
EQUIVALENCE CONCEPTS



Equivalence Relations are a very important 
aspect of algebraic specification techniques.

In other techniques (such as EFSM-based) we 
don’t have such extensive theory of equivalence.

Although proving equivalence of real-life specs 
is impossible with today’s means, a theory of 
equivalence is important for:

• precise understanding of language 
semantics

• tool development: tools may use the fact 
that some expressions are equivalent:  e.g.  
A[]B = B[]A

• correctness-preserving transformation: 
transforming a specification written to 
emphasize certain aspects into a 
specification written to emphasize others



Equivalence-preserving transformations
and Software Design

Design can start with a very abstract specification, representing 
the requirements.

Then, using equivalence-preserving transformations, this 
specification can be gradually transformed into an an 
implementation-oriented specification.

Finally, this one can be transformed into code.

Maintenance may require to replace some components with 
others, while maintaining the same system behavior. 

Other equivalence-preserving transformation can make it 
possible to obtain various types of test cases  (functional, black-
box, white-box, etc.) from the specifications.

Tools to help in this process are available.

There is a lot of research in this area...



When are two processes
EQUIVALENT?

Some possibilities:

• whenever they can engage in identical action sequences 
(traces)

• whenever they have the same observable behavior 
(bisimulation)

• whenever no tester can distinguish them (testing 
equivalence)

• whenever they can be replaced one for the other in any 
system, yielding equivalent systems (congruences)

• whenever they have the same behavior trees (equality)

• • •

All these concepts will be examined in the 
course.

Others have been considered in the literature.
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TRACE EQUIVALENCE
Perhaps the simplest possible equivalence 
concept:

A trace is a sequence of observable 
actions
Two processes are trace equivalent (tr) 
iff they can engage in the same traces

B=s=>, where s is a trace, means that B can 
engage in s, i.e. ∃ B’ s.th. B leads to B’ after the 
observable sequence s, so 

B1 tr B2  iff  ∀ s, B1=s=> iff B2=s=>

Traces: {ε, a, ab, ac} 
NB:  the empty trace ε is always included (note that empty trace 
does not mean internal action)
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IDENTITY = ( ALSO ≡)

Behavior expressions have identical beh. trees
(incl. all internal and external actions)

  e.g.

a;b;c;exit
|[a]|
d;a;c;exit

= d;a;(b;c;exit ||| c;exit)

= d;a;(b;(c;c;exit [] c;c;exit)[]c;b;c;exit)

The expansion laws are the best known 
identities.

To be discussed.
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BISIMULATION

Informally, it is reasonable to think that two 
b.exp. are equivalent if, whenever one of them 
can execute some action(s) leading to some 
behavior B, the other can execute the same 
action(s) leading to a behavior B’, where B is 
again equivalent to B’.

This is the basic idea of bisimulation:  an 
inductive concept.
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~
We can conclude

M ~ M’



For two labelled transition systems S and S’, we 
write

S -a -> S’        (a: internal or external)
if S can execute action a and become S’

STRONG BISIMULATION 

A relation ℜ  over LTS is a strong B. iff ∀ <s1,s2> 

∈ ℜ, ∀ actions a (internal or external)

1) if ∃ s1’ s.th. s1 - a -> s1’ then ∃ s2’ s.th. s2 - 
a -> s2’ and <s1’,s2’> ∈ ℜ

2) and vice-versa (interchange s1 and s2)

Strongly Bisimilar LTS must be able to execute 
the same actions, and if they execute identical 
actions they must transform into strongly 
bisimilar LTS.

~



There is a strong bisimulation between:

But not between:

Nor between:

A ~ law which is not a = law:

B [] B ~ B
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In this case, the relation ℜ  is:

{<a;b;stop [] c;stop,    a;b;stop [] a;b;stop [] c;stop>} U Id

where Id is the set of all identical behavior pairs

In fact:

a;b;stop [] c;stop - a -> b;stop
a;b;stop [] a;b;stop [] c;stop -a -> b;stop

and <b;stop, b;stop> ∈  Id

Also

a;b;stop [] c;stop - c -> stop
a;b;stop [] a;b;stop [] c;stop -c -> stop

and <stop, stop> ∈  Id

This is symmetric because on the right there are 
no additional transitions.
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A STRONG BISIMULATION
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Strong bisimulation is fairly 
easy to compute, hence this 
relation is commonly used in 
tools to simplify LTSs.



ABSTRACTING FROM  i
(to some extent)

i) Let s denote a string of actions, s = a1...an

we write B-s->B’ iff

∃  B1...Bn s.th. B-a1->B1 ... Bn-1-an->Bn = B’

we also write B-ε->B, where ε = empty string

ii) Let s denote a string of observable actions, s = a1...an, and let 

ik be a string of k internal actions

we write B=s=>B’ whenever

(s with an arbitrary number of i interspersed) s.th.

i
k0a1i

k1a2…ani
kn∃

B i
k0a1i

k1a2…ani
kn B ′→–



EXAMPLES:

Given a path on a LTS

B0 - i -> B1 - a -> B2 - i -> B3 - b -> B4

we may write

B0 - i a i b -> B4

B0 = a b => B4
B1 = a => B2

B0 = ε => B1

B0 = ε => B0

B0 = a => B2

B0 = a => B3

etc.



Based on the observable sequence relation, we define a notion of 
weak bisimulation.

Definition
A relation ℜ  between LTS is a weak bisimulation if for any pair 
<B1, B2> in ℜ  and for any string s of observable actions:

whenever B1 = s => B1’, then for some B2’:

B2 = s => B2’ and B1’ ℜ  B2’

whenever B2 = s => B2’, then for some B1’:

B1 = s => B1’ and B1’ ℜ  B2’

The idea of weak bisimulation is that two bisimilar LTS must be 
able to simulate each other, in terms of observable sequences, 
and then reach bisimilar LTS.

Definition
Two LTS B1 and B2 are weak bisimulation equivalent or 

observationally equivalent (B1 ≈ B2) if there exists a weak 

bisimulation ℜ  which contains the pair <B1, B2>.

Note that a ai aii on the lhs go respectively to identical subrees as 
the three a alternatives on the rhs
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BASIC LAW of O.E.:  i;B ≈ B

Basic case where B1 /≈ B2

Note:

Obviously B1’ does not bisimulate B2’ because 
B2 = b => stop while the same thing is false for 

B1’.

b i
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B1 B2

/≈

B1 = ε => B1’

B2 = ε => B2’
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In some sense, observation equivalence can be 
considered too strong as it distinguishes between 
behavior trees that can be said to behave the 
same way externally (see trees III and VIII).  For 
this reason, its name may be inappropriate.

However, o.e. has some desirable formal 
properties (in particular, it is defined 
inductively), so it is appropriate for formal 
reasoning.

Unfortunately, it is expensive to compute (it 
requires unbounded recursive descent in the 
LTS, while keeping track of ℜ ) so it is not often 
used in tools to simplify LTS.
 
Also, we shall now see another meaning of 
equivalence for which o.e. is in fact too weak...



CONTEXTS

A context C[• ] is a behavior expression 
containing one or more occurrences of the 
special process variable [• ] (the hole).

If B is a b. expr. then C[B] denotes the result of 
replacing [• ] by B in context C[• ].

Note then that ‘the hole’ represents a behavior 
expression, or , if we are talking about behavior 
trees, a whole behavior tree (from the root).



Observational Congruence

Two behaviours are observationally congruent 
when they can be interchanged one for the other 
in any behaviour expression, yielding
observationally equivalent behaviour 
expressions.

More Formally:

Two b.exp. B1 and B2 are observationally 

congruent B1 ≈c B2 iff for all contexts C[• ], 
C[B1] ≈ C[B2].



Some Laws of Observation 
Equivalence and Congruence

Let C be a LOTOS context of the form

a;[• ] for  these contexts

[• ] |[A]| B or B |[A]| [• ] ≈, ≈c 
[• ] >> B or B >> [• ]
[• ] [> B are the same
hide A in [• ]

Then B1 ≈ B2 implies C[B1] ≈ C[B2]

However in context a; stop [] [ • ]

b;stop ≈ i;b;stop

But a;stop[]b;stop   /≈   a; stop [] i;b;stop
(the devil can act only if there is a choice!)

and similarly for context B [> [• ]

(proof techniques to be discussed later)



Some Laws of Observational 
Congruence

a; ( B [] i;C ) [] a;C ≈c a; ( B [] i;C )

a; i; B ≈c a; B B [] i; B ≈c i; B
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Formal concepts of implementation:
the intuitive basis (C.A.R.Hoare)

Suppose you have specified that you want a machine which

•  always gives you coffee when you ask for it,

•  but it may or may not give you tea (= can deadlock on tea, 
can refuse tea).

You must accept a machine which is only able to give you 
coffee!

This is because if you keep asking for tea, and not getting it, the 
maker can argue that this is consistent with your specification.

In LOTOS terms, the presence of internal actions in choices can 
be taken to represent implementation options.

Note that this reasoning breaks down in the presence of time 
constraints, which has interesting consequences for timed 
process algebras.



(non-symmetric)

RELATION red MODELS IMPLEMENTATION
in the sense of taking away unnecessary options

I red S = (I implements S )

I can only execute actions that S can.
I can only refuse actions that S can.

E.g.

B red i;B [] i;C
C red i;B [] i;C
B red i;B [] C

note:  C red i;B [] C is false
a;(B1[]B2) red a;B1 [] a;B2

note: converse is false
a;B1 red a;B1 [] a;B2

I te J = (I is testing equivalent to J) =def

I red J and J red I



We will see that

= ⊂ ~ ⊂  ≈c ⊂  ≈ ⊂  te ⊂ tr 

Also we will see that on the basis of these 
equivalence relations it is possible to 

• define concepts of conformance and 
• give algorithms for generating test suites to 

test whether an implementation conforms to a 
specification 



Concepts discussed in Class 4:

• Importance of the concept of behavioral equiv-
alence

• Why do we have several versions of this con-
cept

• The most important equivalence concepts were 
introduced briefly

•• Trace equivalence
•• Identity or equality
•• Strong Bisimulation
•• Weak bisimulation or Observation equival.
•• Observation congruence
•• Reduction and testing equivalence

Will be discussed in detail...
 


