
Software & System Modeling (2005)
DOI 10.1007/s10270-005-0101-6

REGULAR PAPER

Nicolas Gorse · Luigi Logrippo · Jacques Sincennes

Formal detection of feature interactions
with logic programming and LOTOS

Received: 5 February 2003 / Revised version: 4 September 2004 / Published online: 16 November 2005

c© Springer-Verlag 2005

Abstract This article addresses the problem of detecting
feature interactions in the area of telephony systems design.
The proposed approach consists of two phases: filtering and
testing. The filtering phase detects possible interactions by
identifying incoherencies in a logic specification of the main
elements of the features, consisting of preconditions, trig-
gers, results and constraints. If incoherencies are identified,
then an interaction is suspected, test cases corresponding to
the suspected interaction are generated and testing is applied
to see if the interaction actually exists. Two case studies, car-
ried out on established benchmarks, show that this approach
gives good results in practice.

Keywords Telephony software · Feature interaction ·
Detection method · Formal techniques

1 Introduction

Today’s telephony systems are usually defined as the com-
position of a base system and features [1].

By feature, we refer to the increment of functionality of-
fered by a telephony system. A feature has the purpose of
fulfilling certain user intentions in the context of a call. A
telephony system is seen as a base implementation around
which features are orbiting. Let us call B the base of the sys-
tem and Fx a feature where x identifies the name of the fea-

Communicated by Robert France

N. Gorse (B)
Université de Montréal, Dépt. d’informatique et recherche
opérationnelle, Montréal, Canada
E-mail: gorsen@iro.umontreal.ca

L. Logrippo
Université du Québec en Outaouais, Dépt. d’informatique et
ingénierie, Gatineau, Canada
E-mail: luigi@uqo.ca

L. Logrippo · J. Sincennes
University of Ottawa, School of information technology and
engineering, Ottawa, Canada
E-mail: jack@site.uottawa.ca

ture, and the composition operator ⊕. The composition of a
feature Fx with the base system B is then denoted: B ⊕ Fx .
Hence, a system decomposed into a base B and n features
Fx is denoted: B ⊕ F1 ⊕ F2 ⊕ . . .⊕ Fn .

The advantage of such a view is that it separates the
prime behavior from optional ones. This distinction facil-
itates the addition of new capabilities by eliminating the
need to redesign or re-implement the whole system. How-
ever, the combination of features can lead to the so-called
feature interaction problem. Some interactions are desirable
and planned, others may have disruptive effects, in the sense
that the user may not obtain the expected system behavior.

The reader of this paper is supposed to have some knowl-
edge of the feature interaction problem. Abundant literature
and a series of conferences have been dedicated [2–4] to this
problem. In addition, a recent tutorial which contains abun-
dant references is [5].

Feature interactions, already a problem in conventional
telephony, are expected to become a serious obstacle for the
deployment of the many features that will be possible in In-
ternet telephony [4, 6, 7]. All interactions, wanted or not,
should be known by the designer, who determines how they
are dealt with, e.g. which features have the priority, which
features can modify the behavior of others, which features
need to be modified in order to accommodate others, etc.
Analysis of interactions should be performed as early as pos-
sible in the development cycle, i.e. at the requirements level.
This allows designers to be aware of problems before fea-
tures are implemented, thus reducing development costs.

Because features can be arbitrarily complex, the gen-
eral problem of feature interaction detection is computa-
tionally unsolvable and heuristic methods, which are incom-
plete, must be used. Many methods have been proposed for
this purpose (see references given above). Benchmarks of
known interactions can be used to assess the completeness
of a given method [8].

Industrial methods to deal with feature interactions in-
volve first of all the designer’s experience and skill. They
also involve very extensive testing of prototype systems. The
aim of this research is to make this process more efficient,

N. Gorse et al.

by identifying the essential aspects of feature interaction.
It should be noted that the industrial process we have
mentioned will become more problematic in the future. One
of the characteristics of Internet telephony will be the ca-
pability for users to program their own features. Obviously,
users will need interactive help to catch common pitfalls in
this process, and our method promises such help [9].

Symbolic execution or exhaustive testing of execu-table
formal specifications of the features, in order to see if an
undesirable situation can be reached, are established meth-
ods, but can be very costly, because of the extremely large
number of possibilities to be considered in most cases (state
explosion problem).

Filtering [10] has been proposed to alleviate such a prob-
lem. Filtering is a static analysis of feature specifications in
order to see whether an interaction is possible. However, fil-
tering by itself may not be able to consider all elements of
the features being examined, because of their often complex
behavior. If filtering detects the possibility of an interaction,
symbolic execution or testing may have to be performed to
see whether the interaction can really occur. Unfortunately,
and for the same reason, it is also true that filtering may not
detect all interactions. However, being able to automatically
detect even a portion of possible interactions is still better
than having to perform manual analysis for all cases.

Our method starts with a filtering stage, based on the idea
that feature interactions arise from inconsistencies among
the definitions of the various features in a system. Some im-
portant inconsistencies are identified and formally defined
in this paper under the name of incoherencies. We show that
it is possible to detect interactions by identifying, at the re-
quirement level, combinations of features presenting inco-
herencies.

An example of incoherence is two features being trig-
gered by the same event and meant to act upon this event in
different and inconsistent ways (see Incoming Call Screen-
ing and Call Forward on Busy in Sect. 3.1.1). Another ex-
ample is a feature triggering another one where their results
present a contradiction (see Call Forward on Busy and Out-
going Call Screening in Sect. 3.2.1).

We have a filtering stage, where formal filtering rules are
applied to a formal representation of the features to identify
incoherencies between features. This stage is described in
Sect. 3 and 4. If the filtering stage identifies an incoherence,
a scenario-based validation can be performed using automat-
ically derived test suites. For each incoherence identified, a
validation test suite is built by using a set of mapping rules,
and is applied against the specification to check whether or
not the incoherence in fact leads to an interaction. This is
described in Sect. 5. Sect. 6 provides an evaluation of our
method.

Briefly, our method identifies situations where interac-
tions are possible, and then formulates tests that should be
applied in such situations, to see if interactions really occur.

In principle, formal filtering rules should be determined
on the basis of a formal definition of feature interaction.
However, because of the fact that whether it is considered
that a system presents a feature interaction may depend on

the expected behavior of the system from the user’s point
of view, a universally accepted, formal definition of feature
interaction has remained elusive. In this paper, we do not
propose such a definition. On the basis of our main idea,
we identify six incoherencies that are symptoms of many
common known interactions. In Sect. 6, we show that these
criteria provide fairly complete coverage with respect to rec-
ognized benchmarks.

The examples we use to illustrate the method are those of
well established features. However, the method doesn’t de-
pend on any specific telephony model and has been used by
the authors in order to detect feature interaction in Internet-
based telephony systems [9].

It is interesting to note at this point that the feature in-
teraction problem is not limited to telecommunications sys-
tems. It exists in software design and [11] shows that it is a
concern in the area of building design. We believe that our
method can be extended to cover such applications, but this
must be left to further work.

It should be noted that this method does not address run-
time resolution [2, 3, 12–14] of feature interactions.

2 Definitions and formalism

This section presents the principles and definitions on which
the method relies. The description of features is introduced,
followed by the definitions for the detection of incoheren-
cies. The rules used for the detection of incoherencies are
presented in Sect. 3.

2.1 Features

The evolution of a call process is a sequence of events that
bring the system from one state to another. The activation of
a feature depends on the state in which the system is and the
event that occurs. A feature, in a certain state, is triggered
by a specific event: the triggering of this feature leads to
the alteration of the call process, according to the function-
ality provided by the feature. This view is consistent with
the view of the Intelligent Network architecture [15] and of
Internet telephony based on SIP [16] and CPL [17].

In our method, a feature whose functionality can alter
the main call behavior in different states is described in sev-
eral parts, each part representing the behavior of the feature
on a specific state of the call behavior. That is, a feature re-
quires as many description parts as there are different states
it affects in the call model.

Formally, a feature X is denoted FX . A description part
is denoted DX,m where X stands for the name of the feature
and m is an integer identifying the description part. For ex-
ample, a feature X , implemented with three behavioral parts,
is broken into three description parts: DX,1, DX,2 and DX,3.
The feature FX can be stated as FX = {DX,1, DX,2, DX,3}.

Each description part is composed of 4 sets of properties:
pre-conditions, triggering events, results and constraints.

A property is formally denoted γ (υ1, . . ., υi), i > 0,
where γ stands for the name of the property and υ1, . . ., υi

Formal detection of feature interactions with logic programming and LOTOS

is a list of variables representing entities (subscribers, etc.).
In order to distinguish names from variables, we follow the
Prolog notation where property names start with a lowercase
and variable names start with an uppercase.

An example of property is: talk(A, B) indicating that
some user A talks with some other user B. Another one is:
busy(carol) stipulating that user carol is busy.

Each of the four sets of properties composing a descrip-
tion part is denoted by a letter that identifies its type and is
indexed with the name of the feature and the number of the
description part. Given a description part DX,m , the sets are
denoted as follows:

1. The set of pre-conditions describes the state in which the
system must be before the activation of the feature can
be considered. This set is denoted PX,m . It is an ordered
set of properties formally defined as: PX,m = {γ1(υ1,1,
. . ., υ1,i), . . ., γ j (υ j,1, . . ., υ j,i)}, i , j > 0, where γ1, . . .,
γ j are properties representing pre-conditions.
This set must contain the two properties subs and con-
cerns, denoting the subscriber and the user influenced
by the functionality (in many cases, the subscriber
itself).
– subs(U, F) – represents a user, denoted by the vari-

able U , that subscribes to a feature, denoted by vari-
able F . For instance, the subscription of user Bob to
the feature Call Waiting - represented by the acronym
cw - is denoted: subs(bob, cw).

– concerns(U, F) – stipulates that the behavior of user
U can be influenced by feature F . For instance, Call
Waiting implements the possibility, for its subscriber,
to hold an incoming call when already involved in
another call. Call Waiting also specifies that if some-
one is held and receives a call, this latter user must
be considered as being busy. In this case, the user
concerned is not the subscriber but the one on hold.
Alice being concerned with Call Waiting is denoted
concerns(alice, cw).

2. The set of triggering events contains the action(s) trig-
gering the feature. It is an ordered set denoted TX,m ,
defined as TX,m = {γ1(υ1,1, . . ., υ1,i), . . ., γ j (υ j,1, . . .,
υ j,i)}, i , j > 0, where γ1, . . ., γ j are properties repre-
senting triggering events.

3. The set of results shows the actions produced by the ex-
ecution of the feature as well as the state in which the
system is after such execution. It is an ordered set de-
noted RX,m , defined as RX,m = {γ1(υ1,1, . . ., υ1,i), . . .,
γ j (υ j,1, . . ., υ j,i)}, i , j > 0, where γ1, . . ., γ j are prop-
erties representing results.

4. The set of constraints does not contain properties but
rather restrictions on the variables involved in the other
sets of properties. This set is denoted CX,m , with CX,m =
{(υ1 �1 υ2), . . ., (υi � j υi+1)}, i , j ≥ 0, where υ1, . . .,
υi+1 are the variables used in PX,m , TX,m and RX,m , and
�1, . . ., � j represent the equality (=) or inequality (�=)
relations between variables. Such a constraint could be
that a caller must be different from the callee (or that
they must be one and the same).

As an example, let us consider the feature Call Forward on
Busy. It provides to the busy subscriber the possibility to
forward incoming calls to another party. The properties used
for the description of this feature are:

– busy(B) – User B is busy.
– call(A, B) – Call attempt from a user A to another user B.
– cfb(C) – C is the party to which calls are forwarded.
– redirected(A, C) – User A is forwarded to user C .

One description part is sufficient to formalize this feature:

Pc f b,1 = {subs(B, cfb), concerns(B, cfb), cfb(C), busy(B)}
Tc f b,1 = {call(A, B)}
Rc f b,1 = {redirected(A, C), call(A, C)}
Cc f b,1 = {(A �= B), (A �= C), (B �= C)}

The constraints we use here stipulate that values as-
signed to variables must be unique. This excludes specific
cases such as the one where a subscriber calls himself. These
constraints can be removed if such cases are to be consid-
ered.

Note that it is possible to modify this method to elim-
inate the distinction between triggering events and pre-
conditions. The trigger is an event which, in the presence of
pre-conditions, causes the feature to activate. In other words,
our method could be easily adapted for the analysis of sys-
tems where only a set of pre-conditions leads to some conse-
quences. This would be appropriate for newer features that
are triggered by the coexistence of several pre-conditions
without the intervention of specific events. However, con-
ventional features have triggering events and their presence
simplifies the analysis.

2.2 Incoherencies

As mentioned, incoherencies between sets of properties are
symptoms of interactions. Rules are defined to identify such
incoherencies. A finite set of constants representing users
is considered, and for all bindings of such constants, it is
checked if an incoherence arises. Some incoherencies are
identified by the fact that different results are specified for
the same trigger and precondition. Others are identified be-
cause they satisfy explicitly stated contradictions. Note that
this is decidable because only finite sets of variables and val-
ues are considered, and it is efficient because these sets are
small.

Unbound properties are properties expressed using un-
bound variables. As already mentioned, they are represented
in the form: γ (υ1, . . ., υi). To simplify the notation, proper-
ties for which variables are bound (have been given a value)
are represented without their variables. An unbound prop-
erty, denoted γ (υ1, . . ., υi) is denoted π when bound. Also,
we use the same names FX , DX,m , etc. to denote sets of
properties over variables and over constants.

Contradictory pairs of properties must be identified and
listed. A contradiction between two properties is stated us-
ing a binary relation denoted K (γ1(υ1,1, . . ., υ1,i), γ2(υ2,1,

N. Gorse et al.

. . ., υ2, j)), i, j > 1, where γ1 and γ2 are the two properties
considered and υ1,i , υ2, j are variables that represent users.
For instance, a user being idle and busy at the same time is a
contradiction. This contradiction is expressed as K(busy(A),
idle(A)). The use of the same variable A indicates that the
two properties are in contradiction when they refer to the
same user. This can be similarly expressed by K(busy(A),
idle(B)) if A = B is a constraint. A data base of contradic-
tions is maintained by the user (see Sect. 4).

2.3 LOTOS concepts

LOTOS [18,19] (Language of Temporal Ordering Specifica-
tions) is a Formal Description Technique [20] (FDT) that
has been developed within ISO, the International Organi-
zation for Standardization. It is based on process algebraic
concepts, applying ideas of Milner’s CCS [21] and Hoare’s
CSP [22].

LOTOS represents the behavior of a system by using be-
havior expressions that describe the ordering of actions. Ac-
tions represent basic behaviors of the system, for example,
off Hook or ring. There is also an internal (invisible) action,
corresponding to the τ of CCS, written as i. There are ba-
sic behavior expressions such as stop and process instantia-
tion. Complex behavior expression can be obtained by using
operators to combine actions and behavior expressions. Pro-
cesses are named behavior expressions.

LOTOS includes a basic Abstract Data Type formalism,
called ACT ONE, which is used to represent data abstrac-
tions. Data can be associated with actions in two ways: !,
meaning value offer, and ?, meaning value query. These can
be combined in actions:

switch !subs ?dest:dest_sort

denotes an action on gate switch where the current value of
the identifier subscriber is offered, and a value for destina-
tion is queried simultaneously.

Main operators are ;, defining sequencing of actions in
a behavior expression, |||, defining the situation where the
actions of two behavior expressions interleave, ||, defining
the situation where the actions of two behavior expressions
must execute together step by step, and |[a1, . . ., an]|, defin-
ing the situation where the actions a1, . . ., an must execute
together, while all other actions interleave.

LOTOS has two main assets for specifying telephony
systems and their features: it is capable of representing
clearly and precisely system structures, and it has a good
set of animation and validation tools. Animation tools allow
the application of test scenarios (scenario based validation).
They allow the designer to use various techniques to detect
feature interactions that can be present in the specification
of a system.

In this paper, only a small subset of LOTOS is used and
therefore a complete description of the language is not given.
Sufficient comments are included in Sect. 5.3 to make the
paper self-contained.

3 Filtering rules

This section presents our rules for the detection of inco-
herencies. For space considerations, rules are presented in
a formal way with only a few examples. More complete ex-
planations and examples for each rule can be found in [23].

Our classification of incoherencies uses the following
principles. First, we differentiate between direct (denoted by
the letter D below) and transitive (denoted by the letter T)
incoherencies. Direct incoherencies are between simultane-
ously activated features and transitive incoherencies are be-
tween sequentially activated ones. Direct incoherencies are
further classified as to whether the features relate to one or
different subscribers (numbers 1 and 2, resp.), and then again
as to whether they present a simple non-determinism or an
explicitly identified contradiction (letters a and b, resp.). Re-
capitulating:

Rules D1-a and D1-b – identify direct incoherencies be-
tween two features having one subscriber and present-
ing incoherent results, without a contradiction or with a
contradiction.

Rules D2-a and D2-b – identify direct incoherencies be-
tween two features having different subscribers and pre-
senting incoherent results, without a contradiction or
with a contradiction.

Rules T1 and T2 – identify transitive incoherencies be-
tween two features where one triggers the other and the
results are incoherent or lead to a loop.

In order to formalize the identification of incoherencies,
a few definitions need to be stated:

– The combination of two feature descriptions is defined
as the pair of the two descriptions, where the variables
of a description are considered to be distinct from the
ones of the other description, even if they have the same
names. Given two feature descriptions DX,m and DY,n ,
we formally denote their combination |DX,m • DY,n|.

– A user cannot subscribe to a feature more than once.
This is expressed as a general contradiction denoted
K(subs(A, X), subs(A, X)) where the variable A rep-
resents a user and variable X represents the name of a
feature.

– S(CX,m) denotes that all constraints of the constraint set
CX,m are satisfied.

– ϒ is the finite set of users that can be used to bind user
variables in properties.

– Two distinct ordered sets E1 and E2 present a contradic-
tion if there exists a π1 ∈ E1 and a π2 ∈ E2 such that
K(π1, π2) is satisfied.

3.1 Direct incoherence rules

Direct incoherencies occur when two description parts DX,m
and DY,n act on the same triggers but lead to different or con-
tradictory results. They are symptoms of non-determinism.

Formal detection of feature interactions with logic programming and LOTOS

3.1.1 Direct incoherence rule D1-a

This rule identifies incoherencies between features sub-
scribed by one user, triggered by the same event and yield-
ing different but not contradictory results. Let us consider
two feature description parts DX,m and DY,n combined in a
pair |DX,m • DY,n|. An incoherence is present if there ex-
ists a binding of variables from ϒ , the set of all users, in
the combination of the two features, such that the following
holds:

1. ∃ υ ∈ ϒ | (subs(υ, X) ∈ PX,m ∧ subs(υ, Y) ∈ PY,n)
– User υ subscribes to features X and Y –

2. � ∃(π1 ∈ PX,m , π2 ∈ PY,n) | K(π1, π2)
– No contradictory pre-conditions –

3. TX,m = TY,n
– Same triggers –

4. RX,m �= RY,n
– Different results –

5. � ∃(π3 ∈ RX,m , π4 ∈ RY,n) | K(π3, π4)
– No contradictory results –

6. S(CX,m) ∧ S(CY,n)
– All constraints are satisfied –

To illustrate the mechanism, let us consider two features:
Call Forward on Busy (already presented in Sect. 2.1) and
Incoming Call Screening. As mentioned, Call Forward on
Busy provides to the busy subscriber the possibility to for-
ward incoming calls to another party. Incoming Call Screen-
ing allows the subscriber to establish a screening list and to
deny calls incoming from users in the list. The properties
used in the description of these two features are:

– busy(B) – User B is busy.
– call(A, B) – Call attempt from a user A to another user

B.
– cfb(C) – C is the party to which calls are forwarded.
– redirected(A, C) – User A is forwarded to user C .
– ics list(A) – User A is in the screening list of the sub-

scriber.
– deny call(B, A) – Calls incoming from A are denied by

user B.
– call denied(B, A) – User B notifies user A that the call

has been denied.

Each one of these features can be formalized in one de-
scription part only, so the subscript 1 below denotes the (sin-
gle) description part of each feature. The variables in the de-
scriptions are restricted to different values, to exclude cases
such as the one where a user forwards incoming calls to
himself when he is busy.

The acronym cfb denotes Call Forward on Busy and ics
denotes Incoming Call Screening:

– Call Forward on Busy part 1, subscriber B is busy and
receives a call from A:

Pc f b,1

Tc f b,1
Rc f b,1
Cc f b,1

= {subs(B, cfb), concerns(B, cfb), cfb(C),
busy(B)}

= {call(A, B)}
= {redirected(A, C), call(A, C)}
= {(A �= B), (A �= C), (B �= C)}

– Incoming Call Screening, part 1, screened party C calls
B:

Pics,1
Tics,1
Rics,1
Cics,1

= {subs(B, ics), concerns(B, ics), ics list(A)}
= {call(A, B)}
= {deny call(B, A), call denied(B, A)}
= {(A �= B)}

Performing pair-wise combination over Dc f b,1 and Dics,1
leads to observe that |Dc f b,1 • Dics,1| presents an incoher-
ence since it is possible to find a binding of variables that
satisfies direct incoherence rule D1-a.

Let us use the notation X ← val to denote the binding
of value val to variable X and consider three users: Alice,
Bob, Carol. One of the possible bindings of the variables of
the properties of Dc f b,1 and Dics,1 is as follows:

– Dc f b,1 : A ← alice, B ← bob, C ← carol.

Pc f b,1

Tc f b,1
Rc f b,1

Cc f b,1

= {subs(bob, cfb), concerns(bob, cfb),
cfb(carol), busy(bob)}

= {call(alice, bob)}
= {redirected(alice, carol),

call(alice, carol)} α

= {(alice �= bob), (alice �= carol),
(bob �= carol)}

– Dics,1 : A ← alice, B ← bob.

Pics,1

Tics,1
Rics,1

Cics,1

= {subs(bob, ics), concerns(bob, ics),
ics list(alice)}

= {call(alice, bob)}
= {deny call(bob, alice),

call denied(bob, alice)} β

= {(alice �= bob)}
If Alice calls Bob (call(alice, bob)), Call Forward on Busy
should be activated and Alice should be redirected to Carol
and call Carol (α). At the same time, Incoming Call Screen-
ing should be activated and Alice’s call should be denied (β).

We conclude that Dc f b,1 and Dics,1 present an incoher-
ence characterized by non-determinism. Should the call be
redirected or denied ?

3.1.2 Direct incoherence rule D1-b

Direct incoherence rule D1-b identifies incoherencies that
result in explicit contradictions. Similarly to rule D1-a, this
rule identifies symmetric incoherencies. The clauses we use

N. Gorse et al.

for this rule are the same as for rule D1-a except that clauses
4 and 5 are replaced by a single one:

4. ∃(π3 ∈ RX,m , π4 ∈ RY,n) | K(π3, π4)

An example of interaction that is detected by this rule is
the following. A trivial rule is that a call cannot be at the
same time held and denied. This rule should be part of the
data base of contradictions. Suppose now that Bob has Call
Waiting (CW) and Incoming Call Screening (ICS) with Al-
ice on the ICS list. Now if Alice calls Bob, Call Waiting may
be activated, and hold Alice. But because of ICS, Alice’s call
should also be denied. This violates the general rule. Binding
the variables in the features descriptions to these user names
produces the contradiction. If not properly addressed, this
interaction could lead to Alice being connected to Bob.

3.1.3 Direct incoherence rule D2-a

Rule D2-a is very similar to rule D1-a in the sense that it
identifies incoherencies taking place between features when
both features can be triggered by the same event and present
different results. The difference is that this rule considers
features subscribed by different users and both features con-
cern the subscriber of one of the features. Thus, we use the
same clauses as for rule D1-a except for the first one which
is replaced by:

1. ∃ υ1, υ2 ∈ ϒ , υ1 �= υ2 |
(subs(υ1, X) ∈ PX,m ∧ concerns(υ2, X) ∈ PX,m)
∧
(subs(υ2, Y) ∈ PY,n ∧ concerns(υ2, Y) ∈ PY,n)

Due to its configuration, this rule does not identify symmet-
ric incoherencies. As an example of interaction that is de-
tected by this rule, consider the Call Waiting (CW) and Call
Forward on Busy (CFB) features. They have the same pre-
conditions, the same triggers, but different results. Suppose
that Alice subscribes to CW, and Carol to CFB. Carol is busy
and held by Alice. When Carol receives a call, should the
caller receive a busy message or be forwarded ?

3.1.4 Direct incoherence rule D2-b

Similarly to direct incoherence rule D2-a, rule D2-b iden-
tifies incoherencies present between features subscribed by
different users and concerning the same user in the case
where both features are triggered by the same triggering
event and present different results. But this rule is also simi-
lar to D1-b since it is characterized by contradictory results.
Also, as for D2-a, this rule does not identify symmetric in-
coherencies.

We use the same clauses as for rule D2-a except that
clauses 4 and 5 are replaced by a single one. We are looking

for contradictions, thus, the clause used here is the same one
as for rule D1-b.

4. ∃(π3 ∈ RX,m , π4 ∈ RY,n) | K(π3, π4)

An example of interaction detected by this rule is a second
type of interaction between Call Waiting and Incoming Call
Screening. This interaction can be detected if the database
of contradictions contains the general rule: An incoming call
cannot be denied and receive a busy signal at the same time.
Suppose that Alice subscribes to CW and Carol to ICS, with
Dave on the list. Carol is busy and held by Alice. What treat-
ment should Dave receive if it calls Carol ?

3.2 Transitive incoherence rules

Transitive incoherencies can occur when the results of one
feature trigger a second feature, and there is no contradic-
tion between the pre-conditions of the two features (in other
words, the and-composition of the two preconditions is sat-
isfiable).

Two possible incoherencies are identified in this situa-
tion: The results of the two descriptions present a contra-
diction, or the results of a description trigger the other one
and vice-versa (which results in a loop). Contradictions and
loops are identified by transitive incoherence rules T1 and
T2, respectively.

The transitivity relation is an implication relation. The
results of the feature DX,m trigger the feature DY,n . In other
words, we can stipulate that DX,m implies DY,n .

3.2.1 Transitive incoherence rule T1

Transitive rule T1 identifies incoherencies caused by the
results of a feature triggering another feature that has re-
sults presenting a contradiction with respect to the results
of the first feature. Formally, this is defined by the following
clauses:

1. � ∃(π1 ∈ PX,m , π2 ∈ PY,n) | K(π1, π2)
2. RX,m ⊇ TY,n
3. ∃(π3 ∈ RX,m , π4 ∈ RY,n) | K(π3, π4)
4. S(CX,m) ∧ S(CY,n)

As an example, let us consider Outgoing Call Screening
(OCS) and combine it with the feature Call Forward on Busy
(CFB). OCS allows the subscriber to establish a screening
list and block at the originating point calls made to users
that are in this list.

A general rule that should be in the contradiction data
base is that a call cannot be performed and blocked at the
same time:

– K(call(A, B), block call(A, B))

Formal detection of feature interactions with logic programming and LOTOS

If Alice (who has OCS to block calls to Carol) calls Bob
(who is busy and has CFB to Carol), CFB is triggered and
the call goes to Carol. This call should be performed because
of CFB, but is blocked because of OCS. This is a contradic-
tion.

3.2.2 Transitive incoherence rule T2

Transitive incoherence rule T2 identifies incoherencies char-
acterized by loops. Two features DX,m and DY,n enter a loop
when DX,m implies DY,n and vice-versa. Whether their re-
sults present a contradiction or not is not checked since the
goal is to identify loops caused by transitivity of features, not
contradictions, which are identified already by the rule T1.
For this rule, we use the same clauses as for rule T1 except
that clause 3 is replaced by the following:

3. RY,n ⊇ TX,m

A well-known example of interaction detected by this rule is
the interaction of call forward with itself, which can lead to
forwarding loops.

4 Automatic filtering using prolog

Given n feature descriptions to analyze, pair-wise combina-
tion leads to n2 possible pairs. We proposed 6 rules for inco-
herence detection. Hence, probing each pair with each one
of the 6 rules leads to 6n2 cases to analyze. We represent
features and rules as logic predicates. We have implemented
a solution to carry out this process using Prolog [24] and the
interpreter used was SWI Prolog [25].

4.1 Features

The implementation of feature descriptions in Prolog fol-
lows a simple translation scheme. Properties are represented
as facts. Ordered sets of properties are represented as lists
of facts. A feature description is represented as a predicate
called feature. The signature of this predicate is feature(N, P,
T, R) :- C, where variables N, P, T, R represent, respectively,
the lists containing name, pre-conditions, triggering events
and results, and variable C represents the body containing
the constraints.

In order to be able to bind all variables contained in the
properties of a pair of feature descriptions to different values
(user names), a number of values up to the sum of variables
of both descriptions may be required. Each user is defined
using a Prolog fact user containing the name of the user.
Thus, defining four users for the system is done by defining
four user facts, each representing a different user.

As an example, the Prolog representation of Call For-
ward on Busy, given in Sect. 3.1.1, is the following:

feature([cfb, 1],
[subs(B, cfb), concerns(B, cfb),
cfb(C), busy(B)],

[call(A, B)],
[redirected(A, C), call(A, C)]

):-
user(A), user(B), user(C),
A \= B, A \= C, B \= C.

When the predicate feature is called, Prolog binds variables
A, B and C to values taken from the user facts in such a way
that relations between variables (constraints) are satisfied.
The last line states that all users must be different.

The contradiction predicate states a contradiction be-
tween two facts. It represents the predicate K defined in Sect.
2.2. As mentioned, an example of a contradiction is that a
user X cannot be busy and idle at the same time. This is ex-
pressed by: contradiction(busy(X), idle(X)). In this way, the
Prolog program implements the data base of contradictions.

4.2 Rules

Rules are implemented in the form of Prolog predicates:

fi_check(rule_name,[F1,x],[F2,Fy],PcnF1,
TrgF1, ResF1, PcnF2, TrgF2, ResF2):-

The variables denote, respectively: the name of the rule, the
names (split in two parts) of the two features to be consid-
ered, the pre-conditions, the triggering events and results of
the first feature, and the pre-conditions, triggering events and
results of the second one. Rule D1-a, given in Sect. 3.1.1, is:

fi_check(d1_a,[F1, Fx], [F2, Fy], PcnF1,
TrgF1, ResF1, PcnF2, TrgF2, ResF2):-

feature([F1, Fx],
PcnF1, TrgF1, ResF1), !,

feature([F2, Fy],
PcnF2, TrgF2, ResF2),

member(subs(U, F1), PcnF1),
member(subs(U, F2), PcnF2),
not(contradiction(PcnF1, PcnF2)),
TrgF1 = TrgF2,
ResF1 \= ResF2,
not(contradiction(ResF1, ResF2)), !.

Prolog’s unification mechanism binds variables in order
to try and satisfy predicates and facts. Once a successful
binding is found, Prolog may be asked to search for other
bindings that might also lead to solutions.

4.3 Incoherency reports

Each incoherency report is composed of two parts: informa-
tion about the incoherence and the incoherence itself. The
information about the incoherence is presented in plain En-
glish in a format tailored to the rule concerned. It contains
the name of the rule, a brief description of the type of in-
coherence, as well as information about the incoherence, all

N. Gorse et al.

written as a Prolog comment. An example of this will be
given in Sect. 5.3. The incoherence itself is reported by the
tool as a fact called fi containing the description of the fea-
tures involved. This fact contains nine parameters (lines 1
to 9): the rule used (line 1), the names of the two features
involved (lines 2 and 3), the pre-conditions (line 4 and 7),
the triggering events (lines 5 and 8), and the results (lines
6 and 9) of both features. As an example, the report for the
incoherence between Dc f b,1 and Dics,1 (Sect. 3.1.1) is:

01: fi(d1,
02: [cfb,1],
03: [ics,1],
04: [subs(bob,cfb),concerns(bob,cfb),

cfb(carol), busy(bob)],
05: [call(alice, bob)],
06: [redirected (alice, carol),

call(alice, carol)],
07: [subs(bob,ics),concerns(bob,ics),

ics_list(alice)],
08: [call(alice, bob)],
09: [deny_call (bob, alice),

call_denied(bob, alice)]
10:).

4.4 Algorithm

For a given rule r and a given combination of features |DX,m
• DY,n|, the analysis deals with the properties and variables
of feature descriptions DX,m and DY,n . As an example, let us
consider two features DX,m and DY,n analyzed by rule T1.
The analysis is done as follows:

1. Bind variables of DX,m to values such that CY,n is
satisfied and go to step 2.

2. Value combinations remain untried ?
Yes. Bind variables of properties of DY,n to first possible

combination that satisfies CX,m and go to step 3.
No. Go to step 7.

3. PX,m and PY,n present a contradiction ?
Yes. Backtrack to step 2.
No. Go to step 4.

4. RX,m ⊇ TY,n , or, RX,m = TY,n ?
Yes. Go to step 5.
No. Backtrack to step 2.

5. RX,m and RY,n present a contradiction ?
Yes. Go to step 6.
No. Backtrack to step 2.

6. The rule is satisfied, an incoherence is identified.

7. Rule fails, no incoherence is identified.

Now, let us consider a set of new features T , and the new
set of all features U = S ∪ T . The list of all combinations is
obtained by U : S ∪ T × S ∪ T . This means that pair-wise
combinations already analyzed are considered again, while
they need not be since the result is already known. This is
avoidable:

– The first solution consists in keeping the set of previ-
ously detected incoherencies in a data base, such that
for a given rule, only pairs not known as presenting
incoherencies are considered. However, this only gives
information about known incoherencies. Other pairs,
already analyzed but not presenting any incoherence, are
processed again.

– The second solution is to consider two different sets S
and T and to determine the pairs to be considered using
a relation on S × T . For instance, if a new feature de-
scription DX,m is added, one can specify two sets such
that S contains all features of the old specification and
T contains the newly added feature. Then, S × T deter-
mines all pairs containing the new feature. Moreover, all
pairs previously analyzed may be ignored.

Depending on the size of the specification and on the
number of feature descriptions to be analyzed, reusing al-
ready known incoherencies, automatically obtained from re-
ports, can take less time than building and managing the two
sets of features to be considered. The availability of the two
solutions allows the user to choose the best one.

5 Automatic test suite generation

The identification of incoherencies, discussed so far, is a fil-
tering method. The representation method used in this phase
was devised for rapid detection and includes only the high-
level representation aspects of a feature. Since the filtering
information is obtained from feature descriptions, identify-
ing an incoherence at the filtering stage does not imply that
the corresponding interaction really exists. The behavioral
specification of the features may already contain the fix for
the interaction.

Hence, the technique used to determine whether a possi-
ble interaction detected by filtering really exists in the spec-
ification consists of generating corresponding test scenarios
and exercising them against the specification.These scenar-
ios are generated automatically from the reports obtained in
the filtering phase. They can be seen as test cases which, if
successful, show that the interaction can actually occur in the
system according to the behavior specifications. Automatic
generation of scenarios was made possible by the definition
of rules mapping properties to scenario parts.

Note that this section presents the generation of scenar-
ios based on the LOTOS [18, 19] specification we studied in
work with the company Mitel.

Formal detection of feature interactions with logic programming and LOTOS

5.1 Scenarios generation principles

Properties used to describe a feature define the state in which
the feature must be, the event(s) triggering the feature and
the results produced by the activation of this feature. The
mapping to go from a feature interaction report to a test sce-
nario is done by associating each property in the report to a
sequence of actions in the LOTOS specification. To generate
a test scenario, our method uses four predicates. The body of
these predicates needs to be programmed by the tester to im-
plement scenario generation. The predicates are:

test header – The LOTOS specification implements a
database that allows dynamic specification of feature at-
tributes (e.g. which user to screen, where to call for-
ward). These attributes refer to the subscriber as well
as the users concerned with the feature. This database
must be initialized with proper values at the beginning
of each test scenario. The test header predicate is used
to produce the LOTOS test header and to initialize the
database. The initialization of the database is constructed
using a sub-predicate lotos database that builds the ini-
tialization set.

test pre conditions – This predicate is used to decompose
the list of pre-condition properties and to produce the
LOTOS event(s) relative to each property. The decom-
position is done sequentially in the same order as the
properties. The corresponding LOTOS action(s) are pro-
duced by calling a sub-predicate containing the action(s)
to produce.

test triggers – This predicate is built on the same prin-
ciples as the previous one and uses the sub-predicate
test trigger to produce sequences of LOTOS actions cor-
responding to each property.

test results – This predicate is built on the same principles
as the previous one.

Pre-conditions are mapped using test pre condition,
triggering events are mapped using test triggering event and
results are mapped using the predicate test results. Such
a partitioning allows to specify different mappings for the
same property, depending on the set it belongs to in the fea-
ture description. Additional predicates, for example predi-
cates to map users to phone numbers, can be defined.

Note that the mapping rules are specified once only, for
the whole set of features. Because of the fact that these pred-
icates need to be programmed, our test generation method
can be considered semi-automatic, however it is automatic
once the programming is done.

5.2 Test suite principles

We have seen that an interaction, corresponding to an in-
coherence identified in the filtering process, can be charac-
terized as non-determinism, a contradiction (which is also a
sort of non-determinism) or a loop. A testing model corre-
sponding to each of the three possible kinds of interactions is

defined. The models defined are then used for the derivation
of test scenarios and analysis of results.

Non-determinism – Non-determinism implies that the result
is ambiguous. Interaction detection is done using a test
suite composed of two scenarios. Both scenarios model
cases where both features are present. The first scenario
illustrates the case where the results of the first feature
occur and the second one illustrates the case where the
results of the second feature occur. The result of the ap-
plication of both scenarios may be one of the following:
– Both scenarios are unsuccessful. This definitely indi-

cates a problem. It tells the designer that in any case,
neither feature behaves properly.

– Both scenarios are successful. This means that both
results can occur. This indicates a problem in the
specification because only one feature at a time
should be activated. However, depending on the fea-
tures, this result can be acceptable. It is up to the de-
signer to ensure that the behavior is the one intended.

– One scenario is successful and the other is not. This
indicates that no non-determinism exists. However,
the behavior may not be the one intended. If the
designer expects a different result than the one ob-
served, then a problem is present.

Contradictions – A contradiction implies non-determi-
nism. The results of the two features are in contradiction,
and so the result is not known. Thus, scenarios for this
kind of interaction follow the same model as the previous
one.

Loops – A loop can either occur or not occur. Then, only
one scenario is needed to detect such interactions. The
scenario illustrates the case where the loop occurs, re-
jection of the scenario indicates that no loop occurs, and
success of the scenario indicates that a loop occurs in the
specification.

A designer having knowledge of the models used can in-
terpret the results of the application of scenarios and give a
verdict. It should be noted that the abstract test scenarios that
are generated at this stage can be re-used after implementa-
tion to test for feature interactions at that stage.

5.3 Example of use

Let us consider the incoherence identified by rule D1-b for
Call Forward Always and Call Forward on Busy. This inco-
herence is due to the fact that if a user A subscribes to both
features and forwards his calls to some user X with the first
feature and to some user Y with the other feature, it is not
clear what should happen if A is called when he is busy. The
trigger for both features is present and leads to contradictory
results. The report for this incoherence follows.

% * Rule D1-b -> [cfb, 1] & [cfa, 1]

% A user subscribes to two features

N. Gorse et al.

% having the same triggering events and
% contradictory results

% + Features pre-conditions
% - Pre-conditions of [cfb, 1]
% subs(bob, cfb)
% concerns(bob, cfb)
% cfb(carol)
% busy(bob)

% - Pre-conditions of [cfa, 1]
% subs(bob, cfa)
% concerns(bob, cfa)
% cfa(dave)

% + Same triggering events

% call(alice, bob)
% + Contradictory results

% - Resulting events of [cfb, 1]
% redirected(alice, carol)
% call(alice, carol)
% ring(alice, carol)

% - Resulting events of [cfa, 1]
% redirected(alice, dave)
% call(alice, dave)
% ring(alice, dave)

The corresponding derived test suite consists of two sce-
narios: the first one where Call Forward on Busy is triggered
and the second one where Call Forward Always is triggered.

As an example, one of the two LOTOS test processes
produced by our tool (resulting in Call Forward on Busy) is
presented. We first provide some explanatory remarks about
the system’s architecture to enable the reader to better un-
derstand the scenario.

The system in consideration is a new experimental ar-
chitecture for Internet telephony being designed by the com-
pany Mitel. Call processing goes through three types of com-
ponents (agents):
Device Agents (DAGENT): handle the devices, i.e. the

physical endpoint of a call (e.g. telephone, a computer
capable of voice over IP, diary, etc.).

Personal Agents (PAGENT): know the restrictions and
privileges given to specific users. They also know the
preference relationships between a user and his/her de-
vices.

Functional Agents (FAGENT): represent the functional role
of the endpoint of a call (e.g. president, director, secre-
tary, etc.).
Many instances of DAGENTs, PAGENTs and FA-

GENTs can be active simultaneously for one user. From a
scenario perspective, it is also helpful to distinguish between
the roles played by these components (e.g. originating or ter-
minating). The features are processed in the components as
appropriate.

The exact functionalities of these components are not
important for the understanding of the methodology and thus
will not be described further.

The scenario is a process simulating the interaction of
users with the architecture. Users are identified by a name
(user A, user B, user C). The associated devices are
identified by da followed by the ID of the user and the
instance of the device. Communication between users and
their respective devices is performed using the LOTOS syn-
chronization principles presented earlier. Sending a message
from a user to a device agent thus consists of the action
USER to DA followed by value offers. The first two respec-
tively represent the ID of the user and the ID of the De-
vice. Remaining value offers represent the message sent. For
instance, going offHook consists of the following LOTOS
action:

USER_to_DA !user_B !da_B0 !offHook;

This is a communication between a user and a Device Agent.
It involves user B and the device agent 0 of this user. The
message sent is offHook stipulating that the user is going
offHook. The complete test scenario generated by the tool
is:

process
(* name of the scenario *)
ScenarioFI_RD1b_cfb1_cfa1_rslt_in_cfb1
[

(* communication gates with system*)
USER_to_DE, DE_to_USER, Init,success

]: noexit:=

(* database initialization *)
(* programmation of features CFA and CFB *)
(* with their parameters and subscribers *)
let specificDB:Database =

(*User B subscribes to CFB and calls*)
(* are redirected to number 2003*)
UF(userB, FD(cfb, fArg(2003), noArg),
endFSet),

(*User B subscribes to CFA and calls*)
(* are redirected to number 2004 *)
UF(userB, FD(cfa, fArg(2004), noArg), endFSet),
emptyDB)))) in (

(* Initialization of the database *)
Init !specificDB;
(* user B is going offHook *)
USER_to_DA !user_B !da_B0 !offHook;
(* and receives a dialTone *)
DA_to_USER !da_B0 !user_B !dialTone;

(* user A is going offHook *)
USER_to_DA !user_A !da_A0 !offHook;
(* receives a dialTone *)
DA_to_USER !da_A0 !user_A !dialTone;
(* dials the number of user B *)

Formal detection of feature interactions with logic programming and LOTOS

USER_to_DA!user_A !da_A0 !dial !2002;
(*and receives progress notification*)
DA_to_USER!da_A0!user_A!callIn Progress;

(*receives redirection notification*)
DA_to_USER!da_A0!user_A!redirectTone;

(* user C receives a ringing tone *)
DA_to_USER !da_C0 !user_C !ringingOn;

(* successful end of scenario *)
success; stop

)
endproc

The tool LOLA [26] was used to execute the LOTOS
tests and report the results. The application of the two test
scenarios using LOLA allows the designer to verify if:

– First, only one of the two features is always triggered
since, when applied to the specification using LOLA,
one of the test scenarios results in a MUST PASS while
the other results in a REJECT.

– Second, the feature that is triggered is the intended one.
This must be verified by the designer, in accordance with
the test results (scenario resulting in a MUST PASS) and
the requirements.

For our detailed specification, the answer is that Call For-
ward Always is the feature that is triggered when both fea-
tures are present, whether the user is busy or not. The de-
signer may wish to change this situation, or to allow it. In
this second case, the user should be discouraged from sub-
scribing to Call Forward on Busy together with Call Forward
Always.

The specification could have been written in a way as
to allow both features to be triggered simultaneously upon
reception of a call. This possibility leads to race conditions
and unpredictable behavior, obviously a disastrous design
error that our tool allows to detect (MAY PASS for both test
scenarios).

6 Application and results

The approach was applied to two case studies: one provided
by the company Mitel, already discussed, and another devel-
oped for a contest held in the occasion of the Feature Interac-
tion Workshop 2000 [3]. The Mitel case study went through
all phases of the process. The Feature Interaction Workshop
case study went through the filtering phase only. For this
reason, only the results of the Mitel case study are presented
here, however the results for the second case study can be
found in [23].

6.1 Application

The approach applied in the Mitel project consists of ex-
pressing requirements with a Use Case Maps model [12, 27],

deriving a LOTOS specification corresponding to the UCM
model and validating the LOTOS specification. Mitel Corp.
provided us with the UCM model, from which a LOTOS
specification was derived.

Using Use Case Maps and additional documentation
provided by Mitel Corp., the features were modeled and our
filtering method was applied.

These features considered were: Outgoing Call Screen-
ing (OCS), Incoming Call Screening (ICS), Call Forward
Always (CFA), Call Forward on Busy (CFB), Call Trans-
fer (CT), Call Pickup (CP), Call Waiting (CW), Automatic
Recall (AR) and Time Reminder (TR). These features are
presented in [27] as well as in [23].

Some of the features are represented using a single de-
scription while others need up to three or four. Call Waiting
is split in four parts. Call Transfer and Automatic Recall are
split in three parts. Time Reminder is split in two parts. The
other features are represented using only one description. In
total, we have twenty feature descriptions.

As an example of features definition, let us consider Call
Forward Always and Call Forward on Busy. Both features
are defined using the following common properties:

– call(A, B) – Call attempt from user A to user B.
– redirected(A, C) – User A is forwarded to user C .
– ring(A, C) – User A rings user C .

Call Forward Always uses the additional properties:

– subs(A, cfa) – User A subscribes to Call Forward
Always.

– concerns(A, cfa) – Call Forward Always
concerns user A.

– cfa(C) – Calls are forwarded to user C .

And Call Forward on Busy uses the additional following
ones:

– subs(A, cfb) – User A subscribes to Call Forward
on Busy.

– concerns(A, cfb) – Call Forward on Busy
concerns user A.

– busy(A) – User A is busy.
– cfb(C) – Calls are forwarded to C .

Each feature only implements one functionality, hence only
one feature predicate is needed for each one of them. The
Prolog implementation of features follows:

– Call Forward Always – A call from user A to user B is
forwarded to the specified destination (user C), as stated
by the property c f a(C).

feature([cfa, 1],
[subs(B, cfa),
concerns(B, cfa), cfa(C)],
[call(A, B)],
[redirected(A, C),
call(A, C), ring(A, C)]

):-
user(A),
user(B), A \= B,
user(C), C \= A, C \= B.

N. Gorse et al.

– Call Forward on Busy – When user B is busy, a call from
user A to user B is forwarded to the specified destination
(user C), as stated by the property c f b(C).

feature([cfb, 1],
[subs(B,cfb),concerns(B,cfb),
cfb(C), busy(B)],
[call(A, B)],
[redirected(A, C),call(A, C),
ring(A, C)]

):-
user(A),
user(B), A \= B,
user(C), C \= A, C \= B.

In addition, we consider that a user A making a call to a user
B is in contradiction with the same user A making a call to
a different user C . This is stated as:

– K(call(A, B), call(A, C)) if and only if B �= C .

This is implemented in Prolog using the predicate contra-
diction in the following form:

– contradiction(call(A,B), call(A,C)):-
B \= C.

6.2 Results

Our filtering method identified a total of 43 incoherencies.
Table 1 presents the results obtained for the complete analy-
sis. It illustrates direct and transitive incoherencies.

Table 2 presents a statistical summary of the incoheren-
cies detected. Note that incoherencies identified by rules
D1-a, D1-b, T1 and T2 are easier to foresee and resolve.
Incoherencies identified by rules D2-a and D2-b are much
more complex. As illustrated by Table 2, only a few inco-
herencies are identified by rules D2-a and D2-b. This thus
indicates that the designers mostly have to deal with simple
incoherencies.

As explained in Sect. 5, the tool produces test suites
composed of one or two test scenarios. Scenarios are pro-
duced using the predicates presented there, plus others to be
defined as required. The LOTOS specification already ex-
isted for 6 of the features in consideration (OCS, ICS, CFA,

Table 1 Filtering Results

Incoherencies Detected

OCS ICS CFA CFB CT CP CW AR TR

OCS 1 1 2 1 1
ICS – 2 2 1 1 3 2
CFA – – 2 4 1 1 3 2
CFB – – – 2 1 3 2
CT – – – – 1
CP – – – – –
CW – – – – – – 1 3
AR – – – – – – –
TR – – – – – – – –

Table 2 Summary of Results

Incoherencies per rule and type

Rule D1-a D1-b D2-a D2-b T1 T2
Totals 13 3 4 1 19 3
Per rule 30% 7% 9.5% 2.5% 44% 7%
Per type 49% 51%

CFB, CT, CP) when the feature descriptions were formal-
ized and the tool built. Test suites were derived and tested
against the LOTOS specification for these features. In the
end no real interactions were found among those 6 features:
clearly, they were well known to the specifiers, and inter-
actions were avoided by the Mitel designers at the detailed
design stage. However, all incoherencies identified had the
potential to lead to feature interactions.

This process presents two limitations. First, although the
principles presented in this paper also apply to the detec-
tion of multi-way interactions, this extension requires fur-
ther work, especially from the point of view of efficiency.
Hence, only pair-wise combinations are considered, thus re-
stricting the detection to two-way interactions. Multi-way
interactions involving features such as three way calling can-
not be considered for analysis. Second, the interactions de-
tection mechanism is based on a systematic pair-wise com-
bination of features, thus resulting in polynomial execution
time.

7 Conclusion & future research

We have proposed an approach for feature interaction de-
tection. It uses two feature descriptions: one that formalizes
the feature requirements, and the other that formalizes the
detailed feature behavior. It consists of a filtering stage that
allows the automatic identification of incoherencies between
requirements, and a testing stage that checks whether the po-
tential interactions identified by incoherencies exist in the
detailed behavior.

The filtering process is based on rules characterizing in-
coherencies. Our tool performs pair-wise analysis of fea-
tures and identifies pairs that satisfy one or more incoher-
ence rules.

The test suite derivation process requires the elaboration
of mapping rules, however this should be fast for a designer
after some training. Generating detailed LOTOS behavior
specifications takes much more work. Still, the whole pro-
cess can be used at the design stage because of the high
level of abstraction. The functional tests thus obtained can
be valuable because they can be reused at various imple-
mentation stages, after suitable translation.

Our method distinguishes itself from others in two re-
spects. First of all, it attacks the feature interaction problem
with a logical analysis of abstract requirements. Because
of the abstraction, not all feature interactions are covered.

Formal detection of feature interactions with logic programming and LOTOS

However those that will be exposed will be exposed effi-
ciently, without having to resort to the costly state explo-
ration analysis that is the main tool of several other methods.
The abstract nature of the method also makes it applicable
well beyond the examples of this paper. The second origi-
nal aspect of our method relates to the testing aspect. The
test scenarios generated can be used to test for interactions
at several phases of the software life-cycle.

T. Ohta and T. Yoneda developed a similar method [28,
29] for feature interaction detection. However, their method
is not based on logical analysis and does not permit deriva-
tion of test cases. A detailed comparison with our technique
can be found in [23].

Concerning scalability, we should note that real-life tele-
phony systems include hundreds of features. However most
of these are simple and clearly completely disjoint and
do not need to be analyzed. Our industrial case study has
shown, to the satisfaction of the industrial partner, that our
method is applicable to real-life systems. A patent applica-
tion has been submitted by the company.

In [9, 30], the method was extended, in two different
ways, to detect interactions in user-defined features for In-
ternet telephony. This extension is very interesting in prac-
tice, because users cannot be expected to be good designers
of features and will easily produce interactions.

Many improvements are still possible on our method.
We are extending our research for the elaboration of new
rules in order to be able to identify new incoherencies such
as incoherencies involving more than two features. Another
consideration is to link our rules to the OPI (Obligation,
Permission, Interdiction) [31] model. Refining rules based
on this model will, for instance, allow to make a distinc-
tion between Obliged, Permitted and Forbidden results of a
feature.

Acknowledgements This work was completed when all the authors
were at the University of Ottawa. It was funded in part by Com-
munications and Information Technology of Ontario, Mitel Corpora-
tion, and the Natural Sciences and Engineering Research Council of
Canada.

References

1. Zave, P.: Architectural solutions to feature-interaction problems
in telecommunications. In: Calder, M., Magill, E. (eds.) Fea-
ture Interactions in Telecommunications and software systems VI,
pp. 10–22. IOS Press (1998)

2. Kimbler, K., Bouma, L.G.: Feature Interactions in Telecommuni-
cations and software systems VI. IOS Press (1998)

3. Calder, M., Magill, E.H.: Feature Interactions in Telecommunica-
tions and software systems VI. IOS Press (2000)

4. Amyot, D., Logrippo, L.: (Eds.). Feature Interactions in telecom-
munications and software systems VII. IOS Press (2003)

5. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Fea-
ture interaction: A critical review and considered forecast. In
Computer Networks, vol 41 (1) 115–141. Elsevier Science (2003)

6. Reiff-Marganiec, S., Turner, K.J.: Feature interactions in policies.
Computer Networks 45(5), 569–584 (2004)

7. Dini, P., Clemm, A., Gray, T., Lin, F.J., Logrippo, L., Reiff-
Marganiec, S.: Policy-enabled mechanisms for feature inter-
actions: Reality, expectations, challenges. Computer Networks
45(5), 585–603 (2004)

8. Cameron, E.J., Griffeth, N., Lin, Y., Nilson, M.E., Schnure, W.K.,
Velthuijsen, H.: A feature interaction benchmark for in and be-
yond. In Workshop on Feature Interactions in telecommunications
Systems, pp. 1–23. IEEE Communications 31 (1993) 64–69 (re-
vised and reprinted In: Bouma, L.G., Velthuijsen, H. (eds.), IOS
Press, Amsterdam) (1994)

9. Amyot, D., Gray, T., Liscano, R., Logrippo, L., Sincennes, J.:
Interactive conflict detection and resolution for personalized fea-
tures. To appear in the Journal of Communications and Networks
(2004)

10. Kimbler, K.: Addressing the interaction problem at the enterprise
level. In Dini, P., Boutaba, R., and Logrippo, L. (eds.) Feature In-
teractions in Telecommunications Networks IV(FIW’97), pp. 13–
22 (1997)

11. Metzger, A., Webel, C.: Feature interaction detection in building
control systems by means of a formal product model. In: Amyot,
D., Logrippo, L. (eds.) Feature Interactions in Telecommunica-
tions and software systems VII, pp. 105–121. IOS Press, (2003)

12. Buhr, R.J.A., Amyot, D., Elammari, M., Quesnel, D., Gray, T.,
Mankovski, S.: Feature-interaction visualization and resolution in
an agent environment. In Kimbler, K. and Bouma, L.G. (eds.) Fea-
ture Interactions in Telecommunications and software systems V,
pp. 135–149. IOS Press (1998)

13. Marples, D., Magill, E.H.: The use of rollback to prevent incor-
rect operation of features in intelligent network based systems. In:
Kimbler, K. Bouma, L.G. (eds.) Feature Interactions in Telecom-
munications and software systems V, pp. 115–134. IOS Press
(1998)

14. Jia, Y., Atlee, J.M.: Run-time management of feature interactions.
In ICSE Workshop on Component-Based Software Engineering
(CBSE6) (2003)

15. Black, U.: The Intelligent Network: Customizing Telecommuni-
cation Networks and Services. Prentice Hall (1998)

16. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., Schooler, E.: SIP: Session
Initiation Protocol. Internet Engineering Task Force (IETF), June
(2002) RFC-3261

17. Lennox, J., Schulzrinne, H.: Call Processing Language Frame-
work and Requirements. Internet Engineering Task Force (IETF),
May 2000. RFC-2824

18. Bolognesi, T., Briskma, E.: Introduction to the ISO specification
language LOTOS. In Computer Networks and ISDN Systems 14
(1987), pp. 25–59. Elsevier (1989)

19. Logrippo, L., Faci, M., Haj-Hussein, M.: An Introduction to
LOTOS: Learning by Examples. Computer Networks and ISDN
Systems 23(5), 325–342, (1992). Errata in 25(1), 99–100 (1992)

20. Turner, K.J.: Using Formal Description Techniques. J. Wiley &
sons Ltd. (1993)

21. Milner, R.: Communication and Concurrency. Prentice-Hall
(1989)

22. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-
Hall (1985)

23. Gorse, N.: The feature interaction problem: Automatic filtering of
incoherences & generation of validation test suites at the design
stage. Master’s thesis, University of Ottawa, Ottawa (2001)

24. Clocksin, W.F., Mellish, C.S.: Programming in Prolog. Springer,
4th edition (1994)

25. Wielemaker, J.: SWI Prolog reference manual. Dept. of Social Sci-
ence Informatics (SWI) (2000)

26. Pavón, S., Larrabeiti, D., Rabay, G.: LOtos LAboratory user man-
ual (version 3r6). Universidad Politécnica de Madrid (1995)

27. Amyot, D., Charfi, L., Gorse, N., Gray, T., Logrippo, L.,
Sincennes, J., Stepien, B., Ware, T.: Feature description and fea-
ture interaction analysis with Use Case Maps and LOTOS In:
Calder, M., Magill, E. (eds.) Feature Interactions in Telecommu-
nications and software systems VI, pp. 274–289. IOS Press (2000)

N. Gorse et al.

28. Yoneda, T., Ohta, T.: A formal approach for definitions and detec-
tion of feature interactions. In: Kimbler, K., Bouma, L.G. (eds.)
Feature Interactions in Telecommunications and software systems
V, pp. 202–216. IOS Press (1998)

29. Yoneda, T., Ohta, T.: Automatic elicitation of knowledge for de-
tecting feature interactions in telecommunications services. In
IEICE Transactions on Information and Systems, pp. 640–647.
IEICE, Japan (2000)

30. Xu, Y., Logrippo, L., Sincennes, J.: Detecting feature interaction
in CPL. To appear in the Journal of Network and Computer Ap-
plications (2004)

31. Barbuceanu, M., Gray, T., Mankowski, S.: How to make your
agents fulfil their obligations. In Proceedings of PAAM-98 (1998)

Nicolas Gorse received a Master of
Computer Science from the Univer-
sity of Ottawa, School of Informa-
tion Technology and Engineering in
2001.
He is currently a Ph.D. candidate
in the Département d’Informatique
et Recherche Opérationnelle of the
Université de Montréal. His re-
search interests relate to formal
methods and their application in the
design and verification of complex
electronic systems at high levels of
abstraction.

Luigi Logrippo received a degree
in law from the University of Rome
(Italy) in 1961, and in the same year
he started a career in computing.
He worked for several computer
companies and in 1969 he obtained
a Master of Computer Science
from the University of Manitoba,
followed by a Ph.D. of Computer
Science from the University of
Waterloo in 1974.
He was with the University of
Ottawa for 29 years, where he was
Chair of the Computer Science
Department for 7 years. In 2002
he moved to the Université du
Québec en Outaouais, Département

d’Informatique et Ingénierie, while remaining associated with the
University of Ottawa as an Adjunct Professor.
His interest area is formal and logic-based methods and their applica-
tions in the design of communications systems. For a number of years
he worked on the development of tools and methods for the language
LOTOS. Current research deals with the formal analysis of advanced
communications services made possible by internet telephony, of the
policies that govern them, and of their interactions, in application
areas such as presence features and e-commerce contracts.

Jacques Sincennes is a research
programmer/systems analyst at the
University of Ottawa, School of
Information Technology and Engi-
neering. He has held this position
for the past 17 years. He is coauthor
of a number of papers and a patent
application.

	Button2:

