of RBAC configuration

user-group assignment relation that specifies groups to which users belong.
Figure 4 illustrates a concrete model that respects the metamodel of

RBAC (shown in Figure 2(c)) for authorizations given in Figures 3(a), (b)
and (c). Specifically, the left half of Figure 4 shows three roles Consultant,
Team Leader and Manager and their assigned users, whereas the right half
shows the assignment of resources to roles and actions that can be performed
on resources. Note that our language denotes the association of actions to
resources by a stereotype <<AccessibleRole>>, which specifies the set of
roles to which the <resource-action> association applies. For example, in
Figure 4, the association between resource Input RFP and action Write is

9



specified for role Consultant, whereas the association of action Read to re-
source Input RFP is specified for role Team Leader. Figure 4 also shows the
hierarchical relation between roles, where a role towards the diamond end
inherits the role on the other end of the (aggregation) association.

Figure 4: A model based on RBAC

Figure 5 extends Figure 4 by supporting user groups and illustrates the
concrete model for the authorizations given in Figure 3. The concrete model
of Figure 5 respects the metamodel of hybrid access control shown in Fig-
ure 2(d). The user-group assignments are shown by defining an association
between a user and the groups to which the user belongs. For example,
users Alice and Bob, who are assigned to role Consultant, belong to groups
Project 1A and Project 1B respectively. Figure 5 also depicts the hier-
archical relation between groups, where a group towards the diamond end
inherits the group on the other end of the (aggregation) association. This
means that user Carol who has membership of group Project 1, belongs
to both groups Project 1A and Project 1B. Hence, user Carol can assume
the role of a Consultant for both Project 1A and Project 1B; whereas user
Alice can assume the role of Consultant only for Project 1A, for example.

Figure 6 extends Figure 5 by defining security levels of both users
and resources for providing support for MAC policies. For example, re-
source RFP (request for proposal document) has a security (classification)
level Unclassified. Hence, all users are permitted to Read, but can not
write/modify, resource RFP. In contrast, resource Input RFP has a security

10



Figure 5: A model based on user-groups and RBAC

level Classified. Hence, users Alice and Bob who have a security level
(Unclassified) that is lower than the security level of resource Input RFP

can only write to Input RFP, but cannot read from Input RFP. Whereas
user Carol who has a security level that equals the security level of resource
Input RFP can both write to and read from resource Input RFP.

Figure 6: A hybrid model

11



We now describe the specification of authorization constraints in our mod-
eling language. Recall Rule 1 for the bid submission example from Section 2
that requires: only members of the concerned project must be able to access
document Input RFP.

Figure 7 illustrates the modeling of authorization constraint by us-
ing an OCL expression [10]. Essentially, the authorization constraint
subject.group.name− > intersection(resource.group.name)− > notEmpty()

specifies that, in order to access resource Input RFP, a subject (user) must
have membership in a group to which resource Input RFP belongs.

Assume, for example, that the resource Input RFP is assigned to
group Project 1A (shown in Figure 7 by an association between resource
Input RFP and group Project 1A). Then, user Alice is authorized to access
resource Input RFP because Alice has a membership in group Project 1A

to which resource Input RFP belongs. Whereas user Bob, who belongs only
to group Project 1B, is not authorized to access resource Input RFP.

Figure 7: A hybrid model with authorization constraint

4 Related Work

Recent research has resulted in the development of UML-based modeling
languages that incorporate security requirements into system design mod-

12



els [2, 7, 9, 12, 13, 17].
Epstein and Sandhu proposed a framework that uses UML notations for

employing UML as a language to represent RBAC requirements [7]. Shin
and Ahn proposed an alternative technique to utilize UML notation to de-
scribe RBAC modeling [17]. The work of Doan et al provided support for
incorporating MAC into UML diagrams [6].

Jürjens proposed an approach, called UMLsec, for developing secure sys-
tems using an extension of UML [9]. UMLsec offers support for the an-
notation of UML models with formally specified security requirements, like
confidentiality or secure information flow.

The seminal work of Basin et al demonstrated the application of MDS to
the domain of access control [2]. This work includes a security modeling lan-
guage, called SecureUML, that provides support for developing system design
models which include access control requirements. SecureUML is developed
on an extension of RBAC [2]. We believe that this feature of SecureUML lim-
its its applicability when a diverse set of access control requirements are to be
supported. For example, SecureUML can not express both non-RBAC and
hybrid access control policies. In comparison, our modeling language is devel-
oped by using the concept of category, which can be specialized for creating
various access control types, such as roles, security levels and groups. Hence,
we believe that our modeling language is more generic than SecureUML; and
regard SecureUML as a special case of our modeling language.

The work of Pavlich-Mariscal et al [12] is closer to our work. This work
proposes a modeling language that provides support for a variety of access
control requirements, such as DAC, MAC and RBAC, into security design
models. Their modeling language also provides support for hybrid access
control policies, which combine different access control models for specifying
policy requirements.2

However, the modeling language is developed “directly” by using DAC,
MAC and RBAC components. Hence, their modeling language can not sup-
port policies, other than DAC, MAC and RBAC. In contrast, our modeling
language that is based on a generic concept of category, which can be spe-
cialized (as required) for creating specific access control types. This feature
of our modeling language simplifies its syntax and provides a more generic
approach for supporting different access control models.

2Note that what is called as a ‘hybrid access control policy’ in our work is referred to
as custom access control policy in [12].

13



Furthermore, their modeling language only provides support for user-
role assignment constraints, but not other types of constraints; permission-
role constraints, for example. However, our modeling language supports the
specification of constraints on user-category assignments, category-resource
assignments and resource-action assignments.

Ray et al proposed parameterized UML elements for modeling an access
control framework that combines MAC and RBAC in order to express hybrid
access control policies [13]. This work provides support for modeling roles
and security (clearance and classification) levels for subjects and resources.
However, the UML modeling framework of their work is developed directly
using MAC and RBAC models, whereas our framework is developed on the
basis of a metamodel of access control.

5 Conclusion and future work

We have proposed a UML-based modeling language for incorporating access
control requirements into system design models. The proposed modeling
language is based on a metamodel of access control, rather than specific
access control models. We have also extended Barker’s metamodel of access
control for providing support for object hierarchies and action hierarchies.
We believe that this is the first work in the literature to develop a UML-
based modeling language that is based on a metamodel of access control.

Adopting a metamodel of access control as a basis for developing our
modeling language has been useful to develop a modeling language that is
simple, yet sufficiently powerful to capture different access control models
(both independently and combined). Specifically, our modeling language
could be used as a generic framework for integrating a variety of access control
requirements into system design models. We demonstrated that the meta-
metamodel of our framework could be “specialized” into various metamodels,
each of which represents a specific access control model.

Our immediate future work would be to develop techniques for verifying
that the resultant models are consistent with their corresponding metamod-
els. Further, we intend to extend the proposed framework to provide support
for attribute-based access control (ABAC) requirements [18]. Such require-
ments would be useful for specifying fine-grained and/or customized access
control policies. For example, users who are assigned to the same set of roles
may be required to be authorized for different sets of permissions, based on

14



the attributes defined in users’ professional profiles.
We also aim to develop a tool for implementing the proposed framework

and conducting a case study by using UACML (Unified Access Control Mod-
eling Language).

References

[1] S. Barker. The next 700 access control models or a unifying meta-model?
In Proceedings of 14th ACM Symposium on Access Control Models and
Technologies (SACMAT’09), pages 187–196, 2009.

[2] D. Basin, J. Doser, and T. Lodderstedt. Model driven security: From
UML models to access control infrastructures. ACM Transactions on
Software Engineering and Methodology, 15(1):39–91, 2006.

[3] D.E. Bell and L. LaPadula. Secure computer systems: A mathematical
model. Technical Report MTR-2547, Volume I & II, Mitre Corporation,
Bedford, Massachusetts, 1973.

[4] International Business Machines Corporation. IBM Web-
Sphere Portal version 6.0, Administration. Available at
http://publib.boulder.ibm.com/infocenter/wpdoc/v6r0/topic/
com.ibm.wp.ent.doc/wp_admin_pdf.pdf.

[5] R. Crook, D. Ince, and B. Nuseibeh. On modelling access policies:
Relating roles to their organisational context. In Proceedings of 13th
IEEE International Requirements Engineering Conference, pages 157–
166, 2005.

[6] T. Doan, S. Demurjian, T.C. Ting, and A. Ketterl. MAC and UML
for secure software design. In Proceedings of 2004 ACM workshop on
Formal methods in security engineering (FMSE’04), pages 75–85, 2004.

[7] P. Epstein and R. Sandhu. Towards a UML based approach to role
engineering. In Proceedings of 4th ACM workshop on Role-based Access
Control (RBAC’99), pages 135–143, 1999.

[8] D. Frankel. Model Driven Architecture: Applying MDA to Enterprise
Computing. John Wiley & Sons, 2003.

[9] J. Jürjens. Towards development of secure systems using UMLsec. In
Proceedings of 4th International Conference on Fundamental Approaches
to Software Engineering (FASE/ETAPS’01), volume 2029 of LNCS,
pages 187–200, 2001.

15



[10] Object Management Group. Object constraint language, version 2.2,
2010. OMG Document Number: formal/2010-02-01.

[11] Object Management Group. OMG Unified Modeling Language, version
2.3, 2010. OMG Document Number: formal/2010-05-03.

[12] J. Pavlich-Mariscal, S. Demurjian, and L. Michel. A framework of com-
posable access control features: Preserving separation of access control
concerns from models to code. Computers & Security, 29(3):350–379,
2010.

[13] I. Ray, N. Li, D. Kim, and R. France. Using parameterized UML to
specify and compose access control models. In Proceedings of 6th IFIP
WG 11.5 Conference on Integrity and Control in Information Systems
(IICIS), 2003.

[14] Pierangela Samarati and Sabrina De Capitani di Vimercati. Access
control: Policies, models, and mechanisms. In Foundations of Security
Ananlysis and Design, volume 2172 of LNCS, pages 137–196. Springer-
Verlag, 2001.

[15] R. Sandhu, E.J. Coyne, H. Feinstein, and C.E. Youman. Role-based
access control models. IEEE Computer, 29(2):38–47, 1996.

[16] R. Sandhu and P. Samarati. Access control: Principles and practice.
IEEE Communications, 32(9):40–48, 1994.

[17] M. Shin and G. Ahn. UML-based representation of role-based access
control. In Proceedings of 9th IEEE International Workshops on En-
abling Technologies (WETICE’00), pages 195–200, 2000.

[18] E. Yuan and J. Tong. Attributed based access control (ABAC) for
web services. In Proceedings of IEEE International Conference on Web
Services (ICWS’05), pages 561–569, 2005.

16


