
EQUIVALENCE CONCEPTS

Equivalence Relations are a very important
aspect of algebraic specification techniques.

In other techniques (such as EFSM-based) we
don’t have such extensive theory of equivalence.

Although proving equivalence of real-life specs
is impossible with today’s means, a theory of
equivalence is important for:

• precise understanding of language
semantics

• tool development: tools may use the fact
that some expressions are equivalent: e.g.
A[]B = B[]A

• correctness-preserving transformation:
transforming a specification written to
emphasize certain aspects into a
specification written to emphasize others

Equivalence-preserving transformations
and Software Design

Design can start with a very abstract specification, representing
the requirements.

Then, using equivalence-preserving transformations, this
specification can be gradually transformed into an an
implementation-oriented specification.

Finally, this one can be transformed into code.

Maintenance may require to replace some components with
others, while maintaining the same system behavior.

Other equivalence-preserving transformation can make it
possible to obtain various types of test cases (functional, black-
box, white-box, etc.) from the specifications.

Tools to help in this process are available.

There is a lot of research in this area...

When are two processes
EQUIVALENT?

Some possibilities:

• whenever they can engage in identical action sequences
(traces)

• whenever they have the same observable behavior
(bisimulation)

• whenever no tester can distinguish them (testing
equivalence)

• whenever they can be replaced one for the other in any
system, yielding equivalent systems (congruences)

• whenever they have the same behavior trees (equality)

• • •

All these concepts will be examined in the
course.

Others have been considered in the literature.

a

 i

c

a

b c
b

a

b i

c

a a

b c c

a b i a i

 b
 b

a b i

b

a b

a

b i

b

a

b

a a a a

b i b i c i d

c i

d

c i d

d

a

b i

c i

d

a a a

 b d c d d
c

EQUIVALENT?

I

III

V

VII

II

IV

VI

VIII

a

i

c

a

c

TRACE EQUIVALENCE
Perhaps the simplest possible equivalence
concept:

A trace is a sequence of observable
actions
Two processes are trace equivalent (tr)
iff they can engage in the same traces

B=s=>, where s is a trace, means that B can
engage in s, i.e. ∃ B’ s.th. B leads to B’ after the
observable sequence s, so

B1 tr B2 iff ∀ s, B1=s=> iff B2=s=>

Traces: {ε, a, ab, ac}
NB: the empty trace ε is always included (note that empty trace
does not mean internal action)

 i

c

a

cb

a a a a

 i
 i

b b b
c

c

bthree ‘trace equivalent’ processes

IDENTITY = (ALSO ≡)

Behavior expressions have identical beh. trees
(incl. all internal and external actions)

 e.g.

a;b;c;exit
|[a]|
d;a;c;exit

= d;a;(b;c;exit ||| c;exit)

= d;a;(b;(c;c;exit [] c;c;exit)[]c;b;c;exit)

The expansion laws are the best known
identities.

To be discussed.

 c

d

a

b c

c

c

 b

c

δ

c

δδ

BISIMULATION

Informally, it is reasonable to think that two
b.exp. are equivalent if, whenever one of them
can execute some action(s) leading to some
behavior B, the other can execute the same
action(s) leading to a behavior B’, where B is
again equivalent to B’.

This is the basic idea of bisimulation: an
inductive concept.

a
a a

Μ
Μ’

~

~
We can conclude

M ~ M’

For two labelled transition systems S and S’, we
write

S -a -> S’ (a: internal or external)
if S can execute action a and become S’

STRONG BISIMULATION

A relation ℜ over LTS is a strong B. iff ∀ <s1,s2>

∈ ℜ, ∀ actions a (internal or external)

1) if ∃ s1’ s.th. s1 - a -> s1’ then ∃ s2’ s.th. s2 -
a -> s2’ and <s1’,s2’> ∈ ℜ

2) and vice-versa (interchange s1 and s2)

Strongly Bisimilar LTS must be able to execute
the same actions, and if they execute identical
actions they must transform into strongly
bisimilar LTS.

~

There is a strong bisimulation between:

But not between:

Nor between:

A ~ law which is not a = law:

B [] B ~ B

a

b

c

a

b c

a

b

a

b

a

a

b

c
a

b

c

a

b

c
a

b

a

b

c
a

b

a

b

i

a

a
a

a

i

a

a

i

a

In this case, the relation ℜ is:

{<a;b;stop [] c;stop, a;b;stop [] a;b;stop [] c;stop>} U Id

where Id is the set of all identical behavior pairs

In fact:

a;b;stop [] c;stop - a -> b;stop
a;b;stop [] a;b;stop [] c;stop -a -> b;stop

and <b;stop, b;stop> ∈ Id

Also

a;b;stop [] c;stop - c -> stop
a;b;stop [] a;b;stop [] c;stop -c -> stop

and <stop, stop> ∈ Id

This is symmetric because on the right there are
no additional transitions.

a

b

ca

b

c
a

b

~

A STRONG BISIMULATION

a

a

a

b
b

b c

c
c

Strong bisimulation is fairly
easy to compute, hence this
relation is commonly used in
tools to simplify LTSs.

ABSTRACTING FROM i
(to some extent)

i) Let s denote a string of actions, s = a1...an

we write B-s->B’ iff

∃ B1...Bn s.th. B-a1->B1 ... Bn-1-an->Bn = B’

we also write B-ε->B, where ε = empty string

ii) Let s denote a string of observable actions, s = a1...an, and let

ik be a string of k internal actions

we write B=s=>B’ whenever

(s with an arbitrary number of i interspersed) s.th.

i
k0a1i

k1a2…ani
kn∃

B i
k0a1i

k1a2…ani
kn B ′→–

EXAMPLES:

Given a path on a LTS

B0 - i -> B1 - a -> B2 - i -> B3 - b -> B4

we may write

B0 - i a i b -> B4

B0 = a b => B4
B1 = a => B2

B0 = ε => B1

B0 = ε => B0

B0 = a => B2

B0 = a => B3

etc.

Based on the observable sequence relation, we define a notion of
weak bisimulation.

Definition
A relation ℜ between LTS is a weak bisimulation if for any pair
<B1, B2> in ℜ and for any string s of observable actions:

whenever B1 = s => B1’, then for some B2’:

B2 = s => B2’ and B1’ ℜ B2’

whenever B2 = s => B2’, then for some B1’:

B1 = s => B1’ and B1’ ℜ B2’

The idea of weak bisimulation is that two bisimilar LTS must be
able to simulate each other, in terms of observable sequences,
and then reach bisimilar LTS.

Definition
Two LTS B1 and B2 are weak bisimulation equivalent or

observationally equivalent (B1 ≈ B2) if there exists a weak

bisimulation ℜ which contains the pair <B1, B2>.

Note that a ai aii on the lhs go respectively to identical subrees as
the three a alternatives on the rhs

 a

b i

c i

δ

 a

b i

c i

δ

c i

δ

δ
 a a

BASIC LAW of O.E.: i;B ≈ B

Basic case where B1 /≈ B2

Note:

Obviously B1’ does not bisimulate B2’ because
B2 = b => stop while the same thing is false for

B1’.

b i

c

b c

B1 B2

/≈

B1 = ε => B1’

B2 = ε => B2’

c

b c

In some sense, observation equivalence can be
considered too strong as it distinguishes between
behavior trees that can be said to behave the
same way externally (see trees III and VIII). For
this reason, its name may be inappropriate.

However, o.e. has some desirable formal
properties (in particular, it is defined
inductively), so it is appropriate for formal
reasoning.

Unfortunately, it is expensive to compute (it
requires unbounded recursive descent in the
LTS, while keeping track of ℜ) so it is not often
used in tools to simplify LTS.

Also, we shall now see another meaning of
equivalence for which o.e. is in fact too weak...

CONTEXTS

A context C[•] is a behavior expression
containing one or more occurrences of the
special process variable [•] (the hole).

If B is a b. expr. then C[B] denotes the result of
replacing [•] by B in context C[•].

Note then that ‘the hole’ represents a behavior
expression, or , if we are talking about behavior
trees, a whole behavior tree (from the root).

Observational Congruence

Two behaviours are observationally congruent
when they can be interchanged one for the other
in any behaviour expression, yielding
observationally equivalent behaviour
expressions.

More Formally:

Two b.exp. B1 and B2 are observationally

congruent B1 ≈c B2 iff for all contexts C[•],
C[B1] ≈ C[B2].

Some Laws of Observation
Equivalence and Congruence

Let C be a LOTOS context of the form

a;[•] for these contexts

[•] |[A]| B or B |[A]| [•] ≈, ≈c
[•] >> B or B >> [•]
[•] [> B are the same
hide A in [•]

Then B1 ≈ B2 implies C[B1] ≈ C[B2]

However in context a; stop [] [•]

b;stop ≈ i;b;stop

But a;stop[]b;stop /≈ a; stop [] i;b;stop
(the devil can act only if there is a choice!)

and similarly for context B [> [•]

(proof techniques to be discussed later)

Some Laws of Observational
Congruence

a; (B [] i;C) [] a;C ≈c a; (B [] i;C)

a; i; B ≈c a; B B [] i; B ≈c i; B

BB

B

B

C

C

C

B

B

i
i

i

a

a

a a a

i

iB

Formal concepts of implementation:
the intuitive basis (C.A.R.Hoare)

Suppose you have specified that you want a machine which

• always gives you coffee when you ask for it,

• but it may or may not give you tea (= can deadlock on tea,
can refuse tea).

You must accept a machine which is only able to give you
coffee!

This is because if you keep asking for tea, and not getting it, the
maker can argue that this is consistent with your specification.

In LOTOS terms, the presence of internal actions in choices can
be taken to represent implementation options.

Note that this reasoning breaks down in the presence of time
constraints, which has interesting consequences for timed
process algebras.

(non-symmetric)

RELATION red MODELS IMPLEMENTATION
in the sense of taking away unnecessary options

I red S = (I implements S)

I can only execute actions that S can.
I can only refuse actions that S can.

E.g.

B red i;B [] i;C
C red i;B [] i;C
B red i;B [] C

note: C red i;B [] C is false
a;(B1[]B2) red a;B1 [] a;B2

note: converse is false
a;B1 red a;B1 [] a;B2

I te J = (I is testing equivalent to J) =def

I red J and J red I

We will see that

= ⊂ ~ ⊂ ≈c ⊂ ≈ ⊂ te ⊂ tr

Also we will see that on the basis of these
equivalence relations it is possible to

• define concepts of conformance and
• give algorithms for generating test suites to

test whether an implementation conforms to a
specification

Concepts discussed in Class 4:

• Importance of the concept of behavioral equiv-
alence

• Why do we have several versions of this con-
cept

• The most important equivalence concepts were
introduced briefly

•• Trace equivalence
•• Identity or equality
•• Strong Bisimulation
•• Weak bisimulation or Observation equival.
•• Observation congruence
•• Reduction and testing equivalence

Will be discussed in detail...

