
Abstract Operational Semantics for Use Case Maps

Jameleddine Hassine1, Juergen Rilling1, and Rachida Dssouli2

1 Department of Computer Science, Concordia University, Montreal , Canada
{j hassin,rilling }@cs.concordia.ca

2 Concordia Institute for Information Systems Engineering, Montreal , Canada
dssouli@ciise.concordia.ca

Abstract. Scenario-driven requirement specifications are widely used to capture
and represent functional requirements. Use Case Maps (UCM) is being standard-
ized as part of the User Requirements Notation (URN), the most recent addition
to ITU−T’s family of languages. UCM models allow the description of func-
tional requirements and high-level designs at early stages of the development
process. Recognizing the importance of having a well defined semantic, we pro-
pose, in this paper, a concise and rigorous formal semantics for Use Case Maps
(UCM). The proposed formal semantics addresses UCM’s operational semantics
and covers the key language functional constructs. These semantics are defined
in terms of Multi-Agent Abstract State Machines that describes how UCM spec-
ifications are executed and eliminates ambiguities hidden in the informal lan-
guage definition. The resulting operational semantics are embedded in an ASM-
UCM simulation engine and are expressed in AsmL, an advanced ASM-based
executable specification language. The proposed ASM-UCM engine provides an
environment for executing and simulating UCM specifications. We illustrate our
approach using an example of a simplified call connection.

Key words: Use Case Maps, user requirements notation, abstract state machines, for-
mal semantics, simulation, AsmL.

1 Introduction

In the early stages of common development processes, system functionalities are de-
fined in terms of informal requirements and visual descriptions. Scenario-driven ap-
proaches, although often semiformal, are widely accepted because of their intuitive
syntax and semantics.(Amyot and Eberlein [4] provide an extensive survey of fifteen
scenario notations)

Use Case Maps [12] is one of these scenario based languages that has gained mo-
mentum in recent years within the software requirements and specification community.
Use Case Maps (UCMs) can be applied to capture and integrate functional require-
ments in terms of causal scenarios representing behavioral aspects at a higher level
of abstraction, and to provide the stakeholders with guidance and reasoning about the
system-wide functionalities and behavior. Use Case Maps [19] are part of a new pro-
posal to ITU−T for a User Requirements Notation (URN) [18]. UCM notation has been
baptized URN−FR, while another and complementary component for non-functional



requirements is called URN−NFR. UCMs have been useful in a number of areas: De-
sign and validation of telecommunication and distributed systems [2, 3], detection and
avoidance of undesirable feature interactions [13, 21], evaluation of architectural alter-
natives [20], and performance evaluation [22].

However, the general lack of formalism and accuracy in requirement languages can
cause ambiguities and misinterpretations of the specifications expressed by these lan-
guages and limit their use. This ambiguity can be removed by adding formal semantics
to requirement specification languages. Moreover, this added formalism allows for a
verification of specifications and their properties .

Currently, the UCM abstract syntax and static semantics are informally defined in
an XML Document Type Definition [5]. However, to date the precise meaning of its
execution semantics has not been captured.

In this paper, we present a formal operational semantics of UCM language in terms
of Abstract State Machines(ASM) [16]. ASMs have been used to specify a wide va-
riety of programming languages in particular C++ [24] and Java [10], logic program-
ming languages such as Prolog [9] and its variants, and hardware languages such as
VHDL [8]. ASMs have been also used to define the operational semantics of UML
activity diagrams [7] and the formal definition of ITU−T standard SDL 2000 [15].

We tried to make this paper self-contained. In the next section, we provide an
overview of the Use Case Maps notation. In section 3, we briefly introduce the basic
concepts and notions of Abstract State Machines used in this paper. Section 4 gives the
ASM models for Use Case Maps. In section 5, we provide an ASM-UCM engine, writ-
ten in AsmL language [6], for simulating and executing UCM specifications. In section
6, we describe one possible scenario execution of the ASM model for the simplified call
connection introduced in section 2.3. Finally, section 7 contains a brief discussion and
a conclusion.

2 Use Case Maps Notation

2.1 Introduction

The Use Case Maps notation is a high level scenario based modeling technique used
to specify functional requirements and high-level designs for various reactive and dis-
tributed systems. UCMs expressed by a simple visual notation allows for an abstract
description of scenarios in terms of causal relationships between responsibilities (e.g.
operation, action, task, function, etc.) along paths allocated to a set of components.
These relationships are said to be causal because they involve concurrency, partial or-
dering of activities, and they link causes (e.g., preconditions and triggering events) to
effects (e.g. postconditions and resulting events). With the UCM notation, scenarios are
expressed above the level of messages exchanged between components, hence, they are
not necessarily bound to a specific underlying structure (such UCMs are calledUn-
boundUCMs). One of the strengths of UCMs is their ability to integrate a number of
scenarios together (in a map-like diagram), and to reason about the architecture and
its behavior over a set of scenarios. UCM specifications may be refined into more de-
tailed models such as MSCs [20]. These detailed models may be transformed then into
concrete implementations (possibly through automated code generation).



In the following section, we describe and illustrate the UCM core path notation. For
a detailed description of the language, the reader is invited to consult [12] and [23].

2.2 UCM Functional Notation

A basic UCM path contains at least the following constructs: start points, responsibil-
ities and end points.Start points. The execution of a scenario path begins at a start
point. A start point is represented as a filled circle representing preconditions and/or
triggering events.Responsibilities.Responsibilities are abstract activities that can be
refined in terms of functions, tasks, procedures, events. Responsibilities are represented
as crosses.End points. The execution of a path terminates at an end point. End points
are represented as bars indicating post conditions and/or resulting effects.

UCMs help in structuring and integrating scenarios in various ways− sequentially,
as alternatives (with OR-forks/joins as illustrated in Figure 1(a)) or concurrently (with
AND-forks/joins as illustrated in Figure 1(b)).OR-Forks. represent a path where sce-
narios split as two or more alternative paths. An OR-Fork has one incoming hyperedge
and two or more outgoing ones. Conditions (Boolean expression called guard) can be
attached to alternative paths.OR-Joins. capture the merging of two or more indepen-
dent scenario paths.AND-Forks. split a single control into two or more concurrent
control.AND-Joins. capture the synchronization of two or more concurrent scenario
paths.

(a) OR-Fork/Joins (b) Concurrent routes with AND-Fork/Joins

Fig. 1. Structuring Scenarios

When maps become too complex to be represented as one single UCM, a mech-
anism for defining and structuring sub-maps becomes necessary. Path details can be
hidden in sub-diagrams called plug-ins, contained in stubs (diamonds) on a path.

(a) Static stubs have only one plug-in (b) Dynamic stubs may have multiple
plug-ins

Fig. 2. Stubs and plug-ins



2.3 Use Case Maps Example

Figure 3(a) shows a simplified call connection phase of a telephony system with one
user-subscribed feature,TeenLinefeature. This UCM is a modified version of the model
originally introduced in [19]. The originating user can subscribe to the TeenLine feature
which restricts outgoing calls based on the time of day (i.e., hours when homework
should be the primary activity). This can be overridden on a per-call basis by anyone
with the proper personal identification number. The causal path is initiated through the
start pointreq. The dynamic stubOriginatinghas two plug-ins:

- Default plug-in that represents how the basic call reacts in the absence of TeenLine
feature (Figure 3(c)).

- TeenLine plug-in (Figure 3(b)) checks the current time (chkTime) and, if in the
predefined range, requires a valid personal identification number (PIN) to be provided
in a timely fashion for the call initiation to continue. If an invalid PIN is provided, or if
a time-out occurs, then a denied reply is prepared (pd).

req

ring


Originating

upd


sig


[
idle
]


[
busy
]

pb


vrfy
IN1
 OUT1


OUT2
 prb

AND (
 fork
 )


Condition
OR (
 fork
 )


OR (
 join
)
Segment Label


(a) Call initialization root map

in1


out2


out1

chkTime
 [
notInRange
 ]


[
inRange
 ]


pd


getPIN


[
invalid
]


[
valid
]


Timer


Time-out
 Path


(b) TeenLine plug-in

in1

out1


(c) Default plug-in

Fig. 3. UCM example

The stub selection policy is based on the global variableSubTLwhich determines
whether the originating user has subscribed to TeenLine feature:

- SubTL=true→ TeenLine plug-in.
- SubTL=false→ Default plug-in.

Other global variables of the specification include alsogetPINandvalid. The binding
relationship connects the stub path segments of the parent map to the start/end points
of the plug-in. In our example, the binding relationship for the TeenLine plug-in is :
{<TeenLine, IN1, in1>, <TeenLine ,OUT1, out1>,<TeenLine, OUT2, out2>} con-
nects the stub path segments of the parent map to the start/end points of the plug-in.
If the call is allowed, the system then verifies whether the called party is busy or idle



(vrfy). The idle path splits the control into two concurrent paths: Ringing (ring) and
signaling (sig) the occurrence of a prepared ringback reply (prb). In the case that the
busy path is selected, it will result in the signaling of a prepared busy reply (pb).

3 Abstract State Machines

This section introduces some basic notions of ASM [16], that will be employed for the
construction of our UCM model. For a rigorous mathematical definition of the semantic
foundations of ASMs, we however refer to [11, 16].

Abstract State Machines define a state-based computational model, where compu-
tations (runs) are finite or infinite sequences of states{Si} obtained from a given initial
stateS0 by repeatedly executing transitionsδi.

S0
δ1 // S1

δ2 // S2
. . . δn // Sn

An ASM A is defined over a fixed vocabulary V, a finite collection of function names
and relation names. Each function symbol has a fixed arityn and typeT1,. . .,Tn → T
whereTi and T are basic types. Names in V may be(1) Static: having the same (fixed)
interpretation in each computation state of A(2) Dynamic: where function names can
be altered by transitions fired in a computation step or,(3) External: its interpretation
is determined by the environment (thus, not controlled by the system).

Given a vocabulary, A is defined by its program P and a set of distinguished initial
statesS0. The program P consists of transition rules and specifies possible state transi-
tions of A in terms of finite sets of local functionupdateson a given global state. Such
transitions are atomic actions. A transition rule that describes the modification of the
functions from one state to the next has the following form:
if Condition then<Updates> else<Updates> endif, whereUpdatesis a set of function
updatesf(t1,t2,. . .,tn):= t which are simultaneously executed when Condition is true.
A state transition is performed by firing a set of rules in one step. Each function update
changes a value at a specific location given by the left-hand-side of the update.

ASMs are multi-sorted based on the notion of universes. We presume the standard
mathematic universes of Booleans, integers, lists, etc. as well as the standard operations
on them such as the usual Boolean operations (∧, ∨ .etc.). A universe can be dynami-
cally extended with individual objects by:
extend Universe with v<Rule> end extend, wherev is a variable which is bound by the
extend constructor.

The choose constructor defines an arbitrary selection of one element in a universe:
choose v in Universe<Rule> end choose, wherev is non-deterministically selected
from the given universe. The choose constructor can be qualified by a condition.

A distributed ASM (called alsoMulti-Agent ASM) involves a collection of agents
that perform their computation concurrently. The agents are elements of a dynamic
universe AGENT that may grow and shrink over a run. Each agenta∈AGENT is viewed
as an object of class AGENT and can identify itself by means of a special nullary
functionme:AGENT. The program of an agenta is a method of the class AGENT. The
state ofa (given by all fields of a) evolves in sequential steps with each invocation of
its program. We assume that there is one program, prog, shared by all agents.



4 ASM models for Use Case Maps

The definition of the ASM formal semantics of UCM consists of associating each UCM
construct with an ASM which models its behavior. In this section, we associate an ASM
signature to each UCM construct then we assign execution rules to them.

4.1 Signature of UCM constructs

The UCM maps are modeled using the abstract sets:StartPoint, EndPoint, Responsi-
bility, AND-Fork, AND-Join, OR-Fork, OR-Join, Stuband Timer. We define also the
abstract setHyperEdgethat represents the set of hyperedges connecting UCM con-
structs.

Start Pointsare of the formStartPoint(PreCondition-set, TriggerringEvent-set, Start-
Label, in, out)where the parameterPreConditions-setis a list of conditions that must
be satisfied in order for the scenario to be enabled (if no precondition is specified, then
by default it is set to true). The parameterTriggeringEvents-setis a list that gives the set
of events that can initiate the scenario along a path. One event is sufficient for triggering
the scenario. The parameterStartLabeldenotes the label of the start point. A start point
should not have an incoming edge except when connected to an end point (called a
waiting place). In such situation, we use the parameterin ∈ HyperEdgeto represent the
connection with an end point. The parameterout∈ HyperEdgeis the (unique) outgoing
hyperedge.

End Points are of the formEndPoint(PostCondition-set, ResultingEvent-set, End-
Label, in, out)where the parameterPostConditions-setis a list of conditions that must
be satisfied once the scenario is completed. The parameterResultingEvent-setis a list
that gives the set of events that result from the completion of the scenario path. The
parameterEndLabeldenotes the label of the end point; the parameterin ∈ HyperEdge
is the (unique) incoming hyperedge. End points have no target hyperedge except when
connected to a start point (i.e. a waiting place). In such a case,out∈ HyperEdgerepre-
sents such connection.

Responsibilitiesare of the formResponsibility(in, Resp, out)wherein ∈ Hyper-
Edgeis the incoming hyperedge,Respis the responsibility to be executed (to be defined
by a set of simultaneous ASM function updates), andout∈ HyperEdgeis the outgoing
hyperedge. A responsibility is connected to only one source hyperedge and to one target
hyperedge.

OR-Forks are of the formOR-Fork(in, [Condi]i≤n, [outi]i≤n) wherein denotes
the incoming hyperedge,[Condi]i≤n is a finite sequence of Boolean expressions, and
[outi]i≤n is a sequence of outgoing hyperedges.

OR-Joins are of the formOR-Join({ini}i≤n, out) where{ini}i≤n denotes the in-
coming hyperedges and,out is the outgoing hyperedge.

AND-Forks are of the formAND-Fork(in,{outi}i≤n) wherein denotes the incom-
ing hyperedge, and{outi}i≤n is a sequence of outgoing hyperedges.

AND-Joins are of the formAND-Join({ini}i≤n, out) where{ini}i≤n denotes the
incoming hyperedges, andout is the outgoing hyperedge.

Timers are of the formTimer(in, TriggerringEvent-set, out, outtimeout)wherein
denotes the incoming hyperedge. The parameterTriggeringEvents-setis the list that



gives the set of events that can trigger the continuation path (i.e. represented byout)
and the parameterout timeout∈ HyperEdgedenotes the timeout path.

Stubs have the formStub({entryi}i≤n , {exitj}j≤m, isDynamic,[Condk]k≤l ,
[plugink]k≤l) where{entryi}i≤n and{exitj}j≤m denote respectively the set of the
stub entry and exit points.isDynamicindicates whether the stub is dynamic or static.
Dynamic stubs may contain multiple plug-ins,[plugink]k≤l whose selection can be
determined at run-time according to a selection-policy specified by the sequence of
Boolean expressions[Condk]k≤l. The sequence Cond is empty for static stubs (i.e.
isDynamic=false).

For each UCM construct we use a (static) function Param which, when applied to
constructs yields the parameter. For examplein(StartPoint)yields the incoming hyper-
edge of the construct StartPoint. We often suppress parameters notationally.

We formalize UCM maps by an abstract set MAPS. It contains the root map (i.e.
the main UCM map) and all its submaps (i.e. plug-ins).

The nesting structure of a UCM specification is encoded in the following functions:

- UpMap: MAPS→MAPS∪ {undef}, assigns to a plug-in its immediately enclos-
ing map, if any. We assume that this function yieldsundef for the root map which
is not enclosed in any map. Thus,UpMap(rootMap)=undef.

- StubBinding:{{entryi}∪{EndPoints}}×MAPS→{{StartPoints}∪{exitj}}
specifies how a plug-in∈MAPS is bound to a stub. The path segments that are con-
nected to the stub need to be bound to the paths of the plug-ins in order to express
continuity. This is done through explicit binding. An entry hyperedge joins a stub
entry with a start point from the plug-in. An exit hyperedge joins a stub exit with
an end point from the same plug-in.

In the following section, we define the ASM rules that define the operational se-
mantics used to express the UCM control constructs.

4.2 ASM Rules of UCM Constructs

Let AGENT be the abstract set of agentsa which move through their associated UCM
map, by executing the UCM construct at the current active hyperedge, i.e. the hyperedge
where the agent’s control lies.

Every agent can mainly be characterized by three dynamic functions:
- active: AGENT→HyperEdge represents the identifier of the active hyperedge lead-

ing to the next UCM construct to be executed.
- mode: AGENT→ {running, inactive}. An agent may be running in normal

mode or inactive once the agent has finished its computation.
- level: AGENT→MAPS gives the submap that the agent is currently traversing.
For the root map, it is required that there is an agent for each starting point, in

running mode with active hyperedges positioned on the corresponding start points of
the root map (i.e. active=in(StartPoint)). The creation of the initial ASM agents, their
initialization and the initialization of the global variables used in the scenario definitions
represent the initialization phase.



Typically, a running agent has to look at the target of its currently active hyperedge
to determine the next action. CurrConstruct denotes the current UCM construct to be
executed, i.e. the UCM construct whereme.active=in(construct)∧me.mode=running.

In the following, we assign ASM execution rules to UCM constructs.
Start points. If the control is on the hyperedgein(StartPoint), the PreCondition-

setis satisfied and there occurs at least one event from thetriggeringEvent-set, then the
start point is triggered and the control passes to the outgoing hyperedge of the StartPoint
(Otherwise nothing happens and the control stays at the StartPoint). Figure 4 describes
the start point rule.

 


if CurrConstruct is StartPoint(PreCondition-set, TriggerringEvent-set,
StartLabel, in, out)then

if (EvaluatePreConditions& EvaluateTrigger)then me.active:= out
where:

- EvaluateTrigger: TriggerringEvent-set× {events} → Boolean; eval-
uates whether the set of events occurring at StartPoint are included in the
TriggeringEvent-set.

- EvaluatePreConditions: PreCondition-set→ Boolean evaluates
whether all preconditions are satisfied.

Fig. 4. Rule Start Point

Responsibilities.Responsibilites represent atomic actions, not to be decomposable,
and their execution is not interruptible. If the control is on the hyperedgein(Responsibility)
thenRespis performed and the control passes to the outgoing hyperedge.

if CurrConstruct is Responsibility (in,Resp,out)then
Resp
me.active:= out

Fig. 5. Rule Responsibility

If the control is on the incoming hyperedge of an OR-Fork, the conditions are eval-
uated and the control passes to the hyperedge associated to the true condition. If more
than one condition evaluates to true (i.e. nondeterministic choice), the control passes
randomly to one of the outgoing hyperedges associated to the true conditions. Figure 6
illustrates the OR-Fork rule.



Cond 1


Cond i


Cond n


Out 1


Out i


Out n


in


if CurrConstruct is OR-Fork(in,[Condi]i≤n,[outi]i≤n)
then if NonDeterministicChoice([Condi]i≤n) then

me.active:= (chooseouti in [outk]k≤l)
else ifCond1 then me.active:=out1

. . .
if Condn then me.active:=outn

where NonDeterministicChoice:{Cond}→Boolean is a dynamic
function that checks whether more than one condition evaluates to
true and[outk]k≤l is the sequence of hyperedges associated to sat-
isfied conditions.

Fig. 6. Rule OR-Fork

When one or many flows reach an OR-Join, the control passes to the outgoing hy-
peredge. Figure 7 illustrates the OR-Join rule.

Note:An UCM loop can be modeled as an OR-Fork followed by an OR-Join. Their
respective rules should be executed once encountered.

in 1


in i


in n


out
 if CurrConstruct is OR-Join({ini}i≤n, out) then
me.active:= out

Fig. 7. Rule OR-Join

When the control is on an hyperedge entering an AND-Fork synchronization bar,
then the flow is split into two or more flows of control. The currently running agent
creates the necessary new subagents and sets their mode to running, then sets its mode
to inactive. Each new ASM subagent inherits the program for executing UCMs, and its
control is started on the associated outgoing hyperedge of the AND-Fork.

if CurrConstruct is AND-Fork(in, {outi}i≤n) then
me.mode:=inactive
extendAGENT with a1, . . . ,an

do for allai, 1≤ i ≤ n
ai.mode := running
ai.active :=outi

Fig. 8. Rule AND-Fork



When many subagents running in parallel reach an AND-Join, their parallel flow
must be joined. When all incoming hyperedges become active, a new agent is created
and the control passes to the outgoing hyperedge. The last agent arriving to the AND-
Join will fire the rule. Inactive agents are deleted after each rule’s execution. For the
clarity’s sake, we have omitted theGarbage Collectionfrom all our ASM rules.

if CurrConstruct is AND-Join({ini}i≤n, out)
then if not (∀a1,. . . ,an ini = active(ai)) then

me.mode:= inactive
else me.mode:= inactive

extendAGENT with an+1

an+1.active:=out
an+1.mode:= running

Fig. 9. Rule AND-Join

Once the control reaches a stub, the control passes to the selected plug-in and the ex-
ecution continues following the UCM semantics. No extra agents are needed to execute
aStubunless the selected plug-in contains a concurrent flow.

Entry={IN1}


Exit={OUT1,OUT2}


if CurrConstruct is Stub({entryi}i≤n,{exitj}j≤m, isDynamic,
[Condk]k≤l,[plugink]k≤l) then

if not(isDynamic)then add(plugin, me.level) to MapHierarchy
me.level := plugin
me.active := in(StubBinding(entryi, plugin)

else add(plugin,me.level) to MapHierarchy
me.level := SelectionPolicy(Condk)k≤l))
me.active := in(StubBinding(entryi , SelectionPolicy(

Condk)k≤l))
Where SelectionPolicy:{Cond} → MAPS is the selection policy
function.

Fig. 10.Rule Stub

When the control reaches an end point, two cases should be considered, depending
on whether the end point is inside a plug-in or part of the root map:

1. End point is inside a plug-in: the control passes to the stub’s exit point bound to the
plug-in end point.

2. End point is part of the root map: the control passes to the out hyperedge if any
(e.g. a waiting place) otherwise the running agent is stopped.

The exit from nested maps should be performed in the correct order of the stub structure.
However, one control may exit the stub while another one is still inside the stub.



 


if CurrConstruct is EndPoint(PostCondition-set,ResultingEvent-set, EndLa-
bel, in, out)then if UpMap(me.level)6=undef)then

me.active:= out(StubBinding(EndPoint,me.level))
elseifout6=undefthen me.active := out

else me.mode:= inactive

Fig. 11.Rule End Point

The timer rule is very similar to a basic OR-Fork rule with only two disjoint branches
(out and outtimeOut).

if CurrConstruct is Timer(in, TriggerringEvent-set, out,
out timeout)then

if (Triggered)then me.active:= out
else me.active := outtimeout

where Triggered: TriggerringEvent-set→Boolean determines
whether a trigger occurs within a predefined time frame.

Fig. 12.Rule Timer

5 ASM-UCM Simulation Engine

The ASM-UCM simulation engine is designed for simulating and executing UCM spec-
ifications. It is written in AsmL [6], a high level executable specification language devel-
oped by the Foundations of Software Engineering (FSE) group at Microsoft Research.
AsmL is integrated with Microsoft’s software development, documentation and runtime
environments including Visual Studio, Word and Component Object Model (COM). It
has full .NET interoperability. Figure 13 shows the structure of the ASM-UCM simula-

UCM Spec


(XML Format)


ASM


Program

Data


Structures


Simulation


traces


Spec variables

initialization


Environment


UCM
-
ASM Engine


UCM Spec


(Hyper Graph)
 +


Fig. 13.ASM-UCM Simulation Engine Architecture



tion engine, which is composed of the following three components:

5.1 UCM Specification

In order to apply ASM rules defined in section 4, the UCM specification (originally de-
scribed in XML format) should be translated into a hyper graph format where constructs
are connected using hyperedges. For this purpose, we define a UCM specification as a
hyper graph: SPEC = (C, H,λ) where:

- C is the set of UCM constructs composed of sets of typed constructs.
- H is the set of hyperedges
- λ is a transition relation (path connection) defined as:λ = C× H × C

Note: The translation from the XML format to hyper-graph format is done manually.
Before a simulation can be run, the specification’s global variables are initialized.

5.2 Data Structures

The data structures maintained by the ASM-UCM engine are AsmL structures and dy-
namic sets. They encode the attribute information of UCM constructs and the structures
that handle the dynamic flow of execution. The listing below shows part of the AsmL
data structures used in ASM-UCM simulation engine. For instance,Mode is a static
universe where each element is a static nullary function,UCMElementrepresents the
structure of the transition relationλ, andUCMConstructstructure incorporates many
case statements as a way of organizing different variant of UCM constructs.

Enum Mode caseR Construct
running in hy as HyperEdge
inactive out hy as HyperEdge

structure UCMElement label as String
source as UCMConstruct caseOF Construct
hyper as HyperEdge in hy as HyperEdge
target as UCMConstruct Selec as Set of ORSelection

type Maps = Set of UCMElement caseStubConstruct
structure UCMConstruc entry hy as Set of HyperEdge
caseSP Construct exit hy as Set of HyperEdge

in hy as HyperEdge Selecplugin as Set of StubSelection
out hy as HyperEdge Binding Relation as Set of StubBinding
label as String label as String
preCondition as Boolean case. . .

Fig. 14.Data Structures

5.3 ASM Program

The listing below illustrates the classAgentand the main program of the ASM-UCM
simulation engine.



classAgent main()
const id as String step
var active as HyperEdge forall s in StartPoints
var mode as Mode let ag=new Agent(label(s), in(s),
var level as Maps running, RootMap, initstub)

ag.Program()
Program()
step

until me.mode = inactivedo
chooseh in levelwhereHyperExists(active,

GetInHyperEdge(h.source))
match (h.source)

// Rule of Start Point
SPConstruct (a,b,c,d):me.active := b

// Rule of Responsibility
R Construct (a,b,c): Execute(h.source)

me.active := b
// Rule of OR-Fork . . .

Fig. 15.ASM-UCM program

6 ASM Execution of the Simplified Call Connection

In this section, we will describe one possible scenario execution of the ASM model for
the simplified call connection introduced in section 2.3.

req

ring


Originating

upd


sig


vrfy

IN1
 OUT1


prb


Agent Root

Agent ARing


Agent ASig


e1

in


e2


e3


e4


(a) Root Map execution

in1
 out1


chkTime


getPIN
e11

e12


e13


Agent Root


(b) TeenLine execution

Fig. 16.Execution Trace

During the initialization phase the main agentRoot is created and the global vari-
ables are initialized (i.e.,SubTL=true;InRange=true;getPIN=true;valid=true). The start
point req rule is executed, and the control goes to the hyperedgeIN1. The Stub rule is
then executed. The functionSelectionPolicyselects the plug-inTeenLineand the control
passes toin(StubBinding(IN1, SelectionPolicy(SubTL)))which is the incoming hyper-
edge of the startpointin1. ResponsibilityChkTimeis observed, control passes to hy-
peredgee12, then the timer is triggered and, a valid PIN is entered. When the control



reaches the end pointout1, the EndPoint rule is executed, and the control passes to
out(StubBinding(EndPoint,level))which is the hyperedgeOUT1. Then the responsibil-
ity vrf is observed, and the control passes to the incoming hyperedge of the AND-Fork
(i.e. hyperedgein). When the main agentRoot reaches the AND-Fork, it creates two
new agentsARingandASigand changes it mode toinactive. These two agents start
their execution respectively at the AND-Fork’s upper and lower outgoing hyperedges
(i.e. respectively hyperedgese1ande2). In our implementation, agentsARingandASign
evolve in an interleaving mode. AgentARingexecutes responsibilityupdand terminates
while agentASigexecutesprb then terminates. An ASM scheduler may be designed to
have concurrent agents behave in true concurrency mode. Choosing the suitable con-
current execution semantics depends on the application domain and the design choices.

7 Discussion and Conclusion

In this paper, we have presented a formal operational semantics for Use Case Maps
language based on Multi-Agent Abstract State Machines. Our ASM model provides
a concise semantics of UCM functional constructs and describes precisely the control
semantics.

Our approach based on ASM is more abstract and more flexible than the one given
in [1] in terms of LOTOS [17]. Indeed, our ASM rules can be easily modified to accom-
modate language evolution. Considering new semantics for a UCM construct, result in
changing the corresponding ASM rule without modifying the original specification.
While in [1], one needs to redesign the mapping between UCM to LOTOS and to re-
generate the LOTOS specification. Moreover, our ASM-UCM simulation engine may
support different concurrency semantics at minimal cost. Agents may behave either in
interleaving semantics with atomic actions (i.e. comparable to LOTOS processes) or in
true concurrency mode. The choice of the suitable alternative depends on the applica-
tion domain and the ASM program (i.e., ASM Scheduler) is designed accordingly.

We showed that ASMs are, in general, suitable to provide a formal representation
of Use Case Maps constructs. The proposed semantics can be seen as a complementary,
unambiguous documentation approach that provides additional insights of the UCM
language and its notation, as well as a basis for future formal verification of UCM.
As part of our future work, we will investigate the use of ASM model checking tech-
nique [14] to verify UCM specifications.

References

1. Amyot D., Formalization of Timethreads Using LOTOS. Master Thesis, Department of Com-
puter Science, University of Ottawa, Canada, 1994.

2. Amyot D. and Andrade R., Description of wireless intelligent network services with Use Case
Maps, SBRC’99, 17th Simṕosio Brasileiro de Redes de Computadores, Salvador, Brazil, May
1999, pp. 418-433.

3. Amyot D., Buhr R.J.A., Gray T. and Logrippo L., Use Case Maps for the Cap-
ture and Validation of Distributed Systems Requirements. RE’99, Fourth IEEE Inter-
national Symposium on Requirements Engineering, Limerick, Ireland, June 1999,44-53.
http://www.UseCaseMaps.org/pub/re99.pdf



4. Amyot D. and Eberlein A., An Evaluation of Scenario Notations and Construction Ap-
proaches for Telecommunication Systems Development. In: Telecommunications Systems
Journal, 24:1, 61-94, September 2003.

5. Amyot D. and Miga, A., Use Case Maps Document Type Definition 0.19. Working document,
June 2000. http://www.UseCaseMaps.org/xml/

6. AsmL for Microsoft.Net, http://www.research.microsoft.com/foundations/asml, 2003
7. Börger E., Cavarra A. and Riccobene E., An ASM Semantics for UML Activity Diagrams.

In T. Rus, editor, Proc. Algebraic Methodology and Software Technology, 8th International
Conference, AMAST 2000, LNCS 1826. Springer, 2000.

8. Börger E., Gl̈asser U. and Muller W., Formal Definition of an Abstract VHDL’93 Simulator
By EA-Machines. In C. Delgado Kloos and P. T. Breuer, eds., Formal Semantics for VHDL,
107-139. Kluwer Academic Publishers, 1995.

9. Börger E. and Rosenzweig D., A mathematical definition of full Prolog. In Science of Com-
puter Programming, vol. 24, 249-286. North-Holland, 1994.

10. Börger E. and Schulte W., Defining the Java Virtual Machine as Platform for Provably Cor-
rect Java Compilation. In L. Brim, J. Gruska, and J. Zlatuska, editors, Mathematical Founda-
tions of Computer Science, MFCS 98, Lecture Notes in Computer Science. Springer, 1998.

11. Börger E. and Stärk R., Abstract State Machines: A Method for High-Level System Design
and Analysis. Springer-Verlag, 2003.

12. Buhr, R. J. A., Use Case Maps as Architectural Entities for Complex Systems. In: IEEE
Transactions on Software Engineering, 24(12) (Dec. 1998) 1131-1155.

13. Buhr R. J. A., Elammari M., Gray T. and Mankovski S., Applying Use Case Maps to multi-
agent systems: A feature interaction example. In 31st Annual Hawaii International Conference
on System Sciences, 1998.

14. Del Castillo G. and Winter K., Model checking support for the ASM high-level language. In
S. Graf and M. Schwartzbach, editors, 6th International Conference for Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2000), volume 1785 of LNCS, pp
331-346. Springer-Verlag, 2000.

15. Eschbach R., Glässer U., Gotzhein R., von Löwis M. and Prinz A., Formal Definition of
SDL−2000 - Compiling and Running SDL Specifications as ASM Models. In Journal of
Universal Computer Science, 7 (11): 1025-1050, Springer Pub. Co., Nov. 2001.

16. Gurevich Y., Evolving algebra 1993: Lipari guide. In E. Börger, editor, Specification and
Validation Methods. Oxford University Press, Oxford, 1995.

17. ISO, Information Processing Systems, OSI: LOTOS - A Formal Description Technique
Based on the Temporal Ordering of Observational Behaviour. IS 8807, Geneva, 1989.

18. ITU-T, Recommendation Z.150, User Requirements Notation (URN)- Language Require-
ments and Framework, Geneva, Switzerland. http://www.UseCaseMaps.org/urn/

19. ITU-T, URN Focus Group (2002), Draft Rec. Z.152 - UCM: Use Case Map Notation (UCM).
Geneva.

20. Miga A., Amyot D., Bordeleau F., Cameron C. and Woodside M., Deriving Message Se-
quence Charts from Use Case Maps Scenario Specifications. Tenth SDL Forum (SDL’01),
Copenhagen, 2001. LNCS 2078, 268-287.

21. Nakamura N., Kikuno T., Hassine J., and Logrippo L., Feature Interaction Filtering with Use
Case Maps at Requirements Stage. In: Sixth International Workshop on Feature Interactions
in Telecommunications and Software Systems (FIW’00), Glasgow, Scotland, UK, May 2000.

22. Petriu. D. C. and Woodside M., Software Performance Models from System Scenarios in
Use Case Maps, Proceedings of the 12th International Conference on Computer Performance
Evaluation, Modelling Techniques and Tools, p.141-158, April 14-17, 2002.

23. Use Case Maps Web Page and UCM Users Group, 1999. http://www.UseCaseMaps.org
24. Wallace C., The Semantics of the C++ Programming Language. In E. Börger, editor, Speci-

fication and Validation Methods. Oxford University Press, 1995.


