

Abstract— This paper discusses issues of personalization of
presence services in the context of Internet Telephony. Such
services take into consideration the willingness and ability of a
user to communicate in a network, as well as possibly other
factors such as time, address, etc. Via a three-layer service ar-
chitecture for communications in the Session Initiation Protocol
(SIP) standard, presence system basic services and personalized
services (personal policies) are clearly separated and discussed.
To enrich presence related services, presence information is
illustratively extended from the well known “online” and “off-
line” indicators to a much broader meaning that includes “loca-
tion”, “lineStatus”, “role”, “availability” etc. Ba sed on this, the
Call Processing Language (CPL) is extended in order to describe
presence related personalized services for both call processing
systems and presence systems using information such as a per-
son’s presence status, time, address, language, or any of their
combinations. A web-based system is designed and implemented
to simulate these advanced services. In the implementation,
personal policies are programmed by end users via a Graphic
User Interfaces (GUIs) and are automatically translated into
extended CPL. The simulation system clearly displays when,
where and what CPL policies should be used for the provision of
personalized presence services and call processing services. Pol-
icy conflicts are also addressed by setting policy priorities in the
system.

Keywords: SIP; presence; PIDF, presence extensions; CPL;

CPL extensions

1. Introduction

1.1 Presence

Presence in communications conveys the willingness and
the ability of a user to communicate with others on a network.
“Presence” has been called “the best thing that ever happened
to voice” by Jonathan Rosenberg, one of the Session Initiation
Protocol (SIP) authors. With awareness of the presence in-
formation of other users, unwanted and interrupting calls can
be avoided and presence information is very helpful to estab-
lish successful communication sessions. The RFC 2778 [1]
from Internet Engineering Task and Force (IETF) defines a
model and terminology for describing systems that provide
presence information. A SIP implementation of this model
defines a presence event package for SIP [2]. In this model, a
presence system is a presence service that accepts, stores, and

delivers presence information to the interested parties defined
as watchers.

An ETSI/Parlay standard deals with presence services in
Parlay X Open Services Architecture (OSA) [3]. The OSA
specifications define an architecture that enables application
developers to make use of network functionalities through an
open standardized interface, i.e. the OSA APIs. [3] specifies
in detail a number of presence service scenarios.

Currently, the main advantage of Internet Telephony (or
Voice over IP, VoIP) [4] is lower infrastructure costs over
conventional telephony systems. Of course another very im-
portant characteristic is its ability to handle multimedia
communications and presence. Multimedia communications
with presence can provide uninterrupted multimedia services
via the formats of instant messaging, audio call, video call,
multiparty conferencing, etc. After “I Seek You” (ICQ) was
introduced in 1996, numerous variations of instant messaging
with presence, and more recently, presence based multimedia
communications have come to the market very quickly.

1.2 SIP

Currently, there are two main signaling standards in the
Internet telephony world: SIP from IETF and H.323 [5] from
the International Telecommunications Union
-Telecommunications Standard Sector (ITU-T). The Session
Initiation Protocol (SIP) [5][6][7] has become a dominant
signaling standard because of its simplicity. It is the standard
that will be considered in this paper, although our concepts
apply to either standard. SIP is an application layer protocol
responsible for establishing, modifying and terminating mul-
timedia sessions or calls. Defined on top of a transport layer
(TCP or UDP), SIP messages can convey arbitrary payloads:
session description, instant message, presence document,
JPEG and MIME type. SIP, an end-to-end protocol, can be
made available to end user devices to makes it possible to
define new personalized services. These services are able to
combine conventional telephony services with web, email,
instant messaging, presence, text chat, interactive games etc.
Because of the explosion of new features, it has become
critical to control and manage them. One of the main chal-
lenges of Internet Telephony is service programming [8].
Built on top of SIP, CPL is a solution created in the IETF for
end users to describe and control their specific services.

PERSONALIZATION OF INTERNET TELEPHONY SERVICES
FOR PRESENCE WITH SIP AND EXTENDED CPL

Dongmei Jiang1, Ramiro Liscano2, Luigi Logrippo 1,3
1 School of Information Technology and Engineering, University of Ottawa, Canada

2Faculty of Engineering and Applied Science, University of Ontario Institute of Technology
3 Département d’informatique et ingénierie,Université du Québec en Outaouais, Canada

1 {djiang, rliscano, luigi}@site.uottawa.ca

The advantage of agreeing on standard protocols and lan-
guages such as SIP or CPL is the fact that such languages
provide commonly understood signals and interfaces by which
different implementers can build and exchange applications.

1.3 CPL

CPL [9] was accepted as a proposed standard from the IETF
in 2004. It is designed for end users to describe and control
their specific telephony services. CPL itself is a very simple
programming language in Extensible Markup Language
(XML) syntax [10]. CPL does not have variables or loops and
can only access limited resources. It is designed to be safe for
non-professional users to describe their personalized policies.
A CPL script represents a tree of decisions in terms of tags of
nodes and links. Each node or link corresponds to a tag in
CPL. A node (such as <reject>, <address-switch>) specifies
an action to take or a decision to make. A link (such as <ad-
dress>) specifies the result of an action and displays which
decision was taken. CPL is independent of signaling proto-
cols. It can work on top of either the IETF SIP or ITU-T H.323
[5]. As a simple example, the policy for Alice’s feature “re-
jecting anonymous incoming calls” is shown in Fig. 1.

<cpl>
 <incoming>
 <address-switch field="origin" subfield="user">
 <!- decision made by checking the original address of the caller -->
 <address is="anonymous">
 <reject/>
<!- if the caller's name is unavailable, action "reject" is taken and the script
stops -->
 </address>
 </address-switch>
 </incoming>
</cpl>

Fig. 1 Screening Anonymous Incoming Call

A CPL script (policy) can be executed on a user’s device or

on a proxy server that acts on behalf of the user. It is associ-
ated with or owned by a particular user, i.e. it is only triggered
if the request (e.g. a SIP INVITE) is for that user. In the above
example the script would be associated with a particular user
(Alice) and the script is executed when a signaling request is
received for an incoming call (defined by the <incoming> tag)
for that user, Alice. As well, a CPL script can react to a
<outgoing> signaling request message. Current CPL can only
describe and control call processing services with two direc-
tions “incoming” and “outgoing” considered.

1.4 Motivation and Contributions

Currently available presence systems such as Microsoft
MSN Messenger or Yahoo Messenger can provide presence
information only in one parameter, i.e. an indicator of
“online” or “offline” etc., which is too limited to offer rich
services related to presence. Personalized services such as
how to process a watcher’s request and how to notify a

watcher based on a person’s status, time, address, etc. are not
offered to users in current available systems. This paper will
overcome these limitations. Our contributions mainly consist
of four parts:

1) By proposing a three-layer service architecture, system
basic services and personalized services can be clearly sepa-
rated and described.

2) To enrich presence information and presence related
services, we extend presence information and CPL for pres-
ence.

3) On the basis of the above extensions, presence related
new services can be implemented that take into consideration
a person’s status, time, language, priority, address or any of
their combinations in both a call processing system and a
presence system.

4) We have implemented a simulation system to demon-
strate these advanced presence related Internet Telephony
services written in extended CPL.

While [3] describes a Web service, our proposed presence
system is not dependent on a Web implementation. However,
the simulation of our presence services is done in a Web
environment.

References [11][12] present the language LESS, which is
an extension of CPL and is conceived of for end system ser-
vice creation (while CPL is for service creation on proxies).
LESS was developed simultaneously with the CPL extensions
presented in this paper. It provides a different approach to the
programming of presence services.

Preliminary accounts on this research were presented in
[13][14]. For the advanced presence services with SIP, [15]
made a comparison between our CPL extensions and the
Presence and Availability Policy Language (PAPL) designed
at Mitel [24]. Security solutions for the services explained in
this paper were proposed in [16].

1.5 Organization

In section 2, we will propose a three-layered architecture in
which basic concepts of SIP communication systems (e.g. call
processing and presence) are introduced. The system basic
services and personalized services are clearly separated and
their relationship is addressed in the architecture. The en-
richment of presence information, how and in what format the
presence information can be carried, are illustrated in section
3. To describe and control presence related new services, CPL
will be extended for presence in section 4. In section 5, new
advanced services, especially presence related, are illustrated
in extended CPL.

With the creation of various new services in extended CPL,
service management (creation, description, control and pro-
vision) becomes more complicated. Through a simple service
management system described in section 6, a simulation sys-
tem has been implemented in order to experiment with the new
proposed service descriptions. The system provides a simu-
lation environment that can be used as a basis for further

research. Service interactions (conflicts) are addressed as well
in the simulation system.

2. Three-Layer SIP Communications

In the three-layer architecture seen in Fig. 2, a call proc-
essing system (italic) and a presence system are shown to
illustrate how the system we propose works. In a presence
system, watcher and presentity are two main logical entities; a
watcher subscribes to a presentity, and the presentity stores
and projects its presence information to the interested party
i.e. the watcher.

Presence Agent
User Agent

Network
Server

Presence
User

Agent

Policy
Server

Policy
ServerIncoming-

Notification

Outgoing-
Subscription

Incoming-
Subscription

Outgoing-
Notification

Incoming-Call

Watcher / Caller Presentity / Callee

Layer 1
Network
Service

Layer 2
System
Service

Layer 3
Personalized
Service

SIP
Registrar

Outgoing-Call

Network
Server

Presence Agent
User Agent

Database of Extended CPL Policies
Presence Server
Edge Presence Server

Non-SIP Messages
SIP Messages

Service Type

Presence System /Call-Processing System

F
ro

m
 e

nd
 d

ev
ic

es

SIP INVITE

SIP NOTIFY
SIP SUBSCRIBE

200 OK

PUBLISH

Fig. 2. Presence System and Call processing System

 Architecture

2.1 SIP System Components

SIP [5] is a client server type protocol modeled after the
Simple Mail Transfer Protocol (SMTP) [17] for email and the
HyperText Transfer Protocol (HTTP) [18] for the Web. It is
responsible for establishing, modifying and terminating mul-
timedia sessions and calls.

SIP has two types of components: user agents (user agent
client and user agent server) and network SIP servers (proxy
server, redirect server and register server). A user agent acts
on behalf of someone who wants to participate in calls or
multimedia sessions. A user agent client can initiate a call on
behalf of a caller by sending a SIP INVITE [5] message to a
callee. A user agent server answers the call on behalf of the
callee. A user agent is always addressable with a SIP Uniform
Resource Identifier (URI) that uniquely identifies the user. For
example, a user agent SIP URI,
“sip:dongmei@site.uottawa.ca” identifies user “dongmei” at
the domain “site.uottawa.ca” over the “sip” protocol. A user
agent represents a user to register the user’s address to its SIP
register server. The address is listed in the “to” header in the
SIP REGISTER [5] message. In this way, a SIP server can
identify the user agent’s current communication addresses. A
SIP proxy server or a redirect server directs SIP messages to
where they should go for transport. A proxy server acts

similarly to a HTTP proxy server when SIP requests are
forwarded. A redirect server tells the request client to contact
the next hop server directly using a redirect response. A reg-
istrar accepts SIP REGISTER requests and keeps the user
information to provide location service, which is the key to
achieve mobility.

2.2 Concepts of presence system

To offer presence communication in the SIP standard, two
SIP extension messages for presence (SIP SUBSCRIBE and
SIP NOTIFY) are defined and discussed in [2][19]. The detail
of the two messages will be described in Section 2.3. Recently
an event state publication method SIP PUBLISH [20] has
been proposed in the IETF. This SIP PUBLISH can be used
for presence event publication in a presence system. As shown
in Fig. 2, a presence system is more complex than a call sys-
tem. There are two types of user agents in a presence system:
presence user agent and presence agent.

A presence user agent is a SIP user agent in a presence
system. It takes care of a presentity’s end devices (phone, cell
phone or Personal Digital Assistant etc.), it manipulates
presence information and delivers the presence data provided
by the end devices to its presence agent. For example, if a
presentity has a phone, the presence user agent takes care of
the phone. Upon registration or changes of phone status, the
presence user agent publishes the phone status information by
a SIP PUBLISH [20] to the presence agent.

A presence agent is a SIP user agent who acts for a watcher
or a presentity. It can initiate SIP SUBSCRIBE requests for a
watcher to its presentity; for a presentity, it can authenticate
and authorize its watchers and supports the presence event
package that delivers SIP NOTIFY messages containing
presence information in the Presence Information Data For-
mat (PIDF) [21] to its registered watchers.

Notification [2][20] is an unsynchronized process triggered
by any process of a watcher successful subscription, a pre-
sentity successful registration or any a presentity update of its
presence information. A presentity-side presence agent has
knowledge of the presence state of its presentity. It can also
access presence data manipulated by its presence user agents
to generate notifications to all its registered watchers. A
presence agent works for one presentity only; however, a
presentity can have multiple presence agents with each of
them handling some subset of active subscriptions for the
presentity. For the case of multiple presence agents, a manager
is needed to manage these presence agents. For simplicity, we
limit ourselves to the case of a presentity with only one
presence agent in this paper.

2.3 Three-Layer Service Architecture

In the three-layer service architecture shown in Fig. 2, SIP
servers provide network services in Layer 1. In Layer 2, user
agents (or presence agents in the presence system) provide

system basic services to all users fairly. The system services
include sending requests for a caller (or a watcher in the
presence system), replying to the call for a callee, or authen-
ticating and authorizing the watcher’s request in the presence
system, and notifying the watcher once its request is approved
or its presence status is changed. In Layer 3, personal policies
(ovals in Fig.2) are described in extended CPL [22]. These
policies are associated with and owned by a particular user
and are triggered only when the request is for the user. As a
simple example of personal policies, Tom can reject calls
from anonymous callers, as shown in the CPL example in
figure 1. Personalized policies are programmed by end users,
managed by a policy server and executed by user agents or
presence agents. Only system basic services will be provided
if personal policies are not available.

The policy server works on the third layer to manage per-
sonalized services (CPL polices) either for presence or call
processing. The management includes creating, storing, up-
dating, deleting, searching, fetching these policies for user
presence agents or user agents.

There are two types of call processing policies in current
CPL that apply to the SIP INVITE message: incoming-call
and outgoing-call policies. Policies for outgoing-call are used
to direct callers’ user agents when they initiate calls (i.e. send
SIP INVITE); and policies for incoming-call are used to direct
callees’ user agents response when they receive calls (i.e.
receive SIP INVITE). Analogous to the call processing sys-
tem, the presence system has four types of policies: outgo-
ing-subscription, incoming-subscription, outgo-
ing-notification and incoming-notification. These four types
of policies are part of our contributions that will be described
in section 4 (CPL extensions for presence).

2.4 Scenarios of Presence Processes

SIP SUBSCRIBE and SIP NOTIFY are two operations
defined as part of the SIP extensions for presence [2][19]. The
SUBSCRIBE operation is a request operation initiated by a
watcher’s presence agent and its message is routed by SIP
network servers to a destination presentity’s presence agent. A
SIP SUBSCRIBE message contains the required format “ap-
plication/pidf+xml” of presence information under the header
“Accept” and the SIP URI of the destination presentity iden-
tified under the header “To”. After the presentity’s presence
agent receives the SIP SUBSCRIBE message, it must au-
thenticate and authorize the subscription request. Once the
authentication and authorization are passed successfully, 200
OK is sent back to the watcher presence agent and the watcher
is registered successfully to the presentity. The SUBSCRIBE
request operation initiates a presence service “dialog” be-
tween the watcher presence agent and the presentity presence
agent. Notification, an asynchronous request process, is im-
mediately triggered by the successful subscription. The SIP
NOTIFY request operation is initialized by a presentity’s
presence agent and its message is routed by SIP network

servers to its watcher agent. The presentity’s presence in-
formation written in the required PIDF [21] is carried in the
body of a SIP NOTIFY [19] message.

We assume that a watcher and a presentity have registered
to SIP registrars through their presence agents. The five main
process scenarios of presence systems with applicable types of
policies are listed following the pattern: scenario description
([scenario actor], [goal], [SIP messages used], [applicable
policies]).

1) A watcher sending subscription requests to a presentity
([the watcher’s presence agent], [to send a request for the
presentity’s presence information], [outgoing SIP
SUBSCRIBE], [outgoing-subscription]);

2) A presentity processing a watcher’s request ([the pre-
sentity’s presence agent], [to authenticate and authorize the
watcher for the request], [incoming SIP SUBSCRIBE], [in-
coming-subscription]);

3) A presentity notifying a watcher of its presence infor-
mation ([the presentity’s presence agent], [to notify author-
ized watchers of its presence info], [outgoing SIP NOTIFY],
[outgoing-notification]);

4) A watcher receiving a notification ([the watcher’s
presence agent], [to process arrived notification of presence],
[incoming SIP SUBSCRIBE], [incoming-notification]);

5) A presentity resending notifications to its watchers when
its presence status changes: this is the same as scenario 3).

3. Presence Information Extensions

Presence information is the basis of presence services. As
mentioned in section 1.4, in most systems nowadays presence
information is described by only one parameter, an indicator
of “on-line” or “off-line”, which is very limited to describe a
person’s communication status. In fact, many parameters can
be helpful to indicate whether a user is available to commu-
nicate, and different organizations may have different needs.”
Paper [22] proposed extensions including four new parame-
ters “location”, “lineStatus”, “role” and “availability”, which
are basic presence attributes in the communication world.
Many other such extensions can be found in [3].

The location parameter indicates a presentity’s current lo-
cation. It is easy to understand that a user won’t like to be
bothered by calls while he is in a meeting in a meeting room;
or a user may like to forward his incoming-calls to the room
where he is. The parameter value can be “office”, “meeting
room” or “car” etc. Customers are allowed to define the values
of this parameter for their specific purpose. The way of pro-
viding location information is flexible. It can be realized
automatically with a location sensor system or manually via
simple text input etc. In automatic systems, locations must be
equipped with sensors in a network. The sensors can identify
and monitor the presentity that has registered in the network.

 lineStatus indicates if a presentity is occupying a telephone
line or not. If we know that a person is talking on a phone,
usually we won’t interrupt him with other calls. Parameter

“lineStatus” has two possible values, “on” and “off”. Value
“on” indicates that the user is on a phone and value “off”
indicates that the user is not on a phone.

 role indicates the role of a presentity in an organization,
such as “professor”, “consultant”, etc. A user can have mul-
tiple roles when the user takes more than one positions. For
example, Sharon works as a consultant for a company one day
a week and works as a professor for a university four days a
week. She has two roles, “consultant” and “professor”. Sharon
needs a service that all calls from her company are be blocked
unless she takes the role of “consultant”. The role status is an
important factor to affect a user’s ability and willingness to
communicate.

Availability indicates whether a presentity wishes to
communicate with others. The value “yes” indicates that the
user is ready to communicate with others and “no” indicates
that the user does not wish to communicate with others cur-
rently. The availability value “no” is analogous to the notice
tag “Please do not bother” that can be tied to the room door
handle in hotels. It is only a sign to show if a user is available
to communicate. When a user has a status of “yes”, other users
have a better chance to successfully communicate with her
than if she has a status of “no”. Availability is not the pre-
sentity’s communicating ability; it is his willingness. On status
“no”, the user can still communicate with others if necessary.
For example, he can still answer emergency phone calls.

Based on the above extensions, presence status can be de-
scribed with multiple parameters. When any of the presence
parameters is changed, the user’s presence status is changed
and his presence agent is informed of this change. The pres-
ence agent then notifies all watchers of his updated presence
information according to the user’s notification policies.

<?xml version="1.0" encoding="UTF-8"?>
 <xs:schema>

 <! definition of "location" -->
 <xs:simpleType name="location">
 <! location is a string parameter -->
 <xs:restriction base="xs:string">
 <! value can be "office" -->
 <xs:enumeration value="office"/>
 <xs:enumeration value="meeting room"/>
 </xs:restriction>
 </xs:simpleType>

 <! definition of "lineStatus" -->
 <xs:simpleType name="lineStatus">
 <xs:restriction base="xs:string">
 <xs:enumeration value="on"/>
 <xs:enumeration value="off"/>
 </xs:restriction>
 </xs:simpleType>

 <! definition of "role" -->
 <xs:simpleType name="role">
 <xs:restriction base="xs:string">
 <xs:enumeration value="student"/>
 <xs:enumeration value="consultant"/>
 <xs:enumeration value="professor"/>
 </xs:restriction>
 </xs:simpleType>

 <! definition of "availability" -->
 <xs:simpleType name="availability">
 <xs:restriction base="xs:string">
 <xs:enumeration value="yes"/>
 <xs:enumeration value="no"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>

Fig. 3. Example of Definition of Presence Extensions

Fig. 3 shows the definition of the above extensions of

presence in the format of a XML schema. In the same way,
organizations may define their own specific presence exten-
sions.

Presence information is written in presence documents in
PIDF [21] using XML syntax. The documents are carried in
the body of SIP NOTIFY messages sent to watchers. As an
example of presence extensions, Fig. 4 shows Bob’s presence
information sent to Alice, wrapped in a SIP NOTIFY mes-
sage. The presence document indicates that Bob can accept
instant messages; he is working as a professor in his office and
he is talking on his phone; also he prefers not to communicate
with others at this time (he is not available). Knowing this,
Alice decides not to bother Bob with a call.

NOTIFY sip ……

<presence …>
 <tuple id="…">

 <status>
 <basic>open</basic>
 <!- able accept instant message? -->
 <epidf:location> office </epidf:location>
 <epidf:lineStatus> on </epidf:lineStatus>
 <!- talking on a phone? -->
 <epidf:role> professor </epidf:role>
 <epidf:availability> no </epidf:availability>
 <!- like a talk now? -->
 </status>

 </tuple>
</presence>

Fig. 4. Presence in PIDF carried in a SIP NOTIFY

4. CPL Extensions for Presence

Current CPL [9] deals with call processing services, trig-

gered by SIP INVITE messages. The first proposal for ex-
tensions of CPL for presence was [23]. This proposal added to
CPL the capability to describe presence services, but the focus
was on basic system services rather than user personalized
services. We have defined a new switch (the presence-switch)
in our extensions, which makes it possible to personalize user
services in both presence systems and call processing systems.
Our CPL extensions make it possible to define presence ser-
vices with consideration of a person’s presence status, i.e. a
person’s location, line status, role, availability etc. Our work
was influenced by previous work at Mitel, leading to a patent
application [24], where the use of a CPL-based language for
presence policies was described. This latter work produced a
language for presence that was inspired by CPL but did not
support the existing CPL tags for managing these services. In
contrast, our CPL extensions are compatible with current
CPL, which makes them much more powerful. With the new
presence-switch characterized by rich presence information,
end user services are much enhanced. This is very important
for service personalization. In either a presence system or a
call processing system, user services can be handled with
consideration of a person’s status (i.e. presence-switch), time
(i.e. time-switch), address (i.e. address-switch) etc. or any of
their combinations.

In our CPL extensions, we define four top-level actions,
five operations and a presence-switch [22].

4.1 Four New CPL Top-level Actions

Just as current CPL is designed to process SIP INVITE, our

CPL extensions for presence will be able to process SIP ex-
tensions for presence methods, which are SIP SUBSCRIBE
and SIP NOTIFY with the two directions of “incoming” and
“outgoing”. Therefore, to keep consistent with the definitions
of the top-level actions “incoming-call” and “outgoing-call” in
CPL, the extensions of CPL for presence should define four

top-level actions: “incoming-subscription”, “outgo-
ing-subscription”, “incoming-notification” and “outgo-
ing-notification”. The four top-level actions, triggered by
either a SIP SUBSCRIBE message or a SIP NOTIFY mes-
sage, induce four types of personalized presence services
(policies) shown on the third layer of Fig. 2.

1) incoming-subscription - the action that is performed on
the presentity-side when a SIP SUBSCRIBE message arrives
and the message’s destination is the script owner, i.e. the
presentity.

2) outgoing-subscription - the action that is performed on
the watcher-side when a SIP SUBSCRIBE message is ready to
be sent and the message’s originator is the script owner, i.e.
the watcher.

3) incoming-notification - the action that is performed on
the watcher-side when a SIP NOTIFY message arrives and the
message’s destination is the script owner, i.e. the watcher.

4) outgoing-notification - the action that is performed on
the presentity-side when a SIP NOTIFY message is ready to
be sent and the message’s originator is the script owner, i.e.
the presentity.

4.2 Five New CPL Operations

1) subscribe - this action causes the SIP server to send a SIP
SUBSCRIBE message to the specified presentity.

2) notify - this action causes a SIP server to send a SIP
NOTIFY message to the specified watcher. The NOTIFY
message may contain a presence document in PIDF.

3) approve - this action tells a PA of a presentity that the
watcher request is approved with a time limit. The PA then
can start to prepare the notification message, the beginning of
a notification process.

4) accept – by this action, the PA of a watcher accepts the
received notification. The presence information is displayed
or refreshed.

5) call – this action combines action “accept” for presence
with a new “call” action for the call processing service. It
causes the SIP server to send a SIP INVITE message to a
specified callee. The script owner is the caller who launches a
new call. The action enables the co-operation of the presence
system and the call processing system i.e. the presence agent
in the presence system co-operates with the SIP user agent in
the call processing system.

4.3 A New CPL Presence Switch

1) presence-switch – this switch enables an end user to

make decisions based on the presence status of a presentity.
By the definition of presence extensions in section 3, presence
status can be a user’s location, lineStatus, role status avail-
ability status or any of their combinations. The presentity may
be the user himself or somebody else. This is an important
feature. If the presentity is the user himself then the presence
information can be acquired from the user’s presence user

agent. Otherwise if the presentity is somebody else then the
user must have captured the presentity’s presence information
from a previous SIP NOTIFY message or from the incoming
SIP NOTIFY message depending on which event triggers the
CPL script.

Node “presence-switch” has two mandatory parameters,
“presentity” and “timeout”. Parameter “presentity” identifies
a presentity, and parameter “timeout” gives the CPL executor
(i.e. a user agent in a call processing system or a presence
agent in a presence system) a time limit to retrieve presence
information. “presence-switch” is followed by the link node
“presence”, which specifies a presence status to verify
whether the presentity matches the status or not.

The definition of CPL extensions for presence can be in the
format of either DTD or XML schemas [22]. The scripts in
extended CPL will be validated using the definition before
they are executed. With these extensions of CPL, personalized
services are much enriched in both call processing and pres-
ence systems. These services can be handled based on a per-
son’s location, lineStatus, role, availability, time, address or
any of their combinations.

5. Applications

The new services in extended CPL described in Section 4
are event-driven services. They can be caused by the events of
“incoming-call” or “outgoing-call” in call processing systems,
or by the events of “incoming-subscription”, “outgo-
ing-subscription”, “incoming-notification” or “outgo-
ing-notification” in presence systems. We can classify these
new services into three main types according to the actions
that are finally taken. These types are screening service, for-
warding service and auto-call service. The first two types
apply to both call processing systems and presence systems.
The auto-call service is based on a presence event, is initiated
in a presence system and ends up in a call processing system.
These types of services are illustrated with the following four
examples described in extended CPL.

<cpl xmlns = …>
<cplPresence:incoming-subscription>

 <address-switch field ="origin">
 <address is = "sip:SharonBoss@example.com">
 <time-switch tzid="America/New_York"
 tzurl="http://zones.example.com/tz/America/New_York" >
 <time dtstart="20000703T090000" duration="PT8H" freq="weekly"
 byday="MO,TU,WE,TH,FR" >

 <cplPresence:approve/>
 </time>
 <otherwise>
 <reject/>
 </otherwise>
 </time-switch >
 </address>
 </address-switch>

</cplPresence:incoming-subscription>
</cpl>

Fig. 5. Conditional Authorization for Presence

The first example is Sharon’s policy of conditional au-

thorization to her watchers as shown in Fig. 5. Sharon screens
her incoming-subscription requests. She accepts her boss’s
requests only during working hours, i.e. from 9:00am to
5:00pm, Monday to Friday. This is a “pure” screening ex-
ample for presence subscription where the trigger is an “in-
coming” SIP SUBSCRIBE request.

The second example shown in Fig. 6 represents an outgo-
ing-call screening service based on the presence status of
Sharon’s callee (i.e. her boss). This particular CPL code
exemplifies the concept of extending typical CPL top-level
actions (<outgoing>, <incoming>) with presence switches
(shown in italic). Sharon thinks that she should not call her
boss when he is talking on his phone with his availability “no”.
Sharon makes her outgoing-call screening policy to prevent
such calls. In her policy, shown in Fig. 6, Sharon blocks her
calls to her boss when the boss is talking on his phone and his
availability status is “no”. The calls will be processed based
on the callee’s status, which is triggered by Sharon’s “out-
going” SIP INVITE messages.

<cpl xmlns>
<outgoing>
 <address-switch field ="original-destination">
 <address is = "sip:SharonBoss@example.com">

 <cplPresence:presence-switch presentity=
"sip:SharonBoss@example.com">
 <cplPresence:presence lineStatus = "on" availability = "no">
 <cplPresence:success>

 <reject/>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch >

 </address >
 </address-switch>
</outgoing>
</cpl>

Fig. 6 Screening Outgoing-calls

<cpl xmlns>
<incoming>

 <cplPresence:presence-switch presentity = "sip:SharonBoss@example.com">
 <cplPresence:presence lineStatus = "on" availability = "no">
 <cplPresence:success>
 <location url="sip:SharonBossVoiceMail@example.com">
 <proxy/>
 <location>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch >

</incoming>
</cpl>

Fig. 7 Presence-based Incoming-call Forwarding

The third example shown in Fig. 7 is a call-forwarding

service for Sharon’s boss. He forwards his incoming-calls to
his voice mail when he is talking on his phone with his
availability status “no”. He prefers to deal with these voice

mails at a later time. His policy is shown in Fig. 7. These calls
are processed based on callee’s (the boss’s) status, which is
triggered by his “incoming” SIP INVITE messages.

The last example is an auto-call policy of Peter. As shown in
Fig. 8, Peter asks to initiate an auto call to Sharon as soon as he
is notified that Sharon arrives at her office. This auto-call is
based on the callee’s (Sharon’s) presence status, which is
carried in the “incoming” SIP NOTIFY from Sharon to Peter.

<cpl xmlns = …> ……
<cplPresence:incoming-notification>

 <address-switch field="origin">
 <address is="sip:Sharon@example.com">

 <cplPresence:presence-switch presentity ="sip:Sharon@example.com">
 <cplPresence:presence location = "office">
 <cplPresence:success>
 <location url="sip:Sharon@example.com">
 <cplPresence:call/>
 </location>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch>

 </address>
 </address-switch>

</cplPresence:incoming-notification>
<cpl>

Fig. 8 Presence-based Auto Calls

6. System Design and Implementation

By using the Java programming language, we have de-
signed and implemented a web-based system to simulate
personalized call processing services and presence services
written in extended CPL. Its main outline is shown in Fig. 9. It

contains three subsystems: the presence system, the policy
system, and the call processing system. This figure shows a
web page where the name of each subsystem is a link leading
users to the web page of the corresponding subsystem.

Fig. 9 Simulation System

6.1 System Introduction

The three subsystems can either be independent or coop-
erate. The call processing system allows a registered user to
make phone calls to other registered users. The presence
system can deliver presence information to watchers; register,
modify or remove presence information for a presentity; add
or remove watchers for a presentity; add or remove presenti-
ties for a watcher. These are system basic services that treat all
users fairly. The policy system can create and modify user
telephone accounts; create, modify and remove user policies;
translate user policies into extended CPL and store the CPL
files in the system. Personalized services in either a presence
system or a call processing system will be offered according to
the respective CPL policies. System basic services will be
provided only if there are no applicable personal CPL poli-
cies.

A user needs to create an account in order to login to these
subsystems. A user is identified by a unique name with a
confirmed password. The user is allowed to have a logical
phone as a global user identifier and three end devices: a
regular phone, a cell phone and a voice mail, each of which is
identified by an address consistent with SIP. These addresses
are valuable elements that will be extracted and written into
the user’s CPL policies.

6.2 System Architecture

The system architecture, shown in Fig. 10, contains four

parts: the Internet browsers, the web server, the database
server and the database. The Internet browsers let users enter
their requests and display request results. The web server
holds Java servlets that are the central controllers managing
the simulation services. The Database Server holds the data-
base agent who works as a representative for the database and
has various methods to operate on the database. The database
contains all service-related information. User requests are
entered via the browser’s Graphic User Interfaces (GUIs). The
Java servlets accept a request through HTTP and initiate a
corresponding request to the database agent that is connected
to the database via the Java Database Connection (JDBC).
The database agent obtains the required data from the data-
base and sends it back to the Java servlets. The Java servlets
process the data and send the readable service results to the
user browser. Held by their own servers at different locations
as shown in Fig. 10, the database agent and the Java servlets
are independent of each other in this architecture, which
makes them easy to extend and modify individually.

Database-ServerWeb-Server

JDBC Data

Servlets
Internet

Internet Database Agent

Presence
Policy
Call-Processing

HTTP

Fig. 10 Simulation System Architecture

6.3 Policy Management

Our simulator system supports six types of policies. With
“incoming” and “outgoing” directions considered, the first
two types acting on SIP INVITE can be described in current
CPL. They are incoming call (IN) and outgoing call (OUT) in
a call processing system. The last four types acting on SIP
SUBSCRIBE and NOTIFY are described in our CPL exten-
sions. They are incoming subscription request (SIN), outgoing
subscription request (SOUT), incoming notification response
(NIN) and outgoing notification response (NOUT) in a
presence system.

Fig. 11 Policy Creation

A CPL policy in the simulation is composed of the fol-
lowing four parts: type (CPL top action), conditions (CPL
switches), one action (CPL action) and destination (CPL
location). This is clearly reflected on the policy creation GUI,
shown in Fig. 11. The policy name is defined by the end user
and the policy priority is set based on the priorities of the
different policies within a service type. The policy will be
triggered whenever all the conditions are satisfied. The policy
in Fig. 11 indicates that all incoming calls from Stephen will
be forwarded to Sharon only if she is the policy owner, she is
not available and she is on her phone. A more elaborate GUI
would allow users to specify service type and their personal-
ized needs in terms of a person’s status, time, address or any of
their combinations.

Fig. 12 Policy Management

The policy management GUI will pop up after a user submits
his policy. Fig. 12 is the management GUI for user Sharon. By
clicking the account related links “edit” and “delete”, Sharon
can edit her personal account and deregister her personal in-
formation from the system respectively. Using policy related
links “add policy”, “edit”, “display” and “delete”, Sharon can
add, edit, display and remove her policies. Using the links for
policy creation (“call processing policies” and “presence
policies”), Sharon’s policies are automatically translated into
extended CPL files and stored in the simulation system. These
CPL policies will be executable for both Sharon’s call proc-
essing services and her presence services.

<cpl >
<cplPresence: incoming subscription>
 <!-- ---- Policy # 1 - SIN1 ------ -->
 <address-switch field = "orgin">
 <address is = "sip:stephen@example.com">
 <cplPresence:presence-switch presentity="sip:sharon@example.com">
 <cplPresence:presence lineStatus = "on" >
 <cplPresence:success>
 <reject/>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch >
 </address >
 </address-switch >
</cplPresence:incoming subscription>

<cplPresence:outgoing subscription>
 <!-- ---- Policy # 1 -- SOUT1 ------ -->
 <time-switch tzid="America/New-York"
 tzurl="http://example.com/tz/America/New_york">
 <time dtstart="20030101T180000" duration = "PT14H" freq = "weekly"
 byday = "MO, TU, WE, TH, FR">
 <reject/>
 </time>
 </time-switch >
</cplPresence:outgoing subscription>

<cplPresence:outgoing notification>
 <!-- ---- Policy # 1 -- NOUT1 ------ -->
 <address-switch field = "orgin">
 <address is = "sip:stephen@example.com">
 <cplPresence:presence-switch presentity="sip:sharon@example.com">
 <cplPresence:presence lineStatus = "on" >
 <cplPresence:success>
 <reject/>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch >
 </address >
 </address-switch >
</presence: outgoing notification>
</cpl>

Fig. 13 Auto-created Presence Policies in extended CPL

The CPL files of the presence policies and the call proc-
essing policies are separately created and stored and they will
be executed individually in two different subsystems. Fig. 13
is the CPL file for Sharon’s presence policies automatically
created by the simulation system. For example, policy
“NOUT1” indicates that Sharon blocks notifications to
Stephen if she is on the phone.

6.4 Policy Conflicts

One user can have multiple policies for each policy type. In
Fig. 12, Sharon has two incoming call policies and two out-
going call policies. Sometimes there are policy conflicts. For
example, Bob prefers to forward his incoming calls to his
voice mail from 9:00am to 10:00am, however, he wants to
take his wife’s calls unconditionally. A conflict occurs if
Bob’s wife calls him at 9:30am. Giving a higher priority to the
policy for his wife’s calls, the conflict is solved and Bob is
able to take his wife’s calls even at 9:30am In order to
eliminate policy conflicts, policies are arranged by numbers

when created as shown in Fig. 11: the smaller the number, the
higher the policy priority. The policy priority order inside
each service type is clearly displayed in the policy manage-

ment GUI as shown in Fig. 12. In the processing of the policies
for each service, the highest priority policy is checked first. As
soon as a policy matches the criteria, this policy is executed
and the remaining policies are ignored.

The study of such service conflicts (called feature interac-
tions in the telephony world) is beyond the scope of this paper.
However clearly they will have to be taken into careful con-
sideration by the system designers. In many cases, the naive
user unfortunately will not be able to distinguish interactions
from system malfunctions. Reviews of research on service
conflicts in traditional telecommunications systems can be
found in [25][26] and policy conflicts in CPL are discussed in
[27][28].

6.5 Presence Management

In the presence system, a user (e.g. Sharon shown in Fig.
14) can be a watcher, a presentity or both at the same time. As
a watcher, Sharon can send requests for her presentities’
presence information; as a presentity, Sharon can authorize
her watchers and notify them of her presence information.

The presence management GUI, shown in Fig. 14, will be
popped up when the user (Sharon) logins to the presence
system. A user’s presence status is characterized by the pa-
rameters “location”, “lineStatus”, “role” and “availability”.
The presence information, stored in the system database, can
be managed by Sharon herself and can be obtained by her
authorized watchers according to CPL policies.

Each link in Fig. 14 connects to a presence service on the
GUI. For example, by clicking the link “add watcher”, the
GUI “Add Watcher” pops up allowing the current user Sharon
to approve an incoming subscription request from a specified
watcher. By clicking the link “add presentity”, the “Add
Presentity” GUI is popped up allowing Sharon to send out a
subscription request to the specified presentity. Sharon can
change her presence status via the GUI “Presence Update”,
which is popped up by clicking the link “edit”. She may de-
register her presence information from the system by clicking
the link “delete”. Sharon is allowed to terminate her presence
service to her watcher (e.g. Dongmei) by clicking the link
“delete” in the row of watcher Dongmei. Sharon also can stop
being informed of the status of her presentity (e.g. Christo-
pher) by clicking the responding link “delete”.

Fig. 14 Presence Management

The presence system will provide user specific services

(policies) once a user has his personal CPL policies. In the
example of Sharon, she has a conditional outgoing notification
policy “NOUT1”, shown in Fig. 12, to block her notifications
to Stephen when she is talking on her phone during working
hours.

A CPL policy is triggered by a service event in the simula-
tion. When Sharon updates her phone line status from “off” to
“on” in working hours via the GUI “Presence Update”, the
result for her presence update event is shown in Fig. 15.
Stephen is not notified according to Sharon’s policy
“NOUT1”. The other watcher (Dongmei), for whom Sharon
has no notification policy, is successfully notified in the sys-
tem default behavior.

Fig. 15 Policy “NOUT1” Provision

The above scenario clearly illustrates what CPL policies

should be used for the provision of presence services. In the
call processing system, the personal CPL policies are pro-
vided in a similar fashion. If no personal policies are available,
system basic services are provided by default.

7. Conclusions

This paper started by proposing an architecture for per-

sonalized services for SIP multimedia communications with
presence. Some presence information extensions were intro-
duced and on their basis CPL has been extended to deal with
these services. With these CPL extensions, end users will have
more flexible and powerful call processing services and
presence services, which can take into consideration a per-
son’s location, phone line status, role status, availability
status, time, address, or any combinations of these.

A web-based application system has been designed and
implemented to simulate SIP communications with person-
alized services defined in extended CPL. Via user-friendly
GUIs, end users can program their specific services, which are
translated into extended CPL automatically by the system.
Presence services and call processing services are then
simulated according to the user’s CPL policies if available.
Policy conflicts in one user’s set of policies have been solved
by a priority mechanism, although the more general topic of
policy interaction remains to be studied. This simulation en-
vironment can be used as a basis for further research.

ACKNOWLEDGMENT

This work was motivated by a grant from Mitel Networks. It
was also funded partially by Communications and Information
Technology Ontario and the Natural Sciences and Engineer-
ing Research Council of Canada. We thank Tom Gray and
Romelia Plesa for having participated in parts of this work and
Jacques Sincennes for technical advice.

REFERENCES
[1] M. Day, J. Rosenberg, H. Sugano. A Model for Presence and Instant

Messaging, IETF RFC 2778, 2000.
[2] J.Rosenberg. A Presence Event Package for the Session Initiation

Protocol (SIP), IETF RFC 3856, 2004.
[3] ETSI. Final draft ETSI ES 202 391-14 V1.1.1 (2005-01), 2005. At

URL:
http://webapp.etsi.org/action/MV/MV20050318/es_20239114v01010
1m.pdf. Accessed Jan. 2006.

[4] M. Hassan, A. Nayandoro, M. Atiquzzaman Internet Telephony: Ser-
vices, Technical Challenges and Products, IEEE Communications
Magazine, vol.38, (4), 2000., 96-103.

[5] I. Dalgic, H. Fang. Comparison of H.323 and SIP for IP Telephony
Signalling, Proc. Of Photonics East, Boston, Massachusetts, 1999.

[6] J. Rosenberg, H. Schulzrinne, G. Camarillo et al. SIP: Session Initiation
protocol, IETF RFC 3261, 2002.

[7] A.B. Johnston. Understanding the Session Initiation protocol, Artech
House, 2001.

[8] J. Rosenberg, J. Lennox, H. Schulzrinne Programming Internet Te-
lephony Services, IEEE Internet Computing 3(3), 1999, 63-72.

[9] J. Lennox, X. Wu, H. Schulzrinne. Call Processing Language (CPL): A
language for User Control of Internet Telephony Services, IETF
RFC3880, 2004.

[10] W3C. Extensible Markup Language (XML), 2003. At URL:
http://www.w3.org/XML/. Accessed Jun. 2003.

[11] X. Wu, H. Schulzrinne, LESS: Language for End System Services in
Internet Telephon5 Internet Draft-wu-iptel-less, 2005. At URL:
http://www.softarmor.com/wgdb/docs/draft-wu-iptel-less-00.txt. Ac-
cessed Jan. 2006.

[12] X. Wu, H. Schulzrinne. Handling Feature Interactions in the Language
for End Systems Services. To appear in Computer Networks, 2006.

[13] D. Jiang, T. H. Yeap, L. Logrippo, R. Liscano Personalization for SIP
Multimedia Communications with Presence, ICSSSM’05, Vol. 2,
1365-1368, 2005,.

[14] D. Jiang, T. H. Yeap, L. Logrippo, R. Liscano. Simulation of Person-
alized Services in SIP Communications, IEEE ICSSSM’05, Vol. 2,
1379-1382, 2005.

[15] D. Jiang, T. H. Yeap, R. Liscano, L. Logrippo. Two Approaches for
Advanced Presence Services in SIP Communications, 2005 IEEE
Malaysia International Conference on Communications and IEEE In-
ternational Conference on Networks (MICC & ICON 2005).

[16] D. Lou, D. Jiang, T. H. Yeap, W. O’Brian. Personalized Service Mo-
bility and Security in SIP-based Communications, 2005 IEEE Malaysia
International Conference on Communications and IEEE International
Conference on Networks (MICC & ICON 2005).

[17] J. Klensin (Ed.) Simple Mail Transfer Protocol, IETF RFC 2821, 2001.
[18] R. Fielding, J.Mongul, H. Nielsen, T. Berners-Lee. Hypertext Transfer

Protocol HTTP/1.1, IETF RFC 2068, 1997.
[19] A.B. Roach. Session Initiation Protocol (SIP)-Specific Event Notifi-

cation, IETF RFC3265, 2002.
[20] A. Niemi, Ed.. Session Initiation Protocol (SIP) Extension for Event

State Publication, IETF RFC 3903, 2004.
[21] H. Sugano, S. Fujimoto et al. Presence Information Data Format

(PIDF), IETF RFC 3863, 2004.
[22] D. Jiang. Internet Telephony Services for Presence with SIP and Ex-

tended CPL, Master’s Thesis, University of Ottawa, 2004.
[23] X.T. Wu et al. CPL Extensions for Presence, IETF Internet Draft., 2000

http://www1.cs.columbia.edu/~xiaotaow/rer/Research/Paper/draft-
wu -cpl-presence-00.txt. Accessed, May 2004.

[24] R. Liscano, K. Baker, N. Balaba, J. Zhao. Role-based Presence, UK
Patent Submission File #0218711.0, 2002.

[25] S. Reiff-Marganiec, K. Turner. Feature Interactions in Policies. Com-
puter Networks, 45 (2004), 569-584.

[26] J. Cameron, H. Velthuijsen Aug.. Feature Interactions in Telecommu-
nications Systems, IEEE Communications Magazine, Vol. 31, no. 8,
18-23, 1993.

[27] Y. Xu, L. Logrippo, J. Sincennes, Detecting Feature Interactions in
CPL. To appear in the Journal of Network and Computer Applications.

[28] M. Nakamura, P. Leelaprute, K. Matsumoto, T. Kikuno. On Detecting
Feature Interactions in Programmable Service Environment of Internet
Telephony. Computer Networks, 45(5) (2004) 605-624.

