
CNAP Specification and Validation:
A Design Methodology

Using LOTOS and UCM

Zhimei Yi

Thesis submitted to
the School of Graduate Studies and Research

in partial fulfillment of
the requirements for the degree of

Master of Computer Science

under the auspices of the Ottawa-Carleton
Institute for Computer Science

Ottawa, Ontario, Canada
January 2000

Copyright Zhimei Yi, Ottawa, Canada, 2000

Acknowledgments

I would like to thank all the people who assisted me in completing this work.

First, I would like to express my deep appreciation to my supervisor, Prof. Luigi

Logrippo and his LOTOS group for their support and fruitful discussions throughout my

graduate studies. Those discussions pointed me to the right direction, and greatly

influenced on my research work. Also, Prof. Logrippos’s accuracy in reviewing my drafts

of the thesis has greatly improved its contents and presentation.

In particular, I am much thankful to Daniel Amyot and Rossana Andrade for providing

many research ideas of this thesis. I also give special thanks to Jacques Sincennes for his

technical support and his patient help with the use of the LOTOS language and toolkit.

Other friends, Masahide Nakamura and Ralph Boland helps me a lot on my proof reading

and I would like to express my sincere thankfulness to them.

I should thank our industrial collaborators, John Visser and Jim Hodges, for initiating the

idea of this thesis and for providing technical information and assistance. Nortel-

Networks, Communication and Information Technology Ontario and the Natural Science

and Engineering Research Council must be thanked for their financial support.

At last, I have deep gratitude towards my family, especially my father and aunt Ethel Yik.

They give me love and support as much as they can, and I believe that this thesis is the

best gift that I can give to them.

Abstract

Over the past few years, the subject of Wireless Intelligent Network (WIN) has captured

the interest of the North American telecommunications community. The objective of

WIN is to integrate Intelligent Network (IN) concepts into the IS-41 architecture. The

introduction of a Service Control Point (SCP) in the Interim Standard IS-41 architecture

enables independent specification of services. By using the IN architecture, call

processing intelligence and feature functionality is separated from network switches.

Subscribers can take advantage of such IN services as call name presentation (CNAP) in

a wireless environment.

In the first part of the thesis, we apply a scenario analysis technique to capture the

requirements of the CNAP system. The analysis includes building a design model

composed of User Case Maps (UCMs) and Message Sequence Charts (MSCs). This

technique helps in specifying the designed system at a high level, brings us one step

closer towards the specification of CNAP in LOTOS, and contributes a method for

generating test cases for further validation of the specification.

In the second part of the thesis, we validate the design of the CNAP feature by

constructing a LOTOS specification for it and validating the specification. The formal

specification of the CNAP service is based on the structure of Network Entities (NEs)

that are defined in the Network Reference Model (NRM). The specification emphasizes

the establishment of call connection and processing of services in a wireless environment.

It is concluded that UCMs, being an intuitive notation that can be used loosely and at

several levels of detail, is appropriate for the requirement and service description in the

development of standard. LOTOS, being fairly precise but being able to be used

abstractly, is appropriate for prototyping and validating the call procedures and services

of WIN.

ABBREVATIONS

A:
AC—Authentication Center
ADT—Abstract Data Type

B:
BS—Base Station

C:
CNAP—Calling Name Presentation
CCF—Call Control Function
CNA—Calling Name Information
CCS—Calculus of Communicating System
CSP—Communicating Sequential Processes

D:
DFP—Distributed Functional Plane

F:
FDT—Formal Description Technique

G:
GSM—Global System for Mobile Communication
GPRS—General Packet Radio Services

H:
HLR—Home Location Register

I:
ICS—Incoming Call Screening
IN—Intelligent Network
IS—Interim Standard
ISDN—Integrated Services Digital Network
IP—Intelligent Peripheral

L:
LOTOS-- Language Of Temporal Logic Specification
LRF—Location Registration Function

M:
MS—Mobile Station
MSC-- Message Sequence Chart
MSC—Mobile Switching Center
MIN—Mobile Station Identification Number
MDN—Mobile Station Directory Number
MACF—Mobile Station Access Control Function

N:
NRM—Network Reference Model

P:
PCS—Personal Communications Services
POTS—Plain Old Telephone System
PSTN—Public Switch Telephone Network

R:
RND—Redirecting Name Display

S:
SMSC—Short Message Service Center
SN—Service Node
SS7—Signaling System 7
SCP—Service Control Point
SCF—Service Control Function
SIM—Service Infrastructure Model
SSF—Service Switch Function

T:
TIA—Telecommunications Industry Association
TLDN—Temporary Local Directory Number

U:
UCM---Use Case Map

V:
VLR—Visitor Location Register
VCS—Voice Call Screening

W:
WIN—Wireless Intelligent Network

1

INDEX

Chapter 1 Introduction.. 3

1.1 Background and Motivation.. 3

1.2 Objective and Approach .. 4
1.2.1 Objective ... 4
1.2.2 Approach ... 5

1.3 Organization of the thesis .. 6

1.4 Related Work .. 8
1.4.1 Formal Specification of Telephony Features in a distributed environment ... 8
1.4.2 Scenario Analysis.. 9

Chapter 2 Wireless Intelligent Network.. 11

2.1 Background ... 11

2.2 WIN Architecture ... 12
2.2.1 Network Reference Model (NRM) of WIN .. 13
2.2.2 Distributed Function Plane (DFP) of WIN ... 15

2.3 WIN Services... 16
2.3.1 CNAP Service Subscription .. 17
2.3.2 CNAP Architecture ... 20
2.3.3 Strategy for Deploying the CNAP service .. 22

2.4 Conclusion:.. 24

Chapter 3 Selected Techniques ... 25

3.1 Introduction .. 25

3.2 The stages in the standardization Process .. 25

3.3 Techniques applicable to these stages ... 26
3.3.1 An Overview of Use Case Map (UCM).. 26
3.3.2 An Overview Of Message Sequence Charts (MSC) 30
3.3.3 Overview of the LOTOS Language .. 32

3.3.3.1 LOTOS Data Part .. 33
3.3.3.2 LOTOS Control Part ... 35
3.3.3.3 Specification Styles of LOTOS... 38

3.4 Evaluation.. 40

3.5 Recommendations... 42

Chapter 4 Scenario Oriented Analysis for CNAP service in WIN 43

4.1 Introduction .. 43

2

4.2 Service Description Stage of CNAP .. 45

4.3 Message Sequence Information Stage of CNAP .. 51
4.3.1 Component Types ... 52
4.3.2 Bound UCMs... 54
4.3.3 MSCs of CNAP service... 57

4.4 Conclusion ... 61

Chapter 5 LOTOS Specification of CNAP ... 62

5.1 Introduction .. 62

5.2 Data Type of the specification ... 63

5.3 Control Part of the specification ... 66
5.3.1 Process MS_Subscribers ... 68

5.3.1.1 Process MS.. 70
5.3.1.2 Process Originator ... 71
5.3.1.3 Process Terminator.. 72

5.3.2 Process WIN_CNAP... 74
5.3.2.1 Process MSCstack ... 74
5.3.2.2 Process HLRstack ... 79
5.3.2.3 Process VLRstack ... 80
5.3.2.4 Process SCPstack .. 80

5.3.3 Process WIN_Database ... 82

5.4 Conclusion ... 84

Chapter 6 Validation of CNAP ... 85

6.1 Overview of the validation method ... 85

6.2 Tool support .. 85

6.3 Simulation, Testing and New Scenario Generation... 87
6.3.1 Simulation ... 87
6.3.2 Specification Testing... 89

6.3.2.1 Derivation of Test Cases from Unbound UCM .. 91
6.3.2.2 Structure Coverage.. 97

6.3.3 Automatic Graphic Scenario Generation .. 104

6.4 Discovery of a number of ambiguities and inconsistencies in the Draft Standard . 106
6.4.1 Scenario 8.1.3.. 106
6.4.2 scenario 8.1.5... 108

6.5 Conclusion ... 108

Chapter 7 Contributions and Future Work .. 110

7.1 Contribution of the thesis... 110

7.2 Future Work ... 111

3

Chapter 1 Introduction

1.1 Background and Motivation

The telecommunication industry needs high quality standards in many areas. The

specific area targeted in this thesis is the description of mobile telephony features.

Currently, features are usually documented using informal descriptions, tables and

Message Sequence Charts (MSC). These descriptions evolve dynamically, and their

readability and validation become difficult to manage. The following problem are

detected in current standard documentation:

• Abstraction level is too low with respect to the available knowledge. Irrelevant details

obscure the main idea behind a feature. A focus on tables and MSCs is necessary for

detailed design, but cannot give us a abstract scenario view for defining

functionalities at the initial design stages.

• Information that is relevant to a feature is often distributed over several parts of the

documentation. Several levels of detail (abstraction) may be mixed in a single

description.

• There are possible ambiguities, inconsistencies, or interactions inside or between

feature descriptions, or between levels of abstraction. It is difficult to detect them

with conventional inspection methods.

The TR45.2 WIN task group is the Telecommunications Industry Association (TIA)

Standards Committee for standardizing Wireless Intelligent Network (WIN) document.

4

Within the TR45.2 WIN task group (and elsewhere), these difficulties are encountered

in the development of readable, usable, maintainable, and evolvable standards. Few

participants in the TR45.2 WIN group are willing to use techniques other than ad hoc

ones, and significant effort is required to perform validation and verification of

specifications, that can lead to the discovery of inconsistencies and omission.

Formal Description Techniques (FDTs) have been well known in the standards world.

They are increasely recognized as tools that provide validation and verification

methodologies for improving standard quality as size and complexity of software systems

grow. LOTOS, for example, shows notable flexibility for prototyping system behavior

and for providing precise descriptions of telecom standards. A survey of this and related

work will be given in the section 1.4.1. A detailed discussion of LOTOS syntax and

validation methods will be introduced in Chapter 3.

Use Case Maps (UCMs), on the contrary, are quite informal. They suggest a description

of behavior with architectural concepts, outlining the system’s structural properties. They

define component entities and imply relationships among components. A lot research has

been done towards formalizing UCMs. We will discuss this in section 1.4.2. An overview

of the UCM technique will be given in Chapter 3.

Above all, an effort will be required to try a new modern approach to the specification

and validation of the WIN standards. Our thesis intends to be a contribution in this

direction.

1.2 Objective and Approach

1.2.1 Objective

We aim to contribute to the development of a new standard in the domain of wireless

technologies and provide a suitable approach for analyzing, formalizing, and validating a

WIN service. Our goal is to understand the strengths and weaknesses of the selected

5

techniques, to demonstrate relevant practices for describing the service requirements,

functions, and protocols, to improve the human understanding and the quality of

standard. In contrast to earlier work on approaches to specification and validation of

telecommunication systems in LOTOS, the present study attempts to combine the

intuitive descriptive power of UCMs with the analytic power of LOTOS and its tools. As

an example, we chose to apply this approach to the CNAP service in the WIN standard.

1.2.2 Approach

This thesis defines and applies a design approach for structuring a WIN development

cycle according to the techniques that have been proposed by our research group. This

approach allows us to further refine and adapt our techniques to industrial realities, while

providing a coherent and validated view of the feature we have selected. It consists of

two parts.

• In the first part, we build a scenario model through analysis of informal requirements.

The scenario model consists of a set of unbound UCMs, bound UCMs, and MSCs.

Unbound UCM scenarios provide a high level CNAP service description without

commitment to the underlying architecture. This description can be used to capture

the requirements from the perspective of a service subscriber. Bound UCMs, instead,

are dependent on the underlying architecture. They include the definition of

component types and the interfaces between different components. More detailed

information is complemented by the use of MSCs. MSCs provide rigid message

exchange information, as appended details, for interactions between components

along the paths of UCMs.

• In the second part, based on the set of collected scenarios, we generate an executable

LOTOS specification. Using this specification prototype, we can apply validation

through three steps. Through these three steps, some symptoms of possible design

errors are found, and are fed back to the standardization committee for their

consideration.

6

1) In the first step, we make use of the LOLA toolkit to simulate the system step by

step.

2) In the second step, we synchronize our validation suite generated from

requirements with the LOTOS specification. This leads to test results, such as

Must pass, May pass, and Reject. Through this process, many system traces with

internal steps are derived from the specification. We can also measure the structure

coverage for the generated test cases by using probes.

3) These generated system traces are made readable in a graphical format by using

the third step. A perl script is used to translate the formal symbolic trace format

into a MSC PR format which can be accepted by the SDL MSC editor.

Figure 1-1 Scenario-Oriented Approach

1.3 Organization of the thesis

This thesis is organized as follows:

Chapter 2: Wireless Intelligent Network

Informal
Description

Scenario
Oriented
Analysis

Formal Description

(LOTOS)

Simulation;
Testing;
Generation MSC;

Validation
Suite

Aggregation/
Correlation

UCM view
Messages

7

 General concepts of the Wireless Intelligent Network are reviewed by briefly describing

the architecture of the network model. The CNAP service, one of the WIN services, will

be used as an example in this thesis.

Chapter 3: Chosen Techniques

This chapter contains an overview of three candidate techniques – UCM, LOTOS and

MSC. By the end, we will have an evaluation and assessment of each of them with the

consideration of application stages.

Chapter 4: Scenario Oriented Analysis for CNAP service in WIN

 A scenario-oriented analysis process is described for specifying the evolution from the

informal requirement towards a set of system scenarios at different stages. We present the

approach by analyzing the CNAP service in WIN.

Chapter 5: LOTOS Specification Of CNAP

Based on the scenarios given in chapter 4, we aggregate and correlate the architecture and

behavior information to derive a formal LOTOS specification. In this chapter, we present

a formal LOTOS specification of the CNAP service. The purpose of generating a LOTOS

specification is to make use of various validation methods provided by this language and

to demonstrate a method of obtaining precisely defined protocols.

Chapter 6: Validation Of CNAP

Our validation focuses on the simulation, testing, and graphical MSC Generation. As a

result, some inconsistencies and ambiguities existing in the CNAP requirement are found.

We have developed a perl script to facilitate the readability of our scenarios for validation

purposes.

Chapter 7: Conclusion and Future Work

Conclusions and possible areas for future research are present in this Chapter.

8

1.4 Related Work

Specifying and validating mobile telephony features is a very new area of research and

very little, if any, literature exists. Below, we review some related literature. Other related

references will be included later in the appropriate sections.

1.4.1 Formal Specification of Telephony Features in a distributed

environment

The early work of specifying a simple telephone system was based on the concept of

Plain Old Telephone System (POTS). [Bo91] [BoLo93] specified telephony systems in

the wire-line world that provided users with a number of telephony features, which

included Call Forward, Ring Again, Call Transfer/Three-Way Calling, etc,. This research

mainly concentrated on showing the suitability of LOTOS for specifying such systems

and on showing that the resulting telephone specifications can be validated by the use of

an interpreter (ISLA). The Feature Interaction problem was also addressed in [BoLo93]

With the infrastructure provided by POTS, the task of introducing new services is very

costly. intelligent network (IN) concept somehow solves this problem. Beginning in the

early 1980s, the IN was applied to the development of new services in wire-line

telephone networks. The IN concepts allow rapid introduction and independent

implementation of new features. Various methodologies for presenting IN system were

published since then. [BoZu92] is a paper that describes the IN Global Functional Plane

in LOTOS. [DaNa93][Cheng94] discussed and designed methodologies for the

specification and analysis of IN services in LOTOS. Recent work related to IN features

is [JaLo98]. This research concentrated on showing the LOTOS specification of the IN

infrastructure, where a formal specification using the Service Independent building

Blocks was described, and three telephony features were included within the defined IN

model.

9

IN concepts can also apply to the wireless telephony world. However, it should be noted

that wireless standardization has a different focus from the conventional IN. Whereas the

focus of IN standardization work was on value-added services in the fixed networks, the

work on wireless networks was to assist service providers and end users with the ability

to obtain telecommunications services regardless of their location and to be in motion

while continually accessing telecommunications services.

The Telecommunications Industry Association (TIA) Standards Committee TR45.2 is

developing Wireless Intelligent Network (WIN) [WIN98]. The phase I of this standard

draft has been standardized in Dec 1998. The charter of this committee is to drive IN

capabilities into wireless networks which are based on interim standard (IS)–41.

[LaRa95] illustrates the idea of integration of IN Services into future wireless network -

Global System for Mobile Communications (GSM). The LOTOS specification of GSM

was described in [TuLo98], but there is no IN feature included in the GSM specification.

1.4.2 Scenario Analysis

LOTOS is a mathematically based specification language. It provides a precise

specification of system behavior at the desired level of abstraction. The gap between the

early informal requirements and the formal LOTOS-based processes can be filled by

scenario descriptions. Buhr’s Use Case Maps (UCMs) methodology [Buhr96] starts

system development with the gathering and analysis of high level scenarios. Using UCMs

as a bridge between requirements and LOTOS specification is a research area where a

number of papers were published in recent years.

In [ABBL95], a design methodology which allies the graphical expressiveness of the

time-thread notation (Use Case Maps) with the analytical power of the LOTOS language

and its associated tools is presented. It demonstrates in detail how to manually generate

LOTOS specifications from UCM. A simple telephone system is used as an example.

[ALF97] presents an approach where informal requirements are described with UCMs,

10

and formal specifications and test cases are written in LOTOS. The approach is presented

by using an example: a GPRS group call service of the mobile data system. [AmAn99]

uses UCMs as part of a new technique for designing WIN scenarios. This paper shows

the suitability of applying UCMs before MSCs and LOTOS in order to achieve better and

more complete descriptions of telecommunication standards. This paper focuses on

illustrating the Incoming Call Screening (ICS) service as one example chosen from WIN.

[ALBG99] applies the idea of integrating UCMs and LOTOS to an interesting telephony

field: “Feature Interaction”. It presents this integrated approach to capture and validate

several telephony features defined from the First Feature Interaction Contest [GBGO98].

It also discussed the result of this experiment, as well as strengths and weaknesses of this

approach.

11

Chapter 2 Wireless Intelligent Network

2.1 Background

In this chapter, we give an overview of the Wireless Intelligent Network (WIN) in

terms of the architecture and enhanced services. The content of this chapter is based on

the standardizing document IS-41 and the WIN draft of Telecommunications Industry

Association (TIA) Standards Committee TR45.2.

Before 1980s, telephone service was switch-based, which means that all the data and

logic processing required by the service were located within the local node. Beginning in

the early 1980s, the concept of Intelligent Network (IN) capabilities introduced a new

method for developing new services in the wire-line industry. This means that the service

control is centralized in some specific non-switching nodes. These nodes are known as

Service Control Points (SCPs). IN service functional capabilities support creation and

execution of service logic programs. Those functional capabilities reside outside of the

switching equipment but are centralized in SCPs. SCPs work collaboratively with the

switching equipment based on a common definition of call model and protocols. By

introducing IN capabilities in the wire-line world, we facilitate and accelerate the

implementation and provision of telephony services in a cost-effective manner.

12

WIN supports the usage of intelligent network concepts and focuses on the integration of

IN capabilities with mobility. In wireless networks, many of the call activities are not just

the actual phone call. They are associated with movement. Customers can roam out of

their local calling area or out of their service provider’s area. They may want to be able to

use the same services as they use in their home area. They also may want these services

to work in the same way. Mobility dictates a need for technologies or standards that make

it possible for different networks to talk to each other.

IS-41 is a well-established standard for mobile telephony in North America. The Network

Reference Model (NRM) is provided by IS-41 as a wireless network architecture to

define network entities and their associated interface reference points. The WIN standard

is based on IS–41. Basing WIN standards on this protocol enables a graceful evolution

from IS-41 to an IN without making the current network infrastructure obsolete. On the

basis of NRM, the WIN standard adds three new network entities to enhance IN feature.

The three network entities are the Service Control Point (SCP), the Service Node (SN)

and the Intelligent Peripheral (IP). The SCP is very important since the service control is

moved away from the MSC and up to a higher element in the network, usually the SCP.

A new distributed functional plane (DFP) and three advanced network services are

described in the current WIN standard. The DFP provides a different view of the network

in terms of functional entities (FEs) than in terms of network entities (NEs). Each FE

performs distinct actions in the network. A grouping of actions across one or more FE

provides the required WIN service execution. In the following sections, we have a more

detailed discussion on WIN architecture and WIN services.

2.2 WIN Architecture

The following discussion is based on [WINT]. We introduce first the Network Reference

Model (NRM) and then the Distributed Functional Plane (DFP).

13

2.2.1 Network Reference Model (NRM) of WIN

The network entities of the NRM are shown in Figure 2-1. They include the

authentication center (AC), the base station (BS), the equipment identity register (EIR),

the home location register (HLR), the Intelligent peripheral (IP), the message center

(MC), the mobile station (MS), the mobile switching center (MSC), the short message

entity (SME), the service node (SN), the visitor location register (VLR) and the service

control point (SCP). In Figure 2-1, the network entities that are mostly involved with our

specification of CNAP service are marked in gray. These entities will be processes in our

resource-oriented specification.

Figure 2-1 WIN Network Reference Model

Mobile Station (MS)

An MS is a terminal equipment, which the subscriber uses to access and obtain

services from the network. Different types of numbers are associated with an MS.

Mobile Station Directory Numbers (MDNs) are assigned to mobile stations as

dialable, public numbers conforming to the international numbering plan. MDNs are used

to support functions such as:

• Dialing/addressing for call origination,

Cell

IP

MSC

SCP

BS

BST

MS

AC

SNEIR

VLR

HLR

MC

SME

External Networks

(PSTN, ISDN, …)

14

• Providing location and/or service information to the users.

Mobile Station Identification Numbers (MINs) are assigned to mobile stations

internally by the mobile network. MINs are used in the mobile network as ‘roaming

numbers’ provided by the visiting network to the home network for call setup to the

roaming subscriber. These roaming numbers are not dialed by the user and are not

assigned to the mobile stations as directory numbers. They are used to support such

mobility management functions as:

• Identification of the MS on the radio control path for location update/registration

• Identification of the MS for all signaling on the radio control path (e.g. , for paging)

• Identification of the MS for updating or retrieving subscriber profiles, which may

contain such items as subscribed features and triggers to query service logic for

enhanced services.

Home Location Register (HLR)

An HLR contains a database that stores information related to a registered set of

subscribers. The current subscriber’s service subscription status is maintained in the

HLR. Some data are permanent, while others are temporary and thus change from call to

call. The HLR also manages the location information in the network: for instance, it has

to tell the old MSC/VLR to erase a subscriber record when this subscriber is registered

under a new MSC/VLR.

Visitor Location Register (VLR)

A VLR may be in charge of one or several MSC location areas. The VLR

constitutes the database that supports the MSC in the storage and retrieval of subscribers

present in its area. This is why we often talk of MSC/VLR as one joint entity. When a

MS enters the MSC area borders, its signals its arrival to the MSC for storing its identity

in the VLR. Meanwhile, the information necessary to manage the MS is transferred from

HLR to VLR so that they can be easily retrieved if required. The subscriber’s current

VLR address, stored at the HLR, is accordingly updated. The data stored in the VLR are

more or less the same as in HLR. This provides the information necessary to complete

15

calls to roaming mobiles. Nevertheless the data are present in the VLR only as long as the

MS is registered in the area related to that VLR.

Service Control Point (SCP)

The SCP acts as a centralized element in the network that provides service control

functionality to WIN subscribers. SCP provides the mechanism for new services

independent of their switching system. High-level services can be moved away from the

MSC and be controlled at SCP. This mechanism simplifies new service development and

is cost effective since the MSC becomes more efficient and does not waste cycles

processing new services.

2.2.2 Distributed Function Plane (DFP) of WIN

The Distributed Functional Plane (DFP), as described for IN-structured network [Q1204],

includes a set of functional entities (FEs). Each FE can perform a variety of functional

actions and can cooperate with others. FEs defined in this plane are generally classified

into three types: call control related functions; service control related functions;

management related functions. The scope of the DFP architecture for WIN is based on

the IN DFP but is driven by the requirements of desired wireless services. Therefore,

some FEs related to mobility control and radio communication control are included. The

SCF, CCF/SSF, MACF, LRFV, and LRFH are the functions mentioned in our thesis for

describing CNAP services.

• Call Control Function (CCF) provides call and service processing and control. It is a

function that handles all normal calls by providing the process and the control of

call/connection between network subscribers. It also provides the IN service access.

• Location Registration Functions (LRFV LRFH) provides the service logic and service

data function to manage the mobility aspects for wireless users;

• Mobile Station Access Control Function (MACF) stores subscriber data and

dynamically associates system resources with a particular call.

16

• Service Control Function (SCF) executes service logic. It provides capabilities to

influence call processing by requesting the SSF/CCF to perform specified actions.

• Service Switching Function (SSF) is associated with CCF and provides the set of

functions required for interaction between the CCF and a service control function

(SCF) by managing signaling between them;

2.3 WIN Services

The WIN provides seamless terminal services, personal mobility services and

advanced network services in the mobile environment by using intelligent network

capabilities [WIN98].

Terminal mobility refers to the ability of a mobile terminal to access

telecommunication services from any location, and the capability of the network to locate

and identify the mobile terminal as it moves. A set of these services will be associated

with each mobile terminal based on the capabilities of the terminal and terminal

subscription selections, irrespective of the terminal user. The prerequisite for the user to

achieve terminal mobility is to carry a terminal and to be within the radio coverage of the

wireless network.

Personal mobility is the ability of end users to originate and receive calls, and

access subscribed telecommunication services on any terminal, in any location, and the

ability of the network to identify end users as they move. A set of these services will be

based on personal needs or business entity needs irrespective of terminals or networks.

Personal mobility does not require customer to carry a terminal. The customer may utilize

a variety of mobile and fixed terminals at different locations. But he/she needs to have a

personal number.

Advanced Network Service mobility refers to the network capability to provide

subscribed services at the terminal or location designed by the user. Service mobility

means that the services that users can invoke at a designed terminal depend on the

capability of the terminal and the serving network. If a user has registered to an advanced

network service, this service supposes to work when the user roams to another network.

17

This however is based on network capabilities. For example if the user roams to a

network which supports ANSI-41 but is not WIN compliant, the WIN services are not

available.

• Terminal mobility services: services based on the terminal capability irrespective of

the terminal user. Terminal mobility is provided between wireless networks.

• Personal mobility service: services based on personal needs or business needs

irrespective of terminals or networks. Personal mobility is provided between wireless

and wire-line network.

• Advanced Network services: services based on the network and terminal capability.

Seamless service mobility is provided between wireless and wire-line networks. The

initial WIN standard describes three advanced network services such as Calling Name

Presentation Service (CNAP), Voice Controlled Service (VCS) and Incoming Call

Screening Service (ICS). Future WIN standards will add additional WIN services. In

this thesis, the calling-name presentation (CNAP) service will be an example for

applying a scenario oriented-analysis specification and validation approach. This

feature’s architecture and the call process will be described in the following sections.

2.3.1 CNAP Service Subscription

Before we start the informal description of CNAP service subscription, we need

to define some terminology used in the requirements.

Registration

The procedure by which an MS becomes listed as being present in the service area of an

MSC.

Originating MSC 1

Originating MSC represents the MSC which initiates the call delivery procedures of the

calling party.

1 Note that the IS-41 standard uses the term “Originating MSC” to denote the MSC where the call starts on

the call terminator side. This should perhaps be called as “Terminating Archor” MSC.

18

Serving MSC

Serving MSC represents the MSC that serves the called party at one of its cell sites within

its coverage area.

Available

The MS can accept a call delivery (i.e., the MS is in a known location and it is in a state

that is able to accept call deliveries). The availability of an MS to accept a call delivery is

maintained only by the MSC.

Unavailable

The MS cannot accept a call delivery (i.e., the MS is in an unknown location or is in a

state unable to accept call deliveries). The availability of an MS to accept a call

delivery is maintained only by the MSC.

Active

The MS is available for call delivery. The MSC, the VLR and the HLR maintain this

state. For example, if an MS registers, the serving MSC will apply an operation to the

serving VLR to indicate that an MS is active, and then the serving VLR will notify the

HLR of the registration of the MS.

Inactive

The MS is unavailable for call delivery. The MS may not be registered. Or the MS may

be registered, but it is out of radio contact or is intentionally inaccessible for periods of

time. The MSC, the VLR and the HLR maintain this state.

Restricted

The name information of the originating MS is not allowed to display on the terminating

party due, for example, to reasons of protection.

The requirement specification of the CNAP service is based on [WIN98]. Calling Name

Presentation (CNAP) provides the name identification of the calling party (e.g. personal

19

name, company name, “restricted”, “not available”) to the called subscriber. Typically,

this will be shown in the display window of the MS. The Calling Name Information

(CNA) may be provided to the terminating network from the originating network or it

may be derived from the Calling Number Information (CNI) which is generally provided

to the terminating network from the originating network. CNAP does not impact a

subscriber’s ability to originate calls or to receive calls. Redirecting Name Delivery

(RND) is a CNAP subscription option. When CNAP is active and a call has been

redirected, RND provides the name of the last redirecting party as well as the name

identification of the original calling party to the called subscriber. Table 2-1 shows the

subscription activation options for the CNAP and RND service. Clients who make the

options are those who have already subscribed to the CNAP and RND service.

Subscription Activation

Options

Activation Status

Permanent. CNAP is active while authorizedCNAP Activation

Demand. The subscriber is authorized to control the

activation and de-activation of CNAP.

Permanent. RND is active while authorized.RND Activation

Demand. The subscriber is authorized to control the

activation and de-activation of RND

Table 2-1 CNAP Service Subscription

Normal Operation with Successful Outcome

When the CNAP service is invoked, the terminating network shall send the calling name

information to the terminal during alerting on incoming calls. If the calling name is not

restricted, the terminal shall display the calling name information. The stored calling

name shall preserve the presentation restriction indications (e.g. the user may restrict

20

delivery of her name to some users). In the event of redirection when CNAP and RND

are both active, two names will be presented to the subscriber:

• The name associated with the original calling party

• The name associated with the last redirecting number

Exception Procedure or Unsuccessful Outcome

If the calling name is not available, the terminating network shall provide an indication of

this fact to the mobile station. If the calling name is available and the presentation of

calling name is restricted, the serving system shall provide an indication to the mobile

station that the calling name is restricted.

If the redirecting name is not available, the terminating network shall provide an

indication to the mobile station that the redirecting name is not available. If the

redirection name is available and the presentation of the redirecting name is restricted, the

serving system shall provide an indication to the mobile station that the redirecting name

is restricted.

2.3.2 CNAP Architecture

In this section, we introduce a subset of WIN architecture, which can be modeled

as a system environment for CNAP. The model, shown in

Figure 2-2, is composed by multiple network entities and their associated function

entities. The model intends to provide a level of abstraction that can facilitate the

specification of intersystem processing of CNAP service. WIN standard uses the

terminology “ reference point” for interface between network entities.

• Reference Point AUm is the MS to MSC interface

• Reference Point B is the MSC to VLR interface

• Reference Point C is the MSC to HLR interface

• Reference Point D is the VLR to HLR interface

• Reference Point E is the MSC to MSC interface

• Reference Point T1 is the MSC to SCP interface

• Reference Point T2 is the HLR to SCP interface

21

Figure 2-2 WIN CNAP Architecture Model

• Within the SCP, the SCF contains the logic and processing capability required for

handling the WIN CNAP service.

• Within the HLR, LRFH maintains the subscriber profile and interacts with LRFV

• Within the MSC, there is a close coupling of the SSF and the CCF functional entities.

The SSF/CCF provides the call setup and service invocation. The MACF provides the

paging and interacts with LRFV.

HLR

LRFH

SCP
SCF

VLR
LRFV

E

B

D

SSF

CCF

MACF

MSC

C

T1

T2

AUm

SSF

CCF

MACF

MSC

MS

22

• Within the VLR, LRFV stores the subscriber profile, interacts with LRFH and the

MACF functional entities and provides a routing address.

2.3.3 Strategy for Deploying the CNAP service

The WIN standards committee defined two methods for delivering the Calling

Name Presentation service. Either method provides the correct environment for IN

service deployment. Figure 2-3 demonstrates a SCP-based service deployment strategy

by showing how an enhanced service can be delivered by using a service query from the

MSC. Figure 2-4 depicts the other optional HLR-based service deployment by showing

how to trigger a service query from the HLR. Similar alternative methods were proposed

for other WIN services.

SCP- based Service Deployment Strategy:

The SCP-based service deployment strategy is the preferred and recommend

method for offering new WIN services. The basic idea is that the mobile switch queries a

number-to-name database service on an SCP using the calling party’s number, which was

delivered using a signaling interface such as Public Switch Telephone Network (PSTN).

In Figure 2-3, an originating MS1 sends an INCOMING CALL indication that it wishes

to originate a call. The indication is delivered to its Originating MSC. Dialed digits are

included in the call origination indication. On determining that the call is to a mobile

subscriber, the Originating MSC assigns a radio channel to MS1, Meanwhile, the

Originating MSC sends a LOCATION REQ to the HLR registered by the called

subscriber. The HLR determines the current serving MSC for the called MS and, if

necessary, it sends a ROUTE REQ to the serving system for obtaining a Temporary

Local Directory Number (TLDN). TLDN is a network address temporarily assigned for

call setup. The MACF function entity inside the Serving MSC receives the ROUTE REQ

and starts handling the request by assigning a TLDN to the called MS and returns it to the

HLR. Then, the HLR returns the routing information to the Originating MSC. The

Originating MSC can use the TLDN to route the call over the PSTN to the Serving MSC.

After the call link is setup between the Serving MSC and the Originating MSC, the

23

serving MSC pages the called MS2. If MS2 responds, a voice channel is assigned to

MS2. When the call is delivered to the serving MSC, the caller’s number is also

delivered. Noting that the called customer has subscribed to calling name presentation

service, the serving MSC queries a number-to-name service from the SCP. SCP will

return proper display text. As a result, MS2 is alerted with the calling name information

and an alerting indication is provided to the Originating MSC. If MS2 answers the call,

the peer communication starts.

Figure 2-3 SCP-based SIM CNAP

HLR- based Service Deployment Strategy:

We can use the HLR-based service deployment strategy as an alternative way to

provide the CNAP service. This method is also defined by the WIN standard committee.

The reason to introduce this strategy is that, currently, MSCs from multiple vendors are

often implemented differently, causing situations where services do not perform in the

same way. Considering this fact, the HLR-based SIM method was introduced by the

standards group as a short-term solution to allow multi-MSC networks to provide

ubiquitous services. In the future, the SCP based SIM strategy will be more readily

available when all MSCs in a network can provide the standardized triggers and

capabilities. Figure 2-4 shows the service deployment process. The originating MS1

sends an INCOMING CALL indication that it wishes to originate a call. Dialed digits are

included in the call origination indication. The call is delivered to the Originating MSC.

PSTN Serving
MSC

HLR SCP

Incoming
Call

1. Location
Request 2. Route

Request

3. Return
result TLDN

4.
TLDN

5

6.
Service
Request

7. Return
result with
display text

To Callee
Originating

MSC

24

On determining that the call is to a mobile subscriber, the Originating MSC assigns a

radio channel to MS1. Meanwhile, the Originating MSC sends a LOCATION REQ to the

HLR. Before the HLR sends a ROUTE REQ to the serving system for obtaining a

TLDN, the HLR queries the number-to-name database on SCP. Upon receipt of the

display text, the HLR may send a ROUTE REQ with this text to the Serving MSC to

obtain a TLDN. The serving MSC stores the display text until the call comes in from the

PSTN. When the serving MSC delivers the call to the mobile station, the text is displayed

during alerting.

Figure 2-4 HLR-based SIM CNAP

2.4 Conclusion:

The WIN standard describes two methods for offering WIN services, as described above.

According to the standards groups, the preferred and recommended method for offering

new WIN services is that the service should be launched from the MSC to the SCP. In

this case, the transaction does not have to take place if the mobile is busy or cannot

receive the call. Therefore, the network can operate more efficiently. Our thesis will

choose the recommended method for deploying the WIN CNAP service.

PSTN Serving
MSC

HLR SCP

Incoming
Call

1. Location
Request 4. Route

Request with display
text

5. Return
result TLDN

6.
TLDN

2. Service Request

3. Return result with
display text

To Callee

7
Originating

MSC

25

Chapter 3 Selected Techniques

3.1 Introduction

This chapter introduces the readers to the description techniques that are used in

this thesis. In particular, we are going to see that the development of a telecommunication

standard goes through at least three stages and that different techniques can be used to

help the designer through these stages. The bulk of this chapter will consist of discussion

of the techniques and their application.

3.2 The stages in the standardization Process

Following the practice in several standard groups, ITU-T divides the development

of telecommunication standard into three stages: service description (stage 1), message

sequence information (stage 2), and protocol and procedure specification (stage 3). The

three-stage methodology was initially developed to describe Integrated Services Digital

26

Networks (ISDN) services and is carried out for each service in telecommunication

standard.

• In stage one, a description of a service should be given from the perspective of users.

This stage does not try to describe how the system works, but instead, what

functionality it provides.

• In stage two, the capabilities and processes within the network that are required to

provide the service are designed. The output of this stage is the functional

decomposition of the network components as well as the Information Flows (IFs) to

support the service.

• The final stage produces the protocol specification.

3.3 Techniques applicable to these stages

Based on the ITU-T three stage methodology, we recommend different techniques

for each stage. These techniques aid human understanding and help to produce better-

quality standards. The techniques discussed here are:

• Use Case Maps (UCMs)

• Message Sequence Charts (MSCs)

• Language Of Temporal Ordering Specification (LOTOS)

3.3.1 An Overview of Use Case Map (UCM)

UCMs [BoBu97] are a visual notation developed at Carleton University. UCMs

used to be called time threads since executing responsibilities and traversing path

segments correspond to event sequence in time. More detail about time threads can be

found in [ABBL95]. The essential idea of UCMs is to describe scenario paths in terms of

causal relationships between responsibilities. “Causal relationship” between components

can be interpreted in many ways, depending on the component structure. More than one

MSC may be derived for a single UCM. In Figure 3-1, the paths in the UCM show the

causal sequence ab in an abstract manner. Two possible implementations of this UCM

are shown in the form of two MSCs.

27

Figure 3-1 Causal Sequence of a UCM

Depending on whether they bind components along the path or not, UCMs can be called

bound UCMs or unbound UCMs. Unbounded UCMs are defined in terms of paths

without showing the components in which the responsibilities are performed. They are

used at early design stages, when it has not yet been decided what components may exist

in the system. Figure 3-2 shows a simple unbound UCM.

Figure 3-2 Basic Notation of UCM

Path. A path may have any shape. It represents a causally related

sequence of responsibilities

NE1

NE2

NE3

a

b

Original Bound UCM
NE1 NE2 NE3

a

b

NE1 NE2 NE3

a

b

 Call Origination

Get Call Answer

ORIGINATOR

Call setup

28

Waiting place. A filled circle represents a place to wait for events from

other paths. A starting point is a waiting place for a stimulus to start the

path.

Stub. When maps become too complex to be represented as one single

UCM, a mechanism for defining and structuring sub-maps becomes

necessary. A top-level UCM, referred to as a root map, can include

containers (called stubs) for sub-maps (called plug-ins).

Bar. A bar ends a path or marks a place where concurrent path segments

begin or end.

Basic Path. The most basic path consists of a beginning marked by a

waiting place and an end marked by a bar.

Responsibility. A responsibility is a named, short prose description of

some localized action a system must perform.

Some other useful UCM notation is listed in Table 3-1:

Unbounded UCM Notation Explanation

OR join OR fork The effect of this notation is to join multiple

scenarios without synchronization. The path to

follow is determined randomly or conditions

(guards) could be added to forks.

OR fork OR join The effect of this notation is to take one random

path or conditions (guards) could be added to

forks.

AND fork AND

join

The effect of an AND fork is to split an entering

scenario into multiple concurrent paths. AND

join is used to end concurrency

Pure

Synchronization

One entering scenario per incoming path is

synchronized with the others. After the

synchronization, it follows multiple concurrent

paths.

29

Rendezvous One entering scenario per incoming path is

synchronized. All the synchronization scenarios

must follow the shared path as one.

Table 3-1 Notation of unbounded UCM

At later design stages, the UCMs become bound. This means that responsibilities

are assigned to components. Therefore, bound UCMs represent causal paths that cross

components. The binding is made with labeled responsibilities that are both positioned

along the paths and imposed on the components. The binding component illustrated in

Table 3-2 is called Team. It may be replaced with other suitable component types if

necessary. In total, there are six types of operational components in UCM notation.

Teams, processes, objects, interrupt service routines, slots, and pools. Three of them are

used in this thesis: teams, processes and objects. More details of these three component

types will be discussed in Chapter 4.

Notation Explanation

Responsibilities bound to the same component “MSC”

Responsibilities bound to different components, such as

“OrigMSC” and “HLR”

AllocRouteLocReq

Orig

MSC
LocReq RoutReq

MSC

HLR

30

A component stack means that many identical but distinct

components are bound to the same path in the same way.

In diagram (a), any particular scenario applies to one selected

component MSC.

In diagram (b), any particular scenario might apply to different

selected component MSC.

Table 3-2 Notation of Bound UCM

3.3.2 An Overview Of Message Sequence Charts (MSC)

Message Sequence Charts (MSCs) [ITU-T96] [RGF96], are a graphical and textual

language that describes the interactions between system components. It is a well-known

and mature notation. The main application for MSCs is to specify the communication

behavior of real-time systems. MSCs focus on the communication behavior of system

components and their environment by means of message exchanges. A set of MSCs

usually cover only a part of a system’s behaviors since each MSC represents only one

scenario. Thus, the main focus of MSCs is not on complete system descriptions but rather

on the specification of special system properties or functions. MSCs are frequently used

in requirement specification, simulation, validation, and test-case specification.

To define the message exchanges, we need to follow some rules. Such rules can be

provided in the notation. Each scenario has two kinds of notations: One is the graphic

format MSC/GR. The other is the textual format MSC/PR.

MSC/PR represents an MSC in a pure textual format. This is particularly important where

execution sequences have to be recorded. MSC/PR is usually used internally by tools

such as SDT. MSC/GR is a graphic scenario diagram convention. As shown in Figure

3-4, each event identifier (step) in a scenario diagram is accompanied by a textual

MSC

MSC

(a)

(b)

31

description of the information flow involved. A tabular listing of the parameters follows

the scenario steps that involve information flows. In the WIN documents, such

diagrammatic convention is used to illustrate the information exchanges between network

entities.

a. A call origination with dialed MS address digits (i.e., mobile directory number)

is received by the Originating MSC.

b. The Originating MSC sends a LOCREQ to the MS’s HLR, including parameters

based on the CNI information.

Parameters Usage

CNIdigits:

[CPNDGTS1]

[RNDGTS]

Calling Name Identification Information. It includes: Calling

party number digits and Redirecting number digits

DGTSDIAL Digits identifying called party

c. ...

 …

Figure 3-4 MSC GR representation

MSC1 HLR VLR MSC2

Originating System Serving System

a

b

c

d

e

f

g

Event

identifierLOCREQ [CNIdigits,
DGTSDIAL]

ROUTEREQ

ROUTEREQ

routereq [TLDN]

callsetup

routereq [TLDN]

locreq [TLDN]

Parameter

name

answer

timeout

Local event

Information
flow
description

Information

flow response

Timer

32

In order to combine the advantage of both MSC syntax formats, a translation of syntax

forms is allowed. MSC/PR representation can be transformed automatically into a

corresponding MSC/GR representation and vice versa. An example of the MSC /GR and

of the corresponding MSC / PR representation is shown in Figure 3-5.

Figure 3-5 MSC in MSC/GR and in the corresponding MSC/PR

3.3.3 Overview of the LOTOS Language

LOTOS (Language Of Temporal Ordering Specification) is a Formal Description

Technique (FDT), standardized by ISO for describing the formal specification of open

distributed systems. It has been an ISO standard since 1989. LOTOS specifications can

be used for very complex systems. Nowadays, LOTOS applications have been extended

to cover many domains including telephony system. Furthermore, under certain

condition, LOTOS is executable. LOTOS models allow the use of a number of validation

and verification techniques such as step-by-step execution (simulation), random walks,

MSC/PR:

MS1 MSC1 HLR1

MSC HLRMS

CallOrig

(CNA)
LocReq

(CNI)

MSC/GR:

MS1: instancedhead MS;
MSC1: instancedhead MSC;
HLR1: instancehad HLR;

MS1: out callorig 0 CNA to MSC1;
MSC1: in callorig 0 CNA from MS1;

MSC1: out locreq 2 CNI to HLR1;
HLR1: in locreq 2 CNI from MSC1;

33

testing, expansion, model checking, and goal-oriented execution. A number of good tools

were developed for validation purposes. LOLA, as an example, is the LOTOS tool used

in Chapter 6 to validate our LOTOS specification.

LOTOS has an abstract data part and a control part. The first part defines all the data

types and value expressions based on the formal theory of algebraic abstract data types,

ACT-ONE [EM85]. The second part describes the behaviors of the system based on

Milner’s Calculus of Communicating Systmes (CCS) [Mil80] and Hoare’s

Communicating Sequential Processes (CSP) [Hoar85].

3.3.3.1 LOTOS Data Part

Abstract types describe the possible data values and the operations on them

without saying how they are actually represented and manipulated in memory. The

summarization of the LOTOS data type is listed as following:

Basic Types

Commonly required data types can be included from the standard library to save time and

space. For example:

 Library
Boolean, NaturalNumber

Endlib

The type Boolean has been specified with terms of sort Bool. There are the usual

constants true and false, and the not operation that complements a Boolean value. The

NaturalNumber type specifies whole numbers(positive or zero), which should again be

familiar. There are also some extended capabilities for specifying abstract data types,

such as the combination and extension, combination, conditional equations and the

renaming. They will be introduced as follows.

Extension

34

Types may be extended with new sorts, operations and equations. In this example, the

new type NaturalNumber enriches the Boolean type character with an Is_0 operation for

comparision with 0.

TYPE NaturalNumber IS Boolean
 SORTS
 Nat
 OPNS
 0 (*| constructor |*),
 …
 EQNS
 FORALL x, y, z, w: Nat
 OFSORT BOOL
 Is_0 (0) = true ;
 …
ENDTYPE

Combination

Types may be combined to build more complex types. In this example, the sorts,

operations and equations of TypeMDNID, TypeMINID, etc, are all included to produce

the richer type ADDRESS.

type TypeADDRESS
is TypeMDNID, TypeMINID, TypeMSCID, TypeVLRID, TypeHLRID
sorts
 ADDRESS
opns
 Undefined :->ADDRESS (*constructor *)
 …
eqns forall d:MDNID, x:MINID, ..
ofsort MDNID
 GetMDN(ADDRESS(d,x,y,w,z))=d;
ofsort MINID
 GetMIN(ADDRESS(d,x,y,w,z))=x;
…
endtype(* TypeADDRESS *)

Conditional Equations

The applicability of an equation eleof(a, insert(b,l)) may be made to depend on a Boolean

condition h(a) eq h(b). If the condition holds for a given set of values, the equation

applies for these values.

Type TypeACTION_List is TypeACTION
sorts ACTION_List
opns
 {} :-> ACTION_List (* constructor *)
 insert: ACTION, ACTION_List -> ACTION_List (* constructor *)
 eleof: ACTION, ACTION_List -> Bool

35

eqns forall
 a, b:ACTION, l: ACTION_List
 ofsort Bool

 eleof(a,{}) = false;

 h(a) eq h(b) =>
 eleof(a, insert(b,l)) = true;
 …
endtype

Renaming

VLRID indicates the natural identification of VLR. Since VLRID and Natural Number are

similar, the rename facility of LOTOS is used, which allows a new type VLRID to be

specified by changing the names of Natural Number

type TypeVLRID is NaturalNumber renamedby
sortnames
 VLRID for Nat
Endtype

3.3.3.2 LOTOS Control Part

The control part of LOTOS is typically written as follows:

specification spec_name[g1,g2,..gn] (v1,v2,…vm)

behavior

<behavior expression>

where

<process definition>

endspec

The syntax of a process definition is of the form:

process proc_name [g1, g2, ,..gn] (v1,v2,…vm)

<behavior expression>

where

<process definition>

endproc

36

LOTOS behavior expressions consist of basic behavior expression, such as stop and exit

and process instantiation, as well as actions and behavior expression combined by means

of operators, such as prefix, choice, enable, disable, parallel composition, etc. A LOTOS

action consists of a gate name followed by 0 or more experiments. Experiments can be

queries or value offers. For example, AUm ? a:event !MINID !id is an action on gate

AUm. This action queries the environment for a value for variable a, and offers to the

environment values contained in variables MINID and id. The environment can be either

a process that is composed in parallel with the process containing the action, or the

external environment to both processes. Action ‘ i’ denotes an internal event to a system.

It can be written explicitly in the specification, or can be obtained as a result of Hide.

Table 3-3 shows a brief summarization. More detail is available in [LFH92]

Behavior

Expression

Name Explanation

Stop Deadlock Can not engage in any interaction (deadlock)

Exit Successful

Termination

Indicates that a process has successfully performed its

actions.

a; B Action Prefix Defines the order of actions. The action prefix operator

is written as a semi-colon.

For example, when a user’s phone ring and then the

user picks up phone to answer this call. This can be

expressed by a behavior expression composed of two

actions synchronizing at the gate Aum and offering two

values which are Alert and CallAnswer

Aum !Alert…;

AUm !CallAnswer…;

Exit

B1 [] B2 Choice Allows the user to define different alternatives for a

given process.

For example, when a user gets the phone ring, he/she

can either answer the phone or not. This could be

expressed by the behavior expression:

37

AUm !CallAnswer …;

[]

AUm !CallNoAnswer …;

B1 >> B2 Enabling Used to sequence two behavior expressions. B1 has to

exit before B2 executes.

B1 [> B2 Disabling Used to express situations where B1 can be interrupted

by B2 during normal functioning, even before B1 starts

B1 | [g1,…,gn] |

B2

Parallel

Composition

Composition in which B1 and B2 synchronize at gate

g1,…,gn

For example, consider two processes Subscribers and

WIN_CNAP synchronizing on a gate AUm, and this

case is described as:

Subscribers[AUm…](…)

|[AUm]|

WIN_CNAP[AUm…](…)

B1 | | | B2 Interleaving Composition in which B1 and B2 behave

independently. It expresses the concept of parallelism

between behaviors where no synchronization is

required.

For example, Mobile Stations in the network behave

independently of each other. Each Mobile Station is

represented by a process MS having its network

identification as a parameter. The behavior expression

specifying three MSs in the network is :

 MS[AUm](id1)
 |||
 MS[AUm](id2)
 |||
 MS[AUm](id3)

B1 | | B2 Full

Synchronization

Composition in which B1 and B2 synchronize on all

their gates

Hide g1,…,gn in

B

Hiding Used to hide actions (g1,…, gn) which are internal to a

system. These actions cannot synchronize with the

38

environment.

[P] - > B Guarded

Behavior

B can be executed if P is true

For example, a CNAP service can be triggered if the

user subscribes to the feature. This could be expressed

by the behavior expression.

[eleof(CNAP,

GetSubscribedFeatures(MDNStatus] ->

CNAP[AUm,C1](servMSC_id,GetMIN(DGTSDIAL),Get

MDN(DGTSDIAL),CNIdigitsBCD,NAME)

Let x : s = E in B Local

Definition

Substitute a value expression (E) by a variable

identifier (x) of sort s in B.

For example, a user has an initial status which includes

his/her name, registration location, and some

subscribed features. We describe this by the definition

expression.

let Status_A:MDNStatus =

MDNStatus(A,Name_of_A, ADDRESS(A,1,1,1,1),

false,insert(CNAP,insert(RND,{}))

Table 3-3 LOTOS behavior expression

3.3.3.3 Specification Styles of LOTOS

LOTOS can be used at many different abstraction levels. A major concern when

producing LOTOS specification is the selection of appropriate specification structure or

styles. LOTOS supports four well-defined specification styles [VSSB89], called a

monolithic, a constraint-oriented, a state-oriented, and a resource-oriented style.

Following is a brief discussion of the different styles and their application in LOTOS

specification.

In the monolithic style, all possible sequences of actions are presented explicitly. It

allows only sequential compositions, choices, guards and recursions, and thus the

39

specification appears as a tree of alternatives. According to Milner’s expansion theorem

[Mil80], every LOTOS specification can be transformed step-by-step into a monolithic

one. This style is very useful for the design of simple specification, but the exclusion of

more complex operators, such as parallel operators, causes difficulty to produce large-

size specification.

In the constraint-oriented style, specification is a parallel composition of processes. Each

process represents a constraint. Those process do not denote implementation modules,

they are pure constraints. All processes must be simultaneously satisfied. Such style

makes the design of the specification easy to extend and modify.

The state-oriented style identifies system states by using state variable. States change

while parameters change [VSSB89]. This style is good for specifications mainly when

explicit states exist in problem definition. Also, states can be described more convenient

as processes. However, for the lacking of structure, it is not suitable for large and

complex system.

In the resource-oriented style, components become visible. Processes that represent the

actual physical resources describe the system. Resources are implementation modules

and defined by a temporal ordering of both internal and external interactions.

Interactions among internal module are hidden. External interactions are through clean

interfaces. This style allows modularity and parallel operators. It has flexible structure.

Each one of these specification styles has its own use. The choice of which style to use

depends on many factors such as the requirement definition, the size and complexity of

the system, etc. In this thesis, we are going to adopt the resource-oriented style.

40

3.4 Evaluation

In this section, we will evaluate the three selected techniques according to a wide

range of criteria on the basis of our own experiences with specification techniques and on

existing surveys [AALSY99] [WPJ98] [DW96] [CGR94]. The criteria is summarized as

followings:

• Readability: descriptions need to be readable by domain experts (and not only by

experts in the description technique). There is a strong emphasis here in human

understanding, and in common understanding among different participants, including

the client.

• Abstraction: this criterion is concerned with the level of detail that needs to be

addressed, and with separation of concerns. An abstraction mechanism that supports

two-way tractability allows to go form complex and high-level viewpoints to simple

and low-level viewpoints.

• Looseness: in the early stages of the standardization process, few details are available,

and a loose description technique should permit some level of incompleteness and

non-determinism in a description.

• Simulation and validation: V&V is greatly improved when descriptions can be

executed, simulated, and tested. Also one should be able to obtain test cases from

formal description.

• Tool Support: with a good tool support, we can easily capture, edit, simulate, and test

the description. We are especially interested in multi-platform, qualified tools, where

support and training is available.

Technique Readability Abstraction Loose

ness

Completeness

&

Consistency

Simulation

&

Validation

Tool

Support

UCM + + + - NA -

MSC + - 0 - NA +

41

LOTOS 0 + - + + 0

Table 3-4: + = Strength; - = Weakness; 0 = Adequate; NA = Not applicable

Table 3-4 summarized the evaluation result. UCMs are based on a graphical, intuitive

notation which is highly readable. In UCMs, there is no commitment to interfaces,

protocols, methods, messages, state machines, or anything else about how the

components are implemented, or how other components interact with them. Because of

this character, it is relatively easy to combine system behavior patterns and accomplish

component decompositions for an initial high-level system design. Therefore, it is a very

powerful approach to give the designer looseness to specify system at a level of whatever

detail is available. And also such characteristic of UCM allows us to specify system at

different levels of abstraction. Because of the notation’s informality and looseness,

completeness and consistency checking, as well as verifiability, become difficult issues

and are hard to support. Only one prototype editing tool is available for UCMs. It is

called UCM Navigator.

Being simple and intuitive in nature, MSC is the other visual notation which provides

strong readability. But each MSC only focuses on disjoint scenario, therefore abstraction

is fairly weak. Because of the fact that MSCs are not executable, they are also poor for

completeness and consistency checking, simulation and testing,. However, MSCs are

widely used to represent the result of V&V activities. Some industrially supported tools

can be used for MSC editing, such as SDT MSC editor.

LOTOS can be used at many different abstraction levels. The specification style in

LOTOS can adapt itself to different expressive needs. LOTOS requires precision. Hence

it requires that action sequences be specified exactly, although several non-deterministic

alternatives can be specified, Looseness is low. LOTOS is an executable language, many

inconsistency and incompleteness problems have to be solved at the time the LOTOS

specification is written. Hence, simulation and validation are well supported within

42

LOTOS methodology. A number of tools have been developed for supporting the V&V

of LOTOS specification. Among them, LOLA is a step-by-step executor, a tool for

testing. It is fairly robust, although it is not industrially supported. Table 3-4 is explained

further in [AALSY99].

3.5 Recommendations

Based on the evaluation result, Figure 3-6 shows the recommended techniques

applied to the three stages of the standard drafting process/lifecycle that we will follow in

this thesis. UCMs being an intuitive notation that can be used loosely and at several

levels of detail, is appropriate for the first stage of the standardization process. LOTOS,

being fairly precise but being able to be used abstractly, can come into play at Stage 2

and carry through Stage 3. MSC are good for intermediate description of protocols and

procedures, but neither for the early stage, not for the final one. They can be generated

from UCMs, and can guide the prototyping of LOTOS description in stage2 and 3.

Figure 3-6 Relevant Methods for the Three Drafting Stages.

STAGE 1

Requirement &
Services

STAGE 2

Message Sequence
Information

STAGE 3

Protocols &
Procedures

UCM

MSC

LOTOS

43

Chapter 4 Scenario Oriented Analysis for

CNAP service in WIN

4.1 Introduction

In this chapter, we will present a scenario-oriented analysis of Wireless Intelligent

Network Service Design. The complexity of real-time and distributed system architecture

makes its design a true challenge. The current network design information of CNAP

service [WIN98] is represented in the format of MSCs, tables, and procedures. It

specifies the message interactions between components, it defines parameters included in

each message, and it specifies the functional behavior of the system in terms of pseudo

code. Although the current design information gives us substantial detail, it lacks a

complete high level view of the system. We need to know, in a general way, what

network entities and responsibilities should be included in the system, and where those

responsibilities should be performed. The purpose of this analysis process is to produce a

high-level scenario description of the system. Our technique is based on Use Case Maps

(UCMs). This technique helps in specifying the designed system at a high level, and

contributes a method for generating test cases for the further validation.

44

The chapter is organized as follows. Section 4.2 shows use case maps from the service

description stage of the current WIN standard. This section presents unbound UCMs of

the Call Name Presentation (CNAP) service description from both a user-centered and a

system-centered viewpoint. Section 4.3 concerns the message sequence information

stage. At this stage, beside expressing UCMs in terms of responsibility sequences, we

define component types where responsibilities are applied, and then we can add

architecture details such as component types, the communication framework, and

interaction sequences. Bound UCMs and Message Sequence Charts (MSCs) are

applicable at this stage.

Figure 4-1 Scenario Oriented Analysis of CNAP

As a result of the analysis, we will provide a high-level perspective of system behavior in

terms of UCM and MSC scenarios. This scenario-oriented technique, which is used here

for a service in the Wireless Intelligent Network, is a general one and can be applied to

other types of distributed systems.

Informal
Description

Service Description Stage of CNAP
Unbound UCM

Architecture
Definition

Bound UCM
(Black-Box)

Bound UCM
(White-Box)

Message
Exchange
Scenario

Message Sequence Information
Stage of CNAP

45

4.2 Service Description Stage of CNAP

Here, we present the steps involved in the production of the first use case map. At

this stage, we apply only the unbound use case map technique to CNAP service

description. There is no commitment to components for responsibilities at this stage. The

following scenarios are grouped into two categories: a high-level service description from

a user’s perspective, and a underlying network communication from a system designer’s

perspective.

In our following UCM pictures, we call a subscriber who starts a call originator,

and a subscriber who receives a call terminator.

CNAP/RND Service Subscription UCM : Both originator and terminator can

subscribe to a WIN feature at any given time, but they only need to subscribe once.

Redirecting Name Delivery (RND), which is a CNAP subscription option, is represented

as an alternative path of service subscription by an OR-Fork. Users who subscribe to

CNAP can also subscribe to RND. After the user subscribes to either feature, s/he

becomes an authorized subscriber. S/he can activate the feature by setting it permanent

active, or on demand active. If the value is set as on demand, then the subscriber is

authorized to control the activation and de-activation of the feature. The control of feature

activation is not specified in the CNAP/RND service subscription UCM, because it is not

directly related to service subscription. We will describe such behavior in the originator

UCM and terminator UCM. The plug-in WIN database management stub, which is

shown with a diamond-shape notation, will also be explained when we discuss the WIN

Database management Stub UCM. By applying the stub notation, we are able to abstract

the network level design, and let it be transparent to the client at the early service

description stage. The stub notation also gives us the advantage to construct a complete

scenario by recursively selecting appropriate plugins for the stubs.

46

Figure 4-2 CNAP/RND service subscription UCM

Originator UCM: when a user starts a call, s/he sends a Call Origination request to the

system, which in Figure 4-3 is represented as a WIN CNAP/RND stub. By using such stub

at this level of design, details of the WIN network, such as the intercommunication of

network entities or network data used to set up the call, are invisible to the originator.

After the call link is established within the WIN CNAP/RND stub, there is a waiting place

along the originator’s path to wait for an event occurring from a terminator’s path. Such

event can be either that the terminator answers the call or that s/he does not answer the

call. After this event is performed by the terminator, the originator will either Get A Call

Answer/Call No Answer, or Get a Busy Tone. Meanwhile, the originator is able to do

other things concurrently, i.e. s/he can roam to another area at any time. Therefore, the

Location Update action can happen before the start of the call, or in the middle of the

call.

An originator that has activated the feature by setting it on demand, can also start by

performing a “feature active update”. However, this can’t be done in the middle of the

call. Therefore, OR_Fork is used to specify the two exclusive paths between the call

origination path and the Feature Active Update path. The updated data is recorded in the

WIN database management stub.

Subscribe

CNAP

Activation

CNAP

Subscribe

RND

Activation

RND

WIN
Database
Management

ORIGINATOR

/TERMINATOR

[without RND]

[with RND]

In4 Out4

47

Figure 4-3 Originator UCM

Terminator UCM: Similar to Originator, a terminator may roam (Location Update) and

may be able to open or close the CNAP and/or RND feature authorization anytime to

allow or deny access to the CNAP feature (Feature Active Update). As a result of feature

authorization, CNAP can be invoked for any terminating calls to a terminator who has

CNAP active, and RND can be invoked for any terminating calls to a terminator who has

CNAP and RND active when the call has been redirected. In Figure 4-4, there is a

waiting place along the terminator’s path to wait for a call origination from another user.

In other words, an originator may try to contact a terminator at a given time and the event

call origination in originator’s path is considered as a stimulus for this waiting place to

continue the terminator’s path in the WIN CNAP/RND stub. If CNAP/RND service is

invoked in the stub, normally the terminator is given a Successful Alert with appropriate

calling name presentation information. But in some special case, s/he may be given an

Exceptional Alert without the calling name information due to system failure. After

getting either alert, the terminator can choose to answer the call (Call Answer) or not

answer the call (Call No Answer). Normally, the path will end and the resulting event for

the terminator’s path causes Get Call Answer or Get Call No Answer event to happen in

Location
Update

Get Call No Answer

Get Call Answer

ORIGINATOR

Call
Origination

Feature Active
Update

WIN Database
Management

WIN
CNAP/RND

In5 Out5

in1

out1

TERMINATOR

Busy Tone out3

48

the originator’s path. In some particular cases, the terminator needs to redirect his/her

call. Such cases are represented as a backward path to the WIN CNAP/RND stub.

Figure 4-4 Terminator UCM

WIN CNAP/RND Plug-In UCM: The following plug-in UCM is bound to the WIN

CNAP/RND stub of the originator and terminator UCMs. In the originator and

terminator’s UCM, the entry and exit points are marked as lowercase:

in1,in2,in3,out1,out2, out3 while the start and end points in the stub UCM are marked by

the same name, but in uppercase. The binding is made by associating the entry and exit

points to the start and end points of the plugin map { (in1, IN1), (in2, IN2), (in3, IN3),

(out1, OUT1), (out2, OUT2), (out3, OUT3) }.

The network design of CNAP can be very complex. The main responsibilities in CNAP

service are Location Request¸ Route Request¸ Page, Allocate Route, Call Connection¸

CNAP service request¸ CNAP/RND service provision, Call release, Redirection Request.

These responsibilities are large ones since it is useful to simplify use case maps by

making some responsibilities very large. This is particularly useful in cases where

interaction is required back and forth between components and we want to defer the

details. There are three basic paths in the WIN CNAP/RND stub UCM. The precondition

Redirect
Call

Location
Update

TERMINATOR

Feature Active
Update

WIN Database
Management

WIN
CNAP/RND

Successful
Alert

Exceptional
Alert

Call Answer

Call No Answer

ORIGINATOR Call Origination

In5 Out5

in2
in3

out2

49

of basic path IN1 is a call origination request event from an originator. The original

calling name information and the destination calling number should be included in the

request. Along this path, location Request is invoked from the originator’s side to obtain

call instructions. Then, Route Request is used to inquire the appropriate terminator’s route

information for the pending call. After the Route Request, path IN1 either exits (OUT3)

or needs to be synchronized with another basic path IN2 in order to establish a voice link

between the originator and terminator. Basic path IN2 represents a terminator’s network

side in the stub UCM. After the terminator is paged and the terminator’s network assigns

routing information, this routing information is returned to the originator’s network side,

based on which, the physical call connection can be established. After that, the path IN1

exits the stub as OUT1. Meanwhile, path IN2 continues CNAP Service Request and

CNAP Service Provision for the terminator. Our WIN design is restricted to the CNAP

service, and so we suppose that terminators subscribe the CNAP feature. After the

service is provided, the path IN2 exits the stub as OUT2. There is a third basic path IN3

which indicates a Redirect Call event from a terminator. If that event happens, the

previous call connection needs to be released and the new network connection needs to

be started from path IN1 all over again.

Figure 4-5 WIN CNAP/RND Stub UCM

OUT2

Location

Request

Route
Request

Page

Allocate

Route

Call Connection

Service
Request

OUT1

CNAP/RND
Service
Provision

IN2IN1

IN3

 Call
Release

Redirection
Request

<ORIGINATOR>

<ORIGINATOR>

<TERMINATOR>

<TERMINATOR>

OUT3

50

WIN Database Management Stub UCM: Both Originator and Terminator UCM are

bound to the WIN Database Management stub by associating the entry and exit points to

the start and end points of the plugin stub map. In the originator and terminator’s UCM,

the entry and exit points are marked as lowercase: in4, in5, out4, out5. While the start and

end points in the stub UCM is represented in uppercase. The binding is { (in4, IN4), (in5,

IN5), (out4, OUT4) (out5, OUT5)}. There are two databases in WIN: Home Location

Register Database and Visitor Location Register Database. The Home Location Register

database provides the service data which contains permanent and temporary data fields.

This data provides necessary support for HLR’s responsibility to manage the mobility

aspects for wireless users. The permanent data associated with the mobile station does not

change as they move from one area to another, while the temporary data change from call

to call. In our HLR database of a simplified WIN model, the data includes: Directory

number of Mobile Station, Unique identification of Mobile Station, Name Information of

Mobile Station Users, Subscribed features, Subscribed features status, and Supplementary

services related parameters, such as Forwarded-to number, registration status, activation

status. The VLR database only tracks the state of MSs in its area. The information

necessary to process the call is contained in the HLR. It is transferred to the VLR once

the mobile station enters into the VLR’s area and is deleted after the mobile station

leaves. By using the VLR database, the roaming subscriber’s data is easily retrieved so

that the call can be speeded up. In practice, the data contained in these two databases is

more or less the same. Figure 4-6 presents two basic paths in the WIN database

management UCM. Each path has a constraint start. This means that the database allows

only one instance of the path to be initialized at a time. The old instance has to terminate

for a new instance to start. For example, once a feature status is updated, the relative

information stored in the Home Location Register database should be changed by HLR

Data Update. Meanwhile, if there is a HLR Data Query invoked by some other

components, the Database management has to finish the previous HLR Data Update in

order to process the coming HLR Data Query. In other words, data querying and data

updating can be requested concurrently, but they have to be sequentially processed in our

database management design model.

51

Figure 4-6 WIN Database management Stub UCM

On the basis of the five UCMs shown above, we can get a general picture of the CNAP

service. A subscriber can register to the CNAP/RND service. At any time, s/he can start a

call as an originator or s/he may receive a call as a terminator. When the CNAP service is

invoked and the calling name is available, the terminator’s terminal shall display the

calling name information. In the event of call redirection when CNAP and RND are

active, the name associated with the original party and the name associated with the last

redirecting number will be presented to the terminator. The detailed CNAP/RND service

in the network layer design is represented as a WIN CNAP/RND stub and as a WIN

database management stub.

In our next stage, we will discuss the component types, the communication framework,

and the interaction sequences based on these two network stubs.

4.3 Message Sequence Information Stage of CNAP

In Chapter 2, we discussed the network entities, function entities, communication

interface and service deployment framework where the CNAP service should be invoked.

VLR Data
Update

IN5

VLR Data
Query

VLR Data
Reply

OUT5

Synchronize

HLR Data

HLR Data
Update

IN4

HLR Data
Query

HLR Data
Reply

OUT4

Synchronize
VLR Data

52

These give us the basis to define the component types of the UCMs and understand the

message sequence between those components.

4.3.1 Component Types

The six types of operational components in the use case map notation were mentioned in

Chapter 3. We could apply many of them to different level system design. In this thesis,

three of them are used. They are teams, processes, and objects. The general mappings

between UCM component and WIN architecture entities are: teams = network entities,

processes = function entities, object = database. Each mapping is shown below:

• Teams

A team is a default component to use when we do not know the exact nature of the

component. It may include objects, processes, or other teams. A team can be treated as a

black box suitable for the initial phase. Showing teams in use case maps implies the

existence of components but defers the decision of the precise component.

In [WIN98], a network architecture is modeled by a set of network entities. These

network entites communicate with each other through predefined interfaces. The related

Network Entities in the CNAP service are: Mobile Station (MS), Home Location Register

(HLR), Visitor Location Register (VLR), Mobile Switching Center (MSC) and Service

Control Point (SCP). In our initial step, we declare each of these as a large grained

network component and simply bind UCM paths through them. There is a many-to-many

relation among components. For example, a VLR can control many MS in its

geographical domain, and one MS can roam around and be served by many VLRs. To

represent this in the bound map, we need to use a UCM stack2. Inside the stack, each

element is a distinct component, but is operationally identical. One element of the stack is

selected at a given time, and more than one may be selected along different paths at the

same time. The left half of Figure 4-7 is our simplified WIN network model of the CNAP

2 Note that in UCM literature, the word “stack” is used to refer to a collection of components, not necessary

first in last out.

53

service. This network is transformed into a set of UCM component stacks, which include

MS teams, VLR teams, MSC teams, HLR teams, and an SCP team. Except for SCP, the

other network entities are represented as stacks. The mobile station and Mobile Station

Centre can be further split into two sets of component teams, based on the user’s role in

the call (i.e., Originating or Terminating).

Figure 4-7 The Simplified WIN Network Model and UCM structure

• Processes

A process is a component that may operate concurrently with other processes. Its internal

logic is sequential; in other words, there are no concurrent elements inside a process.

Essentially, multiple paths can be bound on a process. But the process will have to deal

sequentially with the composition of the responsibilities along the paths that overlap it.

Two concurrent UCMs might have to be treated sequentially if they both progress to a

point where their responsibilities need to be performed by the same component. In our

design, teams can be further developed into functional entity processes. Multiple paths

are bound into some functional entity process and they are performed sequentially. For

example, the Terminator MSC team contains SSF_CCF function process to handle call

connection responsibility, and later on, the same process may need to perform Call

MSC1 MSC2
VLR1 VLR2

SCP

HLR2HLR1

MSA

RADIO INTERFACE

WIN

Network

MSB MSC

Originator
MS

Originating
MSC

VLR

SCP

Terminating
MSC

HLR

Terminator
MS

MSC2
VLR2

54

Release responsibility caused from another path. Our functional entity processes are

based on Distributed Function Plane, for which we refer to Fig 2.2 of chapter 2.

Beside the functional entity process from the DFP, we also define a database

management process to manage the HLR database and VLR database. The main purpose

for this is to maintain the data retrieval and storage function and to keep data

synchronization between VLR database and HLR database. With the help of this

process, we are able to simplify our design model by abstracting from real

implementation details such as how data are transferred from the HLR database to the

VLR database, or how data are updated in the HLR database when a user roams, etc.

• Objects

From the behavioral perspective of UCMs [Buhr96], an object is a fixed component that

supports a data abstraction through an interface. The interface lets other components ask

the object to perform its responsibilities. Objects are not further decomposable into other

types of components. The main constraints of component decomposition are:

- processes and objects cannot include teams

- objects cannot include processes.

The other possibilities are allowed. In our design, we have a database management

process. It contains the VLR database and HLR database. We define each database as an

object component and put both of them into the database management process

component. Some other components such as HLR team, VLR team or MSC team can

send data query/update requests to the database management process, which can be

considered as an interface of the objects.

4.3.2 Bound UCMs

In this section, we add components to the WIN CNAP/RND stub UCM and WIN

Database management Stub UCM. In a bound UCM, responsibilities are bound to the

components where they execute. Before we analyze the component type for each

responsibility, we can choose a team as a default component for the first step. The team

component is like a black-box, it is not necessary to know its internal structure, such as

55

the network function entity process or network database object. For example, a Location

Request is performed by an originating MSC. We therefore simply bind this

responsibility inside the MSC team.

In the second step, we can further decompose the component by replacing the team with

other components. By either replacing the rectangle by another shape, or expanding it

into more components, the teams may evolve into sets of objects, processes, or other

teams. Table 4-2 shows the mapping between responsibilities and their bound

component-type for the two plug-in UCMs.

Responsibility Team Process, Object

Location Request Originating MSC team SSF_CCF process

Route Request HLR team, VLR team, LRFH process, LRFv process

Allocate Route Terminating MSC team MACF process

Call Connection Terminating MSC team SSF_CCF process

Service Request Terminating MSC team SSF_CCF process

CNAP Service Provision SCP team SCF process

Call Release Terminating MSC team SSF_CCF process

Call Redirect Request Originating MSC team SSF_CCF process

HLR Data Query;

HLR Data Reply;

HLR Data Update;

Database management

process, HLR database object

Synchronize VLR database Database management

process

VLR Data Query;

VLR Data Reply;

VLR Data Query;

Database Management

process, VLR database object

Synchronize HLR database Database Management

process

Table 4-1 Black-Box Binding For Component-Based UCM

56

Figure 4-8 Bound Plug-In For WIN Stubs UCM

In3

Out1

Terminating
MSC

Originating
MSC

Location
Request

Route
Request

Page

Allocate
Route

Call
connection

Service
Request

CNAP
Service
Provision

In2
In1

Call
Release

SCP

Out2

HLR

SSF_CCF
MACF

SSF_CCF

Route
Request

VLR

SCF

LRFH

LRFv

Call
Redirect
Request

VLR Data

Update

IN4
VLR Data
Query

VLR Data
Reply

OUT4
Synchronize

HLR Data

VLR
database

HLR Data
Update

IN5
HLR Data
Query

HLR Data
Reply

OUT5
Synchronize
VLR Data

HLR
database

Database
Management

57

In Figure 4-8, to coordinate the call connection, at IN1, the originating MSC/SSF_CCF

invokes the Location Request operation to obtain call instructions from a serving HLR,

which serves for the destination party. Following the Location Request operation, the

HLR/LRFH initiates the Route Request and sends it to VLR/LRFv. When the VLR/LRFv

receives the Route Request, it forwards the request to the terminating MSC/MACF and

waits for the route information to be allocated by the terminating MSC/MACF. At IN2, in

response to the Route Request, the terminating MSC/MACF pages the called MS and

determines whether the MS is currently idle. If the MS is idle, the terminating

MSC/MACF allocates the routing information and sends such information back. After the

originating MSC/SSF_CCF receives the routing information, the voice link is then

established between the originating MSC/SSF_CCF and the terminating MSC/SSF_CCF.

If the user registered the CNAP feature, the Service Request is invoked by the terminating

MSC/SSF_CCF and the CNAP Service Provision is processed by SCP/SCF. Under

certain circumstance, a call may need to be redirected. This case is described by path IN3.

At IN3, the terminating MSC/SSF_CCF first releases the previous call (Call Release),

and then the originating MSC/SSF_CCF sends a Call Redirect Request to the serving

HLR in order to get the forwarded destination number. Once the originating

MSC/SSF_CCF gets the forwarded destination number, it invokes the Location Request

operation to obtain call instructions from a serving HLR. The whole procedure as

described above will be started all over again. A Database Management process is also

included in Figure 4-8. It should be clear, and so we do not explain it.

4.3.3 MSCs of CNAP service

Section 4.3.2 presents a bound use case map for the CNAP service. It gives us a more

detailed design of system behavior. However, it does not include information on how

components communicate and what quantities flow along paths. A causal relation from a

UCM can be implemented in terms of many different message exchanges. Therefore, we

need MSC, as a complementary design technique of UCM, for the message sequence

58

stage. In the current WIN standard, a set of MSCs related to CNAP has been documented.

We can take inspiration from the standards MSCs.

During the time when the thesis was written, there were five CNAP MSCs in the WIN

document. These MSCs illustrate some interactions among network entities in various

situations related to the Calling Name Presentation (CNAP). They are summarized in

Table 4-2. Here, we only show scenario 1 in Figure 4-9 as an example, others can be

referred in [WIN ANSI-41.3-C Additions].

Scenario 1

(See Figure 4-9)

This scenario describes CNAP Invocation to an Idle MS

with successful name display

Scenario 2

referred in [WIN ANSI-

41.3-C Additions]

This scenario describes CNAP Invocation to an idle MS

with unsuccessful name display due to a SCP Response

Timeout

Scenario 3

referred in [WIN ANSI-

41.3-C Additions].

This scenario describes CNAP Invocation with

successful name display after call redirection

Scenario 4

referred in [WIN ANSI-

41.3-C Additions].

This scenario describes CNAP Invocation by the HLR.

The choice of the service is invoked by MSC or by HLR

is predetermined by the system designer. As discussed

in Chapter 2, we focus on the recommended service

model where CNAP is invoked by MSC. Therefore, this

scenario is not very useful for our purpose.

Scenario 5

referred in [WIN ANSI-

41.3-C Additions].

This scenario describes both CNAP and RND

Invocation with successful name display after call

redirection.

Table 4-2 Five CNAP MSCs

59

Figure 4-9 Scenario #1 Message Sequence Chart

MSC HLR VLR MSC SCP MS

Originating System Serving System

a

b

c

d

e

f

g

h

i

j

k

l

Call Origination (CNI)

LOCREQ[DGTSDIAL, CNI…]

ROUTREQ[CNI…]

ROUTREQ[CNI…]

routreq[TLDN]

routreq[TLDN]

locreq[TERMLIST]

Call setup

FAVAIL[MIN,MDN,CNI, …]

favail [ACTLIST, DISPTEXT]

Alert(CNAP info)

Call answer

60

This MSC represents:

a.) A call invocation to an idle, authorized MSC with dialed MS address digits. (This is

implied by Call Origination Responsibility in Originator/Terminator UCMs)

b.) The Originating MSC sends a LOCREQ to the MS’s HLR, including CNI

parameters. (This is implied by Location Request Responsibility in Figure 4-8

UCM)

c.) The HLR sends a ROUTREQ, including the CNI parameter, to the VLR where the

MS is registered (This is implied by Route Request Responsibility in Figure 4-8

UCM)

d.) The VLR forwards the ROUTREQ to the current Serving MSC. (This is implied by

Route Request Responsibility in Figure 4-8 UCM)

e.) In response to the ROUTEQ, the Serving MSC checks its internal data structures and

determines that the MS is currently idle. Therefore the Serving MSC allocates a

TLDN and returns this information to the VLR in the routreq. The Serving MSC

stores the received CNI parameter. (This is implied by Page and Allocate Route

Responsibilities in Figure 4-8 UCM)

f.) The VLR sends the routreq to the HLR. (This is not shown in Figure 4-8 UCM,

because it is considered to be an implementation detail)

g.) When the routreq is received by the HLR, it returns a locreq to the Originating MSC.

The locreq includes routing information. (This is also not shown in Figure 4-8

UCM, because it is considered to be an implementation detail)

h.) A voice path is established between the Originating MSC and Serving MSC. (This is

implied by Call Connection Responsibility in Figure 4-8 UCM)

i.) The Serving sends a FAVAIL to the called party’s SCP including the called

subscriber identity. (This is implied by Service Request Responsibility in Figure

4-8 UCM)

j.) The SCP sends the favail to the Serving MSC including the calling name information.

(This is implied by CNAP Service Provision Responsibility in Figure 4-8 UCM)

k.) When the inter-MSC call is received at the Serving MSC, the MS is alerted. (This is

implied by Successful Alert Responsibility in Terminator UCM)

61

l.) When the served MS answers, the originating MS gets the answer. (This is implied

by Call Answer / Get Call Answer Responsibilities in Terminator/Originator UCM)

4.4 Conclusion

In this chapter, we applied our scenario analysis technique to the requirements of the

CNAP system. The analysis includes building a design model composed by UCM and

MSC. Such analysis brings us one step closer towards the specification and validation of

CNAP in LOTOS, which is discussed in the next chapters.

62

Chapter 5 LOTOS Specification of CNAP

5.1 Introduction

In this chapter, we describe the LOTOS specification of the WIN model and of

the CNAP service based on the UCMs and message exchange scenario information

analyzed in Chapter 4. Our main objective for the specification is to capture the

descriptions of this IN feature in a distributed and concurrent communicating wireless

environment.

By using LOTOS, we define data by using Abstract Data Types (ADTs) and we

describe the system’s externally observable behaviors as well as internal ones. The

specification structure we choose to use is resource oriented [VSSB89]. This style allows

us to show the architectural components of the system. As described in Chapter 2, the

most important network components that are relevant to build our WIN model are MS,

MSC, VLR, HLR, SCP. These network components cooperate with each other and

provide the basic architecture for the deployment of IN features in a wireless

environment. Some other function related network entities are not included since they are

not essential for the service processing and deployment. For example, the Authentication

Center (AC) is an entity that manages the authentication information. The Short Message

Entity (SME) composes and decomposes short messages, and Equipment Identity

Register (EIR) is an area for further study, etc.

63

5.2 Data Type of the specification

In this section, we will introduce the ADT part of the specification. We use ACT

ONE [GHM 78] as a notation for describing structured information. The information

contains some data values intended to be conveyed across the communication medium. It

also defines a collection of abstract equations that describe the meaning of the operations

at a high level abstraction. Our design on abstract data types is based on the CNAP

requirements and on the existing data parameters given in the standard’s MSCs. The

main data types in our design are listed as follows:

Component ID

This type defines the identification of network components. When many connections are

concurrently established, component IDs are useful for recognizing different components

so that they can be synchronized properly. An MS has two identifiers MIN and MDN,

which have been explained in Chapter 2. All other components, such as MSC, VLR, HLR

have their own distinguished IDs.

Address

This type contains the subscriber’s identifications as well as static location information.

The static location information includes the user registered HLR ID, and user registered

MSC ID.

Name_Info

This type is used to define the set of displayed names of the calling users, i.e. the name

information of those users who are involved in CNAP service. The Name_Info can also

be “restrict” or “not available”

Subscribed Features

A subscriber can register for many WIN features. Subscribed Features can be CNAP,

RND, and CNAF. They are grouped as a set, one for each subscriber. We can check if a

user subscribe to certain feature by using a defined set membership operation.

64

Feature Status Set

Feature Status Set is a set of variable indicating feature activation status of CNAP and

RND. There are six elements contained in the Feature Status set : CNAP_Permanent,

CNAP_On_Demand_Active, CNAP_On_Demand_InActive, RND_Permanent,

RND_On_Demand_Active and RND_On_Demand_InActive. We have one subset for each

subscriber. An operation IsActive(_) is defined to check the activation of a feature.

MDN Status

MDNStatus is a major part of HLR and VLR profile item. It contains all fields mentioned

above, such as Subscriber’s Address, Subscriber’s Name Information, Subscribed

Features, Feature Status Set and some optional fields related to the Subscribed Features

as shown in Figure 5-1. The optional fields, for example, can be the forwarded party’s

ADDRESS if the subscriber registers a call forward feature. Basically, except for Feature

Status Set, data stored in MDN Status are permanent, and so will not be changed

dynamically during the call.

Figure 5-1 Data Structure of MDN Status

HLR ProfileItem

HLR ProfileItem shown in Figure 5-2 is a data entry of the HLR Profile. In the HLR,

there is one such record per user. It contains MDNStatus and the identifiers of the current

serving VLR (VLRID) and serving MSC (MSCID) for this subscriber. The last two fields

need to be changed depending on where the subscriber roams.

Figure 5-2 Data Structure of ProfileItem

MDN Status VLRID MSCID

Name_Info Feature Status
Set

Optional
Field

ADDRESS Subscribed
Features

65

The operations of HLRProfileItem type are defined in LOTOS as follows:

type TypeHLRProfileItem is TypeVLRID, TypeMDNStatus
 sorts HLRProfileItem
 opns
 NULL :-> HLRProfileItem (* constructor *)
 HLRProfileItem: MDNStatus, VLRID, MSCID -> HLRProfileItem (* constructor *)
 GetServVLR: HLRProfileItem -> VLRID
 GetServMSC: HLRProfileItem -> MSCID
 GetMDNStatus: HLRProfileItem -> MDNStatus
 LocationUpdate: VLRID,MSCID,HLRProfileItem -> HLRProfileItem
 AuthorizationUpdate: FeatureStatus, HLRProfileItem -> HLRProfileItem
…
endtype

Five operations are defined for the HLR ProfileItem record. The first three operations

GetServVLR , GetServVLR, GetServVLR are used to extract the first, second and third

component of the record. The fourth operation LocationUpdate is an operation that takes

the new VLRID and MSCID, as well as the old HLRProfileItem, and yields the updated

HLRProfileItem. In practice, the location update could be very complex and be

implemented by the registration and handoff procedures within the mobile radio

interface. However, we abstract from these details and only update the dynamic value in

the HLRProfileItem record. The fifth operation AuthorizationUpdate is similar. It takes the

new FeatureStatus and old HLRProfileItem, and yields the updated HLRProfileItem.

HLR Profile

The HLR Profile shown in Figure 5-3 is composed of a set of HLRProfileItem. In our

specification there are two HLR profiles. A header HLRID is attached to each

HLRProfileItem, indicating to which HLR profile the HLRProfileItem belongs. Although

such information can be found in the ADDRESS field of MDN Status, using a header

enables quicker searches of HLRProfileItems.

Figure 5-3 HLR profile data structure

HLRID HLR ProfileItem

66

The operations of HLRProfile type are defined in LOTOS as follows:

type TypeHLRProfile is TypeHLRProfileItem
 sorts HLRProfile
 opns
 {}:-> HLRProfile (* constructor *)
 InsertHPItem:HLRID,HLRProfileItem,HLRProfile -> HLRProfile(*constructor *)
 GetHPItem: MDNID, HLRID, HLRProfile -> HLRProfileItem
 UpdateHPItem: MDNID, HLRID, HLRProfileItem HLRProfile -> HLRProfile
 eqns
 …
endtype

Three operations are defined in this record. The first operation InsertHPItem is to insert a

new HLRProfileItem associated with a HLRID header into a HLRprofile. The second

operation GetHPItem is an extraction function which extracts from the database

HLRProfile an HLRProfileItem corresponding to a given pair of MDNID and HLRID. The

third operation UpdateHPItem takes a new HLRProfileItem, and updates from the database

HLRProfile the old HLRProfleItem identified by a given pair of MDNID and HLRID.

VLR Profile

VLR Profile is a database which maintains the visiting mobile subscriber’s information.

The information of an MS is transferred from the HLR to VLR. Therefore, the data of an

MS stored in two databases are almost identical. Once the information is stored in the

VLR database, the serving MSC can easily manage the roaming MS by getting relevant

information from its local VLR database. Since the data component VLRProfileItem of

VLR Profile is almost the same as the HLRProfileItem of HLR Profile, we omit the detailed

explanation here.

5.3 Control Part of the specification

In this section, we describe the control structure of the CNAP service and the

processes of which the specification is composed. In order to achieve a clear and readable

specification, we adopt a top-down approach. We firstly describe the highest level

67

processes that compose the system, and then we decompose the process into lower detail.

Figure 5-4 shows the top level of the LOTOS specification:

MS_Subscribers[AUm, Roam, FeatureActivation, CreateUser
Registration]
|[Aum, Registration]|
(
 WIN_CNAP[AUm, C, C1, B, E, D, DBQuery, DBReply]
 |[DBQuery, DBReply]|
 WIN_Database[Registration, DBQuery, DBReply]({} of
 HLRProfile,{} of VLRProfile)
)

Figure 5-4 Top Level of the Specification

At the highest level, the core system is composed of two processes: process WIN_CNAP

and process WIN_Database. The process WIN_CNAP specifies CNAP service provision

for the network subscribers. All network activities required for service provision are

included in this process. The process WIN_CNAP only exposes its gate AUm to the

subscribers. Other internal gates, such as C, C1, B, E, D, DBquery, DBreply, are hidden

from the subscribers. The other process WIN_Database manages the data functions such

as storage, retrieval and synchronization for HLR and VLR databases. The gate

Registration is visible to the subscribers, while gates DBquery and DBreply are invisible

MS
Subscribers

WIN_CNAP

WIN_Database

| [DBQuery, DBReply] |

| [AUm, Registration] |

68

to the subscribers. They are used for internal communication between the process

WIN_CNAP and the process WIN_Database.

The process MS_Subscribers represents subscribers of the WIN network. The Subscribers

can perform their actions through the system’s external gates: Aum, Roam,

FeatureActivation, CreateUser, and Registration.

5.3.1 Process MS_Subscribers

In order to analyze the CNAP feature, it is convenient for us to be able to create as

many subscribers as we want. By using recursive instantiation, it is possible to create an

unlimited number of subscribers. However, when we use recursion in a LOTOS

specification, we need to be aware of the state explosion problem. We have two ways to

create infinite number of users. The first way causes immediate state explosion problem,

but the second one does not. In the first way, MS_Subscribers process is specified as

follows:

P(MS_Subscribers):=CreateUser; stop ||| P(MS_Subscribers)

= P(MS_Subscribers):=CreateUser; stop ||| CreateUser; stop||| …

Figure 5-5. LTS of Process MS_Subscriber (Infinite number of branch)

Figure 5-5 shows the resulting behavior tree where C is used as an abbreviation for
action CreateUser. As shown in
Figure 5-5, this use of recursion unfortunately leads to infinite branches once the

process starts and thus results in illegal termination due to memory overflow.

…

… …

…… ……

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

C
C

C

C

C

C

CC C C

C

C

C

69

However, this specific pitfall can be avoided by using “guard actions” on the recursion.

The guard actions can reduce the infinite branches and make the recursion executable by

the existing tools. In the second way of specifying MS_Subscriber process, at least one

action (CreateUser) has to be executed before the recursion. The improved specification

is shown as follows.

P(MS_Subscribers):=CreateUser; (stop ||| P(MS_Subscribers))

Figure 5-6. LTS of Process MS_Subscriber (one branch)

Figure 5-6 shows the improved resulting behavior tree, where C is used as an

abbreviation for the action CreateUser. In our specification, we adopt the second way of

specifying process MS_Subscriber in order to avoid this type of state explosion. The

LOTOS specification of this process is described as follows:

process MS_Subscribers [AUm, Roam, Feature_Activation, CreateUser,
Registration]:exit :=
CreateUser ? h_id: HLRID ? HPItem:HLRProfileItem;
(

Registration !Adduser !h_id !HPItem
MS…;

 |||
 MS_Subscribers[AUm, CreateUser]
)
 endproc (* MS_Subscribers *)

In the MS_Subscribers process, the action CreateUser ? h_id : HLRID ? HPItem :

HLRProfileItem is used to create a new subscriber for the system. h_id is a variable for

HLRID header, whereas, HPItem is a variable for HLRProfileItem. The symbol ‘?’

.

.

C

C

C

70

means that the value of the variable needs to be received from the environment. The

value of the input item must follow the ADT type definition described in section 5.2.

Once the values of h_id and HPItem are entered, the action Registration synchronizes

with WIN_Database process in order to add the user’s information into the user's home

HLR database. After the Registration is successful, a process MS is created for

representing the new subscriber. To limit the scope of the WIN system, we only generate

three MS processes for our validation purpose.

5.3.1.1 Process MS

The LOTOS specification of process MS is shown below:

process MS [AUm, Registration] (id:CNI): exit:=
(
 (
 (originator [AUm](id) [] terminator [Aum](id))
 |||
 Roam ? servMSC : MSCID ? servVLR : VLRID;
 …; exit
)
 []
 Activation ? fs : FeatureStatus !id;
 …; exit
)
…
endproc (* MS *)

An MS process can either initiate a call or terminate a call. Therefore, we firstly specify

the process MS as a choice of two sub processes Originator and Terminator. Process

Originator deals with the call processing on behalf of a calling party, while process

Terminator handles the call processing on behalf of a called party. The details of each

process will be explained in the next sections.

When we recall the Terminator/Originator UCMs in Chapter 4, we know that either the

originator or the terminator may roam to another area. The roaming action is irrelevant to

the call processing action and so can happen at any time. By using the LOTOS parallel

operator “|||”, we can express such independent relation between call processing and

71

roaming. If the action Roam is performed, servMSC id and servVLR id in the new area

are required to be provided by the environment.

When the user is not in the call processing, s/he may activate or de-activate the feature

status in order to allow or deny the CNAP/RND service. The feature activation or

deactivations cannot be done during the call, thus the LOTOS choice operator “[]” is

used to describe the exclusive relation between the call processing and feature activation.

The type of feature status (fs) can be entered through action Activation. There are six

types of feature status, as mentioned: CNAP_Permanent, CNAP_On_Demand_Active,

CNAP_On_Demand_InActive, RND_Permanent, RND_On_Demand_Active,

RND_On_Demand_InActive. The input data updates the corresponding user’s record in the

WIN_database.

5.3.1.2 Process Originator

The LOTOS specification of process Originator is shown as follows:

process Originator [AUm](id:CNI):exit:=

AUm ! CallOrigination ? dest : ADDRESS ! id ! GetMIN(GetADDRESS(id)) !
GetMSC(GetADDRESS(id));
(
 AUm ? a: ACTION ! GetMSC(GetADDRESS(id)) ! GetMIN(GetADDRESS(id));
 exit
 []
 AUm ! BusyTone; exit
)
endproc (* originator *)

In the Originator process, a user can originate a call. This is described by “AUm !

CallOrigination ? dest : ADDRESS ! id ! GetMIN(GetADDRESS(id)) !

GetMSC(GetADDRESS(id))”. This CallOrigination action is executed at gate AUm. The

symbol of “? dest” represents that the destination number needs to be entered. Once

the user enters the destination number, the number as well as other information

(GetMIN(GetADDRESS (id)) are sent to the Originating MSC whose id is extracted from

GetMSC(GetADDRESS(id)). In the distributed environment, many CallOrigination actions

may be performed simultaneously by different users and so each action needs to be

distinguished by a user’s identifier (! id).

72

After the CallOrigination action is successfully performed, the user waits for the response

from the called party. AUm ? a: ACTION is a place to wait for the response. The response

from the called phone might be either an answer or no answer. Another possibility is that

the called phone is busy, and for this, there is an event “BusyTone”.

5.3.1.3 Process Terminator

The LOTOS specification of process Terminator is briefly shown as follows:

process Terminator [AUm] (id:CNI):exit:=

AUm ?a: ACTION_List …;
(
 AUm !CallAnswer …;
 exit
 []
 AUm !CallNoAnswer…;
 exit
)
endproc (* Respondor *)

Process Terminator specifies the behavior of the WIN subscriber who responds to a call.

In the Terminator process, the subscriber gets event (?a:ACTION_List) on gate AUm

from the WIN network. Such event can be alert with call name display or alert without

call name display. Once the event has happened, the terminator can choose to answer the

phone or not.

73

Figure 5-7 WIN_CNAP Specification

Originating

MSC

Terminating

MSC

HLR Stack VLR Stack

SCP

[D]

[E]

[C]

MSC Stack

[C1]

[AUm]

[DBQuery, DBReply] [DBQuery, DBReply]

[DBQuery,
DBReply]

WIN
DATABASE

WIN
DATABASE

[B]

WIN
DATABASE

process WIN_CNAP[AUm,C,C1,C2,B,E,D,DBQuery,
DBReply]:
noexit :=

hide C,C1,B,E,D,DBQuery,DBReply in
(
 (
 HLRstack [C,D,C2,DBQuery, DBReply]

|[D]|
VLRstack[B,D,DBQuery, DBReply]

)
 |[C, B]|
 MSCstack[AUm, C, C1, B, E, DBQuery, DBReply]
)
|[C1]|
SCP[C1]

endproc (* WIN_Network *)

74

5.3.2 Process WIN_CNAP

WIN_CNAP is a large and important process in our specification. Figure 5-7 shows the

top-level LOTOS specification of the WIN_CNAP process schematically. The WIN_CNAP

process is composed of four sub-processes. Each of the sub-processes is listed as follows:

• Process HLRstack includes two HLRs composed by a parallel operator “|||”. It

communicates with other processes through gate C, D, DBQuery, and DBReply.

• Similarly, Process VLRstack contains two VLR processes which communicate with

other processes through gate B, D, DBQuery, and DBReply.

• Process MSCstack specifies the behavior of two MSCs. Each can act either as an

originating MSC or a terminating MSC for a certain user. MSCs can communicate

with each other through gate E. Each MSC provides an interface (gate AUm) to the

mobile user. The MSC can also communicate to other processes through gates C, B,

C1, DBQuery, DBReply.

• Process SCP gets the service request from an MSC and responds through gate C1.

The specification details related to each sub-process will be discussed in the next

sections.

5.3.2.1 Process MSCstack

Process MSCstack is a composition of two MSC processes synchronizing through

gate E. According to the function role, an MSC process can be either an originating MSC

or a terminating MSC.

Originating MSC

In the bound UCM of WIN_CNAP stub described in Chapter 4, Originating MSC

contains one function entity SSF_CCF. However, in the Originating MSC process, we

specify only a part of the behavior of SSF_CCF, the one that relates to CNAP.

Therefore, to make it clear that the SSF_CCF is not the whole SSF_CCF function, we use

75

a different name SSF_CCF_1. The LOTOS specification of Originating MSC process is

shown below:

process OrigMSC[AUm,C,C1,B,E,DBQuery,DBReply](id:MSCID) : exit :=

AUm ! CallOrigination ? DGTSDIAL:ADDRESS ? CNIdigitsBCD:CNI ! id;
(
 MSC[AUm,C,C1,B,E,DBQuery,DBReply,Probe](id)
 |||
 (
 SSF_CCF_1[AUm,C,C1,B,E,DBQuery,DBReply]
 (id, DGTSDIAL, CNIdigitsBCD, insert(GetNAME(CNIdigitsBCD),{}))

[]
i;
SSF_CCF_1[AUm,C,C1,B,E,DBQuery,DBReply]
(id, DGTSDIAL, CNIdigitsBCD, insert(Not_Avail,{}))

)
)
endproc (* OrigMSC *)

In the OrigMSC process, we instantiate a new MSC process each time the

CallOrigination request is received. The new instantiated MSC process is used to accept

other call requests while the current call is processing. This strategy is not only applied

to the OrigMSC process, but also to many other processes which we will discuss later.

To process the current call, SSF_CCF_1 is initiated. Note that there are two possible

ways of calling SSF_CCF_1, which are placed in alternative operator ([]) in the

specification. Their parameter list in the first alternative corresponds to the case where

the name of the user can be displayed, and the appropriate name is inserted into the name

list. The second alternative corresponds to the case where the name is not available, and

so Not_Avail is generated and inserted into the name list. The SSF_CCF_1 process is

relatively complex, we only show its skeleton structure.

process SSF_CCF_1[AUm,C,C1,B,E,DBQuery, DBReply]

(id:MSCID, DGTSDIAL:ADDRESS, CNIdigitsBCD:CNI, NAME:NAME_List) :eixt :=

C ! LocReq ! DGTSDIAL ! CNIdigitsBCD ! NAME ! CalleeHLR_id !id;

C ! ReLocReq ? TERMLIST : TERMLIST_INFO ! CalleeHLR_id ! id;

…

[servMSC_id eq id] ->

(C1 !Favail ! …

76

C1 !ReFavail ? ACTLIST:ACTION_List ? DISPLEXT:NAME_List …

…

)

[servMSC_id ne id] ->

(…)

endproc (* SSF_CCF_1 *)

In the SSF_CCF_1 process, a LocReq is sent to the HLR process. Some parameters are

included in the request, such as called phone number (DGTSDIAL), calling name

information (CNIdigitsBCD), etc. As a response, the HLR returns the routing information

in the format of TERMLIST, which implies the location of the terminating MSC.

It is also possible that the originating MSC needs to act as a terminating MSC since the

terminator could be in the same area as the initiator’s. This case is indicated by the fact

that the premise “[servMSC_id eq id]” is true, and in this case the service request

(!Favail …) is invoked on gate C1, and the action list (!ReFavail ?

ACTLIST:ACTION_List …) is returned on the same gate.

Terminating MSC

The terminating MSC process contains two function entities: MACF and

SSF_CCF. For reason similar to those we explained in the previous section, we adopt a

new name SSF_CCF_2 to distinguish this process from the whole SSF_CCF function.

The LOTOS specification of the terminating MSC process is shown below:

process TermiMSC[AUm,C,C1,B,E, DBQuery, DBReply](id:MSCID) : exit:=

B ! RouteReq ? x:MINID ? y:MDNID ? z:CNI ? u:NAME_List ? VLR_id:VLRID ! id;
(

MSC[AUm, C, C1, B, E, DBQuery, DBReply](id)
|||
(

MACF[B,DBQuery, DBReply](x, y, VLR_id, id)
>>
accept busy: Bool in
[Not(busy)] ->

SSF_CCF_2[AUm, C, C1, B, E, DBQuery, DBReply]

77

(id,y,u,VLR_id)
[busy] -> exit

)
)
exit
endproc (* TermiMSC *)

TermiMSC process firstly synchronizes on the RouteReq action with the VLR process at

gate B, where the received value includes the terminator’s MS identifier (x), the

terminator’s identifier (y), the originator’s calling name information (z), and the

contacting VLR identifier VLR_id . Once the TermiMSC process receives the RouteReq,

the MACF function determines whether the terminator’s MS is busy or not. This is done

by querying of the VLR database. If it is busy, the busy status is returned in the

ReRouteReq. Otherwise, the MACF function assigns the routing information and returns

it in the ReRouteReq. According to the standard, the route information is represented in

the format of TLDN. Channel (id, x) is a resource allocation function. It assigns a radio

channel for the terminator’s MS. The MACF function is described by the following

process:

process MACF[B, DBQuery, DBReply](x:MINID, y:MDNID, VLR_id:VLRID,
id:MSCID) :exit :=

DBQuery ! Query_VLR_Profile ! VLR_id ! y;
(* query the VLR database for user’s busy status *)

DBReply ? value:VLRProfileItem … ;
(

 let busy:Bool = IsBusy (value) in

 [busy] -> B ! ReRouteReq ! TLDN(NULL, busy); exit (busy)

 []

 [Not(busy)] -> B ! ReRouteReq ! TLDN(channel(id, x), idle) ! VLR_id !id;

 exit (busy)

)

endproc (* MACF *)

The exit action of the MACF process passes the Boolean value “busy” to the successor

behaviors. This Boolean value indicates whether the terminator’s MS is busy or not. The

process SSF_CCF_2 is instantiated only if the terminator’s MS is currently idle. In the

78

SSF_CCF_2 process, action Callsetup synchronizes with the originating MSC process on

gate E. After the call is setup, a request of updating the terminator’s current state as

“busy” and a query of the terminator’s registered WIN feature is sent to the Database

Management by action DBQuery. The terminator’s registered WIN feature is received as

an answer by action DBReply. The subscribed WIN features will be invoked by action

Favail on gate C1 and the returned action list (ACTLIST) is provided by action ReFavail

on the same gate.

The SSF_CCF_2 process provides the necessary alert actions to the terminator MS, e.g.

alert the with the calling name information DISPTEXT (AUm ! ACTLIST !DISPTEXT…).

From the terminator, there are two possible responses: “call answer” or “call no answer”.

In the case of Call Answer, the originating MSC will synchronize the terminator’s call

answer action through gate E and then eixts. In the other case of Call No Answer, the

originating MSC may synchronize on call no answer action or may redirect the call if the

terminator has the CNAF feature. To redirect a call, SSF_CCF_2 needs to send redirect

request and to release the current call link. The skeleton LOTOS structure of process

SSF_CCF_2 is specified as follows:

process SSF_CCF_2[AUm,C1,E,DBQuery, DBReply]
 (id:MSCID, y:MDNID, u:NAME_List, VLR_id:VLRID) : exit:=

E ! CallSetup …;

DBQuery ! Update_VLR_Profile_Busy ! VLR_id !y;
(* a request of updating the terminator’s current state as “busy” *)

DBQuery ! Query_VLR_Profile …;
DBReply ? value:VLRProfileItem …;
(* a query of the terminator’s registered WIN feature *)

C1 ! Favail …
C1 ! ReFavail …

AUm ! ACTLIST !DISPTEXT … ;
AUm ? a: ACTION …;
(
 [a eq CallAnswer] -> E ! CallAnswer …; exit
 []
 [a eq CallNoAnswer] ->
 (

[eleof(CNAF,GetSubscribedFeatures(GetMDNStatus(value)))eq false]->
 E ! CallNoAnswer …; exit

[]

79

[eleof(CNAF,GetSubscribedFeatures(GetMDNStatus(value)))]->
E ! Redirection …;
E ! Release …; exit

)
)
 endproc (* SSF_CCF_2 *)

5.3.2.2 Process HLRstack

The process HLRstack contains two HLR processes composed by an interleave

operator “|||”. In the HLR process, the HLR receives the location request (LocReq) sent

by the originating MSC on gate C, and sends the route request (RouteReq) to the VLR

process on gate D.

Another alternative behavior of the HLR is to reply to the query from the originating

MSC about the redirected calling number if the call needs to be redirected. In order to

retrieve such information from HLR database, DBQuery action is sent to the Database

Management process after TrigNoAnswer action occurs on gate C. And the queried

information is returned as a value parameter of action DBReply. The skeleton LOTOS

specification of HLR process is shown as follows:

process HLR [C,D,DBQuery,DBReply] (id:HLRID) :noexit :=

C !LocReq …; (* receives the location request *)
(
 HLR[C,D,DBQuery,DBReply,Probe](id)
 |||
 …
 D !RouteReq …;
 …
) (* C! Loc *)
[]
C !TrigNoAnswer …; (* receives the query of forwarded call number *)
(
 HLR[C,D,DBQuery,DBReply] (id)
 |||
 (
 DBQuery ! Query_HLR_Profile ! MDN;
 DBQuery ? value :HLRProfileItem;
 …
 C !ReNoAnswer …; (* replies to the query of forwarded call number *)
 …
) (* ||| *)
) (* C !Trig *)

80

 endproc (* HLR *)

5.3.2.3 Process VLRstack

Similarly, the process VLRstack has two sub process composed by an interleave

operator “|||”. According to the scenario described in Chapter 4, VLR tracks the states of

all MSs in its area. In our specification, VLR receives the route request (RouteReq) from

the HLR through gate D. But before it forwards the request to the Terminating MSC, it

needs to find out the terminating MSC id by sending the DBQuery to the VLR database.

The queried information is returned as a value parameter of action DBReply and the

terminating MSC id can be retrieved by an ADT operation GetMSC(value). After the

Terminating MSC receives the forwarded route request on gate B, it will eventually

return the route information TLDN to the VLR process by synchronizing action

ReRouteReq on gate B. Furthermore, this information is returned to the HLR process by

synchronizing action ReRouteReq on gate D. The skeleton LOTOS specification of

process VLR is shown as follows:

process VLR [B,D,DBQuery,DBReply] (id:VLRID) :noexit :=

D !RouteReq …;
(

VLR [B,D,DBQuery,DBReply](id)
|||
DBQuery ! Query_VLR_Profile !id ! MDN;
DBReply ? value :VLRProfileItem ! MDN;

B !RouteReq … ! GetMSC(value);
B !ReRouteReq ? TLDN:TLDN_INFO !id !GetMSC(value);

D ! ReRouteReq ! TLDN ! HLR_id ! id;
)
endproc (* VLR *)

5.3.2.4 Process SCPstack

Process SCP contains SCF function. The SCF process is shown below:

process SCF[C1,Probe]: exit :=

81

hide Timeout, Success in
C1! Favail ?fs :SubscribedFeatures ? FStatus : FeatureStatusSet…;
(
 SCP[C1,Probe]
 |||
 [eleof(CNAP,fs) and ActiveCNAP(FStatus)] ->
 (
 Timeout;
 …
 []
 Success;
 (
 [eleof(RND,fs) and ActiveRND(FStatus)] ->

(* the terminator has RND service active)
C1 !ReFavail !insert(Alert_with_CNI, {})! nl ! …;

 …
 []
 [eleof(RND,fs) eq false]->

(* the terminator does not have RND service *)
C1 !ReFavail !insert(Alert_with_CNI, {})! GetOrig(nl) ! …;

 …
) (* Succ *)
) (* [ele *)
) (* C1 *)

endproc (* SCF *)

When a service request (Favail) is received on gate C1, SCF firstly checks the premise

[eleof (<CNAP> <feature set>)], which indicates whether the terminator has a CNAP

service in his/her subscribed feature set. If the terminator has a CNAP feature, there are

two possible service provision results given by the SCF. The action Timeout indicates an

unsuccessful service provision result due to some unpredictable system errors. The other

action Success represents the normal service provision. In this case, the SCF checks if the

terminator’s CNAP feature contains RND option and if the RND is active. Based on the

result, the response (ReFavail) is replied at gate C1 with an appropriate action list and a

displayed name list. The action list will be received by process terminating MSC. It is

represented in our specification as an insert (…) operation. The displayed name list can

be either (a) the originator and the last forwarded party’s calling name (nl), or (b) the

originator’s calling name (GetOrig(nl)).

82

5.3.3 Process WIN_Database

As shown in Figure 5-8, the process Database_Management manages HLR and VLR

data profile. This process communicates with the WIN_CNAP process through gate

DBQuery, DBReply, and with the MS Subscribers process through gate Registration.

Figure 5-8 WIN Database Management Process

The brief LOTOS specification of this process is shown as follows:

process Database_Management[Registration, DBQuery, DBReply](hs:
HLRProfile, vs:VLRProfile):noexit :=

DBQuery ! Query_HLR_Profile ? h_id:HLRID ? ms_id:MDNID;
DBReply ! GetHPItem (ms_id, h_id, hs) ! ms_id;
Database_Management [Registration,DBQuery, DBReply](hs, vs)
[]
DBQuery ! Query_VLR_Profile ? v_id:VLRID ? ms_id:MDNID;
DBReply ! GetVPItem (ms_id, v_id, vs) !ms_id;
Database_Management [Registration,DBQuery, DBReply](hs, vs)
[]
DBQuery ! Update_VLR_Profile_Busy ? v_id:VLRID ?ms_id:MDNID;
…
Database_Management [Registration,DBQuery, DBReply](hs, vs)
[]
Registration ! AddUser ? h_id :HLRID ? value : HLRProfileItem;
…
Database_Management[Registration, DBQuery, DBReply](hs,vs)
[]

HLR Profile VLR Profile

[DBQuery] [DBReply]

Database Management

[Registration]

WIN_CNAP MS Subscribers

83

Registration ! Handover ? servMSC:MSCID ? servVLR:VLRID ?…;
…
Database_Management[Registration, DBQuery, DBReply](hs, vs)
[]
Registration ! Activation_Update ? fs :FeatureStatus ? id:CNI;
…
Database_Management[Registration, DBQuery, DBReply](hs, vs)

endproc (* Database_Manager *)

We allow concurrent access to the database through gate DBQuery and DBReply at any

time. However, the responses for these requests are sequentially processed by using the

LOTOS choice operator ‘[]’, and so the consistency of data can be protected. There are

three actions on gate DBQuery. Action Query_HLR_Profile requests a user’s HLR record

corresponding to a given pair of h_id and ms_id. The user’s HLR record can be retrieved

by an extraction function GetHPItem (ms_id, h_id, hs) and the extracted value is

returned on gate DBReply. Similarly, action Query_VLR_Profile is to query user’s VLR

record and the extracted value is returned on gate DBReply. The third action

Update_VLR_Profile_Busy marks a busy status for a given user (identified by ms_id) in a

given VLR database (identified by v_id).

On gate Registration, there are three actions. The first action addUser is used for creating

a new subscriber’s record in the HLR database. At the beginning, there is no subscriber in

the system, therefore the parameters (hs, vs) of this process are initialized as empty. Later

on, when the process MS_Subscribers generates a new subscriber, it sends addUser

action request to the database_Management process on gate registration. As a result, this

subscriber’s HLR profileitem record (h_id, value) is generated and inserted into the HLR

profile (hs). The content of this record is copied into the subscriber’s serving VLR profile

(vs). The data stored in the VLR database is only meaningful as the MS is registered in

this VLR area. If a subscriber’s MS roamed to another area, the user’s record in the old

VLR database needs to be deleted and the new entry needs to be created in the new VLR

database. The second action Handover represents such case. When a subscriber roams to

a new area, the Handover request sends to the Database_Management process, and so the

subscriber’s old VLR profileitem record is deleted and a new record is created in the

84

current serving VLR profile (vs). Furthermore, the subscriber’s current serving VLR

identifier is recorded in the user’s HLR database. The third action Activation_Update is

to handle the feature activation update request from a subscriber. Given by the

subscriber’s identifier (id) and a new feature activation status (fs), the

Database_Management process updates the subscriber’s corresponding feature activation

field in his/her HLR and VLR profileitem record.

5.4 Conclusion

In this chapter, we present a formal LOTOS specification of the CNAP service. We use

ACT ONE [GHM 78] as a notation for describing structured information and describe the

control structure of the CNAP service and the processes of which the specification is

composed. Using this specification prototype, we can apply validation technique

described in the next chapter.

85

Chapter 6 Validation of CNAP

6.1 Overview of the validation method

Given a formal specification representing a design in LOTOS, we can apply many

validation techniques [Bri88][CKM93] [AmLo]to establish its correctness (i.e. absence

of logical error) or to find ambiguities in the requirements. Many tools, such as LOLA

and ELUDO, exist in this aspect. In this thesis, we use a number of validation techniques

that include simulation, probe testing and graphic MSC generation. During this process,

some ambiguities of CNAP scenarios from the WIN pre-balloting draft are discovered.

6.2 Tool support

In this section, we are going to introduce some software tools for the capture, the editing,

the maintenance and the testing of descriptions. Figure 6-1 shows the tools and internal

files used by the UCM scenario analysis, LOTOS specification and validation procedure.

86

Figure 6-1 Supporting Tools and Files

• UCM Navigator is a UCM editor. It is under development at Carleton University.

Versions are currently available for many platforms (Sparc/Solaris, HP/Unix,

i386/Linux). As a tool for creating and modifying UCMs, it is designed to handle any

unbound or bound UCM. It is also capable of creating multi-level maps in which sub-

maps of a lower level are expressed as stubs in a higher-level map. Using this tool, we

get the informal visual notation scenario saved in the format of a file (.ucm) for the

WIN system.

• LOLA is a step-by-step executor, a tool for obtaining a state transition system of a

LOTOS specification and a tool for testing[PL91]{PLR95]. It was developed at the

UCM (.ucm)

LOTOS(.lot)

Results (.tr)

+
Test Cases

MSC PR(.mpr)

LOLA

 SDT MSC GR(.msc)

Graphic MSCs can be

automatically generated

Perl Script

UCM

Navigator

87

Technical University of Madrid. The LOLA tool can be utilized for automating a

number of validation techniques such as step-by step simulation, testing, etc. Test

cases from the specification are formalized as LOTOS test processes. The tested

result can be saved as a file (.tr) which contains traces leading to a success event or a

deadlock.

• Perl is a popular script language, which has powerful text-manipulation functions. In

our case, we use perl to transform a format of the test result (.tr) into plain

representation MSC format (.mpr).

• SDT is a well-known tool package produced by Telelogic. It is used for processing

specifications written in SDL. SDT has an MSC editor to provide support for editing,

managing and generating descriptions of MSCs in both plain representation format

(.mpr) and graphic representation format (.msc). The plain MSC representation

format (.mpr) can be taken by a SDT MSC editor in order to generate a graphic MSC

(.msc).

6.3 Simulation, Testing and New Scenario Generation

6.3.1 Simulation

We use step-by-step execution to simulate possible events in the current environment. In

the process of simulation, at every step, a user who plays the role of the environment

selects an event among a set of events allowed by the system. According to the given

response, the system computes the new state, and provides the successor events for the

next selection. This process may continue until no further event is possible. The

simulation makes the CNAP specification executable. It helps the designer to determine

that the generated scenarios correspond to the requirements.

By doing simulation, the designer can investigate the behavior of the system scenarios on

detailed scenarios that may be ignored in the requirements but can be discovered as

problems in later design or implementation stages. LOLA is the tool that was used to

88

execute the CNAP specification. In this model of execution, the environment (or the

specific user) may be required to supply values for variables. During the execution, the

user may backtrack to any event in the trace and execute different branches, or the same

branch with different values. Executed events and the order in which they occurred are

recorded in traces by the system. A trace generated by LOLA simulation is shown in

Figure 6-2. This trace shows a scenario where the system creates three new subscribers

and registers these subscribers into the WIN Database. Actions 1, 2, and 3 create

respectively user amy, bill and claudo, they assign the first two users to HLR1, and the

third user to HLR2. All three users subscribe to the CNAP service with the RND option

permanently enabled. amy and claudo forward their calls to bill, and bill forwards his call

to claudo.

More in detail, let us see the first action in Figure 6-2. It is at gate ‘createuser’ and the

first element ‘1 of hlrid’ indicates that the newly created user belongs to HLR1. The

following experiment is the data subscription information of the user as explained in

Section 5.2. In particular, the hlrprofileitem refers that the name of the new user is amy,

that the MDN is a, the MIN is 1, the HLR is 1 and the MSC is also 1. The following two

insert operations indicate the fact that the user subscribes to CNAP with RND option, and

the status of these features is permanent. The address operation is the forwarded person’s

address, who is bill (b), with MIN2, HLR1 and MSC1. Finally, for user amy, serving

MSC and VLR are 1. The following two actions are similar thus we omit the explanation.

Moreover, three internal actions follow the trace to add the three created users to the HLR

database. They are at gate ‘i’ and are not controlled by the environment.

It can be easily seen that LOTOS traces are quite hard to read and hence the need to

translate them into MSCs (see section 6.3.3)

89

Figure 6-2 Trace generated by Simulation

6.3.2 Specification Testing

Testing is most commonly defined as a process where an implementation is checked for

conformance with respect to a specification. If we have an executable specification, a

similar process can be used to check that the specification corresponds to requirements. It

is possible to execute test scenarios step-by-step, by using the process described above, or

it is possible to create a LOTOS specification including one or more scenarios and

execute it in parallel with the specification as a “test process”. For each such execution,

there are three possible responses: must pass, may pass, or reject.

(* Traces generated by step-by-step *)

 [1] - createuser ! 1 of hlrid !
hlrprofileitem(mdnstatus(amy,address(a,1,1,1),insert(cnap_permanent,in
sert(rnd_permanent,{})),insert(cnap,insert(rnd,{})),address(b,2,1,1)),
1,1);
 [1] - createuser ! 1 of hlrid !
hlrprofileitem(mdnstatus(bill,address(b,2,1,1),insert(cnap_permanent,i
nsert(rnd_permanent,{})),insert(cnap,insert(rnd,{})),address(c,3,2,2))
,1,1);
 [1] - createuser ! 2 of hlrid !
hlrprofileitem(mdnstatus(claudo,address(c,3,2,2),insert(cnap_permanent
,insert(rnd_permanent,{})),insert(cnap,insert(rnd,{})),address(b,2,1,1
)),2,2);
 [1] - i; (* registration ! adduser ! 1 of hlrid !
hlrprofileitem(mdnstatus(amy,address(a,1,1,1),insert(cnap_permanent,in
sert(rnd_permanent,{})),insert(cnap,insert(rnd,{})),address(b,2,1,1)),
1,1) *)
 [4] - i; (* registration ! adduser ! 1 of hlrid !
hlrprofileitem(mdnstatus(bill,address(b,2,1,1),insert(cnap_permanent,i
nsert(rnd_permanent,{})),insert(cnap,insert(rnd,{})),address(c,3,2,2))
,1,1) *)
 [6] - i; (* registration ! adduser ! 2 of hlrid !
hlrprofileitem(mdnstatus(claudo,address(c,3,2,2),insert(cnap_permanent
,insert(rnd_permanent,{})),insert(cnap,insert(rnd,{})),address(b,2,1,1
)),2,2) *)

90

MUST PASS:

All the possible executions were successful. They reached the Success event by all

means.

MAY PASS:

Some executions were successful, some unsuccessful. This happens mostly because of

non-deterministic choice existing in the system. Note that timeouts in our system are

represented as non-deterministic choices.

REJECT:

All the executions failed. They all deadlocked somewhere in the system.

LOLA implements this testing mechanism. There is a TestExpand command that is used

to synchronize test cases with a LOTOS specification:

 TestExpand -1 success <test_process> <-y> < -i> <-a> <-s>

The TestExpand command makes a complete state exploration and calculates the types of

response. The test result gives us all the traces leading to a success and/or a deadlock. We

can use the Print command to see these traces. The four options of this TestExpand

command are listed below.

-a: Generate executions leading to success.

-s: Generate executions leading to stop.

-y: Force analysis of all possible executions in MAY tests.

-i: Redundant internal actions are NOT removed.

If there are too many traces, we might want to remove the –y option and the -a option in

order to focus on traces that lead to a deadlock. After the execution of this test command,

we have to reload the original specification.

In the next sections, we are going to talk about two issues: how to obtain functional test

cases, and how to measure the LOTOS structure coverage based on the generated test

cases.

91

6.3.2.1 Derivation of Test Cases from Unbound UCM

Test cases can be chosen based on the externally visible behavior or based on the internal

structure of a specification. Synchronizing a system external behavior traces, or a

specification including traces, with the system is a form of black-box testing. In our

thesis, black box test suites are generated from the Originator and Terminator UCMs

described in Section 4.2.1 in order to validate the specification against the functional

requirements.

Scenario(s) on a single chosen path:

A UCM path might express several routes between a start point and an end point. We can

choose any alternative route within a UCM to build our black-box test cases. In Figure

6-3, we show again two UCMs from Chapter 4, but only the paths used for generating our

tests are shown as continuous lines. Note that the path shown in continuous black line in

Figure 6-3 (a) is part of the path shown in continuous black line in Figure 6-3 (b). This

latter path is also shown in continuous line in Figure 6-4. Similar remains for paths shown

in gray lines. These paths are shown in isolation in Figure 6-4.

Figure 6-3 A Chosen Path from CNAP Service Description UCM

In Figure 6-4, the chosen path is symbolized by a (not part of the map notation).

Imagine putting such a symbol at the start of a path and then moving it along the path

ORIGINATOR

(a)

TERMINATOR

Get Call Answer

Call Origination

in1

out1

TERMINATOR

WIN Database

WIN CNAP/RND

Successful
Alert

Call Answer

ORIGINATOR

Call Origination

in2

out2

WIN Database

WIN CNAP/RND

Call Answer

(b)

92

from point to point until the end is reached and the symbol is removed. The path traced is

a scenario. The interpretation of a path as a scenario is the link to test cases. A test case

can get inspiration from the description of scenarios or related sets of them and can be

formalized into a LOTOS test process.

Figure 6-4 Single Scenario on Alternative Path

In Figure 6-4, we first create a user instance A on the originator’s path and a user instance

B on the terminator’s path. The following scenario is then generated when the two

instances move along the two paths:

(1) Originator A calls terminator B;

(2) This waiting point is needed because the terminator cannot be alerted before the

originator establishes the call;

(3) This is the stub shown in Figure 4-5;

(4) Successful alert follows;

(5) The terminator B answers the call;

(6) The call proceeds;

Process Test_1 below is a derived test case in LOTOS from the scenario mentioned

above. In this process, action CreateUser generates two users originator A and

terminator B for our validation purpose. According to the created HLRProfileitem,

originator A’s name is Amy, whose address is address(a,1,1,1). Amy subscribes to two

features CNAP and RND. These two feature activation statuses are set as permanently

WIN

CNAP/RND

ORIGINATOR

Call Origination

in2

in1 out2

TERMINATOR

Successful
Alert

Call Answer

Get Call
Answer

out1
(1)

(2)
(3)

(4)

(5)

(6)

93

active. Terminator B’s name is Bill, whose address is address(b, 2,1,1). Billy subscribes

to the same features as Amy’s. AUm is the gate through which we synchronize the

formalized LOTOS test case process shown below with the WIN system. Numbers (not

part of the trace notation) are used to show the correspondence of the trace with the

UCM. Note that (2) and (3) do not appear in the test because they are internal.

process Test_1[CreateUser, AUm, Success]:noexit:=

CreateUser ! adduser ! 1 of hlrid !
hlrprofileitem(mdnstatus(amy,address(a,1,1,1),insert(cnap_permanent,ins
ert(rnd_permanent,{})),insert(cnap,insert(rnd,{})),1,1);

CreateUser ! adduser ! 1 of hlrid !
hlrprofileitem(mdnstatus(bill,address(b,2,1,1),insert(cnap_permanent,in
sert(rnd_permanent,{})),insert(cnap,insert(rnd,{})), 1,1);

(1) aum ! callorigination ! address(b,2,1,1) !
cni(address(a,1,1,1),amy) ! 1 of mscid;
(4) aum ! Alert !amy !b !1 of mscid;
(5) aum ! callanswer ! b ! 1 of mscid;
(6) aum ! Getcallanswer ! a ! 1 of mscid;
success;
stop
endproc (* test1 *)

In general, more than one scenario can be in progress at the same time. As shown in

Figure 6-5, multiple symbols can move along the paths. In process Test_2, we create two

instances for each path. Originators Amy and David are two user instances of the

originator’s path, while terminator Bill and Claudio are two user instances of the

terminator’s path. Amy can call Bill, while David can call Claudio. This multiple

scenario is represented by two behavior expressions aum ! callorigination with a

parallel operator in process Test_2.

94

Figure 6-5 Multiple Scenarios on Alternative Path

process Test_2[CreateUser,AUm, Success]:noexit:=

CreateUser !…
CreateUser !…
CreateUser !…
CreateUser !…

aum ! callorigination ! address(b,2,1,1) ! cni(address(a,1,1,1),amy) !
1 of mscid;
…
success;
stop
|||
aum ! callorigination ! address(c,3,2,2) ! cni(address(a,1,1,1),David)
! 1 of mscid;
…
success;
stop
endproc (* test1 *)

Scenario(s) on different Chosen Paths:

A UCM may contain concurrent paths. In both Terminator and Originator’s UCM, there

is an And-Fork notation which represents multiple paths for a given user instance.

Suppose that there is a user instance A on the originator’s path and a user instance B on

WIN

CNAP/RND

ORIGINATOR Call Origination

in2

in1 out2

TERMINATOR

Successful
Alert

Call Answer

Get Call
Answer

out1

95

the terminator’s path. We can derive the test case shown below, where the terminator B

concurrently follows two paths: one is the same as described above; the other is to roam

into another area.

Figure 6-6 Chosen Paths from CNAP Service Description UCM

process Test_3[CreateUser, AUm, Success]:noexit:=

CreateUser ! adduser ! 1 of hlrid !
hlrprofileitem(mdnstatus(amy,address(a,1,1,1),insert(cnap_permanent,ins
ert(rnd_permanent,{})),insert(cnap,insert(rnd,{})),1,1);

CreateUser ! adduser ! 1 of hlrid !
hlrprofileitem(mdnstatus(bill,address(b,2,1,1),insert(cnap_permanent,in
sert(rnd_permanent,{})),insert(cnap,insert(rnd,{})), 1,1);

aum ! callorigination ! address(b,2,1,1) ! cni(address(a,1,1,1),amy) !
1 of mscid;
aum ! Alert !amy !b !1 of mscid;
aum ! callanswer ! b ! 1 of mscid;
aum ! Getcallanswer ! a ! 1 of mscid;
success;
stop
|||
roam !b !2 of mscid !2 of vlrid;
success;
stop
endproc (* test1 *)

Generally, we separate our derived test cases into three groups.

• The first group is to validate the call processing without considering that the user can

control the feature activation or the user may roam to another area. In total, 17 test

TERMINATOR
WIN Database

WIN CNAP/RND

Successful
Alert

Call

ORIGINATOR

Call Origination

in2

out2

Roam

Get Call Answer

ORIGINATOR

Call Origination

in1

out1

WIN Database

WIN CNAP/RND

(a)

TERMINATOR

(b)

Roam

96

cases are included in this group. These test cases are chosen on the basis of the call

processing paths shown in the continuous solid lines in the Originator and

Terminator UCMs.

• The second group is to validate the feature de-activation / activation functionalities.

In total, 5 test cases are included in this group. These test cases are chosen on the

basis of the combination of the feature de-activation / activation path and the call

processing path in the Originator and Terminator UCMs.

• The third group is to validate the service provision while the user is roaming. In total,

5 test cases are included in this group. These test cases are chosen on the basis of both

the roaming path and the call processing path concurrently.

TERMINATOR

Get Call Answer

Call Origination

in1

out1

TERMINATOR

WIN Database

WIN CNAP/RND

Call Answer

ORIGINATOR

Call Origination

in2

out2

WIN Database

WIN CNAP/RND

(b)

TERMINATOR

Get Call Answer

Call Origination

in1

out1

TERMINATOR

WIN Database

WIN CNAP/RND

Call Answer

ORIGINATOR

Call Origination

in2

out2

WIN Database

WIN CNAP/RND

(b)

(a)

(a)

Feature Active
Update

Feature Active
Update

97

6.3.2.2 Structure Coverage

After generating the set of test suites from the service description UCM, we want

to measure the efficiency of the set in terms of structural coverage. In [AmLo99],

structure coverage means a technique for monitoring and identifying portions of the

specification and to measure the completeness of the test suite with respect to the

syntactic structure of the specification. In that report, a technique for coverage

measurement is introduced. This technique is based on probe insertion in the specific

context of the formal language LOTOS. We are going to adopt this idea to measure the

efficiency of the validation test suite generated. The reader is referred to [AmLo99] for a

thorough discussion of the technique.

6.3.2.2.1 Probe Insertion in LOTOS

Probe insertion is a well-known white-box technique for identifying what is the

percentage of the code that has been exercised [Probert82]. Usually, a probe is a

statement associated with a counter, which is initially set to 0. In our LOTOS

specification, we first define 32 probe identifiers (P1-P32). We can insert the probes into

specific locations. When a test case synchronizes with the specification, it executes the

probes along the path. The executed probes indicate what part of the code is reachable

and how many times they are reached. The data type of Probe is defined as below:

TERMINATOR

Get Call Answer

Call Origination

in1

out1

TERMINATOR

WIN Database

WIN CNAP/RND

Call Answer

ORIGINATOR

Call Origination

in2

out2

WIN Database

WIN CNAP/RND

(b)(a)

Roam Roam

98

type TypeProbeTag is NaturalNumber, Boolean
sorts ProbeTag
opns

P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,P16,P17,P18,P19,P20,
P21,P22,P23,P24,P25,P26
 :->ProbeTag
…

There is a counter associate with each probe. The counter indicates the number of times

the probe is reached. We design a ProbeBag as a set of probes and their associated

counters. In the ProbeBag data type, insertTag (ProbeTag, Nat, ProbeBag) is a

constructor operation where Nat is the counter. There is another operation addTag

(ProbeTag, ProbeBag) in the ProbeBag data type. Each time a probe is executed by a test

cases, if the probe has never been executed before, the probe is inserted into the

ProbeBag. If at that time this probe already existes in the ProbeBag, the operation

addTag only increases the probe’s associated counter. The ProbeBag data type is shown

below:

type TypeProbeBag is NaturalNumber, TypeProbeTag
 sorts ProbeBag
 opns
 {}:-> ProbeBag (* constructor *)
 insertTag: ProbeTag,Nat,ProbeBag -> ProbeBag (* constructor *)
 addTag: ProbeTag, ProbeBag ->ProbeBag

After we synchronize the test cases with the specification, we want to observe the probes

and the counters reached by the test case. A process Observer is designed to collect probe

statistic information. When we compose test cases with the inserted probe specification,

the reached ProbeTag along the trace is sent to the Observer through an internal gate

Probe. After the Observer process receives a ProbeTag, it recursively instantiates and

adds the received probe (addTag(tag, pb)) into its ProbeBag parameter. We can

observe the current ProbeBag through an external gate Observe. Checking which probes

have been inserted in the ProbeBag, we know which part of the specification has been

visited by test cases. Probes with high-count numbers indicate the frequently visited part

of the specification. Such probes may show the possible bottlenecks in the system. Probes

that have not been visited might indicate that the test case is not complete or that part of

specification is not reachable. The LOTOS implementation of Observer process is shown

in Figure 6-7:

99

Figure 6-7 Probe Observer

The next issue is where to insert probes into our specification. To insert the defined

probes, we adopt the improved Probe Insertion Strategy from [AmLo99]. Before we

explain this strategy, we need to introduce the simple Probe Insertion Strategy.

In [AmLo99], a basic behavior expression (BBE) and a behavior expression (BE) are

defined. A BBE can be either an inaction stop, a successful termination exit, or a process

instantiation (P[…]), while a behavior expression (BE) can be one of the followings:

• A BBE (such a BE is also called a simple BBE).

• A BE prefixed by a unary operator, such as the action prefix (;), a hide, a let, or a

guard.

• Two BEs composed through a binary operator, such as choice ([]), an enable (>>), a

disable([>), or one of the parallel composition operators (|[…]|, | |, or | | |).

• A BE in parentheses

Inserted Probe traces

process Observer[Probe,
Observe](pb:ProbeBag):noexit :=

Probe ? tag : ProbeTag ;
Observe ! tag !pb;
Observer[Probe,
Observe](addTag(tag, pb))

endproc (* coverage *)

 |[Probe]|

.

.

.

a

Success

P1

c

P2

 | [Observe] |

process

test_case1[…]

a; c; success;

<P2, 1> <P1, 1>

 | [a, c] |

100

In the simple probe insertion strategy, for each event e and each behavior expression BE,

the expression e; BE is transformed into e; Probe ! p_id; BE where Probe is a hidden

gate and P_id is a unique identifier. This strategy can measure the event coverage

because a probe that is visited guarantees, by the action prefix inference rule, that the

prefixed event has been performed. In this case, if all the probes are visited by at least

one test case in the validation test suite, then we have achieved a total event coverage.

However, such simple probe insertion strategy has two problems. First, the number of

probes required can be too high. Secondly, such approach does not cover a simple BBE

containing no actions. Therefore, in [AmLo99], the improved Probe Insertion Strategy is

introduced to solve the above two problems.

The new strategy can reduce the number of probes. If there is a sequence of actions

prefixes, we insert only one probe just before the ending BBE. If * is one the LOTOS

binary operators, in a generic pattern BE*BE, where BE is represented as e; B and B is

not a simple BBE, the probe is not required after the event e. This is because the behavior

expression B will contain probes itself, and a visit to any of these probes ensures that

event e is reached. Table 6-2 presents one example of such case.

Original LOTOS specification Probe inserted, using the improved strategy

process SSF_CCF1 [C, …,
Probe]:exit:=

c ! LocReq …;
c ! ReLocReq … ;
…
Probe ! p1;

exit

[]

e;…
Probe ! p2;

Exit

endproc (* setup_Channel *)

Table 6-1 Probe Insertion in case of “BE*BE”

process SSF_CCF1[c, e,…,
Probe]:exit:=

[]

endproc (* setup_Channel *)

c ! LocReq …;
c ! ReLocReq …;
…
exi t

e …;
exit

BE

BE

BBE

BBE

101

Second, for the case of a simple BBE (without any action prefix), if we are to prefix the

BBE with a probe in the generic pattern BBE * BE and BE * BBE, we must be careful

not to introduce any new non-determinism:

• BBE is stop: No probe is required

• BBE is a process instantiation P[…]: A probe before the BBE can be safely used

except when * is the choice operator[], or when * is the disable operator ([>) with the

BBE on its right.

• BBE is exit: The constraint and solution is the same as for the process instantiation.

Table 6-2 shows an example of such case.

Original LOTOS specification Probe inserted, using the improved strategy

process
MS_Subscribers[AUm,createuser,…
Probe]:exit:=

createuesr ! …;
…
Probe ! p14;
MS[…]

| | |

Probe ! p15;
MS_Subscribers[…]

endproc (* MS_Subscribers *)

Table 6-2 Probe Insertion in case of “BE*BBE”

6.3.2.2.2 Coverage Results

Table 6-3 demonstrates the coverage results of a given set of test scenarios. These

test scenarios were derived with the guidance of the UCMs as described in section

process
MS_Subscribers[AUm,createuser,…
Probe]:exit:=

| | |

endproc (* M S Subscribers *)

createuser ! …;
…
MS[…]

MS_Subscribers[…]

BE

BBE

102

6.3.2.1. We actually derived a total of 27 test cases, but we only show in Table 6-3 a

subset of them that covered all probes in our LOTOS specification. There are more test

cases that cover other scenarios but these are not all shown because all the probes are

covered by the listed scenarios.

In the following test scenario descriptions, Oa is an abbreviation of Originator a, Tb is an

abbreviation of Terminator b, Tc is an abbreviation of Terminator c. The covered probes

are shown in the next column where the probes are highlighted in bold the first time they

appear.

Test

Group # Test Scenarios Probe Covered

1 Tb subscribes CNAP; Oa calls Tb; Tb
is alerted with CNI(Oa); Tb answers
the call; Oa gets Call Answer

<p12,1>; <p2,3>; <p7,1>;
<p23,1>; <p1,2>; <p5,2>;
<p16,1>; <p19,1>; <p24,1>;
<p27,1>; <p28,1>; <p30,1>

1 Tb subscribes CNAP; Oa calls Tb; Tb
is alerted with CNI(Not Avail); Tb
answers the call; Oa gets Call Answer

<p8,1>; <p12,1>; <p2,3>;
<p7,1>; <p23,1>; <p1,2>;
<p5,2>; <p16,1>; <p19,1>;
<p24,1>; <p27,1>; <p28,1>;
<p30,1>

1 Tb subscribes CNAP; Tc subscribes
CNAP and RND; Oa calls Tb; Tb is
alerted with CNI(Oa); Tb does not
answer the call; Tb forwards call to Tc;
Tc is alerted with CNI(Oa, Tb); Tc
answers the call. Oa gets Call Answer;

<p13,1>; <p2,3>; <p7,1>;
<p1,4>; <p23,2>; <p5,5>;
<p16,2>; <p19,2>; <p27,2>;
<p24,2>; <p28,2>; <p30,2>;
<p25,1>; <p10,1>; <p26,1>;
<p20,1>

1 Tb subscribes CNAP; Tc subscribes
CNAP and RND; Oa calls Tb; Tb is
alerted with CNI(Oa); Tb does not
answer the call; Tb forwards call to Tc;
Tc is alerted with CNI(Oa, Tb); Tc does
not answer the call. Oa does not get
Call Answer;

<p22,1>; <p2,3>; <p7,1>;
<p23,2>; <p1,4>; <p16,2>;
<p5,5>; <p17,2>; <p24,2>;
<p27,2>; <p28,2>; <p30,2>;
<p25,1>; <p10,1>; <p26,1>;

1 Tb subscribes CNAP; Tc subscribes
CNAP and RND; Oa calls Tb; Tb is
alerted with CNI(Oa); Tb does not
answer the call; Tb forwards call to Tc;
Tc is alerted without CNI; Tc answers
the call; Oa gets Call Answer.

<p13,1>; <p2,3>; <p7,1>;
<p1,4>; <p23,2>; <p5,5>;
<p16,2>; <p19,2>; <p27,2>;
<p24,2>; <p28,2>; <p29,2>;
<p25,1>; <p10,1>; <p26,1>;
<p20,1>

103

1 Tb subscribes CNAP; Oa calls Tb; Tb
is alerted with CNI(Oa); Tb does not
answer; Oa does not get answer;

<p11,1>, <p7,1>, <p23,1>,
<p2,3>, <p1,2>, <p16,1>,
<p5,2>, <p19,1>, <p24,1>,
<p27,1>, <p28,1>, <p30,1>

1 Tc subscribes CNAP; Oa calls Tc; Tc is
alerted with CNI(Oa); Tc does not
answer; Oa does not get answer;

<p5,1>, <p7,1>, <p23,1>,
<p2,3>, <p1,1>, <p16,1>,
<p5,2>, <p19,1>, <p24,1>,
<p27,1>, <p14,1>, <p22,1>,
<p28,1>, <p30,1>

1 Tc subscribes CNAP; Tb subscribes
CNAP and RND; Oa calls Tc; Tc is
alerted with CNI(Oa); Tc does not
answer; Tc forwards call to Tb; Tb is
alerted with CNI(Oa,Tc); Tb does not
answer; Oa does not get answer

<p30,1>, <p7,1>, <p23,2>,
<p2,3>, <p1,4>, <p16,2>,
<p5,5>, <p19,2>, <p24,2>,
<p27,2>, <p21,1>, <p25,1>,
<p28,2>, <p30,1>, <p15,1>,
<p26,1>, <p12,1>

1 Tc subscribes CNAP; Oa calls
CNI(Tc); Tc is alerted with Oa; Ob
calls Tc; Ob gets busy tone; Tc
answers; Oa gets call answer;

<p5,1>, <p7,2>, <p23,2>,
<p2,3>, <p1,2>, <p16,2>,
<p5,4>, <p19,1>, <p24,2>,
<p27,2>, <p28,1>, <p30,1>,
<p6,1>, <p9,1>, <p13,1>,
<p18,1>, <p17,1>, <p20,1>

2 Tb subscribes CNAP; Tb de-actives the
CNAP; Oa calls Tb; Tb is alerted with
CNI (Not_Avail); Tb answers the call.
Oa gets Call Answer.

<p12,1>; <p2,3>; <p4,1>;
<p7,1>; <p23,1>; <p1,2>;
<p16,1>; <p5,2>; <p27,1>;
<p19,1>; <p24,1>; <p28,1>;
<p32,1>

2 Tc subscribes CNAP and RND; Tc de-
actives the RND; Tb forwards call to
Tc; Oa calls Tb; Tb is alerted with
CNI(Oa); Tb does not answer the call.
Tc is alerted with CNI (Oa); Tc
answers the call. Oa gets call answer.

<p6>, <p7,1>, <p23,2>,
<p2,3>, <p4,1>, <p1,4>,
<p16,2>, <p5,5>, <p19,2>,
<p24,2>, <p27,2>, <p28,2>,
<p30,1>, <p25,1>, <p6,1>,
<p10,1>, <p26,1>, <p31,1>,
<p13,1>

3 Tb subscribes CNAP; Oa calls Tb; Tb
roams to the other area. Tb is alerted
with CNI (Oa); Tb answers the call; Oa
gets Call Answer.

<p12,1>; <p2,3>; <p3,1>;
<p7,1>; <p23,1>; <p1,2>;
<p5,2>; <p16,1>; <p19,1>;
<p27,1>; <p24,1>; <p28,1>;
<p30,1>

Table 6-3 Coverage Result of Generated Test Cases

104

6.3.3 Automatic Graphic Scenario Generation

By applying synchronization between testing processes and the LOTOS specification,

LOLA can generate system scenarios with many internal steps in a symbolic format.

Each scenario shows a single trace of LOTOS actions. Since this format is not easy to

read without understanding its syntax, we wrote a perl script to translate the trace format

into MSC PR format. The format of MSC PR has been described in Chapter 3 “ Selected

Techniques”. The SDT MSC editor can recognize the PR syntax and generate a

corresponding graphical MSC. These generated graphic MSCS are compatible with the

MSC notation used in the standard. As the result, we are able not only to verify the MSCs

covered within the standard, but also to generate more MSCs for additional analysis.

Figure 6-8 shows the procedure of graphic MSC generation combined with test process in

LOTOS. In Figure 6-9, it shows a concrete example of generated graphic system MSC

for the test process Test_1 that was described in Section 6.3.2.1

Figure 6-8 Graphical MSC Generation

 Analysed states = 22
 Generated transitions = 23

 Duplicated states = 0
 Deadlocks = 0

 Process Test = test_1
 Test result = MUST PASS.

 successes = 2
 stops = 0
 exits = 0

 cuts by depth = 0

Test_1 Scenario

Formalize

Test_1 Process WIN
System
Spec

 test_1 [createuser, aum ,success]
 |[createuser, aum]|
 win_system

Trace 1 leads
to success

Trace 2 leads
to success

LOLA

Graphical
Trace1.ms

Graphical
trace2.msc

SDT

Perl

105

Generated System Scenario:

Figure 6-9 Generated Graphical System MSC for Test_1

106

6.4 Discovery of a number of ambiguities and inconsistencies in the

Draft Standard

There were five WIN scenarios (scenario 8.1.1 to scenario 8.1.5) included in the standard

when this thesis was initiated. After applying simulation, testing and graphic MSC

generation, several ambiguities and inconsistencies existing in the WIN standard

scenarios were found. These are symptoms of possible design errors, and were fed back

to the standardization committee for their consideration.

All the scenarios show below assume that MS calls MS-1 that is in a different location

area, and is served by MSC-1. All scenarios also assume that MS-1 subscribe to CNAP

and it has placed itself in Call Forward No Answer (CFNA) to another MS-2. The

address to which the call must be forwarded for MS-1 is in HLR-1.

6.4.1 Scenario 8.1.3

• Possible Consistency Problem

MSC HLR-1 VLR MSC-1 SCP-1 MS-1

Originating System Serving System

k

l

m

n

o

p

q

Alert (CNAP info)

REDREQ [REDREASON = No Answer]

tranumreq [TERMLIST]

TRANUMREQ [REDREASON = No Answer]

redreq

call release

no response

Called System

107

In the scenario 8.1.3, step m, if MS-1 does not respond, the serving MSC-1 would send a

REDREQ, including the redirection reason “No Answer”. But in the Scenario 8.1.5

shown in section 6.4.2, the redirection reason becomes “No response”.

• Possible Incompleteness Problems

This incompleteness shows in the above scenario 8.1.3 and is illustrated in

Figure 6-10.

Figure 6-10 Redirection Scenario Of CNAP

There are two different problems here.

MSC-1 (serving MSC) alerts MS-1, which does not respond (step l). It then asks the

originating MSC to redirect the call (step m). The originating MSC queries HLR-1 for the

redirecting information (step n). However, there is an incompleteness problem in step n,

since the message TRANUMREQ does not include the MS-1 identifier, and so HLR-1

will not be able to search the address of the party to which his call should be redirected.

In addition, suppose that in some way the problem mentioned above can be overcome

and that at step o, HLR-1 provides the redirect party’s address in the format of

TERMLIST. However, HLR-1 does not provide the name of MS-1. Later on, the

originating MSC must establish a call to the forwarded party. Since the name of MS-1

HLR-1

Originating

MSC

Serving

MSC-1

MS-1MS

Alert

CALL

Step l
Step m

REDREQ
Step n and o

108

was not provided by HLR-1, this name cannot be displayed at the forwarded MS-2.

Therefore, even if the latter subscribes to RND, the feature cannot be supported.

6.4.2 scenario 8.1.5

• In scenario 8.1.5, step m, when MSC-1 sends the redirection request to the original

MSC, NAME represents the originating call party’s name information and is included

in the message REDREQ. But, since the original MSC already knows such

information, it is redundant to include NAME here.

6.5 Conclusion

In this chapter, we apply various validation techniques to the prototype specification

of CNAP service. Our validation focuses on the simulation, testing, and graphical MSC

generation. As a result, some inconsistencies and ambiguities existing in the CNAP

design are found. It should be noted that none of the problems detected use of a major

behavior nature. However, these problem were found by using our formal specification

MSC HLR-1 VLR MSC-1 SCP-1 MS-1

Originating System Serving System

k

l

m

n

o

p

q

alert (CNAP info)

REDREQ [REDREASON = No response, NAME]

tnoanswer [TERMLIST, RNDGTS, RDNAME]]

TNOANSWER [TRIGTYPE, MDN]

redreq

call release

no response

Called System

109

method after the standard had been extensively validated by the committee using only

conventional manual methods. Furthermore, several unclear points in the standard that

could have led to implementation ambiguities or errors, were clarified by us in the

process of formally specifying and validating the standard draft.

One additional advantage of our method is that many CNAP scenarios can be derived

from the specification in addition to the five given in the draft standard. The standard

committee could have used our specification as a precise prototype of the CNAP

procedures. Unfortunately, the RND option was taken out of the subsequent version of

the draft.

110

Chapter 7 Contributions and Future Work

In this chapter, the results that have been reported in this thesis are summarized. Section

7.1 contains an overview of our contribution. In Section 7.2, some possible future

research areas are discussed as a complement of this thesis.

7.1 Contribution of the thesis

Generally, the major contributions of this thesis are:

• Scenario-Oriented Design Approach

Following the work of [AmAn99], we demonstrate an incremental design approach

based on high-level scenarios called Use Case Maps (UCMs). UCMs are at a higher

level of abstraction than MSCs and therefore are more appropriate than MSCs at the

earliest stage of design. Such scenario analysis helps us in the steps from the informal

service description phase towards a formal specification.

• LOTOS specification of a simplified WIN model with the also simplified CNAP

feature.

A LOTOS specification of a simplified WIN network and its included CNAP feature

was given in Chapter 5. Since it is difficult to specify a WIN system of real size, we

use this small model for our research goals. The structure of our specification is based

on the Network Reference Model (NRM) of WIN. Its behavior is based on the

111

scenarios analyzed in Chapter 4. To our knowledge, this is the first formal

specification of a WIN feature in any language.

• Validation of the CNAP feature.

In Chapter 6, we present a number of validation techniques for our LOTOS

specification. Firstly, we apply simulation to verify the consistency between the

requirements and the formal specification. Test cases are then generated from the

scenario analysis and transformed into LOTOS test processes. Probes are used to

verify the structural coverage of the specification. The probe insertion process shows

that a complete set of test cases for the structural coverage of the specification can be

obtained, with the guidance from UCMs. Moreover, the generated LOTOS traces are

transformed into graphic MSC scenarios by using a perl script. During this process,

some ambiguities and incompleteness of CNAP scenarios from the WIN pre-balloting

draft can be found. The techniques used are not new, however, this thesis provides a

new substantial example of their use.

• Validation of incomplete designs

As discussed early in this thesis, much research has been dedicated to the validation of

complete protocols where messages, states, etc. are fully defined. This thesis shows

that it is possible to capture a protocol design at a preliminary stage, where it still

presents considerable looseness, and to validate it at least partially at this stage.

7.2 Future Work

Our WIN model supports unlimited MS subscribers, two HLRs, two VLRs, and two

MSCs. It is a subset of WIN that is sufficient to represent all the scenarios included in the

specification of the CNAP feature provided at the time this work was initiated. This

model can be made more general by including the capability of dynamically generating

new network entities and automatically initializing the communication channel between

the newly created entities and the existing ones in the WIN model.

112

In this thesis, only the CNAP feature was considered. In the future, more WIN features,

such as Incoming Call Screen and Voice Call Screen, could be integrated in our

specification. When multiple features exist in parallel, feature interaction detection can

be applied [StLo95][FaLo93].

We also suggest that future work be directed towards a strategy for deriving MSC

scenarios from UCM. The derivation part is not done in our thesis since we limited our

analysis to the MSCs that already existed in the standard.

REFERENCES

(References are sorted by date)

[WIN ANSI-41.3-C Additions] August 19, 1997.

[WINT] Wireless Intelligent Network Tutorial http://www.webproforum.com/dsc/

[GHM 78] J. V. Guttag, E. Horowitz, and D. R. Musser, Abstract Data Types and
Software Validation Communications of the ACM, December 1978, Volume 21, Number
12, University of Southern California.

[Mil80] R. Milner, A Calculus of Communicating System, Lecture Notes in Computer
Science, (Springer-Verlag, 1980) No.92.

[Probert82] R. L. Probert, Optimal Insertion of Software Probes in Well-Delimited
Programs, IEEE Transactions on Software Engineering, Vol 8, No1, January 1982, 34-
42.

[Hoar85] C. A. R.Hoare, Communicating Sequential Processes. Prentice-Hall, 1985

[EM85] B. Ehrig, B. Mahr, Fundamentals of Algebraic Specifications, Springer-Verlag,
1985.

[BE88] E. Brinksma, A theory for the derivation of tests. In: S. Aggarwal and K. Sabnani
(Eds), Protocol Specification, Testing and Verification VIII, North-Holland, 63-74, June
1988.

[HH88] M. Haj-Hussein, An Interactive System for LOTOS Application (ISLA), Master
Thesis, University of Ottawa.

[VSSB89] C.A.Vissers, G. Scollo, M. van Sinderen, and E. Brinksma, Specification
styles in distributed systems design and verification in Thereotical Comp. Sc., 1991, 179-
206

[Bo91] R. Boumezbeur, Design, Specification, and Validation of Telephony System in
LOTOS Thesis of Comp. Sc., September 1991

[PL91] S. Pavón, and M. Llamas, The testing Functionalities of Lola. In: J. Quemada,
J.A. Mañas, and E. Vázquez (Eds), Formal Description Techniques, III, IFIP/North-
Holland, 1991, 559-562.

[BoZu92] W.Bouma and H. Zuidweg, Formal Analysis of Feature Interactions by Model
Checking. 1992

[LFH92] L.Logrippo, M. Faci, M. Haj-Hussein, An Introduction to LOTOS : Learning by
Examples, Computer Networks and ISDN Systems 23, 1992

[DaNa93] O. Dahl and E. Najm, Specification and Detection of IN Service of IN Service
Interference Using LOTOS. Proceedings Forte ’93, eds. R. L. tenney, P. D. Amer, M. U.
Uyar, Boston 1993, 53-71

[StLo93] B. Stepien and L. Logrippo, Status-Oriented Telephone Service Specification.
In:T.Rus and C. Rattray (eds) Theories and Experience for Real-Time System
Development . AMAST series in computing, Vol. 2, World Scientific, 1994, pages 265-
286.

[BoLo93] R. Boumezbeur, L. Logrippo, Specifying Telephone System in LOTOS. IEEE
Communication Magazine, Aug. 1993, 38-45

[CKM93] A. R. Cavalli, S.U.Kim, and P. Maigron, Improving Conformance Testing for
LOTOS. In:R.L. Tenney, P.D. Amer and M. U. Uyar(Eds), FORTE VI, 6th International
Conference on Formal Description Techniques, North-Holland, 367-381, October 1993.

[FaLo93] M. Faci, L. Logrippo, Specifying Features and Analyzing their Interactions in a
LOTOS Environment. In: L. G. Bouma and H. Velthuijsen(eds.) Feature Interactions in
Telecommunications Systems. IOS Press, 1994 (proc. Of the 2nd International Workshop
on Feature Interactions in Telecommunications Systems, Amsterdam) 136-151. Also
published in S. Brlek (ed.) BMW-94, 1994, 167-182

[Am94] D. Amyot, Formalization of Timethreads Using LOTOS, Master’s Thesis,
University of Ottawa, 1994

[Q1201] ITU-T/ETSI Recommendation Q1201, 1993.

[Q1202] ITU-T/ETSI Recommendation Q1202, 1993

[Q1203] ITU-T/ETSI Recommendation Q1203, 1993.

[Q1204] ITU-T/ETSI Recommendation Q1201, 1993.

[Q1205] ITU-T/ETSI Recommendation Q1202, 1993

[Q1211] ITU-T/ETSI Recommendation Q1203, 1993.

[Q1213] ITU-T/ETSI Recommendation Q1201, 1993.

[Q1214] ITU-T/ETSI Recommendation Q1202, 1993

[Cheng94] K.E. Cheng, Towards a Formal Model for Incremental Service Specification
and Interaction Management Support. Second International Workshop on Feature

Interactions in Telecommunication Software Systems. Eds. L. G. Bouma and H.
Velthuijsen, IOS Press 1994, pages 152-166.

[CGR94] D. Craigen, S. Gerhart, T. Ralston, Industrial applications of formal methods to
model, design, and analyze computer systems: an international survey. Noyes Data
Corporation (Publisher), USA. 1994

[ITU95] ITU Recommendation Z. 105, SDL Combined with ASN.1 (SDL/ASN.1).
Geneva, 1995

[BLV95] T. Bolognesi, J. van de Lagemaat, and C. Vissers, LOTOSphere: Software
Development with LOTOS. Kluwer Academic Publishers, The Netherlands, 1995.

[PLR95] S. Pavón, D. Larrabeiti, and G. Rabay, LOLA-User Manual, version3.6. DIT,
Universidad Politécnica de Madrid, Spain, LOLA/N5/V10 (February, 1995)

[ABBL95] D. Amyot, F. Bordeleau, R.J.A. Buhr, and L. Logrippo, Formal support for
design techniques: a Timethreads-LOTOS approach. In: FORTE VIII, 8th International
Conference on Formal Description Techniques, Chapman & Hall, 1995, pp. 57-72.

[LaRa95] M. Laitinen, J. Rantala, Integration of Intelligent Network Services into Future
GSM Networks, IEEE Communication Magazine, June 1995.

[StLo95] B. Stepien, L. Logrippo, Feature Interaction Detection Using Backward
Reasoning with LOTOS. In: S. Vuong (ed.) Protocol Specification, Testing, and
Verification, XIV (Proc. Of the 14th International Symposium on Protocol Specification,
Testing , and Verification, organized by IFIP WG6.1, Vancouver), 1995, 71-86.

[Grin96] A. Grinberg, Seamless Networks. McGrew-Hill, 1996

 [Buhr96] R.J.A. Buhr, Use Case Map for Object-Oriented Systems, Prentice Hall, 1996.

[JaKa96] Jalel Kamoun, Master Thesis: Formal specification and Feature Interaction in
the IN , , University of Ottawa, January, 1996

[RaTu96] Randall Tuok, Master Thesis: Modeling and Derivation of Scenarios for a
Mobile Telephony System in LOTOS, University of Ottawa, 1996.

[ITU-T96] ITU-T, Recommendation Z.120- Message Sequence Chart (MSC), 1996.

[RGF96] E. Rudolf, J. Grabowski and P. Graubmann, Tutorial on Message Sequence
Charts (MSC’96), Tutorial of the FORTE/PSTV’96 conference in Kaiserslautern,
Germany, Oct. 1996.

[BoBu97] F. Bordeleau and R.J.A. Buhr, The UCM-ROOM Design Method: from Use
Case Maps to Communicating State Machines. In: Conference on the Engineering of
Computer-Based Systems, Monterey (CA), USA, March 1997.

[ALF97] Daniel Amyot, Luigi Logrippo and Pascal Forhan, Formal Specification and
Validation of GPRS Group-Call Using a Scenario-Based Approach, August 1997.

[FGJ97] I. Faynberg, L. R. Gabuzda, T. Jacobson, The Development of the Wireless
Intelligent Network (WIN) and its Relation to the International Intelligent Network
Standards, Bell Labs Technical Journal, Volume 2, Number 3, Summer 1997.

[WIN98] ANSI/TIA/EIA (1998) ANSI 771, Wireless Intelligent Networks (WIN).
Additions and modifications to ANSI-41 (pre-balloting version). July 1998.

[WIN98’] ANSI/TIA/EIA (1998) ANSI 771, Wireless Intelligent Networks (WIN).
Additions and modifications to ANSI-41 (Phase 1). TR-45.2.2.4, December 1998.

[GBGO98] Nancy Griffeth, Ralph Blumenthat, Jean-Charles Gregoir, and Tadashi Ohta,
Feature Interaction Detection Contest. Feature Interactions in Telecommunications and
Software Systems V. K. Kimbler and L.G. Bouma (Eds.) IOS Press, 1998

[JaLo98] J. Kamoun and L. Logrippo, Goal-Oriented Feature Interaction Detection in
the Intelligent Network Model. Feature Interactions in Telecommunications and Software
Systems V. K.Kimbler and L.G. Bouma (Eds.) IOS Press, 1998

[LWFH98] Y. Lahav, A. Wolisz, J. Fischer, E. Holz, Implementability of Message
Sequence Charts. Proceeding of the 1st Workshop of The SDL Forum Society On SDL
and MSC. Berlin, Germany, 29th June-1st July 1998

[TuLo98] R. Tuok, L. Logrippo, Formal Specification and Use Case Generation for a
Mobile Telephony System. Computer Networks and ISDN Systems 30 , 1998. 1455-1063

[AHLF98] D. Amyot, N. Hart, L. Logrippo, and P. Forhan, Formal Specification and
Validation using a Scenario-Based Approach: The GPRS Group-Call Example. In:
ObjecTime Workshop on Research in OO Real-Time Modeling, Ottawa, Canada, January
1998.

[WPJ98] K. Weidenhaupt, K. Pohl, Jarke, Matthias, and P. Haumer, Scenarios in System
Development: Current Practice. In: IEEE Software, March/April 1998, 34-45

[AALSY98] D.Amyot, R. Andrade, L. Logrippo, J. Sincennes, Z. Yi, Survey of Several
Specification Techniques for the Drafting of the WIN Standard. Technical Report,
University of Ottawa, 1998

[Miga98] A. Miga, Application of Use Case Maps to System Design with Tool Support.

M.Eng. thesis 1998, Dept. of Systems and Computer Engineering, Carleton University,

Ottawa, Canada. http://www.UseCaseMaps.org/pub/am_thesis.pdf

[ALBG99] D. Amyot, L. Logrippo, R.J.A. Buhr, and T. Gray, Use Case Maps for the
Capture and Validation of Distributed Systems Requirements. In: Fourth International
Symposium on Requirements Engineering (RE’99), Limerick, Ireland, June 1999.

[AALSY99] D. Amyot, R. Andrade, L. Logrippo, J. Sincennes, and Z. Yi, Formal
Methods for Mobility Standards. In: IEEE 1999 Emerging Technology Symposium on
Wireless Communications & Systems, Dallas (TX), USA, April 1999.

[AmAn99] D. Amyot and R. Andrade, Description of Wireless Intelligent Network
Services with Use Case Maps. In: 17th Brazilian Symposium on Computer Networks
(SBRC’99), Salvador, Brazil, May 1999.

[AmLo99] D.Amyot and L. Logrippo, Structural Coverage of LOTOS Specification
Through Probe Insertion, Technical report, University of Ottawa, 1999.

[AmLo] Daniel Amyot and Luigi Logrippo, Use Case Map and LOTOS for the
Prototyping and Validation of a Mobile Group Call System, To appear in Computer
Communications.

