
Governance Policies for Privacy Access
Control and their Interactions

Waël Hassan1, Luigi Logrippo1,2
1University of Ottawa, School of Information Technology and Engineering

2Université du Québec en Outaouais, Department of Computer Science and
Engineering

wael@ieee.org, luigi@uqo.ca

Abstract. We propose the use of process-based access-control methods in the
construction of privacy governance systems. Access constraints are specified by
policies, but the governance model thus created is prone to interactions and
inconsistencies. We show how UML can be used in order to represent the model
and how the language Alloy and its model analyzer can be used to formally
specify it and to detect interactions and inconsistencies. Examples are taken from
the area of banking.

Keywords. Privacy, Business Process, Access Control, Interactions, Alloy, Model
analysis, Formal Techniques.

1. Introduction

1.1. Overview and motivation

Seamless governance [24], the ability to govern business and technical requirements of
an organization, is the future of enterprise control systems. By using high-level
policies, these systems will be self-managing [17]. Most commonly today, high-level
policies are associated to enterprise roles. We conjecture that in the future they will be
applied to enterprise processes. Governance will be achieved through a homogeneous
interface that satisfies business and technical requirements. The interface requires a
formal model that verifies inconsistencies and interactions and the respect of
operational and business concerns.

Model construction and control of policy systems is a domain dependent problem.
These systems are starting to be used in the telecommunications domain, where they
are viewed as an evolution of telephony features. Correspondingly, the well-known
feature interaction problem is now being generalized to the policy interaction problem
[10][22]. It has been noted in some of the above references that the realms of
governance and telecommunications policies are converging. Therefore, there is a need
for modeling and analysis techniques that can cover both, although a difficulty is the
fact that in telecommunications, policies tend to be operational while in enterprise
systems, policies are rules of governance.

The convergence of governance and telecommunications policies can be observed
in the area of web services. The kind of enterprise model considered in this paper has
strong affinities with models found in the business process flow languages that are

 1

being used to define web services, such as BPEL from IBM [30]. The enterprise
examples we discuss can easily be adapted to relate to such services. Thus the
validation techniques we use have relevance in that area [20].

Privacy control systems, which are a special type of governance systems, currently
suffer from the complexity of privacy models, leading to difficulty of verification,
since enforcement in privacy is increasingly dependent on business function and human
behaviour, where business context (process) has to be considered in issuing access
rights. Access rights may depend not only on the role of the person in the organization,
but also on the process in which the person is involved at the time of access.
Prerequisite for such a policy system is an enterprise control framework that takes into
consideration an operational control model. Unfortunately, little has been done to
address operational enterprise requirements. [22] suggests a layered architecture for
policy environments, however it does not take into consideration business concerns.
This paper addresses the issues of formal specification, interaction detection and policy
compliance in privacy control systems.

Formal models for privacy policy systems are essential for verification of system
properties and detection of interactions [16]. Verifying properties is an important
requirement. It is particularly relevant in the privacy domain, as companies need to
prove their privacy commitments to their consumers, i.e. a corporation needs to show
that its practices are compliant with their published privacy policy. Proving properties
guarantees the respect of privacy clauses across the organization. Failure to preserve
privacy of consumer data is punishable by law in many countries. Equally important,
violation of properties can cause irreparable harm to corporate reputation. The
possibility of specifying and verifying systems formally will lead to much tighter and
reliable privacy systems than can be considered now. Verifying a system policy can be
equivalent to proving the impossibility of some situations. For example, information
concerning an address will only be accessed for shipping purposes and not for
marketing.

The formulation of enterprise policy systems must be done taking into account the
effects that policies can have vertically and horizontally across the organizational
structure, leading to the possibility of conflicts or inconsistencies (interactions).
Conflicts, moreover, can be a result of policies inherited through business agreements.
Clearly, interactions can lead to violation of properties. A designer should be able to
verify conflicts, at design time, before policy deployment.

 According to [25], reducing complexity requires the reduction of included
artifacts and focusing on a single system view. Decoupling of entities and attributes is
a common technique. RBAC [12] for example separates between users and access-
rights by introducing roles. A role groups users of similar properties in the same
logical unit, consequently reducing complexity.

Generally, this work can be broken down into two stages. In the first, we show
that using model analyzers such as Alloy we can successfully prove properties of
policy systems and detect interactions. In the second stage we will show that our
MetaModel is a generic model for privacy systems, and that it can reduce complexity
and successfully implement business requirements. In this paper, we will limit the
discussion to stage one. Other papers discussing the later stages will follow.

 2

Several privacy languages exist, among others EPAL [4][23] and EPML [4]. Both
languages propose a set of templates representing privacy requirements. However,
these languages do not have a formal model, therefore system properties cannot be
proven, nor can interactions be detected. We believe that the basic ideas of this paper
can eventually be applied to other privacy languages, such as these.

1.2. Organization of the paper

The rest of this paper is organized as follows. Section 2, Background and related work
explains the concept of process governance, and the basic concepts of the tool Alloy, in
addition to presenting related work. Section 3, Process based interaction examples,
introduces examples from the problem space, some of which we implement in later
sections. Section 4, Formalizing privacy policies, presents a semi-formal
representation of the process based governance model using UML, yielding a
MetaModel. Section 5, Model abstraction, shows how the MetaModel can be
represented in Alloy and presents formal properties of the modeling system and
verification tool. Section 6, Results, shows the importance of detecting interactions in
the new domain we have introduced, and the capability of using formal methods to
address these interactions. Section 7, Discussion, provides insight into process
attributes and Alloy issues. Section 8, Summary and future work, resumes the paper
and presents future directions.

2. Background and related work

2.1. Organizational governance using processes

High-level feature management requires coordination between operational control and
business requirements [18]. Business requirements include workflow in addition to
rules and global constraints. [22] refers to high-level requirements, calling them user
level interfaces. Business requirements, we suggest, are dependent on an adopted
governance model. Governance means: the process of decision-making or the process
by which decisions are implemented [26]. In other words, governance is the
framework of decision-making. In process-oriented organizations, governance dictates
that processes are the basic building blocks of enterprises. It also suggests that roles
(positions in a company) participate in a process [28]. There are several definitions of
what a process is in the business world, most dictate that a process is a sequence of
actions [7], and that a process has optional inputs and outputs [14].

We take the view that a business process is a unit that can be composed of steps
and/or processes, with the exception of the enterprise process, which is composed
solely of processes. Steps in a process are sequenced [13]. The Enterprise process,
which is the topmost process in an enterprise, is composed of other processes. In future
work we intend to study processes with parallel steps.

For example, a main process of a banking enterprise includes personal banking,
business banking, investment process, and insurance process. An bankbook issuance
process includes getting a request, placing an entry, delivering the bankbook. A loan
application includes getting a request, verifying credit process, and mailing card.

 3

1. (Process)Banking:- (Process) PersonalBanking, (Process) BusinessBanking, (Process)
Investment, (Process) Insurance.

2. (Process) IssueBankBook:- (Step) GetRequest, (Step) PlaceEntry, (Step) DeliverBook.

3. (Process) LoanApplication:- (Step)GetRequest, (Process) VerifyCredit, (Process)
MailCard.

Processes as mentioned earlier represent context [5]. A business context is the
environment surrounding a particular activity. A purpose justifies access rights and has
a purpose.

For example, when we allow Alex to open file F as a part of her
organizational role structure, Alex will have access to file F at all times, and can
use it regardless of her job function. However, if she was assigned file F as a part
of process loan application, then the permission is only available during the
sequence of operations leading to a loan application

Processes are governed by policies such as the above, which can be generic or
specific. An Enterprise Wide policy (generic) is one that defines a global requirement
and is essentially a system invariant. A generic policy defines global requirements and
governs the global process representing the enterprise, therefore its scope is global. For
example, consumer data will not be shared with third party or nobody has access to
more than one door key. It may be achieved through sub-policies attached to
component processes. A specific policy constrains one such component process. It
binds a process to a person, a role, an access-right, or a resource. For example, role
ClientService has access to process IssueCard. Policies whether generic or specific
should be justified by a purpose, and be non-conflicting within their scope.

2.2. Role-Based Access Control

Role-Based Access Control (RBAC) [12][8] is a multi-level security mechanism that
associates roles with individual users in order to determine their access rights. In the
RBAC framework, users are given roles based on their position in a particular
organization. Role-Based Access Control is used in several commercial and
government systems. Each organization has its own role ontology. Role-based models
can be specific enough to apply to the UNIX model [27], and generic enough to
implement business concepts like organizational hierarchy. The essence of role-based
access-control lies in the notion of role as an intermediary between subjects and
objects: roles are given access-rights to objects while subjects are associated with roles
[29]. In other words, the RBAC model separates between users and their privileges by
injecting roles in between. The model significantly reduces complexity, resulting in
more compact access control policies. These policies are also more generic and
portable, since they are not tied to specific individuals.

For any access-control paradigm, administration is an important aspect. A simple
model with complex administration procedures is normally unsuccessful. RBAC offers
several administrative operations; roles can be added, removed, and delegated. In
RBAC, an administrator may subscribe a user to a role. A person can also be revoked
from a role. Revocation is the reverse process (un-assigning person from role). Users
may delegate their roles to other users. Delegation of roles is a perilous function. It is
very practical; however it may cause adverse effects. Delegating a role means that a
delegate is assigned role rights and responsibilities.

 4

2.3. Alloy concepts

Alloy [1], consists of a formal language and related model analyzer and therefore
defines a formal method, which can be used to precisely capture and analyze logical
specifications of systems.

The Alloy language is a simple structural modeling language based on first-order
logic. The model analyzer1 can generate instances of invariants, simulate the execution
of operations and check user-specified properties of a model. There are three basic
levels of abstraction in Alloy modeling. At the highest level, Alloy follows an object
oriented paradigm. The middle level is the set theory level where a model is
represented in terms of sets and relationships. At the lowest level are atoms and
relations, which correspond to the true semantics of the language.

2.4. Alloy overview

An Alloy model is a set of classes defining the basic relationships. Classes are bound
by relationships. Functions and facts set predicates. Finally, assertions are run to
verify the validity of a ruleset.

2.4.1. Language constructs

Signatures: A signature is like a class in UML, or record in Pascal. It is a basic
unit signifying a relationship with its members.

Relationships: Everything in Alloy is a relationship. Signatures are relationships
and can have relationships between themselves. Alloy offers the possibility of
discovering reverse relationships using the operator (~). Example: if F: A->B,
then ~B is the set of all elements that have a relationship with B in A.

Facts: Facts are uncontested invariants. A system with contradicting facts cannot
be instantiated. Facts are asserted as invariants using the keyword fact. Facts
can constrain values or relationships.

Assertions: Assertions are used as questions to find out if a rule is violated. This
can help detect known interactions. For example, a question can be if it is
possible that employees of the credit department have access to the loans
department.

2.4.2. Operators

Alloy supports the regular set-theoretical operator set. [+,&,-] set union,
intersection, and difference, in addition to the set quantifiers [all, some, none, sole,
one]. Most important, we address the dot composition operator [“.”]. The dot
operator has multiple significations depending on the level of abstraction used.

Composition [“.”]: The composition operator [“.”] works as a join between two
tuple sets. For example, Set S1(A,B) can be composed with set S2(B,C) to
produce S3(A,C). It can also be used to dereference a relationship in the class.

4. sig role {

5. parent : lone role

1 http://alloy.mit.edy/

 5

6. }

where role.parent de-references role. Dereferencing has the same meaning as
in the OO model.

Multiplicities: Any relationship can have a multiplicity in Alloy. Multiplicities
are crucial because they tell the Alloy analyser how many instances to create.
For example, there can be 3 roles, 15 employees and 20 contractors. This
instructs Alloy to create such a model with the required constraints.

Scope: Knowing that computing the consistency of the model depends on the arity
and the multiplicity of objects, Alloy allows to specify the size of an instance
space during execution. This allows users to say: run my world of 5 object
classes and 50 instances with their corresponding relationships, to see if the
model is consistent.

2.5. Related work

Complex policy systems are prone to inconsistencies that can cause user intentions to
be violated. A policy system can contain rules to solve inconsistencies, however it will
not be assured that this solution corresponds to user intentions. For example, if a rule
takes precedence over another, the second one is violated, which may not be what the
user intends. This problem was identified in traditional telecommunication system,
under the name of Feature Interaction problem, since these systems offer features to
users and these features may interact. With the higher programmability of
telecommunications system made possible by internet telephony, and in web services,
features will be driven by policies and these may be inconsistent, which means that the
feature interaction problem will become a special case of the policy inconsistency
problem [22]. Policies are also the basis of business governance. Since access control
systems can specify an employee’s operational capability, policies can be used to
define access rights in a business context.

As mentioned, modeling methods, both formal and semi-formal, can be used in
order to detect inconsistencies and other problems in policy systems. However, this
requires languages to specify these systems. The work on business processes took a
leap forward with the adoption by the standardization group OASIS of the concept of
process as a method for capturing business-to-business communication and
organizational policy governance. Different XML based languages, including ebXML
[11] encourage the use of the process concept. However, the support of formal
techniques in defining business processes in order to detect privacy interactions is
virtually non-existent, hence the reason for this work.

Most of the work in the formalization of business domains tackles business
workflows. There were also several attempts to capture business governance semi-
formally. [6] presents an application to constructing systems from process models. It
discusses a combination of a UML-based process design language and security
modeling language for formalizing access control requirements. Although [6] does not
utilize processes as defined in the business domain, its approach may be applicable to
workflow systems. Another issue with this paper is that it is not applicable to privacy
aware systems, but it is aimed particularly at security protection environments. In [20],
the authors suggest a requirement driven approach to the design and verification of web
services. They also suggest the use of model checkers to verify system constraints.
This approach comes closer to the business domain, which makes it suitable for web

 6

services environments, but does not address interactions, and is not adapted to privacy
systems. [15] uses the concepts of purpose and attempts to create a purpose hierarchy,
as well as a model that enforces privacy.

3. Process based interaction examples

What are governance policy interactions? How can they occur? And how can we
detect these interactions? How can business processes and the process based model
help reduce these interactions? Separation of concerns and delegation of authority are
two models of interactions that exist in several domains.

3.1. Process hierarchy

For the two next subsections consider the following process hierarchy.
7. (Process) CreditCardApp:- (Process) ReceiveCardApplication, (Process)

CallCreditCheck, (Process) IssueCard, (Process) CreateAccount.

8. (Process) CreateAccount:- (Step)LeaveTraceInSystem, (Process) CreateCard, (Process)
MailCard.

9. (Process) DeleteAccount:- (Step)LeaveTraceInSystem, (Step)RemoveAccount.

10. (Process) WithdrawApplication:- (Process) DeleteAccount, (Step) NotifyClient.

Process Credit Card Application includes four processes (line 7). Process
CreateAccount also includes one step and two processes (line 8). Process
DeleteAccount includes a step called LeaveTraceInSystem and another step
RemoveAccount. Each one of these processes can be assigned to different employees,
according to company policies.

3.2. Separation of concerns

The concept of separation of concerns is important in the banking industry. One of its
applications is that a principal is not allowed to combine access to specific
functionalities. Should these capabilities be combined, a violation of a policy may
occur. For example,

Privacy Interaction Example:
Policy P1: An employee cannot have access to both customers’ address and credit

card information(Card Number, expiry date, PIN, and last 4 digits on the back of
card) ;

Such a rule is general and applies to the credit card application process, see line 7.

However, one of the tasks of issuing a new card (CreateAccount), see line 8, includes
the mailing of the credit card to the consumer. Given this requirement, assigning to an
employee the process of line 7, as well as to the process of line 5, will violate the
conditions set by P1. In this scenario, a local policy violates a more general policy

 7

Security Interaction Example:

P2: An employee cannot have access to both CreateAccount and DeleteAccount
processes. This prevents people from misusing the system to find information about a
user.

When an employee has access to both processes in WithdrawApplication, line 10, and
CreateAccount, line 8, rule P2 is violated.

3.3. Delegation example

The following example describes a situation where a delegation of tasks causes a
conflict of permissions:

Privacy Example: In a company, the LoanProcessing process includes the

VerifyCredit process. However information collected for the purpose of credit
verification should not be available to employees doing loan processing. Suppose now
that an employee assigned to sub-process Verify-Credit goes on vacation and delegates
his rights to his manager, who is a member of the process Loan-Processing. The
manager receives access to information that should be denied to her.

This interaction is caused by the fact that data collected for the purpose of credit

verification can be used for another purpose.

4. Formalizing privacy policies

Privacy specification, like security specification, can be included in system design at a
high level of abstraction. We present a formal privacy model for a process-governed
enterprise. We provide a UML MetaModel together with a translation into an Alloy
model. Using our MetaModel, we make it possible to develop privacy aware systems
that are designed with the goal of preventing violations of privacy policy.

We conjecture that an organization can be formally represented as a composition
of its constructs, which become its distinguishing attributes. Our MetaModel acts as a
stereotype from which instance models are inherited. This MetaModel constrains
instance models to contain basic enterprise constructs: roles, persons, devices,
processes and activities, and policies. Among related work presenting a similar list,
[15] excludes processes; however it includes domain, subject, object-type, and object
classes.

Every access-control model has its basic atoms. For example, in the UNIX model
the atoms are the name of the user, an object and access-right. In the RBAC model
they are the user-group, object and access-right. Since most organizations are built as
a function of roles, it is important to include role as an attribute in any organizational
structure. As enterprises become increasingly modeled from a user (client) perspective,
business processes compete with roles as basic units of organizational structure.
Therefore, in this work roles will coexist with processes.

 8

Assumes

1..*

Process Person

 Policy

Step Role

*

*

AttachedTo

Composite
Process

AssignedTo

1..*

ComposedOf

*

ParentOf

1..*

1..*

Figure 1 Process Based Enterprise Model

Roles are important because they group properties of persons participating in one
role. Roles are functional in nature, and have been used extensively in structuring
organizations. Traditionally policies apply to roles. We conjecture that the concept of
process offers complementary advantages to the concept of roles, and therefore
including processes in enterprise models is a necessity.

Our MetaModel represents the requirements: its main class types are policy,
process, step or activity, person, and role. A MetaModel defines the syntax of a class
of models, it does not refer to a particular platform. A platform is an execution or
verification environment (Alloy in our case). Depending on the enterprise context, a
specific model can inherit from a MetaModel. For example in one system, access-
rights are bound to processes; in another system, they can be bound to steps. Several
implementations can be derived for a given model. For example, one can create two
implementations of a financial institution, a bank or a broker.

4.1. MetaModel and Alloy implementation

Models in general are abstractions of the real world and are used to precisely and often
formally describe and analyze the working of some relevant portions of the physical
system. The main benefit of using models is that they help abstract away irrelevant
details while highlighting the relevant [2]. A MetaModel acts as a supertype from
which an instance model can be created. A model instance should follow model
constraints.

We present a MetaModel for enterprise architecture. The model is generic in its
structure and is applied to a banking system. In this section, see Figure 1, a MetaModel
includes the following stereotypes: role, person, process, steps, and policy. It acts as
supertype from which an instance model can be created. A model instance should
define model constraints.

 9

4.1.1. Person

It represents a human resource, an employee, a consultant, and possibly
collaborators.

11. abstract sig person{

12. assumes : role

13. assignedTo: Process

14. }

Example: Contractor, Employee, Supplier, etc...

4.1.2. Process

As discussed above, processes involve a collection of people, and policies needed
to perform the function. A process, as we defined in section 2.1, can be composed
of other processes, or steps. The composition operator signifies a hierarchy of
processes. For example, the personal banking service offers manual transactions.
These services are broken down into activities, such as deposit, withdraw, verify,
provide information, etc. Note that process composition does not suggest any
ordering.

15. abstract sig process {

16. parent : lone process, // pointer to a parent process

17. composedOf: set steps // a process is composed of some steps

18. }

Notice that in line 17, steps are defined to be parts of sets. Future work should
go into studying sequences of elements in a particular flow.

4.1.3. Steps

Steps are granular elements of a process. These steps are performed by persons,
see Figure 1. The “Assigned To” relationship embodies the connection from
processes to persons and hence from steps to persons. In practice, this is how
enterprises work: management assigns human and physical resources to specific
functions. Then it assigns particular tasks to people. Note that a step is defined as
an empty unit for simplicity in order to allow Alloy to randomize it.

19. sig step{

20. }

4.1.4. Policy

Policies are usually attached to one process. We can specify a particular instance
of a policy and assign it to a process.

21. abstract sig policy {

22. attachedTo : lone process, // a policy is attached to one process

23. permitted: role -> process, // permits role access to a process

24. denied : role -> process //denies a role to a process

 10

25. }{

26. no permitted & denied //no dual permission and denial to the same object

27. role.permitted in attachedTo // Permitted roles have to belong to the attached
process

28. role.denied in attachedTo // Denied roles have to belong to the attached process

29. }

Each policy is attached to one process, see line 22. Lines 23,24 propose a set
based method of representing access control. This can be read as follows:
permitted is a relationship between a role and a process; therefore, only where a
policy is attached to a process can a permission or denial rule apply. Moreover, in
no situation, line 26, should there be a permission and a denial for a pair (role,
process)

4.1.5. Roles

In our work we suggest that Roles are a total order hierarchy, see line 30. They
have a “parent” relationship, in line 31. A role can be a superset of roles and is
usually managed by other roles, with exception of the topmost role. There are
situations where one role is “child of” multiple roles, from different departments.

30. sig role {

31. parent : lone role

32. }

Our instance model suggests that an access right is a relationship between a
role and a process, as it has been seen in lines 23,24. A variation of the model
could assign access rights to steps, something that we may explore in future work,
see the AccessTo relationship in Figure 1. In this model however, we choose to
implement the role to process mapping and not the role to step. Normally (in
RBAC for example) access rights are associations from roles to resources [8].

Example: Manager, Employee, Director, President.

5. Model abstraction

We show the implementation of the model in Alloy. The model is in essence an
abstraction of processes, policies, relationships, and their respective hierarchies. It is a
refinement of the UML representation. In privacy governance, there are a few
principles that are the basis of any privacy model. These principles fall under access-
control. e.g. separation of concerns, delegation, and definition of inconsistencies. In
the next section, we show how to model delegation and separation of concerns and
provide examples.

5.1. Representation of access control

The method of abstraction of access-control is a distinguishing feature in any access-
control model. The data type and even the implementation are important to its

 11

execution. Access-rights are represented as relationships. This optimizes the clarity
and ease of detecting interactions. Access-control atoms can be represented in a logical
tuple-space with a set-based interface e.g. (Luigi, Permitted, Door). Using our model,
we utilize the power of set relationships and set theory. Set operations provide us the
operations of intersection, difference, etc. Each of these is equivalent to a query in a
database system. For example, see lines 33-37.

33. abstract sig policy {

34. attachedTo : lone process,

35. permitted: role -> process,

36. denied : role -> process

37. }

As mentioned in the UML MetaModel, a policy attaches to a process. Moreover,
roles can access processes or activities. In English the above lines read:

A policy is attached to one process. Each policy includes an AttachedTo
relationship that connects roles with processes. Access rights (Permissions or Denials)
are relationships between roles and processes under a policy.

In this way we represent the main concepts of process-based access-control. This

decouples roles from objects and hence facilitates management in a business process
context.

5.2. Detection of direct conflicts

Direct conflicts of access-control are restricted by preventing any person from having
an acceptance or denial for a single process. Line 43 says that for no policy; the same
role will have conflicting access rights.

38. abstract sig policy {

39. attachedTo : lone process, // a process is attached to policies

40. permitted: role -> process, // permits role access to a process

41. denied : role -> process //denies a role to a process

42. }{

43. no permitted & denied

44. }

5.3. Representation of separation of concerns

We present a solution for the separation of concerns problem by reversing relationships
of permission and checking their interaction with the conflicting function. This
solution is specific but we plan to extend the model to support separation inherently.

45. assert seperateConcerns {

46. no (process.~(accountDeleteAP.permitted) & process.~(accountCreateAP.permitted))

47. }

 12

In line 46, we represent the separation of concerns between Account-Create
process and Account-Delete process, We say that processes which receive a permission
from an AccountDeleteAP should not be permitted to AccountCreateAP. The ~
operator is a reverse function from process to accountDeleteAP.

5.4. Representation of delegation

As in the case of the separation of concerns issue, we represent delegation by assigning
people to processes.

5.5. Proving compliance

A privacy system P is compliant with policy set S when every policy in S holds for P.
We use assertions to check if the model is compliant. An example is in lines 45-47
above.

6. Results

In modeling, conflicts are easily created, however they are hard to detect, where by
conflict we mean an inconsistent model or a set of constraints that cannot be
simultaneously satisfied. Each modeling method requires its own tool for conflict
detection.

Conflicts exist in policy systems because of several reasons. The first is that
policies do not change the basic principle of atomic access control. The second is that
composition of possibly interacting system creates an interacting system. Therefore,
existing interactions of low-level atomic transactions translate into policy interactions.

6.1. Example involving separation of concerns

Figure 1. Counterexample

Using Alloy we were able to represent the example presented in 3.2(b),
detect the interactions and find counterexamples.

The representation of separation of concerns of section 5.3 reads: no one should be
able to create accounts and delete accounts at the same time. Alloy was able to find a
counterexample, proving that this indeed is possible in the model.

 13

In the counterexample, shown in Figure 1, a manager is permitted to delete an
account and to create an account. The director can do the opposite, i.e. delete Account,
and Create account.
When we added a separation of concerns policy, the violation ceased to exist, Figure 2.
The figure shows the result after Alloy was instructed to separate concerns between
two processes (account Create and Account delete). In the allotted scope, the analyzer
was not able to find any counterexample.

Figure 2. No Counterexample Found

6.2. Delegation

We dealt with the delegation problem in a similar fashion, and the Alloy analyzer
succeeded in providing a counterexample. We do not discuss in this paper the
interaction given in section 3.3.

7. Discussion

7.1. Process approach

Interactions occur independently of the choice of hierarchy type, whether of roles or of
processes. However, process structure simplifies the specification of privacy systems
by adding context. The distinction between process-based and role-based access
control is related to flow since role hierarchies do not use flow to assign access rights.
Processes, on the other hand, do so by sequencing actions. For example, a role x can be
allowed action B only after having performed action A. In RBAC, role structure
defines the outcome of access policy. In our model, access-rights can be derived from
the fact of belonging to a process. Nevertheless, the issues of separation of concerns
and delegation are present in both paradigms.

7.2. Alloy characteristics and Issues

The rule-based nature and object orientation of Alloy are suitable for the enterprise
model under consideration. A very important property of Alloy is the fact that it allows
to limit the instance size. On the other hand, we emphasize the fact that our process
based methodology and our claims are tool independent, and can be investigated using
other analysers.

7.2.1. Explosion avoidance

A special feature of Alloy is that it can populate a world of possibilities that is
constrained by a specific size. One can then model a system with a fixed number

 14

of entities. A system designer can leave it up to Alloy to populate instances
randomly and nondeterministically, see lines 48-49.

48. run example for exactly 3 process, 3 policy, 6 steps, 4 role, 4 person

49. run example for 6

50. check separateConcerns for exactly 3 process , 3 policy, 6 steps, 4 role, 4 person

However, an inconsistency that does not show in a certain model size could
very well appear in the next one, hence it is important to try as large a size as
possible.

7.2.2. Model consistency

Given a model, in Phase 1, if it is inconsistent, Alloy can detect the inconsistency
but it does not specify the reasons for inconsistency, nor does it provide a
counterexample. Therefore, when building a model, one needs to incrementally
verify the system, i.e. the test for consistency must be repeated every time the
model is changed, otherwise the reason for the inconsistency can become difficult
to detect. It is left to manual labor to decide the cause of the inconsistency.

7.2.3. Model compliance

In phase 2 (corresponding to Line 50), Alloy can check if the policies comply with
the model. In the affirmative, it asserts their validity, otherwise it produces a
counterexample. In the case of privacy systems, an enterprise needs to commit to
a set of privacy rules for its patrons. Such rules can be translated into Alloy and
submitted for verification, and Alloy can determine whether these rules are
consistent with the model.

8. Summary and future work

We adopted the concept of process as a basis for structural composition of an enterprise.
Governance of such process-based enterprises requires a methodology for modelling
and a method of verification. We have given a UML MetaModel to specify such
enterprises. We have shown our ability to translate the MetaModel into Alloy for
verification and interaction detection. Examples in the areas of banking were used, and
the extension to consider web services seems to be straightforward. The MetaModel
helps translate enterprise structure into Alloy, which has object-oriented semantics. We
have then shown by example the ability to model the separation of concerns and the
delegation principles. Note that the three examples given in Section 3 were analyzed
using Alloy, which was able to detect the conflicts. Eventually, such methods could be
used in enterprises to validate their governance models, including their policies.

Future work will attempt to completely formalize the method, combining the
capabilities of RBAC as well as other access control models. Larger systems with
more constraints will also be studied. We will also address dynamic interactions, which
will depend on a state model. The consideration of complex enterprise models will
require the specification of ontologies, to describe relationships between concepts and
entities in the models.

 15

We plan to create a privacy policy language that can be automatically translated
into Alloy for immediate validation. It will be possible to translate this language into
established policy languages such XACML.

9. Acknowledgment

The authors are grateful to the Natural Sciences and Engineering Research Council of
Canada for partial funding of this research.

References

[1] Alloy Publications. http://alloy.mit.edu/beta/publications.php. Accessed Dec. 2004.
[2] A. Agrawal. Model Based Software Engineering. Graph Grammars and Graph Transformations.

Area Paper. Vanderbilt University. EECS. April 8, 2004.
http://www.isis.vanderbilt.edu/view.asp?CAT=1&GID=171, Accessed March 2005.

[3] D. Amyot, T. Gray, R. Liscano, L. Logrippo. Interactive Conflict Detection and Resolution for
Personalized Features. Submitted for publication.

[4] Automating Privacy in the Enterprise. http://www.zeroknowledge.com/business/. Accessed Jan.
2004.

[5] P. Balabko, A. Wegmann. Context Based Reasoning in Business Process Models. pp. 128. 2003.
[6] D. Basin, J. Doser, T. Lodderstedt. Model Driven Security for Process-Oriented Systems. SACMAT.

100-109. 2003.
[7] A. Charfi, M. Mezini. Hybrid web service composition: business processes meet business rules..

International Conference On Service Oriented Computing. 30- 38. 2004.
[8] S. Coughlan. Role-based Access Control- A Users Guide.. https://www.eema.org/idsol/coughlan.pdf.

Feb 2003.
[9] V. Devedzic. Understanding Ontological Engineering. Comm. ACM 45(4). 136-244 April 2002.
[10] P. Dini, A. Clemm, T. Gray, F.J. Lin, L. Logrippo, S. Reiff-Marganiec. Policy-enabled

Mechanisms for Feature Interactions: Reality, Expectations, Challenges. Computer Networks. 585 –
603, 2004.

[11] EbXML. Electronic Business using eXtensible Markup Language. http://www.oasis-
open.org/home/index.php. Accessed Aug. 2004.

[12] D. Ferraiolo, D. Kuhn, R. Chandramouli. Role-Based Access Control. Artech House. 2003.
[13] M. Gruninger, C. Schlenoff , A. Knutilla, S. Ray. Using process requirements as the basis for the

creation and evaluation of process ontologies for enterprise modeling. ACM SigGroup Bulletin,
Special issue: Enterprise modeling: notations and frameworks, ontologies and logics, tools and
techniques. 52 – 55. 1997.

[14] M. Hammer. The Agenda: What every business must do to dominate the decade. Random House.
New York. 2003.

[15] Q. He. Privacy Enforcement with an Extended Role-Based Access Control Model. North Carolina
State University Computer Science Technical Report TR-2003-09. 2003.

[16] G. Karjoth and M. Schunter. A Privacy Policy Model for Enterprises. 5th IEEE Computer Security
Foundations Workshop. 271-281. 2002.

[17] J. Kephart, D. Chess. The vision of Autonomous Computing. Computer Journal, 41-50. Jan. 2003.
[18] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, A. K. Elmagarmid. Business-to-business

interactions: issues and enabling technologies. VLDB Journal. The International Journal on Very
Large Data Bases archive. 59 – 85. May 2003.

[19] National Computer Security Center (NCSC). A guide to understanding discretionary access control
in trusted system. Report NSCD-TG-003 Version 1. Sep. 1987.

[20] M. Pistore, M. Roveri, P. Busetta. Requirements-Driven Verification of Web services. Electronic
Notes in Theoretical Computer Science. To appear.

[21] R. Paul, G. Giaglis, and V. Hlupic. Simulation of Business Processes. American Behavioral Scientist.
1551-1576, 1999.

 16

http://alloy.mit.edu/beta/publications.php
http://www.zeroknowledge.com/business/
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/w/Wegmann:Alain.html
https://www.eema.org/idsol/coughlan.pdf
http://www.oasis-open.org/home/index.php
http://www.oasis-open.org/home/index.php

[22] S. Reiff-Marganiec and K. Turner. A Policy Architecture for Enhancing and Controlling Features.
Proc. Feature Interactions in Telecommunication Networks VII. 239-246. IOS Press. Amsterdam.
June 2003.

[23] M. Schunter, ed.. Enterprise Privacy Authorization Language (EPAL 1.1),
http://www.zurich.ibm.com/security/enterprise-privacy/epal, Accessed Jan. 2004.

[24] S. Sunrano. Globalization and Information Technology: Forging New Partnerships in Public
Administration. Asian Review of Public Administration, XIII. 2 July-December 2001.

[25] V. Thurner. A formally founded description technique for business processes. Technical Report,
Technical University of Munich. Germany. 1997.

[26] United Nations, ESCAP. What is good governance.,
http://www.unescap.org/huset/gg/governance.htm, Accessed Aug. 2004.

[27] UNIX protection model, http://cs.gmu.edu/~menasce/osbook/. Accessed Aug 2004.
[28] B. Warboys. Reflections on the Relationship Between BPR and Software Process Modelling. LNCS,

Vol. 881. Proceedings of the13th International Conference on the Entity-Relationship Approach,
Springer-Verlag, UK. 1994.

[29] J. Zao, Hochtech Wee, J. Chu, D. Jackson. RBAC Schema Verification Using Lightweight Formal
Model and Constraint Analysis. http://alloy.mit.edu/contributions/RBAC.pdf, Accessed Oct 2004.

[30] Business Process, Execution Language, http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/, Accessed 2005.

 17

http://www.zurich.ibm.com/security/enterprise-privacy/epal
http://www.unescap.org/huset/gg/governance.htm
http://cs.gmu.edu/%7Emenasce/osbook/
http://alloy.mit.edu/contributions/RBAC.pdf

	1. Introduction
	1.1. Overview and motivation
	1.2. Organization of the paper
	2. Background and related work
	2.1. Organizational governance using processes
	2.2. Role-Based Access Control
	2.3. Alloy concepts
	2.4. Alloy overview
	2.4.1. Language constructs
	2.4.2. Operators

	2.5. Related work

	3. Process based interaction examples
	3.1. Process hierarchy
	3.2. Separation of concerns
	3.3. Delegation example

	4. Formalizing privacy policies
	4.1. MetaModel and Alloy implementation
	4.1.1. Person
	4.1.2. Process
	4.1.3. Steps
	4.1.4. Policy
	4.1.5. Roles

	5. Model abstraction
	5.1. Representation of access control
	5.2. Detection of direct conflicts
	5.3. Representation of separation of concerns
	5.4. Representation of delegation
	5.5. Proving compliance

	6. Results
	6.1. Example involving separation of concerns
	6.2. Delegation

	7. Discussion
	7.1. Process approach
	7.2. Alloy characteristics and Issues
	7.2.1. Explosion avoidance
	7.2.2. Model consistency
	7.2.3. Model compliance

	8. Summary and future work
	9. Acknowledgment
	References

