
Pre-publication version. To appear in Computer Networks, 2005. 1

Generation of test purposes from Use Case Maps

Daniel Amyot*

SITE, University of Ottawa
800 King Edward

Ottawa, ON, K1N 6N5 (Canada)
damyot@site.uottawa.ca

Luigi Logrippo

Dépt. d’informatique et ingénierie
Univ. du Québec en Outaouais

Gatineau, QC, J8X 3X7 (Canada)
luigi@uqo.ca

Michael Weiss

School of Computer Science
Carleton University

Ottawa, ON, K1S 5B6 (Canada)
weiss@scs.carleton.ca

Abstract. The Use Case Map (UCM) scenario notation can be used to model ser-
vice requirements and high-level designs for reactive and distributed systems. It is
therefore a natural candidate for use in the process of generating requirements-
directed test suites. We survey several approaches for deriving test purposes from
UCM models. We distinguish three main approaches. The first approach is based
on testing patterns, the second one on UCM scenario definitions, and the third one
on transformations to formal specifications (e.g., in LOTOS). Several techniques
will be briefly illustrated and compared in terms of quality of the test purposes
obtained, ease of use, and tool support. We also identify challenges in refining
these test purposes into test cases as well as opportunities for improving current
UCM-based testing.

Keywords: Formal specification; Scenario; Testing; Testing pattern; Use Case
Map

1. Introduction

During the past ten years, the Use Case Map (UCM) notation has been establishing itself for
the specification of service requirements and high-level designs for various types of reactive
and distributed systems [12][13]. A UCM model (also called map) depicts causal scenarios
composed of responsibilities that can be assigned to an underlying component struc-
ture. Fig. 1 recalls the basic elements of this notation, with constructs for sequences (paths),
alternatives (OR-forks, possibly with guarding conditions), and concurrent paths (AND-forks
and AND-joins). Complex UCM models can also be decomposed: stubs on a path act as con-
tainers for sub-maps, which are called plug-ins. Engineers can use tools such as the UCM
Navigator (UCMNAV) to create, maintain, analyze, and transform UCM models [43].

As other scenario notations, Use Case Maps can be used to direct test derivation. Since
UCMs are often used at a very abstract level, close to user requirements, tests derived from
UCM models have much potential for validating implementations at the system or acceptance
level, or for testing more detailed design models (e.g., in SDL [25] or UML [33]) while they
are developed.

UCM models emphasize behavior rather than data, and they also abstract from detailed
communication mechanisms. Therefore, they are inappropriate as the only source of informa-
tion for the direct derivation of implementation-level test cases. However, they are very use-
ful for deriving test purposes, which can then be refined into detailed test cases where data
and communication aspects are added. A test purpose is composed of a test goal (a partially-
ordered sequence of events) and of an expected test verdict (pass for an acceptance test, and
fail for a rejection test). We shall see that UCM models are also useful for the generation of
rejection tests, which ensure that a design or implementation under test refuses certain se-
quences of events.

Pre-publication version. To appear in Computer Networks, 2005. 2

Start
Point

End
Point

Path

… …
… … Responsibility

Direction Arrow

Start
Point

End
Point

Path

… …… …
… …… …… … Responsibility

Direction Arrow

… …IN1 OUT1 Static Stub &
Segments ID

Dynamic StubIN1 OUT1… …
S{IN1} E{OUT1}

Plug-in Map

… …IN1 OUT1… …… …IN1 OUT1 Static Stub &
Segments ID

Dynamic StubIN1 OUT1… …IN1 OUT1… …… …
S{IN1} E{OUT1}S{IN1} E{OUT1}

Plug-in Map
ComponentComponent

…
…

…
…

[C1]
[C2]

[C3]

OR-Fork
…

…

…
…

OR-Join

…
…

…
… …

…

…
…

AND-JoinAND-Fork

[Guard]
…

…

…
…

[C1]
[C2]

[C3]
…

…

…
…

[C1]
[C2]

[C3]

OR-Fork
…

…

…
… …
…

…
…

OR-Join

…
…

…
… …

…

…
…

AND-JoinAND-Fork
…

…

…
……
…

…
… …

…

…
… …
…

…
…

AND-JoinAND-Fork

[Guard]

Fig. 1. Main constructs of the UCM notation.

Generating test purposes from scenario models is not new. Tretmans suggested the use of
goals as a means to select tests for complex systems from specifications [40], and Grabowski
et al. have used Message Sequence Charts (MSC) [26] as test purposes to derive TTCN test
cases from SDL specifications [20]. These test purposes usually originate from (informal)
requirements. We suggest that UCM routes (i.e., end-to-end path) extracted from a map rep-
resent a suitable source of test purposes. In the current UCM-based software development
methodology, the main use of the UCM model is for the specification and analysis of opera-
tional requirements. Our suggestion adds another use, which justifies further the initial in-
vestment in the creation and maintenance of the model.

One research question of interest here is the following: How can we systematically trav-
erse a UCM model for selecting useful routes or, in other words, test goals? In this paper, we
survey three main approaches. The first approach is based on testing patterns (Section 2), the
second one on UCM scenario definitions (Section 3), and the third one on transformations of
formal specifications, namely by using LOTOS (Section 4). The main derivation techniques
will be briefly illustrated and compared in terms of quality of the test purposes obtained, ease
of use, and tool support. In the discussion of Section 5, we also identify challenges in refining
UCM-based test purposes into test cases as well as opportunities for improving UCM-based
testing.

2. Testing based on UCM testing patterns

2.1 Testing patterns

A pattern is a proven and reusable solution to a recurring problem in a specific context. Pat-
terns can be grouped to form pattern languages [1], which are collections of patterns that
work together to solve problems in a specific domain. In a pattern language, a resulting con-
text of one pattern becomes the context of its successor patterns.

Many well-known patterns address design, architecture, or process issues. However, test-
ing patterns, which provide established solutions for designing tests or for supporting the
testing process, are also becoming popular [16], especially in connection with agile methods.
For instance, in order to test object-oriented systems, Binder suggests a collection of test de-
sign patterns for various artifacts, including classes, methods, and scenarios [10]. Test auto-
mation patterns and test oracle patterns are also discussed. Testing patterns represent an inter-
esting trade-off between intuitive test generation, which is commonly used nowadays, and
formal test case generation, which is more demanding in terms of initial modeling invest-

Pre-publication version. To appear in Computer Networks, 2005. 3

ment. We see testing patterns as a semi-formal approach to test selection that fits nicely
within the level of abstraction targeted by semi-formal notations like UCM and UML.

2.2 UCM-oriented test pattern language

In [4], testing patterns are developed that target the coverage of scenarios described in terms
of UCM. These patterns aim to cover functional scenarios at various levels of completeness:
all results, all causes and all results, all path segments, all end-to-end paths, all plug-ins, and
so on. The rationale is that covering UCM paths leads to the coverage of the associated
events and responsibilities (and of their relative ordering) forming the requirements scenarios.
The patterns are inspired partly by existing white-box test selection strategies for implemen-
tation languages constructs such as branching conditions and loops, or for cause-effect
graphs [31], but applied at the level of abstraction of requirements scenarios.

The UCM-oriented testing pattern language presented in Fig. 2 explains how individual
UCM testing patterns, summarized in Annex A, can be connected together in order to derive
test goals from a UCM model. This language itself is expressed as a UCM, and must be seen
as a general recommendation rather than as a strict procedure.

Fig. 2. UCM-oriented testing pattern language.

In this pattern language, complex UCM models with many dynamic stubs (containers
with many submaps) are first flattened into a collection of models where the stubs have been
replaced by their plug-ins (TP5 and TP6 in Annex A). Then, for each of these maps, a subset
of the start points is enabled (TP4). For each resulting flat map with enabled start point, vari-
ous coverage levels can be achieved on a construct per construct basis (alternatives with TP1,
concurrent segments with TP2, and loops with TP3). The end result is a set of test goals,
some of which are usable for rejection test cases. The latter are useful for checking the cor-
rect handling of loop boundaries (e.g., by testing a number of iterations beneath or beyond the

UCM Test Goals

HandleStubs HandleStartPoints HandleConstructs

UCM Test Goals

HandleStubs HandleStartPoints HandleConstructs

HandleStubs:

HandleStartPoints:

HandleConstructs:

[Causally
LinkedStubs]

UCM Flattened
UCMs

TP6

[Single
Stubs]

TP5

1:N 1:N

[NoStubLeft]

[StubsLeft]

[NoLinkedStub] [NoSingleStub]

[Causally
LinkedStubs]

UCM Flattened
UCMs

TP6

[Single
Stubs]

TP5

1:N 1:N

[NoStubLeft]

[StubsLeft]

[NoLinkedStub] [NoSingleStub]

[MultipleStartPoints]
Flattened

UCM

Flat Maps
with Enabled
Start Points

TP4

1:N

[SingleStartPoint]

[MultipleStartPoints]
Flattened

UCM

Flat Maps
with Enabled
Start Points

TP4

1:N

[SingleStartPoint]

Flat Maps
with Enabled
Start Points

Test Goals

[Loop]

TP1

1:NTP3

TP2

[A
lte

rn
ati

ve
]

[Concurrent]

CheckConstruct

[EndPoint]

Flat Maps
with Enabled
Start Points

Test Goals

[Loop]

TP1

1:NTP3

TP2

[A
lte

rn
ati

ve
]

[Concurrent]

CheckConstruct

[EndPoint]

Pre-publication version. To appear in Computer Networks, 2005. 4

specified loop boundaries, see TP3-3D in Annex A) or the triggering of necessary start points
in UCM paths that have to synchronize (e.g., TP4-4G in Annex A).

The six patterns summarized in Annex A are fully described in [4] using a template com-
prising the following fields: Name, Intent, Fault Model, Context, Forces, Strategies, Exam-
ples, Consequences, Known Uses, and Related Patterns. Some of these fields will be further
illustrated in the example of the next section.

2.3 Example: causally-linked stubs

The following example uses test pattern TP6 to describe the content of a pattern and illustrate
how to use the pattern language. Test goals (part of test purposes) will be expressed as se-
quences (between angle brackets) of UCM start points, responsibilities, and end points.

The intent of pattern TP6 is to generate, for UCM paths that contain causally linked dy-
namic stubs (e.g., in sequence), test goals expressed in terms of sequentially linked start
points, responsibilities, waiting places, timers, and end points

The context is that the functionality under test is captured as a UCM path that contains
multiple causally linked dynamic stubs. Each stub has a default plug-in representing the ab-
sence of specific functionality at this point. Other plug-ins are used to capture functionalities
that deviate from the basic behavior. The map on the left side of Fig. 3 contains two stubs,
whose plug-ins are shown on the right side. We will assume that plug-in 1 is the default be-
havior for both stubs S1 (with IN1 bound to Start, and End to OUT2) and S2 (with IN2 bound
to Start, and End to OUT4). Plug-in 2 is used by S1 whereas Plug-in 3 is used by S2.

SP

S1
IN1 OUT1

EP1

EP3
IN1 OUT1

a

OUT2
b

Plug-in 2

OUT2

S2
IN2 OUT3

EP2

OUT4

IN2 OUT3
c

OUT4
d

Plug-in 3

Start
End

Plug-in 1

SP

S1
IN1 OUT1

EP1

EP3
IN1 OUT1

a

OUT2
b

Plug-in 2

OUT2

S2
IN2 OUT3

EP2

OUT4

IN2 OUT3
c

OUT4
d

Plug-in 3

Start
End

Plug-in 1

Fig. 3. Example with a sequence of two dynamic stubs.

The fault model of TP6 assumes that faults can result from combinations of plug-ins bound to
causally linked stubs. Such faults are potentially feature interactions [14], which are undesir-
able behavior resulting from the combination of functionalities (features) developed and
tested in isolation. The coverage of all combinations of plug-ins in flattened maps, where all
stubs are substituted with appropriate plug-ins according to the binding relationships, ensures
that these faults are detected.

There are several forces involved in this pattern. While flattening such a UCM, many
possible combinations may result, especially in situations where a UCM has multiple levels
of nested stubs and plug-ins or where stubs contain numerous plug-ins. Generating test goals
for all combinations leads to more thorough test suites, but at a higher cost.

TP6 suggests three strategies (see Annex A), sorted according to the likelihood of finding
undesirable interactions between plug-ins (from low-yield test goals to high-yield test goals).
Note that these strategies are not mutually exclusive and can be used in combination. If we
use strategy 6.C (called functionality combinations), all combinations of two or more func-
tionalities (plug-ins) are used in causally linked stubs. Multiple flattened maps may result
from this procedure. Then, the other patterns (TP1 to TP5) can be used according to the
guidelines expressed in the pattern language of Fig. 2. In our example, one flattened map
results from Plug-in 2 being used in S1 and Plug-in 3 in S2. With Strategy 1.B (Alternative -

Pre-publication version. To appear in Computer Networks, 2005. 5

All paths), the set of resulting test goals becomes: {<SP, a, EP1>, <SP, b, c, EP2>, <SP, b, d,
EP3>}.

The most interesting test goals are those generated by Strategy 6.C that differ from the
goals generated by Strategy 6.A and Strategy 6.B, i.e., {<SP, b, c, EP2>, <SP, b, d, EP3>} in
the example above, because they represent interactions of functionalities. Some of these in-
teractions might be classified as undesirable by designers and requirements engineers. They
should then be prevented by the use of appropriate guarding conditions and selection policies
at the UCM level, and the corresponding test goals should be used as a basis for the genera-
tion of rejection test purposes (which are meant to be rejected) for the design specification of
the system under test.

2.4 Experience with testing patterns

The testing pattern approach is an essential element of the Specification-Validation Approach
with LOTOS and UCMs (SPEC-VALUE methodology) developed in [4]. SPEC-VALUE com-
bines the visual scenario aspects of UCM with the formality and executability of the algebraic
specification language LOTOS [24]. UCMs and LOTOS share many similar operators for ex-
pressing actions, sequences, alternatives, and concurrency, as well as for defining and invok-
ing sub-models. These similarities simplify the mapping from UCM elements to LOTOS op-
erators. Unlike SDL, LOTOS can be used to specify and analyze behavior in the absence of
explicit components and messages. This is particularly suited to UCM models because they
abstract from messages and because they may contain no component (e.g., during the early
modeling steps, when no architecture is identifiable yet).

In the SPEC-VALUE methodology, a LOTOS prototype is constructed from a UCM model
according to a set of conversion guidelines. Then, the testing patterns given in Annex A are
used to extract test purposes from the same UCM model. The test purposes are converted to
test cases (with data and expected verdicts) in the form of LOTOS processes. These three steps
are done manually, and hence some verification is required to ensure consistency and com-
pleteness of these three views (UCM model, LOTOS prototype, and test suite). To this end, the
test purposes can be checked for consistency against the prototype (by composing the test
cases with the specification according to LOTOS testing theory) using tools such as LOLA [34].
If a test case does not lead to the expected verdict, then appropriate modifications should be
brought to the requirements, the UCM model, the test purposes, the test cases, and/or the
LOTOS prototype.

In SPEC-VALUE, checking the specification and the test suite for completeness is done a
priori with coverage-based criteria based on UCM paths (i.e., testing patterns and strategies)
during the generation of test purposes, and a posteriori by measuring the structural coverage
of the LOTOS specification after running the test cases. In order to measure this coverage, the
LOTOS specification can be instrumented with probes, automatically inserted at points deter-
mined according to different criteria as described in [2]. These criteria insure that a minimum
number of probes is used to produce an instrumented specification that covers all behavior
expressions while preserving testing equivalence to the initial specification (for instance,
probes must not add non-determinism or cause new deadlocks). Running the tests with LOLA
then produces execution traces that can be summarized in a coverage report. A probe that is
not covered indicates that a test case is missing in the test suite or that this part of the specifi-
cation is unreachable.

SPEC-VALUE was used in several experiments conducted by our team, including a group
communication server (GCS), a GPRS point-to-multipoint group call service (PTM-G) [3], a
feature-rich telephony system (FI), an agent-based simplified basic call (SBC), and a tiny
telephone system (TTS), all of which are summarized in [4]. The testing patterns were used to

Pre-publication version. To appear in Computer Networks, 2005. 6

derive test purposes for all these applications. Table 1 presents several characteristics of these
experiments, as an indication of their structure and size. Note that UCM-based test purposes
were used to define acceptance test cases (line j) and rejection test cases (line k). Additional
test cases based on other techniques (e.g., to check ADTs or robustness, line l) were added
when required.

Table 1. Characteristics of experiments involving testing patterns.

 System GCS PTM FI SBC TTS
a) # Root (top-level) UCMs 12 9 2 4 1
b) # Plug-in UCMs 0 0 23 0 4

U
C

M

c) # UCM components 12 15 5 7 6
d) # Process definitions 19 30 13 9 11
e) # Lines of behavior 750 1400 800 750 375
f) # Abstract data types (ADT) 29 53 39 8 19
g) # Lines of ADTs 800 1125 750 200 400
h) # Lines of tests 1600 800 1325 300 375

L
O

T
O

S

i) Total number of lines 3150 3325 2875 1250 1050
j) # Acceptance functional tests 56 35 37 4 14
k) # Rejection functional tests 51 1 0 2 14
l) # Other tests (e.g., ADTs, robustness) 2 0 0 5 5T

es
ts

 &

C
ov

er
ag

e

m) # Probes inserted 54 99 55 64 26

To further evaluate the effectiveness of some strategies over others, mutation testing [11]

was also used at the specification level. Mutation operators were defined for LOTOS con-
structs and then applied to the above five LOTOS specifications to generate a number of mu-
tants. For each specification, the related test suite was run against each mutant. If no new
error was found for a given mutant, then this indicated that either the mutant was “equiva-
lent” to the original specification, or the test suite was not powerful enough to detect that type
of error.

All of the testing patterns in Annex A and most of their strategies have been exercised in
one experiment or the other. Failed tests and missed probes helped detect various problems
while the prototypes were constructed and functionalities iteratively added (in the UCM
models and then in the LOTOS specifications). Among others:
— Non-determinism: Some complex guarding conditions on a given choice point (OR-fork)

were not mutually exclusive.
— Deadlocks: Some complex guarding conditions on a given choice point were not covering

all situations. Unexpected deadlocks also occurred when expected answers from the sys-
tem under test were not being provided due to incorrect process synchronization.

— Race conditions: the SBC experiment had a situation where two people hanging the
phone almost at the same time would create a deadlock.

— Ambiguities: In the PTM informal specification, under standardization at the time, many
rejected service requests did not have a precise rejection cause, and these had been coded
differently in the prototype and in the tests.

— Undesirable interactions: In the FI experiment, several pairs of features had unexpected
and often incompatible behavior when used together. For example, one would disable the
other, two features would attempt to run in parallel while they were expected to run in se-
quence, or the billing for the use of multiple features would be incorrect.

— Most missed probes led to the discovery of unfeasible paths (due to incompatible guard-
ing conditions) as well as discrepancies between the UCM models and their LOTOS speci-
fications (e.g., additional functionalities or exception handling not described in the
UCMs).

Pre-publication version. To appear in Computer Networks, 2005. 7

Although many interesting problems were detected, much effort was spent on the manual
generation of the test cases and on their maintenance as the target systems under test (the
LOTOS prototypes) evolved. We also observed that the use of testing patterns and accep-
tance/rejection testing strategies was not sufficient to ensure the full correctness of all the
specifications, which is to be expected from scenario-driven test generation in general. Addi-
tional robustness test cases, created manually without using testing patterns, have shown their
usefulness in detecting other errors.

3. Testing based on UCM scenario definitions

Testing patterns such as the ones we have discussed help engineers make informed decisions
about the level of coverage they want for a UCM model. However, this process is entirely
manual. UCM scenario definitions offer an alternative where test purposes can be produced
semi-automatically.

3.1 Scenario definitions

Scenario definitions are an addition to the basic UCM models, and make use of formalized
selection conditions attached to branching points (i.e., OR-forks, dynamic stubs, and timers).
UCMs have a very simple path data model, which enables global Boolean variables to be
used in conditions and to be modified in responsibilities. A scenario definition consists of:
— a name;
— initial values for the variables;
— a set of start points initially triggered;
— optionally, a post-condition expected to be satisfied at the end of scenario execution.
An instance of a UCM scenario can be extracted from a UCM model given a scenario defini-
tion and a path traversal algorithm. The first algorithm was proposed by Miga et al. and pro-
totyped in UCMNAV [30]. It was used to support the understanding of complex UCM models
by highlighting the paths traversed according to a given scenario definition. It was then ex-
tended to generate a Message Sequence Chart, hence illustrating the scenario linearly. This
first algorithm was limited in many ways, and Mussbacher generalized the traversal idea to
produce guidelines (incorporated in the Z.152 draft [44], part of the User Requirements Nota-
tion [28]) to which many traversal algorithms could conform. These guidelines are at the
source of a new implementation of the traversal algorithm in UCMNAV [6], which now de-
couples the result of the traversal (output in XML) from specific representations such as
MSCs. UCMEXPORTER [7][42] is a recent tool that takes the resulting XML scenarios as in-
put and converts them to MSCs (in Z.120 phrase representation [26]) or to UML 1.5 se-
quence diagrams (in XMI format [33]), with various options offered to the user. A prototype
export filter that generates TTCN-3 [27] test skeletons is also included.

Scenario definitions may have different origins. Informal requirements, stories, and use
cases provided by various stakeholders are usually excellent candidates. Additional scenario
definitions may be added to reach a particular coverage of the UCM model (e.g., to cover all
path segments). Business goals can also be refined into scenario definitions. In fact, the User
Requirements Notation [28] suggests a complementary goal-oriented language to capture
business objectives and to refine them into operationalizations, hence providing the rationale
for specific scenario definitions [5].

Scenario definitions, accompanied by a tool-supported path traversal algorithm, allow for
the semi-automatic generation of test purposes. UCMNAV outputs them as partial orders
coded in XML. Suitable scenario definitions still need to be provided manually, but then the

Pre-publication version. To appear in Computer Networks, 2005. 8

generation of the test purpose is automated, which is a significant advantage as the UCM
model evolves.

3.2 Example

To illustrate the use of scenario definitions, we will use the simple UCM model in Fig. 4,
created with UCMNAV. It presents a simplified retail system composed of a root map that
contains a dynamic stub with two plug-ins. There are three components involved (Customer,
Retailer, and Warehouse). As for testing patterns, scenario definitions are independent of the
components present in the model (if any).

Fig. 4. UCM model of a simplified retail system: root map and plug-ins.

Customer Retailer Warehouse

Order

Delivered
OUT1

OUT2
RequestForMore

[SmallQty]

[LargeQty]
PrepRequest

IN1
Stub

in1

out1

in1
out2

out1

Delivery
Select when:
¬NeedMore

DeliveryAndRequest
Select when:
NeedMore

Customer Retailer Warehouse

Order

Delivered
OUT1

OUT2
RequestForMore

[SmallQty]

[LargeQty]
PrepRequest

IN1
Stub

in1

out1

in1
out2

out1

Delivery
Select when:
¬NeedMore

DeliveryAndRequest
Select when:
NeedMore

Two Boolean variables guide the selection of paths and plug-ins: LargeQty and NeedMore.
The customer may order a large quantity of goods, in which case LargeQty will be set to True.
The formal definition of guard [LargeQty] is LargeQty, and that of [SmallQty] is ¬LargeQty.
When responsibility PrepRequest is executed, NeedMore becomes True. One of the two plug-
ins will be selected according to the evaluation of the stub’s selection policy expressed in
Fig. 4. The following four scenario definitions all use Order as start point, and no post-
conditions:
— NormalLargeQty: LargeQty=True, NeedMore=False.
— NormalSmallQty: LargeQty=False, NeedMore=False.
— UndefinedNeedMore: LargeQty=False, NeedMore=Undefined.
— InterestingCase: LargeQty=False, NeedMore=True.

The left part of Fig. 5 shows the result of the first scenario (NormalLargeQty), as output in
XML by UCMNAV (several attributes used for traceability to the original model were left out
for simplicity). On the right side is the MSC representation of that same scenario, produced
from the XML description by UCMEXPORTER and then rendered graphically with Telelogic
Tau [38]. As expected, NeedMore was changed to True in the responsibility and the Delivery-
AndRequest plug-in was selected. The output shows that concurrency was preserved, as well
as traceability to the components, conditions, and responsibilities.

NormalSmallQty leads to a different scenario where the Delivery plug-in is selected. With
UndefinedNeedMore, the traversal stops when trying to select a plug-in in the dynamic stub
because the guarding conditions cannot be evaluated (a variable is undefined). Interesting-
Case is a situation where a discussion might be needed. What if NeedMore is initially set to
True? Will the Warehouse be requested to produce more goods even when the retailer stocks
might still be sufficient? Scenario definitions can help explore such questions at the level of a

Pre-publication version. To appear in Computer Networks, 2005. 9

UCM model, with little effort. The XML scenarios (whose format is defined in [6]) also con-
tain sufficient information to be considered as test goals on their own, or they can be trans-
formed to MSC or TTCN-3 for testing purposes.

<?xml version='1.0' standalone='no'?>
<!DOCTYPE scenarios SYSTEM "scenarios1.dtd">
<scenarios design-name = "WITUL04" ...>

<group name = "WitulTests" group-id = "1" >
<scenario name = "NormalLargeQty" scenario-definition-id = "1" >

<seq>
<do name="Order" type="Start" comp = "Customer" ... />
<condition label="[LargeQty]" expression ="LargeQty" />
<do name="PrepRequest" type="Resp" comp = "Retailer" ... />
<condition label="DeliverAndRequest" expression ="NeedMore" />
<do name="in1" type="Connect_Start" comp = "Retailer" .../>
<par>
<seq>

<do name="out2" type="Connect_End" comp = "Retailer" .../>
<do name="RequestForMore" type="End_Point" comp = "Warehouse" .../>

</seq>
<seq>

<do name="out1" type="Connect_End" comp = "Retailer".../>
<do name="Delivered" type="End_Point" comp = "Customer".../>

</seq>
</par>

</seq>
</scenario>

</group>
</scenarios>

WarehouseRetailerCustomer

1

1par

1

DeliverAndRequest

PrepRequest

LargeQty

MSC NormalLargeQty

RequestForMore

Delivered

Order

Fig. 5. Result of scenario definition NormalLargeQty, in XML and in MSC.

Applying the testing patterns discussed in section 2 with, for example, strategies 5.C, 2.A,
and 1.C, would have led to the following test goals:

{ <Order, RequestForMore, Delivered>, <Order, PrepRequest, Delivered>
 <Order, PrepRequest, RequestForMore, Delivered>, <Order, Delivered> }

The issue here is that these routes need to be inspected manually in order to detect unfeasible
scenarios (such as <Order, PrepRequest, Delivered>), something that would be detected
automatically by traversal algorithms using scenario definitions.

3.3 Applications

Scenario definitions have been used by our team to explore various types of systems (e.g.,
simple telephone, elevator, security subsystem, and electronic warehouse) and to generate
more detailed scenarios, with design level artifacts such as inter-component messages. To the
authors’ knowledge, the most significant case study where test purposes were generated from
scenario definitions has been for an Automated Call Delivery, whose UCM model was re-
verse-engineered from an existing PBX system (this is unpublished industrial work).

He et al. [23] used MSC scenarios generated from a UCM model (via scenario definitions
and UCMNAV) to explore the automated synthesis of SDL executable specifications. Kloc-
work’s MSC2SDL, part of Telelogic Tau 4.5 [38], was used to synthesize the specification.
However, the authors have not explored the use of this specification to generate test cases in
TTCN by using the MSCs as test purposes for an SDL specification, a functionality sup-
ported by Tau (namely with Autolink [29]).

4. Testing based on UCM transformations

Section 2 has described a manual process for generating test purposes from testing patterns,
and section 3 a semi-automatic process involving scenario definitions. In this section, we

Pre-publication version. To appear in Computer Networks, 2005. 10

discuss approaches where the generation of test purposes from UCM models is fully auto-
mated.

4.1 Automated generation of LOTOS scenarios and TTCN test cases

To generate test purposes, Charfi uses an exhaustive path traversal algorithm, adapted from
Miga’s [30], to traverse a UCM model augmented with key annotations in LOTOS [15]. This
approach, prototyped in the UCM2LOTOSTEST tool, produces an exhaustive collection of test
purposes described as partially-ordered sequences of LOTOS events.

UCM2LOTOSTEST automates a fixed selection of testing patterns from Annex A (in par-
ticular, 1B:All segments, 3B:At most one iteration, and 5C:All plug-ins). The presence of
multiple start points (TP4) is not handled, but this partial-order representation of the routes
preserves concurrency explicitly (hence there is no need for TP2). The test generation algo-
rithm handles components and inter-component communication, but in a hard-coded way,
very biased towards the author’s case study (a simplified next-generation PBX).

The generation of test purposes is automated, but the size of the resulting test suite grows
very quickly as the UCM model becomes more complex. This is due to the exhaustive nature
of the traversal, which is not guided by valuable hand-picked scenario definitions. Also,
UCM2LOTOSTEST does not consider the path data model, and therefore nothing prevents the
generation of test purposes that are unfeasible because of contradictory guarding conditions
collected during the traversal. For instance, in the example of Fig. 4, one of the scenarios
generated would go through the [LargeQty] path segment, and then through the Delivery plug-
in. This path is unfeasible because NeedMore cannot be True and False at the same time.

To detect such invalid scenarios, Charfi manually creates LOTOS specifications from the
UCM model, which are checked against the test purposes (using LOLA). If a test fails, then
this indicates either that the test purpose results from an invalid route, or that the specification
is incorrect.

The availability of such LOTOS specifications was also exploited for a different and com-
plementary objective. The test purposes were used, in combination with the specifications
and the TGV toolkit [19], to generate acceptance test cases in TTCN.

4.2 Automated generation of LOTOS specifications and scenarios

Guan’s work [21] had a different objective, which was the generation of scenarios in the form
of Message Sequence Charts from UCM models, in assistance to the process of producing
precise and consistent documentation for telecommunications standards. The interest of her
work in our context is that she developed an automatic translator from a substantial subset of
the UCM notation (presented in Fig. 1) to LOTOS. This tool, called UCM2LOTOSSPEC, im-
proves greatly upon the approach suggested by Charfi (Section 4.1), where the LOTOS speci-
fication is produced manually, because the specification can be re-generated each time the
UCM model changes.

A companion tool based on the same principles, UCM2LOTOSSCENARIOS, is capable of
extracting individual LOTOS scenarios or test purposes from the UCM model. The generation
of scenarios follows the structure of the UCM, in the sense that all possible paths in the UCM
are traversed once. The generated test purposes preserve the concurrency introduced in the
UCM model (e.g., with AND-forks) using the LOTOS parallel operator (|||). Unlike Charfi’s
UCM2LOTOSTEST, which extended UCMNAV directly, UCM2LOTOSSCENARIOS is a stand-
alone Java application that accepts UCM models in UCMNAV’s XML format. It is also less
restricted than UCM2LOTOSTEST because it supports the generation of test purposes from
maps with loops and multiple start points.

Pre-publication version. To appear in Computer Networks, 2005. 11

The LOTOS specification and the test purposes so generated can be used to verify and

validate UCM models. LOLA can be used to check the test purposes (expressed as LOTOS test
processes) against the specification to detect non-determinism and other types of design er-
rors, which may require modifications to the UCM model. Another tool (LOTOS2MSC [37]) is
also used in order to present the scenarios in Message Sequence Chart format, for documenta-
tion and manual inspection of the results. The process was demonstrated on a standard that
was under development at that time (3G Location Based Services, from the Telecommunica-
tions Industry Association — TIA).

This research focuses on the translation algorithms, and does not address the problems of
scenario selection or elimination of unfeasible scenarios identified previously (UCM2LOTOS-
SCENARIOS does not use UCM scenario definitions nor the UCM path data model). Therefore,
for complex UCMs, this method will produce large numbers of scenarios and many are likely
to be unfeasible, requiring manual inspection to be detected. For example, using the simpli-
fied retailer system of Fig. 4 as input, UCM2LOTOSSCENARIOS generates the same four sce-
narios as Charfi’s UCM2LOTOSTEST, including the one with an unfeasible path.

5. Discussion

The approaches presented here are briefly evaluated in terms of several quality and usability
aspects, and then compared to related work. A discussion on some issues regarding the re-
finement of test purposes into test cases follows.

5.1 Comparison

The quality of the test purposes generated depends principally on the feasibility of the scenar-
ios and on the handling of inter-component communication and of concurrency. However,
other criteria such as usability and the degree of automation also impact the suitability of a
given approach. Table 2 presents a qualitative summary of our findings. The scores go from
excellent () to passable () to deficient ().

Table 2. Qualitative comparison of three approaches to UCM-based generation of test purposes.

Maturity

Automation

Usability
Transformations

Coverage

Tool Support

Model Evolution
Scalability

Exhaustiveness
Communication

Unfeasible
scenarios

Automatic
Transformations

Scenario
Definitions

Testing Patterns

Maturity

Automation

Usability
Transformations

Coverage

Tool Support

Model Evolution
Scalability

Exhaustiveness
Communication

Unfeasible
scenarios

Automatic
Transformations

Scenario
Definitions

Testing Patterns

Pre-publication version. To appear in Computer Networks, 2005. 12

— Unfeasible scenarios: scenario definitions provide the best approach here, since the tra-

versal mechanism detects whether a route for a scenario definition is feasible or not.
Automated transformations cannot handle unfeasible routes properly, and the latter must
be detected afterwards (e.g., by manual inspection or by checking them against an oracle
specification).

— Inter-component communication: Testing patterns provide no help here but all the other
approaches provide partial solutions to this issue (e.g., by generating synthetic messages
that can be refined later into more realistic messages).

— Exhaustiveness and coverage: The automated approaches are exhaustive and may result
in an explosion of test purposes. Testing patterns, even when targeting a specific cover-
age, can lead to many uninteresting or repetitive test purposes. Scenario definitions focus
on test purposes of value to some stakeholders, however their coverage of the UCM
model remains difficult to assess.

— Scalability: Scenario definitions can scale to very large UCM models. Testing patterns
could become scalable if less manual effort was involved. The automated, transformation-
based approaches that we know today generate too many test purposes (where many are
unfeasible).

— UCM model evolution: Testing patterns do not really provide any support here. Guan’s
automated approach is interesting because the test purposes can be validated against a
LOTOS specification automatically generated (unlike Charfi’s). Scenario definitions are
also useful when the model evolves as they require little or no modifications (e.g., when
new variables are added) and they can be used for regression testing (when checking
whether a revised UCM model has broken anything).

— Usability and transformations: Extra effort is required to define and maintain scenario
definitions and the conditions in the UCM model, but the resulting test goals are output in
XML and easy to post-process. Testing patterns are simple to understand and do not re-
quire a formal UCM model to be used, but transformations are manual. Automated ap-
proaches are simple to use (especially Guan’s), but the resulting test goals are currently
formulated in a format less flexible than XML (e.g., LOTOS traces).

— Maturity and tool support: Although they have been used on numerous occasions, testing
patterns have no tool support yet. Scenario definitions are supported by UCMNAV, which
generates XML scenarios that can be further transformed by UCMEXPORTER into MSCs,
UML sequence diagrams, TTCN-3 test skeletons, etc. UCM2LOTOSSCENARIOS automates
the generation of test purposes from UCM models in UCMNAV format, but it only exists
as a prototype.

So far, test purpose generation based on scenario definitions appears to be the most pragmatic
and simple avenue for most applications.

5.2 Related work

Two of Binder’s test patterns [10] stand out as being related to the ones presented here.
Round-trip Scenario Test is used to extract a control flow model from a UML sequence dia-
gram and then develop a path set that provides minimal branch and loop coverage (similar to
Testing Patterns 1 and 3 in Annex A). However, Binder’s heuristic solution does not consider
concurrency and sub-models (e.g., plug-ins). The UCM-oriented test patterns handle such
constructs and provide strategies for coping with related issues such as scalability and state
explosion which are avoided altogether by Binder. Extended Use Case Test is used to develop
a system-level test suite by modeling essential capabilities as extended use cases. UCMs pro-
vide benefits similar to those cited by Binder, but they also provide an appropriate level of
abstraction for early design stages. UML extend and include relationships for use cases are

Pre-publication version. To appear in Computer Networks, 2005. 13

also difficult to flatten (flattening is simpler with the UCM stub/plug-in mechanism). The
Extended Use Case Test pattern is also very generic, whereas the UCM-oriented testing pat-
tern language offers a more systematic way of generating test purposes. Additionally, UCMs
provide a precise way of defining operational variables and using them (in conditions and in
scenario definitions).

The work of Tsai et al. [39] in the area of thin threads is also relevant. A thin thread
represents a basic end-to-end system functionality and is associated with a set of conditions
specifying its triggering events. They have been used during Y2K testing at the US Depart-
ment of Defense. Thin treads can be represented as text or as trees, and they correspond to
scenarios or UCM routes extracted from UCM models. Bai et al. [9] propose a way of ex-
tracting thin threads from UML activity diagrams, which share many commonalities with
UCMs. Their algorithm does not preserve concurrency (two thin threads are generated for
each pair of activity sequences that are in parallel), loops are visited a number of times, and
components (swimlanes) and inter-component messages are not considered. However, thin
threads preserve alternatives, and so each branch can be converted to a test purpose. Test
conditions and data objects are collected along the way, and concrete test data satisfying
these conditions must be provided (manually) to transform each branch into a test case. The
approach is still exhaustive (requiring further selection) and does not prevent the generation
of unfeasible scenarios. Tool support is not available for this conversion.

Wieringa and Eshuis also use UML activity diagrams, this time however to translate them
into an input format for a model checker, which is used to verify user-defined propositional
requirements [18]. If these requirements fail, the model checker returns a counter-example
whose corresponding path in the activity diagram is highlighted. The semantics of these ac-
tivity diagrams supports time (unlike UCM’s) and data (often reduced to simple Boolean val-
ues), and their conversion is supported by tools. The generation of test purposes has not yet
been considered.

Reuys et al. [36] have done some work on the use of activity diagrams for test purpose
generation. Their models are supplemented with annotations capturing variability points
(their research focus is on product families), and their test selection strategy is coverage-
driven. However, algorithms and tool support do not yet exist.

Neukirchen et al. [31] suggest the use of MSC-based patterns for real-time communica-
tion systems (e.g., expressing delay, throughput, and periodic real-time requirements) for
developing test cases. They provide a mapping between their fine-grained patterns and prede-
fined TIMEDTTCN-3 (a real-time extension to TTCN-3) functions, hence helping bridge the
gap between test purposes and test cases. The UCM patterns presented here are more applica-
tion-independent and abstract than the ones in [31]. However, the latter address more special-
ized and detailed issues related to time and communication, and are applicable to design.

 Turner proposes several approaches for formalizing models expressed as Chisel scenario
diagrams [41]. He provides tool-supported transformations to LOTOS and SDL and defines
companion languages for testing and validating the resulting specifications in a way that
hides the details of the specifications. Test purpose generation and selection is not yet sup-
ported per se, but this framework could likely be extended to support such functionality.

More recently, Hassine presented an algorithm to reduce the complexity of UCM models
using slicing criteria [22]. This work could be combined with the approaches presented in this
paper in order to cope (to some extent) with the scenario explosion problem.

Finally, Ebner proposes a mapping from test purposes in MSC-2000 form to TTCN-3 test
cases [17]. This work is interesting in our context as it nicely complements the work pre-
sented in sections 3 and 4, where MSCs are extracted from UCM models. This provides a
path from UCMs to TTCN-3 that deserves further exploration.

Pre-publication version. To appear in Computer Networks, 2005. 14

5.3 Towards test case generation

In order to further transform UCM-generated test purposes to implementation-level test cases,
several points need to be taken into consideration, including:
— Communication: Communication mechanisms between pairs of components connected by

UCM paths must be specified (e.g., messages, parameters and data values, protocols).
— Interfaces: Some UCM responsibilities and start/end points located inside components

may be internal and hence should be left out of the test purposes. The testing interface
needs to be specified.

— Data values: Data values need to be selected such that the various conditions in the test
purpose are satisfied. Conventional techniques (e.g., boundary analysis [31]) are applica-
ble.

— Set-up and clean-up: Preambles and postambles may be needed for each test case.
— Target: Tests need to be re-targetable and readable by test equipment, as supported by

languages such as TTCN-3.
Some of these aspects have been recently explored the UCM-based testing of a Web applica-
tion, where scenario definitions have been used [8]. This experiment confirmed the necessity
of adding interface information and of selecting data values when generating test cases from
test purposes.

6. Conclusions

UCMs are capable to capture, integrate, and analyze scenarios in a way that abstracts from
messages and, to some extent, from the underlying components supporting the scenarios’
activities. The existing UCM requirements analysis model can be reused for generating test
purposes. We have surveyed three approaches (developed by our team and students) based on
testing patterns, scenario definitions, and automated transformations (which implement a
fixed subset of testing patterns). We have illustrated some of the main concepts and tech-
niques, and we have discussed the strengths and weaknesses of several quality and usability
aspects. At the moment, approaches based on scenario definitions appear to be the most fea-
sible. The available solutions are still imperfect, but they favorably compare to approaches
developed with other models, for instance UML activity diagrams or thin threads. Moreover,
many of the techniques presented here could be applicable to other notations (UML 2.0 activ-
ity diagrams would be an excellent candidate).

Several improvements are foreseeable in the near future. For instance, other elements of
the UCM notation (e.g., timers and dynamic responsibilities [44]) could be taken into consid-
eration when generating test purposes. From a tools perspective, it will be useful to consider
coverage measures for UCMs in UCMNAV (for groups of scenario definitions) and proper
conversion and handling of the UCM path data model in automated conversion tools (to
avoid the generation of unfeasible paths). These tools could also be made more flexible by
offering users choices between various testing patterns during automated translations, as well
as by generic mechanisms to associate meaningful message names to UCM paths linking
pairs of components. Longer-term research could look into how to get closer to test cases (as
identified in section 5.3) and into the impact on the UCM notation to support this new usage.
The work presented in [8] represents one step in that direction.

Although the LOTOS language has been used in many experiments discussed here, other
executable formal languages, such as SDL, could be used for the automated transformation
approaches. The availability of SDL specifications, generated manually or translated from the
UCM model, would introduce another level of complexity in the generation of test purposes.
LOTOS uses multi-way rendezvous (i.e., synchronous) communication without explicit time,

Pre-publication version. To appear in Computer Networks, 2005. 15

whereas SDL uses asynchronous communication, with time. Many new categories of errors
could hence be taken into consideration while generating test purposes. Given a SDL specifi-
cation and MSC test purposes, existing tools could also be used to generate TTCN test
cases [29]. Alternatively, MSCs generated from UCMs (via scenario definitions or automated
transformations) could potentially be translated directly to TTCN-3 test cases, as suggested
in [17], without the need for a SDL specification.

The UCM notation supports performance annotations and performance requirements [35].
This additional source of information could possibly enable the generation of performance-
oriented test purposes, which are very desirable for testing design models and implementa-
tions.

Acknowledgements. This work has been supported financially by the Natural Science and
Engineering Research Council of Canada, through its Strategic Grants and Discovery Grants
programs. The authors would like to thank Jacques Sincennes, who over the years has been
involved in most of the projects discussed here.

References

[1] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language, Oxford University Press, New
York, USA, 1977.

[2] D. Amyot and L. Logrippo, Structural Coverage for LOTOS–A Probe Insertion Technique, in: H.
Ural, R.L. Probert and G.v. Bochmann (Eds.), Testing of Communicating Systems: Tools and Tech-
niques (TestCom 2000), Kluwer Academic Publishers, 2000, pp. 19–34, Available from
<http://www.site.uottawa.ca/~damyot/pub/TestCom2000.pdf>.

[3] D. Amyot and L. Logrippo, Use Case Maps and LOTOS for the Prototyping and Validation of a Mo-
bile Group Call System. Computer Communication, 23(12) (2000) 1135–1157.

[4] D. Amyot, Specification and Validation of Telecommunications Systems with Use Case Maps and
LOTOS, Ph.D. thesis, SITE, University of Ottawa, Canada, September 2001,
Available from <http://www.usecasemaps.org/pub/da_phd.pdf>.

[5] D. Amyot, Introduction to the User Requirements Notation: Learning by Example, Computer Net-
works, 42(3) (2003) 285–301.

[6] D. Amyot, D.Y. Cho, X. He, and Y. He, Generating Scenarios from Use Case Map Specifications,
Third International Conference on Quality Software (QSIC'03), Dallas, USA, November 2003.
Available from <http://www.usecasemaps.org/pub/QSIC03.pdf>.

[7] D. Amyot, A. Echihabi, and Y. He, UCMEXPORTER: Supporting Scenario Transformations from
Use Case Maps, Proc. of NOTERE’04, Saïdia, Morocco, June 2004.

[8] D. Amyot, J.-F. Roy, and M. Weiss, UCM-Driven Testing of Web Applications, to appear in: 12th
SDL Forum (SDL'05), Grimstad, Norway, June 2005.

[9] X. Bai, C.P. Lam, and H. Li, An Approach to Generate Thin-threads from UML Diagrams, Techni-
cal Report TR-03-12, Edith Cowan University, Australia, 2004, Available from
<http://www.scis.ecu.edu.au/research/se/docs/TR-03-12.pdf>.

[10] R.V. Binder, Testing Object-Oriented Systems – Models, Patterns, and Tools, Addison-Wesley,
1999.

[11] P.E. Black, V. Okun, and Y. Yesha, Mutation Operators for Specifications, 15th Automated Software
Engineering Conference (ASE2000), Grenoble, France, September 2000, IEEE Computer Society,
pp. 81–88, Available from <http://hissa.ncsl.nist.gov/~black/Papers/opers.ps>.

[12] R.J.A. Buhr and R.S. Casselman, Use Case Maps for Object-Oriented Systems, Prentice Hall, 1996.
Available from <http://www.usecasemaps.org/pub/UCM_book95.pdf>.

[13] R.J.A. Buhr, Use Case Maps as Architectural Entities for Complex Systems, IEEE Transactions on
Software Engineering, Vol. 24, No. 12, December 1998, 1131–1155. Available from
<http://www.usecasemaps.org/pub/ucmUpdate.pdf>.

Pre-publication version. To appear in Computer Networks, 2005. 16

[14] M. Calder, M. Kolberg, E.H. Magill, and S. Reiff-Marganiec, Feature interaction: a critical review

and considered forecast, Computer Networks 41(1) (2003) 115–141.
[15] L. Charfi, Formal Modeling and Test Generation Automation with Use Case Maps and LOTOS.

M.Sc. thesis, SITE, University of Ottawa, Canada, February 2001. Available from
<http://www.usecasemaps.org/pub/lc_msc.pdf>.

[16] D. DeLano and L. Rising, System Test Pattern Language. Pattern Languages of Programs
(PLoP’96), Allerton Park, Illinois, USA, 1996. Available from
<http://www.agcs.com/patterns/papers/systestp.htm>.

[17] M. Ebner, TTCN-3 Test Case Generation from Message Sequence Charts. ISSRE'04 Workshop on
Integrated-reliability with Telecommunications and UML Languages (ISSRE04:WITUL), Rennes,
France, November 2004.

[18] R. Eshuis and R.J. Wieringa, Tool support for verifying UML activity diagrams. IEEE Transactions
on Software Engineering, 30(7):437–447 (2004), Available from
<http://is.tm.tue.nl/staff/heshuis/tse02.pdf>.

[19] J-C. Fernandez, C. Jard, T. Jéron, and C. Viho, Using On-the-fly Verification Techniques for the
Generation of Test Suites. Computer Aided Verification (CAV’96), New Jersey, USA, 1996, pp.
348–359.

[20] J. Grabowski, D. Hogrefe, and R. Nahm, Test Case Generation with Test Purpose Specification by
MSCs, in: O. Faergemand and A. Sarma (Eds.), SDL'93 – Using Objects, North-Holland, 1993.

[21] R. Guan, From Requirements to Scenarios through Specifications: A translation Procedure from Use
Case Maps to LOTOS, Master thesis, SITE, University of Ottawa, Canada, 2002. Available from
<http://lotos.csi.uottawa.ca/ftp/pub/Lotos/Theses/rg_msc.doc>.

[22] J. Hassine, R. Dssouli, and J. Rilling, Applying Reduction Techniques to Software Functional Re-
quirement Specifications. In: D. Amyot and A.W. Williams (Eds.), System Analysis and Modeling –
Fourth International SDL and MSC Workshop, SAM 2004, Lecture Notes in Computer Science,
Volume 3319, Springer, 2005, pp. 138-153.

[23] Y. He, D. Amyot, and A. Williams, Synthesizing SDL from Use Case Maps: An Experiment, in: R.
Reed and J. Reed (Eds.), SDL 2003: System Design – 11th International SDL Forum, Stuttgart,
Germany, Lecture Notes in Computer Science, Volume 2708, Springer, 2003, pp. 117–136. Avail-
able from <http://www.usecasemaps.org/pub/SDL03-UCM-SDL.pdf>.

[24] ISO – International Organization for Standardization, Information Processing Systems, Open Sys-
tems Interconnection, LOTOS – A Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour, IS 8807, Geneva, Switzerland, 1989.

[25] ITU-T – International Telecommunications Union, Recommendation Z.100 (08/02): Specification
and description language (SDL), Geneva, Switzerland, 2002.

[26] ITU-T – International Telecommunications Union, Recommendation Z.120 (04/04): Message se-
quence chart (MSC), Geneva, Switzerland, 2004.

[27] ITU-T – International Telecommunications Union, Recommendation Z. 140 (04/03): Testing and
Test Control Notation version 3 (TTCN-3): Core language, Geneva, Switzerland, 2003.

[28] ITU-T – International Telecommunications Union, Recommendation Z.150 (02/03): User Require-
ments Notation (URN) – Language requirements and framework, Geneva, Switzerland, 2003.

[29] B. Koch, J. Grabowski, D. Hogrefe, and M. Schmitt, Autolink – A Tool for Automatic Test Genera-
tion from SDL Specifications, IEEE International Workshop on Industrial Strength Formal Specifi-
cation Techniques (WIFT’98), Boca Raton, USA, 1998, pp. 114–126.

[30] A. Miga, D. Amyot, F. Bordeleau, D. Cameron, and M. Woodside, Deriving Message Sequence
Charts from Use Case Maps Scenario Specifications, in: R. Reed and J. Reed (Eds.), SDL 2001:
Meeting UML – 10th International SDL Forum, Copenhagen, Denmark, Lecture Notes in Com-
puter Science, Volume 2078, Springer, pp. 268–287.

[31] G.J. Myers, The Art of Software Testing, Wiley-Interscience, New-York, USA, 1979.
[32] H. Neukirchen, Z.R. Dai, and J. Grabowski, Communication Patterns for Expressing Real-Time

Requirements Using MSC and their Application to Testing, in: R. Groz and R.M. Hierons (Eds.),
Testing of Communicating Systems, 16th IFIP International Conference, TestCom 2004, Ox-
ford, UK, March 2004, Lecture Notes in Computer Science, Volume 2978, Springer, pp. 144–159.

Pre-publication version. To appear in Computer Networks, 2005. 17

[33] OMG – Object Management Group (2003), Unified Modeling Language Specification, Version 1.5.

Available from <http://www.omg.org/uml/>.
[34] S. Pavón, D. Larrabeiti, D., and G. Rabay, LOLA–User Manual, version 3.6, DIT, Universidad Poli-

técnica de Madrid, Spain, Lola/N5/V10, 1995.
[35] D.B. Petriu, D. Amyot, and M. Woodside, Scenario-Based Performance Engineering with UCMNav.

in: R. Reed and J. Reed (Eds.), SDL 2003: System Design – 11th International SDL Forum, Stutt-
gart, Germany, Lecture Notes in Computer Science, Volume 2708, Springer, 2003, pp. 18–35.
Available from <http://www.usecasemaps.org/pub/SDL03-UCM-LQN.pdf>.

[36] A. Reuys, S. Reis, S., E. Kamsties, and K. Pohl, Derivation of Domain Test Scenarios from Activity
Diagrams, Workshop on Product Line Engineering – The Early Steps (PLEES-03), Erfurt, Germany,
2003, Available from <http://www.plees.info/Plees03/Papers/PLEES_2003_Reuys.pdf>.

[37] B. Stepien and L. Logrippo, Graphic visualization and animation of LOTOS execution traces. Com-
puter Networks, 40(5) (2002) 665–681.

[38] Telelogic AB, Tau SDL Suite, 2004, Available from
<http://www.telelogic.com/products/tau/sdl/index.cfm>.

[39] W.T. Tsai, X. Bai, R. Paul, W. Shao, and V. Agarwal, End-To-End Integration Testing Design.
COMPSAC 2001, Chicago, USA, October 2001, pp. 166–171. Available from
<http://asusrl.eas.asu.edu/Publications/E2EpaperCOMPSACFinal.pdf>.

[40] J. Tretmans, A formal approach to conformance testing, in: O. Rafiq (Ed.), Protocol Test Systems,
VI – Sixth International Workshop on Protocol Test systems (IWPTS), Pau, France, September
1993, pp. 257–276.

[41] K.J. Turner, Formalising Graphical Behaviour Descriptions, in: C. Rattray, S. Maharaj, and
C. Shankland (Eds.), Algebraic Methodology and Software Technology, 10th International Confer-
ence, AMAST 2004, Stirling, Scotland, UK, Lecture Notes in Computer Science, Volume 3116,
Springer, 2004, pp. 537–552.

[42] UCM User Group, UCMEXPORTER, 2003, Available from <http://ucmexporter.sourceforge.net/>.
[43] UCM User Group, UCMNAV 2, 2004, Available from

<http://www.usecasemaps.org/tools/ucmnav/index.shtml>.
[44] URN Focus Group, Draft Rec. Z.152 – Use Case Map Notation (UCM). Geneva, Switzerland, Sep-

tember 2003, Available from <http://www.UseCaseMaps.org/urn/>.

Pre-publication version. To appear in Computer Networks, 2005. 18

Annex A: UCM-Oriented Testing Patterns with Strategies

The following table presents examples of the testing patterns and strategies used in the testing
pattern language of Fig. 2. The complete description of the patterns can be found in [4].

TP1: Testing pattern for alternatives

1A: All results (end points): {<SP, a, c, EP>}
1B: All segments: {<SP, a, c, EP>, <SP, b, d, EP>}
1C: All paths: {<SP, a, c, EP>, <SP, a, d, EP>, <SP, b, c, EP>, <SP, b, d, EP>}
1D: All combinations of sub-conditions (for composite conditions, e.g., (X OR Y) AND Z)

TP2: Testing pattern for concurrency (assuming interleaving semantics)

2A: One combination: {<SP, a, b, c, EP>}
2B: Some combinations: {<SP, a, b, c, EP>, <SP, b, a, c, EP>}
2C: All combinations: {<SP, a, b, c, EP>, <SP, b, a, c, EP>, <SP, b, c, a, EP>}

TP3: Testing pattern for loops

3A: All segments: {<SP, a, b, a, EP>}
3B: At most k iterations: {<SP, a, EP>, <SP, a, b, a, EP>, <SP, a, b, a, b, a, EP>} (if k = 2)
3C: Valid boundaries [low, high]: Tests low, low+1, high-1, and high. If low = 1 and high = 5:
 {<SP,a,b,a,EP>, <SP,a,b,a,b,a,EP>, <SP,a,b,a,b,a,b,a,b,a,EP>, <SP,a,b,a,b,a,b,a,b,a,b,a,EP>}
3D: All boundaries [low, high]: Tests valid ones (3C) and invalid ones (low-1 and high+1). If low = 1 and high = 5:
 Accept: {<SP,a,b,a,EP>, <SP,a,b,a,b,a,EP>, <SP,a,b,a,b,a,b,a,b,a,EP>, <SP,a,b,a,b,a,b,a,b,a,b,a,EP>}
 Reject: {<SP,a,EP>, <SP,a,b,a,b,a,b,a,b,a,b,a,b,a,EP>}

a

SP EPb

c

d

a

SP EPb c

a
SP EP

b

Pre-publication version. To appear in Computer Networks, 2005. 19

TP4: Testing pattern for multiple start points

Height strategies based on necessary, redundant, insufficient, and racing subsets of inputs:
4A: One necessary subset, one goal: {<SP2, SP3, EP>} (if case 3 is selected)
4B: All necessary subsets, one goal: {<SP2, SP3, EP>, <SP1, EP>} (assume interleaving)
4C: All necessary subsets, all goals: {<SP2, SP3, EP>, <SP3, SP2, EP>, <SP1, EP>}
4D: One redundant subset, one goal: {<SP1, SP2, EP>}
4E: All redundant subsets, one goal: {<SP1, SP2, EP>, <SP3, SP1, EP>}
4F: One insufficient subset, one goal: {<SP2, EP>} (rejection)
4G: All insufficient subsets, one goal: {<SP3, EP>, <SP2, EP>} (rejection)
4H: Some racing subsets, some goals: {<SP1, SP3, SP2, EP, EP>, <SP2, SP3, SP1, EP, EP>}

TP5: Testing pattern for a single stub and its plug-ins

5A: Static flattening (when only one plug-in in the static stub)
5B: Dynamic flattening, some plug-ins (when several plug-ins in the dynamic stub)
5C: Dynamic flattening, all plug-ins (when several plug-ins in the dynamic stub)

TP6: Testing pattern for causally-linked stubs

6A: Default behavior (when no feature is active)
6B: Individual functionalities (when one feature is active at a time)
6C: Functionality combinations (when several or all functionalities are active)

SP3

EP
SP2

SP1

Racing stimuliTTTT7

Redundant stimuliTFTT6

Redundant stimuliTTFT5

Necessary stimuliTFFT4

Necessary stimuliTTTF3

Insufficient stimuliFFTF2

Insufficient stimuliFTFF1

Insufficient stimuli. Not interesting.FFFF0

SubsetSP1 ∨ (SP2 ∧ SP3)SP3SP2SP1Case #

Racing stimuliTTTT7

Redundant stimuliTFTT6

Redundant stimuliTTFT5

Necessary stimuliTFFT4

Necessary stimuliTTTF3

Insufficient stimuliFFTF2

Insufficient stimuliFTFF1

Insufficient stimuli. Not interesting.FFFF0

SubsetSP1 ∨ (SP2 ∧ SP3)SP3SP2SP1Case #

SP

S
IN1

OUT1

OUT2

EP1

EP2 IN2 OUT1
c

OUT2
d

Plug-in 2

IN1 OUT1
a

OUT2
b

Plug-in 1

SP

S1
IN1 OUT1

EP1

EP3
IN1 OUT1

a

OUT2
b

Plug-in 2

OUT2

S2
IN2 OUT3

EP2

OUT4

IN2 OUT3
c

OUT4
d

Plug-in 3

Start
End

Plug-in 1

SP

S1
IN1 OUT1

EP1

EP3
IN1 OUT1

a

OUT2
b

Plug-in 2

OUT2

S2
IN2 OUT3

EP2

OUT4

IN2 OUT3
c

OUT4
d

Plug-in 3

Start
End

Plug-in 1

