
More LOTOS Operators



TERMINATION IN LOTOS

UNSUCCESSFUL TERMINATION:  STOP 

     off_hook  ;  tone  ;  dial  ;  connect  ;  breakdown  ;  stop

SUCCESSFUL TERMINATION:  EXIT

     off_hook  ;  tone  ;  dial   ;  connect  ;  exit

Unsuccessful termination can be specified either explicitly by a 
stop or implicitly by the result of a deadlock.



ENABLE:     ">>"

B1   >>   B2

This is a sequential composition between two behavior 
expressions.  Note difference w.r.t. the Action Prefix 
operator  ";". 

example:

        off_hook ; 
                        (
                          tone ; dial ;  exit
                                 [>   hang_up; stop
                         )
                               >>
                                      connect;  talk; stop

The connect and talk actions will not occur if the
user hangs up.

However if connect occurs, disable becomes impossible.



Exit Inference Axiom

A process that exits stops,  
after having produced action δ, 
which can be picked up by other 

processes, as we shall see.

exit δ stop→–



Enable Inference Rules: B1 >> B2

Note that by execution of enable δ action is internalized

B1 a B1′→–

B1>>B2 a B1′>>B2→–
------------------------------------------------------------------------------------- ( continuation of B1 )

B1 δ B1′→–

B1>>B2 i B2→–
----------------------------------------------------------- ( B1 stops and B2 takes over )



The δ action has effects 
on the parallel composition:

gate δ is always included 
in the synchronization set.

Therefore ...



EXIT AND PARALLEL COMPOSITION

An exit of a process that is composed in parallel with other pro-
cesses can be executed only if all processes exit 

example:

      (a ; b ; c;  exit

        |||

       d ; e ; f ; stop)  >> B

will not go to B, because the second parallel process cannot exit.

However the following example will exit:

     a ; b ; c;  exit

        |||

     ( d ; e ; f ; stop     [> exit )

because this time, the second behavior can synchronize at  any
time on exit

exit is triggered by the end of the first parallel process

any part of the second parallel process will be executed.



GENERAL  PARALLELISM 
INFERENCE RULES WITH EXIT

         B1  -a->   B’1 ,             B2 -a->   B’2 
---------------------------------------------------------if  a∈ {g1,...,gn,δ}
B1  |[g1,...,gn]|  B2  -a->  B’1  |[g1,...,gn]| B2’

             B1   -a1->  B’1  
---------------------------------------------------------if a1 ∉ {g1,...,gn,δ}
B1   |[g1,...,gn]|   B2  -a1-> B’1 |[g1,...,gn]| B2

             B2   -  a2 -> B’2  
 -------------------------------------------------------  if a2 ∉ {g1,...,gn,δ} 
B1   |[g1,...,gn]|   B2   -  a2 -> B1 |[g1,...,gn]| B’2

δ is always included in every synchronization set
i cannot be included, must interleave



Normally all processes combined together by a |[...]| operator 
will synchro on δ. 

When δ is used by  >>, it becomes internal. 

It can then interleave with actions of other  processes involved 
in more external parallel composition ops.



The δ action also has effects on the disable operator

Additional disable rule: 

i.e.  if B1 offers δ then
B1 [> B2 offers δ and then stops
this δ can trigger >>, [> disappears

specification ENABDISAB [a,b,c,d,e] : noexit
behavior

(a; b; exit [> c; d; stop) >> e; stop
endspec

Behavior tree:

     1 a 
     | 1 b 
     | | 1 i (enable: exit) 
     | | | 1 e  DEADLOCK
     | | 2 c 
     | | | 1 d  DEADLOCK
     | 2 c  
     | | 1 d  DEADLOCK
     2 c
     | 1 d  DEADLOCK

B1 δ B1′→–

B1[>B2 δ B1′→–
-------------------------------------------------------------



Example with enable and disable

specification ENABDISAB [a,b,c,d,e] : noexit

behavior

   (a; b; exit  >>  c; d; stop)  [>  e; stop

endspec

    * 1 a [5]
    * | 1 b [5]
    * | | 1 i (enable: exit) [5]
    * | | | 1 c [5]
    * | | | | 1 d [5]
    * | | | | | 1 e [5] DEADLOCK
    * | | | | 2 e [5] DEADLOCK
    * | | | 2 e [5] DEADLOCK
    * | | 2 e [5] DEADLOCK
    * | 2 e [5] DEADLOCK
    * 2 e [5] DEADLOCK



ENABLE EXPANSION

        off_hook ; 
                       (
                         tone ;
                                   (
                                      dial ;
                                            (
                                                i (*exit*);  connect ;  talk ; stop
                                             []
                                             hang_up ; stop
                                             )
                                       []
                                      hang_up ; stop
                                    )
                           []
                         hang_up ; stop
                       )

Note: 
         when exit has been executed, hang_up can no 
               longer take place in this example.  



Some interesting examples:

           a; b; c; exit
        ||
           (a; b; d; stop
             [> c; exit)

this exit is triggered by the availability of a c after a b.

           a; b; exit
        ||
           (a; b; d; stop
             [> i; exit)

i can occur at any time (possibly yielding deadlock). However if 
a b occurs then it is forced to occur, and process will exit.

           a; b; c; exit
        ||
           (a; b; d; stop
             [> i; c; exit)

similar.

          a; b; exit
       |||
           exit 

this will exit after a b



Some syntax

Basic Syntax (so far...):

behexpr = ’stop’ |  ’exit’ |   processname 
                 |   action ’;’  behexpr   |   behexpr op behexpr
op =          ’[]’  |  ’|[]|’  |   ’[>’ |  ’>>’

Examples:
stop; exit all syntactically invalid
stop; a; exit because act. pref. joins
exit; a an action and a behav. expr.

stop >> stop all syntactically valid, 
stop >> exit                   although not 
exit  >> exit                    semantically                 
stop >> a; stop meaningful 

a; b [] c; d invalid: [] is between behav. expr.
a; b; exit [] c; d; exit OK
a; b; exit [] c; d; stop OK

(a; b; stop [] c; d; exit); b; c; stop   incorrect
(a; b; stop [] c; d; exit) >> b; c; stop OK

If P is a process name (ignoring params), the following are legal 
a; b; P  [] c; d; P
(a; b; stop [] c; d; exit) >> P

Operator priorities:  ’;’  >   ’[]’  >  ’|[]|’   >   ’[> ’  >  ’>>’
          right-to-left otherwise



Multiway Synchro and Hiding

Following CSP (and unlike CCS) LOTOS adopts a multi-way 
synchronization concept.

In order for an action to be executed, all behaviors that share  
that action by virtue of the parallel composition operator (and 
for which the action is not hidden, see later) must simultaneous-
ly participate in the action.

In CCS, an action becomes internal after it has been used for a 
two-way synchronization.  In LOTOS, the action remains and 
can cause synchronization of a number of processes. It  must be 
"consumed" in order to disappear.  This can be achieved in one 
of two ways:

1.  The action reaches a level where it is ’hidden’

2.  If 1 does not happen, the environment must participate in the 
action



HIDING GATES

 P [g]  | |  Q [g] 
  
 requires cooperation of environment on gate g

hide  g  in ( P[g]  | |  Q[g] )
 
P and Q can synchronize on g without having to synchronize
with the environment

P                                       Q
g

P                                       Q
g



The HIDE operator

hide <gatename> in B

In order for an action to be executed, all processes that synchro-
nize on the gate must participate, unless the gate is hidden.

1) internalize  actions that should not be observable 

     hide  ntwk in
       (
        phone_one[...]
          |||
        phone_two[...]
       )
         |[ntwk]|
       network[ntwk]

2) 

    ( hide b in

         a  ;  b  ; c ; stop )

           ||

        a  ;  c  ; stop

is equivalent to    a; i; c; stop



3) 

     hide c in

        ( c; d; stop 

           ||

          c;  d; stop )

is equivalent to    i; d; stop

hidden actions are transformed in internal action i that does not
need to synchronize.

HIDE ENABLES US TO ABSTRACT 
or INTERNALIZE  GATES



Hide Inference Rules

                        B  - a-> B’
-----------------------------------------------------------  a∉ {g1,...,gn}
hide g1,...,gn  in B - a ->  hide g1,..., gn in B’

                        B  - a-> B’
----------------------------------------------------------    a∈ {g1,...,gn}
hide g1,...,gn  in B - i ->  hide g1,..., gn in B’

Examples:

(hide a in a; stop |[a]| a; stop) |[a]| a; stop

the first two a synchronize, however the resulting a is trans-
formed in internal action -> the third a causes deadlock

hide b in (a; stop |[a]| a; stop) |[a]| a; stop

all three a synchronize



PROCESS DEFINITION 

PROCESS <name>[gate_list]: functionality :=

        ......   behavior expression

endproc

example:

      process phone[offhook, tone, dial, talk]: exit:=

             offhook ; tone ; dial ; talk ; exit

      endproc 

A process has functionality exit if it can exit, it has functionality 
noexit otherwise (the precise definition is a bit complicated)..  

All gates that appear in a process and are not hidden must appear 
in the process’s parm list.



PROCESS INSTANTIATION
(inference rules for relabelling)

A sequence of action prefixes can be terminated not only by a
stop or exit, but also by a process instantiation.

Suppose that we have            process P[g1, . . ., gn]
and an instantiation                        P[h1, . . ., hn]  

          if process P[g1, . . ., gn]  can execute action gi
      then            P[h1, . . ., hn] can execute action hi  .

Note:  
                This means replacement of gate names at execution time
and not at instantiation time.

                The shape of the behavior tree cannot be changed by
instantiation/relabelling. 



RECURSION

A sequence of action prefixes can be terminated by a stop or an
exit, or also by a process instantiation.  Thus, recursion is pos-
sible. 

direct recursion:

     process  P1 [a, b, c]: noexit:=
            a  ;   b  ;   c  ;   P1[a, b, c]
     endproc

will generate the following sequence:

     a  ;  b  ;  c  ;   a  ;  b  ;  c  ; ........

indirect or cross recursion:

     process  P1 [a, b, c]:noexit:=
            a  ;  b  ;  c  ;  P2[a, b, c]
     endproc

        process  P2 [x, y, z]:noexit:=
            x  ;  y  ;  z  ; P1[x, y, z]
       endproc

Instantiating P1[a, b, c] will produce the following sequence:

       a  ;  b  ;  c  ;  a  ;  b  ;  c  ;  a  ;  b  ;  c ; .....

This is because of the relabelling  [a/x, b/y, c/z]

Note also:  a; P1[a,b,c]; P2[a, b, c]           SYNTAX ERROR



Although rarely done in practice, 
it is possible to exchange gate parameters

process buffer [ in, out ];
in;
buffer [ out, in ]

endproc

in; out; in; out; ...

Interestingly, such “exchanges” can always be removed

process buffer [ in, out ];
in; out; 
buffer [in, out];

endproc



Recursion makes it possible to define processes that cannot be de-
scribed as Finite State Machines, e.g.

P := a; P [> b;stop

One way to understand such processes is to apply replacement:

P:= a; P [> b;stop
a; (a; P [> b; stop) [> b; stop
a; (a; (a; P [> b; stop) [> b; stop) [> b;stop
a; (a; (a; (a; P [> b; stop) [> b; stop) [> b; stop) [> b; stop
. . .
which implies that P can synchronize with processes offering the 
following sequences of actions:
b
a b
a a b
a a a b
a a a a b          
...          (these are caused by the last disable)

a b b
a a b b
...       (these are caused by the 2nd from last disable)

in terms of formal language theory, the language of P can be de-
scribed as 

an bm  where n+1 ≥ m
Note also that this example shows that it may not be possible to 
redefine a process defined using [> by using only []



Unfortunately, with recursion, it is possible that inference 
rrules will not terminate on legal processes

P := a ; stop | | | P 
                                  =      P := a; stop ||| a; stop ||| . . .

This specific pitfall can be avoided by
insisting that recursion be always guarded 

e.g.

P := a ; stop | | | i ; P
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.



This example shows a common pitfall in LOTOS: since pro-
cess instantiation is not an action, nor a state in the LTS, in 
the case of ‘unguarded recursion’, finding the next action 
may require an infinite number of recursive instantiations, 
hence the derivation process becomes infinite.

Another similar example is:

P := a; stop [] P

Internal actions stop the derivation process:

P := a; stop [] i; P



Time-bomb process!

Keep_out := Time [> Bomb

Time := tick; Time 

Bomb :=  boom; stop ||| Bomb

If you want to include an escape...

Keep_out := (Time [> Bomb) >> Run

Time := tick;Time  [] exit

Bomb :=  boom; stop ||| Bomb

Run := run; Run [] stop

   
Infinite recursion impedes finite evaluation and can be pre-
vented by always guarding (by any action, even internal) ev-
ery process instantiation.         



Spatial representation of process Max3 (Bolognesi + Brinksma)

Definition of process Max3

in 1                                c      mid             a                              out

    in2                               in3

Max2                            Max2

Max3

a
b b

 c

process  Max3[in1, in2, in3, out]  :=

hide  mid  in
          (Max2[in1, in2, mid] | [mid] |   Max2[mid, in3, out]      )

where

process  Max2[a, b, c]  :=

 a; b; c;  stop

b; a; c;  stop

endproc

endproc

instantiation!

                     <process instantiation>

[]

<process
definition>

<behavior
expression>

<process 
definition>

<behavior
expression>

        <behavior expression>s



instantiations:

                          Max2[in1, in2, mid]                 Max2[in3, mid, out]

                                                      The two behavior trees

process  Max2[a, b, c]  :=

a; b; c;  stop

b; a; c;  stop

endproc

[]

in1 in2

in2

mid

in1

mid

in3 mid

mid in3

out out



process  Max3[in1, in2, in3, out]  :=

hide  mid  in
          (Max2[in1, in2, mid] | [mid] |   Max2[mid, in3, out]      )

where

process  Max2[a, b, c]  :=

 a; b; c;  stop

b; a; c;  stop

endproc

endproc

[]

in2

in2

in2

in2

in2 bin1

in1

in1

in1

in1

in3

in3

in3

in3

in3

mid mid

out out out out out out outout

a

in3 mid mid mid mid mid mid

a

b

c,b a

a b,c

c  c



Ken Turner’s LIFE Specification

     1  (* Ken Turner’s "Life" specification *)
     2
     3  specification LIFE 
          [birth, puberty, death, marriage, children]: exit
     4
     5  behavior
     6
     7     BIOLOGY [birth, puberty, death]
     8    |[puberty, death]|
     9     FAMILY [puberty, marriage, children, death]
    10
    11     where
    12
    13       process BIOLOGY [birth, puberty, death]: exit :=
    14         birth; ((puberty; stop) [> (death; exit))
    15       endproc
    16
    17       process FAMILY 
               [puberty, marriage, children, death] : exit :=
    18
    19         (
    20           puberty;  ((marriage; exit) [] exit)
    21          |[puberty]|
    22           puberty;  ((children; exit) [] exit)
    23         )
    24        |[marriage]|
    25         (( marriage; stop) [> (death; exit ))
    26        endproc
    27
    28  endspec



Behavior tree of LIFE specification

1 birth [14]
| 1 puberty [14,20,22]
| | 1 children [22]
| | | 1 marriage [20,25]
| | | | 1 death [14,25]
| | | | | 1 exit ** EXIT SUCCEED ** [14,20,22,25]
| | | 2 death [14,25]
| | | | 1 exit ** EXIT SUCCEED ** [14,20,22,25]
| | 2 marriage [20,25]
| | | 1 children [22]
| | | | 1 death [14,25]
| | | | | 1 exit ** EXIT SUCCEED ** [14,20,22,25]
| | | 2 death [14,25]
| | | | 1 children [22]
| | | | | 1 exit ** EXIT SUCCEED ** [14,20,22,25]
| | | | 2 exit ** EXIT SUCCEED ** [14,20,22,25]
| | 3 death [14,25]
| | | 1 children [22]
| | | | 1 exit ** EXIT SUCCEED ** [14,20,22,25]
| | | 2 exit ** EXIT SUCCEED ** [14,20,22,25]
| 2 death [14,25] DEADLOCK



RELABELLING

difference with substitution

The principle is: create the synchronization tree first and then
relabel its actions.
After instantiating with    P[c,c,a]

note the significant differences in resulting trees

example:

       process P[a,b,c] :=

           a  ;   b  ;  stop

            |[a]| 

          a  ;  c ;  stop
       endproc

 

synchronization tree

a

b

c b

c

substitution tree relabelling tree

c

a

wrong ! correct !

c

c

a c

a



Note however:

This difference between substitution and relabelling is observ-
able only for gate mappings (formal <-> actual) that are not 
one-to-one.

Most mappings used in practice are one-to-one, so the differ-
ence cannot be observed.



     1 (* Example to show effect of different gate parameterization 
*)
     2                          
     3 
     4 specification gates [a,b,c]: noexit
     5
     6 behavior 
     7
     8 p[a,b,c]    (* p[a,b,a] *)
     9
    10 where 
    11
    12      process p[a,b,c]: noexit:= 
    13         q[a,b] |[a]| r[a,c]
    14      endproc
    15
    16      process q[a,b]: noexit:= 
    17         a; b; stop
    18      endproc
    19
    20      process r[a,c]: noexit:=
    21         c; a; stop
    22      endproc
    23
    24 endspec
    25

(* as written *) 

bh0 * 1 c line(s): [21]
bh1 * | 1 a line(s): [17,21]
bh2 * | | 1 b line(s): [17]  DEADLOCK

(* changing line 8 to p[a,b,a] *)

bh0 * 1 a line(s): [21]
bh1 * | 1 a line(s): [17,21]
bh2 * | | 1 b line(s): [17]  DEADLOCK
~



Example with gate parms and hiding

process vending_machine [ coin, candy1, candy2 ] :=
coin;
( candy1; vending_machine [coin, candy1, candy2]

[ ] 
candy2; vending_machine [coin, candy1, candy2] )

endproc

process devil [ candy ] :=
candy; 
devil [candy]

endproc

process system [ coin, candy ] :=
hide candy_bar in

( vending_machine [coin, candy, candy_bar]
| [ candy_bar ] |
devil [candy_bar] )

endproc

≈
process system [coin, candy] :=

        coin; ( candy; system [coin, candy]

[ ]

)
endproc

             The exact meaning of ≈ is to be discussed.

i ; system [coin, candy]



An almost realistic 
example in Basic LOTOS: 

OSI Transport Service 
Provider

(from paper by Bolognesi and Brinksma)



Session Entity

Access Point Access Point

Transport Service Provider

Transport Service

Primitives
Transport Service

Primitives

Session Entity



The following table describes the service primitives considered and their significance:

The service primitive sequences are expressed by Message Sequence Charts:

Primitives Significance

ConReq Connection Request

ConInd Connection Indication

ConRes Connection Response

ConCnf Connection Confirmation

DisReq Disconnection Request

DisInd Disconnection Indication

DatReq Data Request

DatInd Data Indication

Connection Establishment

Data Transfer

Connection Release

ConReq

ConCnf

ConInd

ConRes

Successful Establishment

DisInd DisReq

Rejection By User

Rejection by Provider

DatReq DatInd

Release By Both Users

Release By User And Provider

Rejection by Provider

ConReq

ConReq

ConInd

DisInd DisInd

DisInd

DisInd

DisReq DisReq

DisReq

A  B

A  B

A  B

A  B

A  B

A  B

A  B



The main behaviour of the specification can then be written as a 
call to process Handler:

Handler[ConReq, ConInd, ConRes, ConCnf, DatReq, DatInd, DisReq, DisInd]

where process Handler is defined as follows:

Connection_Phase[ConReq, ConInd, ConRes, ConCnf, DisReq, DisInd]
>>

(Data_phase[DatReq, DatInd]
[>

Termination_phase[DisReq, DisInd])
>>

Handler[ConReq, ConInd, ConRes, ConCnf, DatReq, DatInd, DisReq, DisInd]

Data_phase is only enabled when process Connection_Phase 
terminates successfully.  On the other hand, process 
Termination_phase can disrupt process Data_phase at any time 
before it terminates.  Once process Termination_phase exits, it 
enables recursively the whole service again by calling process 
Handler.

Process Phase Primitives involved

Connection-Phase Connection 
establishment

ConReq, ConInd, 
ConRes, ConCnf, 
DisReq, DisInd

Data_phase Data Transfer DatReq, DatInd

Termination_
phase

Connection 
release

DisReq, DisInd



process Handler[ConReq, ConInd, ConRes, ConCnf, DatReq, DatInd, DisReq, DisInd]:=

Connection_Phase[ConReq, ConInd, ConRes, ConCnf, DisReq, DisInd]
>> ( Data_phase[DatReq, DatInd]

[> Termination_phase[DisReq, DisInd]
)
>> Handler[ConReq, ConInd, ConRes, ConCnf, DatReq, DatInd, DisReq, DisInd]

where
process Connection_Phase[CRq, CI, CR, CC, DR, DI] :=

( i; Calling[Rq, CI, CR, CC, DR, DI]
[] Called[Rq, CI, CR, CC, DR, DI]
)

where
process Calling[Rq, CI, CR, CC, DR, DI]:=

CRq; ( CC; exit
[] DI; Connection_Phase[CRq, CI, CR, CC, DR, DI]
)

endproc (* Calling *)

process Called[Rq, CI, CR, CC, DR, DI]:=

CI; ( i; CR; exit
[] i ; DR; Connection_Phase[CRq, CI, CR, CC, DR, DI]
)

endproc (* Called *)

endproc (* Connection_Phase *)

process Data_phase[DtR, DtI]

i; DtR; Data_phase[DtR, DtI]
[] DtI; Data_phase[DtR, DtI]

endproc (* Data_phase *)

process Termination_phase[DR, DI] :=

i; DR; exit
[] DI; exit

endproc (* Termination_phase *)

endproc (* Handler *)



Concepts discussed in Class 3:

• termination: exit and stop

• exit and enable

• exit, enable, disable, and par. composition

• hiding and abstraction

• process definition and instantiation

• gate relabeling

• recursion

• pitfalls of unguarded process instantiation

• instantiation,relabeling and parallelism

• the transport service provider in basic LOTOS


