[image: image1.wmf]Chapter 5. Feature Interaction Detection System

Chapter 5. Feature Interaction Detection System

In Chapter 1, the FI problem is explained in a general way. In this chapter, we give FI a precise and formal definition and explain how a FI Detection System (FIDS) is developed according to this formal definition. Since it would be very long to cover all 12 features, we will use four representative features, INTL, CFBL, INFB, TWC as examples to show how feature properties are derived and how FIs are detected by FIDS. The full results of our FI analysis on all contest features are reported in [FHLS98].

5.1 Classification of FI

During the feature development process, a feature is defined at several different levels of abstraction, from a high level view to implementation code. Therefore, FIs can occur at all these levels. In [BDCG89], FIs occurring at the level of abstract specification are called logical feature interactions, those occurring when the feature specification is mapped onto a network architecture are called network feature interactions and those occurring when the feature software is mapped onto an execution environment are called implementation feature interactions.

Clearly, FI detection must be done as early as possible, otherwise FIs will propagate through the whole feature development process. Since we are dealing with formal specification of features, which abstracts from design and implementation details, the FIs that we detect here are logical feature interactions.

5.2 Formal definition of FI

Many definitions of Feature Interaction are either too inclusive or too exclusive. For example, Cameron et al. [CGDN93] understood feature interactions “to be all interactions that interfere with the desired operation of the feature”. Here, the “desired operation” of a feature is an imprecise notion, which might have different meanings to subscribers, to designers, and to people who made the specifications.

P. Combes et. al [CoPi94] and W. Bouma [BoZu92] formalize the above “desired operation” to be properties of features, and address the FI problem as violations of these properties when a new feature is introduced into the network. However, they concentrate only on the violation of features’ properties and miss the FI cases where the system properties are violated, while the features’ properties hold.

We improve the definition of FI by adding system properties to the set of properties that must be checked after the introduction of a new feature. The definition then becomes the following one.

Let S be an executable specification of a basic telephony system (POTS), and let F1, F2, …, Fn, be specifications of n features.

We use S (F1 (F2 (… (Fi to denote the system obtained by integrating i features, 1(i (n, to the basic telephony system (POTS).

Let SP (System Property) be logical formulae expressing the properties of the basic telephony system (POTS), FP1, FP2, …, FPn (Feature Property) be n formulas expressing respectively the feature properties of F1, F2, …, Fn, and let N |= P denote that a system specification N satisfies formula P, i.e. N is a model of P.

We say that there is interaction between features F1, F2, …, Fn if :

(i, 1 (i (n, S (Fi |= SP (FPi, but

((S (F1 (F2 (… (Fi |= SP(FP1 (FP2 (… (FPn)

Examples of SP and FP will be given in §5.4.2 and §5.4.3 respectively.

5.3 Two Phases of FI Detection Process

According to the FI definition of the previous section, our FI detection process is divided into two phases:

1) Validation phase to validate that every feature works well individually after having been integrated into BCP, that is, both the feature property and system properties hold. Thus, the first part of the FI definition, S (Fi |= SP (FPi is checked.

2) Detection phase to detect any undesirable effect caused when two or more features work together, that is, to detect if any feature property or system property is violated. Thus, the latter part of the FI definition, ((S (F1 (F2 (… (Fi |= SP (FP1 (FP2 (… (FPn), is checked.

5.3.1 Validation Phase

The validation phase has two stages:

· First, using a LOTOS tool called CAESAR.Simulator to validate the consistency between the LTS specification and the LOTOS executable specification in a step-by-step fashion. That is, it is checked that our LOTOS specification has all and only those traces specified in its LTS tree (described in Chapter 3.)

· Then, the FI Detection System (FIDS) is used to verify that both the system properties and the feature properties hold when there is only one feature activated during a call process. FIDS, given the name of a feature, activates the feature during a call process and checks the presence of the feature’s properties. We will explain how FIDS works in § 5.5 FI Detection System.

5.3.2 Detection Phase

In the detection phase, we use FIDS to detect FI pair-wise, that is, two features will be activated during a call process. Then, the feature properties, together with the system properties, will be checked by analyzing the billing data and monitoring conflicting signals.

Although FIDS is used in both the detection phase and the validation phase, the differences between them are listed below.

1) Only one feature is activated in the validation phase while two features are activated in the detection phase.

2) The goal of the validation phase is to find defects in the specification, and then to fix them. Therefore, the faults found in the validation phase are not FIs.

3) The goal of the detection phase is to find interactions between features when they are activated and to report them. So, any abnormality found in this phase is a symptom of FI.

5.4 Deriving the Properties of Features

How to derive the properties of features and how to represent them are the biggest challenges of FI detection since a feature’s property is usually defined informally using natural language and people may have different understandings of a given feature. For example, the informal description of feature INFB is “The IN Freephone Billing(INFB) feature allows the subscriber to pay for incoming calls.” When deriving the properties of a feature from such definitions, divergences could occur in understanding the exact scope of “incoming calls”. Is a forwarded call an “incoming” call? If it is, should the subscriber of INFB pay for the whole call or only for the forwarded part of the call? We experienced the same interpretation problems during the property derivation process. Since some features such as INFB are so new that little research has been done on them, we could not compare our work with any reference concerning a “standard” explanation of them. Therefore, the derived feature’s properties listed here are based on the best of our knowledge and on our practical experience with FI detection.

Beside the problem of interpretation, how to establish the necessity and the completeness of the derived feature property set is another big challenge. If the derived feature property set is not a minimum set of all necessary properties, then much extra work may have to be done to validate those unnecessary properties, or even “false” FI might be detected. We call these “false” FIs because in such cases, only the unnecessary properties are violated while other necessary properties are all well preserved.

On the other hand, a derived property set should be complete. Otherwise, some FI may not be found due to the incompleteness of the set.

However, given the fact that feature properties normally are provided in a semi-formal notation, completeness and necessity cannot be checked formally and depend on judgement.

Furthermore, the completeness and the necessity of a property set are system-dependent. That is to say, we cannot derive a feature’s property set without considering the system and the specific activation mechanism of the integrated features.

Thus, before discussing derived feature properties, let us briefly describe the feature integration and activation mechanism in our system model.

5.4.1 Feature Composition

In our system model, features are represented using LOTOS processes. All new features are integrated into the BCP, a basic call control feature, via FAPs at corresponding PICs. One feature’s activation will not affect the activation of other features. Therefore, if two features are integrated into the same PIC, their FAPs are mutually independent of each other. We use the interleaving LOTOS operator “|||” to describe the mutual independence between FAPs.

Inappropriate feature composition may “solve” or “invent” some “FIs”. For example, feature activation might result in some unintended priorities if the features are not properly composed. If the priorities are given correctly, we will miss the FI because it has already been solved. If the priorities are not given correctly, we may get FIs with misleading symptoms, e.g. one feature’s activation “disables” another feature’s activation. So, we use the interleaving operator “|||” to preserve the mutual independence of the feature activations.
5.4.2 System Properties

 In our system model, the system properties are derived as follows:

· Absence of deadlock.

That is, at any time, the telephony system has at least one event to occur next.

· Valid billing records.

A billing record, (c, a, b, t1, t2) is valid if

1) a, b, c are in the registered network address set. (caller a, callee b and payer c are all valid registered network addresses)

2) a (b (the caller a and the callee b should not be the same address)

3) t1,t2 (0 (t1< t2 (the call starting time t1 and the call ending time t2 are set and t1 is earlier than t2)

· Correctness of the billing database.

The billing database is correct if all calls occuring in the system have one and only one corresponding billing record stored in the billing database.

· Compatiblity of successive signals given to the user.

In our system model, three types of audible signals are given to the user during the call establishment process:

· AudibleRinging

AudibleRinging is a positive signal to the caller because it means that the call is connected to the callee and the callee is being rung.

· LineBusyTone
· Announcement of ScreenedMessage (INTL)
· Disconnect
LineBusyTone, announcement of ScreenedMessage and Disconnect are negative signals to the caller because the call connection is blocked /terminated in such cases. A LineBusyTone is generated because the callee is busy and it has no CFBL feature or it has the CFBL feature but the forwarded address is also busy. The SceenedMessage is played to the caller when the caller attempts to originate a call during the TeenTime period but fails to input the correct TeenPIN, thus the call is blocked. A disconnect signal is given to the user when the other party hangs up, thus the call is terminated.

We say that two signals are “compatible” if they have the same meaning to the user. So, negative signals are compatible with each other because they have the same meaning to the user. Negative signals are incompatible with positive signals because they have conflicting meanings to the user. Positive signals are compatible with each other if they correspond to the same destination that is being rung and incompatible if different destinations are being rung.

Table 5.1 depicts the compatible relations among LineBusyTone, AudibleRinging, Disconnect and the announcement of ScreenedMessage.

Table 5.1 Compatible Relations of Signals Given to User

LineBusy

Tone
Screened

Message
Disconnect
AudibleRining

from A
AudibleRining

From B

LineBusy

Tone
Compatible

Screened

Message
Compatible
Compatible

Disconnect
Compatible
Compatible
Compatible

Audible

Ringing from A
Incompatible
Incompatible
Incompatible
Compatible

Audible

Ringing from B
Incompatible
Incompatible
Incompatible
Incompatible
Compatible

5.4.3 Feature Property

The telephony features that we discuss here are marketable services [FaLS97]. The subscribers who buy the services know nothing about the implementation details of either the system or the feature. To them, the telephony network is like a black box. They interact with it through the telephones (through gate “user_sw” in our model) and periodically pay the bill for the services (in our model, all billing records are created by the billing actions occurring at gate “sw_db”). Therefore, the feature properties can be described from the user’s point of view. That is, the feature properties can be mapped into specific restrictions on billing actions and/or user’s behavior traces. For example, INFB can be mapped as follows: “for all billing records where the subscriber is the callee, the payer should be the subscriber too.” It is important to note that all features that were considered in this study could be characterized by one property only.

The feature property validation process is effectively simplified by adopting such feature property representation. Instead of checking the entire trace of a call process to validate the feature properties, we only need to examine the billing records and user behavior traces to detect FI.

Before specifying the properties of features, let us define some basic concepts. For the description of billing records, refer to §4.3.1 Abstract Data Types.
· Forwarded Call
If there exist two billing records, (p1, a, b, t1, t2), (p2, c, d, t3, t4), which have the same LogBegin time and LogEnd time, t1=t3, t2=t4, and the caller of one record is the callee of the other record, b=c, we say that there is a forwarded call from a to d through b(c). a is the originating party of the forwarded call. d is the terminating party of the call.

· Next Forwarded Address
In the above example, d is the next forwarded address after b.

· Direct call

We say the call is a direct call if 1) it is not a forwarded call, 2) the originating party of a direct call is the caller and 3) the terminating party of a direct call is the callee.
5.4.3.1 Derived Property of INTL

The informal requirement description of INTL is “INTL restricts outgoing calls based on the time of day. This can be overridden on a per-call basis by anyone with the proper identity code.”

The property of INTL derived from the above informal specification is:

If user X subscribes to INTL and defines that the TeenTime period is from T1 to T2 and the TeenPIN is P, then if X originates any call (direct or forwarded), during the TeenTime period, a valid TeenPIN P must have been input by X.

In FIDS, the property of INTL is validated in the following way:

1) Checking all billing records whose LogBegin time is within the TeenTime period of X to see whether X is the originating party or not. If X does originate a call during the TeenTime period, turn to step 2).

2) Checking the user’s behavior traces to see if signal “user_sw !Dial !X !P” (P is equal to the TeenPIN) occurs before. If it does, the property of INTL holds. Otherwise, the property is violated.

5.4.3.2 Derived Property of INFB

The informal requirement description of INFB is “INFB allows the subscriber to pay for all incoming calls.”

The property of INFB derived from the above informal specification is:

If user X subscribes to INFB, then X pays for all incoming calls.

In FIDS, the property of INFB is validated as follows:

Checking all billing records where X is the callee to see whether the payer is also X or not. If it is, the property of INFB holds, otherwise, the property is violated.

5.4.3.3 Derived Property of CFBL

The informal requirement description of CFBL is “with the CFBL feature, all calls to the subscribing line are redirected to a predetermined number when the line is busy. The subscriber pays any charges for the forwarded call from his station to the new destination.”

The property of CFBL is derived as follows:

If user X subscribes to CFBL, then all incoming calls made to X when X is busy must be forwarded to a third party predefined by X.

In FIDS, the property of CFBL is validated in two steps:

1) Checking if X is initially set to be busy in the testing scenario. If it is, turn to step 2).

2) Checking all billing records where X is the callee to see if the call is a forwarded call and the next forwarded address is the predefined party. If it is, the property of CFBL holds and otherwise it is violated.

5.4.3.4 Derived Property of TWC

The informal requirement description of TWC is “TWC allows the connection of three parties in a single conversation.”

 Every successful connection has a corresponding billing record in TheBill database, which consists of five parts: Payer, Caller, Callee, LogBeginTime, and LogEndtime. Thus, if a three-way connection is established, there must be two billing records such that 1) the TWC subscriber is either the caller or callee in one call (the TWC subscriber must first be engaged in one call before it can initiate a second one) 2) the TWC subscriber is caller in the other call (the second call must be initiated by the TWC subscriber) 3) their logging time periods are overlapped (the second call must be established during the first call’s connection.).

 The property of TWC derived from the above informal specification is:

If user X subscribes to TWC and TWC is activated, then there are two billing records that 1) in one call X is the originating party and in the other call X is either the originating party or the terminating party 2) the LogBegin time of the first call is within the log time of the second call.

Unlike the previous three policy features whose activation condition is predefined (e.g., IN Teen Time for INTL, the subscriber’s busy time for CFBL or no extra activation condition for INFB except the registration to the feature), in the case of TWC, it is the subscriber who decides whether the feature is to be activated or not during a call process. In FIDS, we assure the activation of TWC by making the system synchronized with a specific test scenario where the TWC subscriber A flashhooks and dials the third party C when talking to B (see detailed description in §5.6.1 Scenario Designer: Test Scenario Generation).

In FIDS, the property of TWC is validated as follows:

1) Checking the whole billing history, find all the billing records where X is the originating party.

2) For each above billing record, check all the billing records whose log time is overlapped and see if X is either the originating party or the terminating party. If it is, the TWC property is preserved. Otherwise, the TWC property is violated.

5.5 Feature Interaction Detection System

In the previous sections, we have discussed the definition of FI and the derived system properties and feature properties. In this section, we introduce an FI Detection System (FIDS) using the above method to detect FI.

The input of FIDS is a collection of feature names whose properties are going to be validated. The output are traces that violate either the system properties or the feature properties or both, reported using the Message Sequence Charts (MSC) format with a brief description of the symptoms.

In the validation phase, only one feature is input into FIDS, where it gets activated and validated. Property violations found in this phase are not FI but design defects of the feature. In the detection phase, the input of FIDS is a collection of two or more features to be considered.

All of the input features are activated during one call process via synchronization between the system and a pre-designed test scenario. Their activations are interleaved. The system property checking is done during execution by a global monitoring process, WatchDog, which raises an error flag when system property violations are detected, e.g conflicting signals given to user or incorrect billing actions. The feature property is validated by the “Property Checker”, a component of FIDS which checks the feature property by analyzing a snapshot of the billing database, taken at the end of the scenario by the WatchDog process, together with user’s behavior trace if necessary.

As illustrated in Fig 5.1, FIDS consists of five parts: Scenario Designer, Integrator, FI Hunter, Property Checker and MSC translator. Below, we give a brief description of each part and in the next section § 5.6 FI detection between INTL and CFBL, INFB, TWC, we illustrate in detail how FIDS works, using four features INTL, CFBL, INFB, and TWC as examples.

[image: image2.wmf][image: image3.wmf][image: image4.wmf][image: image5.wmf][image: image6.png][image: image7.wmf]99

99

8

76

150

15

0

20

40

60

80

100

120

140

160

Scenario

FI

FI Type

Benchmark FI

FIDS detected FI

[image: image8.png][image: image9.png][image: image10.wmf][image: image11.wmf][image: image12.wmf][image: image13.wmf][image: image14.wmf][image: image15.wmf]99

99

8

76

150

15

0

20

40

60

80

100

120

140

160

Scenario

FI

FI Type

Benchmark FI

FIDS detected FI

· Scenario Designer

 Scenario Designer is the first step of FIDS. It takes the names of features to be tested and designs specific test scenarios for them. A test scenario consists of two parts: 1) the initial data that indicates the subscribing data and status of A, B and C 2) the user behavior description that describes events that must occur at the user side to activate the input features during a call process. For each pair of features to be considered, the Scenario Designer will design 4 test scenarios where the user behavior descriptions are the same and the initial data cover all 4 possible combinations of B and C’s initial busy/idle status, (A should be always idle at the beginning since A is the caller). By synchronizing the system with such test scenarios, we could reduce the size of the expanded specification without losing any possible FIs, since the user behavior description only restricts the system behavior until all features are activated. Only one FI type could possibly occur during this period, that is, one feature’s activation is inhibited due to other activated features. If such FI happens, the system will deadlock since it cannot synchronize with the test scenario any more, since the latter is designed in a way to assure that all features are activated. This deadlock can be detected by the FI Hunter later while searching for FI traces.

· Integrator

Integrator of FIDS takes the test scenario generated by Scenario Designer, initializes the user status and billing database as specified in the initial data and lets the system synchronize with the users behavior description at gate “usr_sw” and with a global monitoring process “WatchDog” at gate “usr_sw” and “sw_db”. “WatchDog” is general to the system and monitors the same events for all pairs of features:

1) Incorrect billing actions

2) Conflicting signals

3) End of scenario reached

In addition to this run-time analysis, each time the end of a scenario is reached, WatchDog also saves data records to be analyzed in a post-test analysis performed by Property Checker.

· FI Hunter

The third step of FIDS is “FI Hunter”. In “FI Hunter”, 1) the new integrated system is translated to a C program which can be further executed or simulated using Caesar and Caesar.ADT 2) the trace-matching tool, Caesar.exhibitor, will execute the generated C program and filter out all traces leading to either “error” flags or a “finish” flags raised by “WatchDog”. Traces where WatchDog raises the “error” flags are FI traces violating the system properties. Traces where WatchDog raises the “finish” flag are potential FI traces that need to be further analyzed by the “Property Checker.” We call these “potential FI traces” because they might become real FI traces if the feature properties are found to be violated in the subsequent analysis of the billing data.

· Property Checker

For each potential FI trace generated from FI Hunter, Property Checker examines the final billing data saved by WatchDog, and checks if there is any violation of the properties of the activated features. If there is, the trace becomes a FI trace and will be output by the “Translator”, along with a brief diagnostic.

· MSC Translator

The last step, the “Translator” takes all detected FI traces generated from either the “FI Hunter” or the “Property Checker”, translates them into the format of Message Sequence Charts (MSC) and generates a final validation report.

5.6 FI detection between INTL and CFBL, INFB, TWC

In our model, FI are detected pair-wise. Thus, to detect the FI between INTL and CFBL, INFB, TWC, the input of FIDS is {INTL, CFBL}, {INTL, INFB}, {INTL, TWC}, respectively.

5.6.1 Scenario Designer: Test Scenario Generation

The Test scenario process describes the testing environment, which interacts with the telephony network system so that all input features can be activated during a single call process from caller A to callee B.

The Test Scenario process consists of two parts: initial data part and user behavior description part.

· Initial data part

The initial data part specifies the initial data stored in the billing database “TheBill” and user status database “TheUser”. The billing database is initially an empty database and grows along with the execution of the system. Unlike the billing database, the size of the user status database will not change once it is initialized. The user status database consists of three user status records, carrying busy/idle status and subscription information for each user. The initial busy/idle status of A is set to be idle to originate a call. B and C can be either idle or busy at the beginning. Therefore, FI needs to be analyzed with four initial scenarios: 1) both B and C are busy; 2) both B and C are idle; 3) B is busy while C is idle; 4) B is idle while C is busy.

· User behavior description part

In our model, we define 1) A to be the caller of the call process and to subscribe to features affecting outgoing calls, e.g. INTL; 2) B to be the callee and to subscribe to features affecting incoming calls, such as INFB and CFBL 3) C to be the third party of features involving three users, e.g. CFBL or TWC. TWC can be subscribed by either the caller or the callee but in our model, we let the caller, A, subscribe to TWC.

The user behavior description part specifies a call origination process from A to B. Different features are activated by different scenarios.

The basic scenario is “A offhooks; A gets DialTone; A dials B”. INFB, CFBL can be triggered in this scenario. Some features such as INTL and TWC need more specific actions occurring on part of the user’s behavior: The scenario for INTL is “A offhooks; A gets an announcement of AskForPIN; A dials the valid PIN, P; A dials B”. The scenario needed by TWC is “A offhooks; A gets DialTone; A dials B; Ringing tone at B, audibleRinging tone at A; B offhooks; AudibleRinging tone at A stops; Ringing tone at B stops; A flashhooks; A dials C”.

If input features have different scenarios to be activated, the “Scenario Designer” will combine corresponding scenarios into a comprehensive one so that all features can be triggered within it. For example, if input features are INTL and CFBL, the combined scenario is “A offhooks; A gets an announcement of AskForPIN; A dials the valid PIN, P; A dials B”.

Fig 5.2 illustrates one of four LOTOS test scenarios for INTL and CFBL when B is busy and C is idle. The initial data part consists of five sentences “let”. The first three assignment sentences define the status of users A B C. User A is initially idle and subscribes to INTL. B is initially busy and subscribes to CFBL. The forwarded address (a parameter of CFBL that indicates the next forwarded address while the subscriber is busy) of B is C. C is initially idle and subscribes to CFBL. The fourth “let” sentence defines the user status database “TheUser” which is composed of above three user status

records. The fifth “let” sentence states that the initial billing database is empty. The user scenario part describes the combined user scenario of INTL and CFBL. Since the “TestScenario” process specifies the signal occurring at the user side, it synchronizes with the telephony system through “user_sw” gate. When all activated features finish, the “WatchDog” process will send a signal “finish” on gate “ot” to terminate the execution of the “TestScenario”.

5.6.2 Watch Dog

Unlike the “TestScenario” which needs to be tailored for different features, the global monitoring process, the “WatchDog”, does not need to change for different features. Besides the system property violation monitoring, it is also responsible for monitoring the end of scenario reached (all activated features finish execution) and for taking a snapshot of the billing database when the call process finishes. The snapshot of the billing database will be further analyzed by the “Property Checker” to see if the activated feature properties are violated or not.

 The “WatchDog” monitors every billing action and signal given to users by synchronizing with the telephony network system at gate “user_sw” and “sw_db”. When conflicting signals going to the user are detected, the “WatchDog” reports an error message “ConflictingSignals” at “err” gate; when an invalid billing action is detected, the error message reported is “InvalidBilling”.

Fig 5.3 lists part of the WatchDog process.

5.6.4 Integrator

The Integrator composes the “Test Scenario” and the “WatchDog” into the telephony system in the following way: the initial data part of the “Test Scenario” replaces the initialization part of the telephony system. The “TestScenario” process of “Test Scenario” is selectively synchronized with the system at gate “user_sw”. “WatchDog” monitors billing actions and signals going to users and the end of scenario reached. It is partially synchronized with the system at gate “sw_db”, “user_sw”. Fig 5.4 illustrates the new system integrated with TestScenario and WatchDog.

5.6.5 FI Hunter

FI hunter uses 1) Caesar and Caesar.ADT to compile the new system integrated with TestScenario and WatchDog process into a C program, and 2) the trace-searching tool Caesar.Exhibitor to filter out all FI traces where WatchDog raises a “error” or “finish” message by executing the generated C program.

Four types of traces are detected by FI hunter:

1) FI traces leading to deadlock before the call process is completed.

The pattern specified for this type of traces is: ~“ot !Finish”<until> <deadlock>. The goal event is <deadlock>, which is a Caesar.Exhibitor keyword representing the deadlock state of the system. The condition of this goal is ~“ot !Finish”, which means “no ‘ot !Finish’ event occurs before reaching the goal event”. <until> is a keyword separating the condition and the goal.

2) FI traces leading to conflicting signals to user.

Since the “WatchDog” process will report an error message “ConflictingSignals” at gate “err” when catching conflicting signals give to users, the searching goal for this type of FI traces is: <until> “err !ConflictingSignals”. The goal event is “err !ConflictingSignals”. No condition is required in this goal.

3) FI traces leading to invalid billing actions.

Since the “WatchDog” process will report an error message “InvalidBilling” at gate “err” when the invalid billing actions are detected, the searching goal for this type of FI traces is: <until> “err !InvalidBilling”. The goal event is “err !InvalidBilling”. No condition is required in this goal.

4) Potential FI traces.

Potential FI traces are those traces reflecting the entire scenario. When all activated features finish at the end of the scenario, the “WatchDog” process will take a snapshot of the billing database and raise the “Finish” signal at gate ‘ot”. Therefore, the searching goal for potential FI traces should be: ~ “err !*” <until> “ot !Finish”. The goal event is “ot !Finish”. A condition for this goal is that no “err” flag has been raised before.

The following is the example of the FI hunter output:

 Test features: CFBL and INFB

Test Scenario: B subscribes to CFBL and INFB; The forwarded address of CFBL is C; B is initially BUSY. C subscribes to INFB; C is initially idle.

Output of FI hunter:

· FI traces leading to deadlock: None

· FI traces leading to conflicting signals:

 <initial state>

"USER_SW !OFFHOOK !A"

"i" (SW_DB [971])

"USER_SW !DIALTONE !A"

"USER_SW !DIAL !A !B"

"i" (SW_DB [971])

"i" (SW_DB [971])

"i" (SW_DB [971])

"i" (SW_DB [971])

/* INFB gives caller A a linebusytone since B is busy */

"USER_SW !LINEBUSYTONE !A"

"i" (SW_DB [971])

"i" (SW_DB [971])

"i" (SW_DB [971])

"i" (SW_DB [971])

/* CFBL forwards the call to C and gives back to caller A an audibleringing tone when rings C */
"USER_SW !STARTAUDIBLERINGING !A !C"

/* Error flag raised because linebusytone and audibleringing are conflicting successive signals given to user A */
"ERR !CONFLICTINGSIGNALS"

<goal state>

· FI traces leading to invalid billings: NONE

· Potential FI traces: None

Another example of FI hunter output for the same pair of features but with different initial states of the callee is as follows:

Test features: CFBL and INFB

Test Scenario: B subscribes to CFBL and INFB; The forwarded address of CFBL is C; B is initially IDLE.

Output of FI hunter:

· FI traces leading to deadlock: None

· FI traces leading to conflicting signals: NONE
· FI traces leading to invalid billings: None

· Potential FI traces:

<initial state>

"USER_SW !OFFHOOK !A"

"i" (SW_DB [971])

"USER_SW !DIALTONE !A"

"USER_SW !DIAL !A !B"

"i" (SW_DB [971])

"i" (SW_DB [971])

"i" (SW_CLK [971])

"i" (SW_CLK [971])

"i" (SW_DB [971])

"i" (SW_DB [971])

"i" (SW_DB [971])

"SW_SCP !TRIGGER !INFO_ANALYZED !B !A !B !TIME (2)"

"i" (SW_DB [971])

"i" (SW_DB [971])

"i" (SW_DB [971])

"SW_SCP !RESPONSE !ANALYZE_ROUTE !B !A !B !B"

"i" (SW_DB [971])

/*Since B is idle, CFBL processes the call normally */
"USER_SW !STARTAUDIBLERINGING !A !B"

"USER_SW !STARTRINGING !B !A"

"USER_SW !STARTRINGING !B !A"

"i" (SW_DB [971])

"i" (exit)

"USER_SW !OFFHOOK !B"

"USER_SW !STOPRINGING !B !A"

"USER_SW !STOPAUDIBLERINGING !A !B"

"USER_SW !STARTAUDIBLERINGING !A !B"

"i" (SW_DB [971])

"i" (SW_CLK [971])

/* CFBL charges the call to caller A*/
"SW_DB !LOGBEGIN !A !B !B !TIME (3)"

"i" (exit)

/* INFB connects the call to B*/
"i" (SW_DB [971])

"i" (exit)

"USER_SW !OFFHOOK !B"

"USER_SW !STOPAUDIBLERINGING !A !B"

"USER_SW !STOPRINGING !B !A"

"i" (SW_DB [971])

"i" (SW_CLK [971])

/* INFB charges the call to B */
"SW_DB !LOGBEGIN !A !B !A !TIME (4)"

"i" (exit)

"USER_SW !ONHOOK !B"

"i" (SW_DB [971])

"i" (SW_CLK [971])

"USER_SW !DISCONNECT !A !B"

"SW_DB !LOGEND !A !B !TIME (5)"

"i" (exit)

"USER_SW !DISCONNECT !A !B"

"SW_DB !LOGEND !A !B !TIME (6)"

"USER_SW !ONHOOK !A"

"i" (SW_DB [971])

"USER_SW !ONHOOK !A"

"i" (SW_DB [971])

"i" (exit)

"i" (SW_DB [971])

"i" (SW_DB [971])

"i" (SW_DB [971])

 /* When the WatchDog detects that the call process is completed, it takes a snapshot of the billing database at that moment and sends a “finish” signal at gate “ot” to stop the whole system. Note that two billing records are generated here, since CFBL and INFB were executed in parallel. One of them billed B from time(4) to time(5). The other billed A from time(3) to time(6). Only the first record is correct. The WatchDog process is unable to detect this FI, however further analysis done by the Property Checker will detect it. Two records have different start and ending times because two features read the clock separately. */
"OT !COMPLETED !INSERT (ITEM (B, A, B, TIME (3), TIME(5)), INSERT (ITEM (A, A, B, TIME (4), TIME (6)), {})) "

"OT !FINISH"

<goal state>

5.6.6 Property Checker

“Property Checker” consists of two parts, the main checking routine and the property checking routines.

The main checking routine analyzes the test scenario and invokes the corresponding property checking routines to validate the property presence in the final status of the billing database (the snapshot taken by the “WatchDog”), which is stored at the second -to-last event in the potential traces. The property of the feature in the detected pair is not always checked by the “Property Checker”. For example, if the test scenario is CFBL&INFB (Busy B) (the detected pair is CFBL and INFB and B is initially busy), the “Property Checker” will check both the properties of CFBL and INFB. However, for the same pair, if the initial state of B is idle, only the property of INFB is checked because CFBL processes the call as a normal call if subscriber B is idle when the call comes.

Every derived feature property described in § 5.4.3 has a corresponding property checking routine in the “Property Checker”. The property validating routine takes one parameter passed from the checking routine, the subscriber’s address, and validates the presence of the property by examining every record in the billing database.

5.6.6.1 INTL

If the user subscribes to INTL, the main checking routine will call the INTL property checking routine.

The INTL property checking routine examines the billing records generated during a given TeenTime period and counts the billing records where the subscriber is the originating party (See §5.4.3 for the definition of the originating party). Note that since features are executed in parallel, one call may have been charged more than once. INTL property checking routine only counts those billing records reflecting different calls. If the number of such billing records is 0, it returns to the main checking routine. Otherwise, the INTL property will check how many times the TeenPIN has been input. If the number of input TeenPINs is no less than the number of billing records where the subscriber is the originating part, then the property holds. Otherwise the INTL property is violated and this FI is written into the analysis report.

The following is a snapshot taken when INTL and TWC feature finish execution:

"OT !COMPLETED !INSERT (ITEM (A, A, B, TIME (5), TIME(7)), INSERT (ITEM (A, A, C, TIME (6), TIME (7)), {})) "

Since A subscribes to INTL and there are two billing records where A are the originating parties, INTL checking routine will check the traces backwards seeing if at least two TeenPINs have been input. However, since the call from A to C is a second call of the three-way calling among A, B and C, INTL feature is bypassed and no TeenPIN is required for the second call, INTL can find only one TeenPIN. Thus, the INTL property is violated and this FI trace is written into the analysis report.

5.6.6.2 INFB

If the user subscribes to INFB, the main checking routine will call the INFB property checking routine.

The INFB property checking routine examines the billing records where the subscriber is the callee and sees if the payer is also the subscriber. If it is, then it returns to the main checking routine. Otherwise, the INFB property is violated and the FI is recorded into the analysis report.

The following is a snapshot taken when INFB and CFBL finish execution:

"OT !COMPLETED !INSERT (ITEM (B, A, B, TIME (4), TIME(5)), INSERT (ITEM (A, A, B, TIME (3), TIME (6)), {})) "

The second record from time(3) to time (6) is not correct since B is the callee but not the payer. Thus, INFB property is violated and this FI is written into the analysis report.

5.6.6.3 CFBL

If the user subscribes to the CFBL, the main checking routine will further check if the subscriber is initially set to busy when the call comes. If it is, the CFBL property checking routine is called. Otherwise, the main checking rountine continues to check the next subscribed feature.

The CFBL property checking routine examines all billing records where the subscriber is the callee and searches for the corresponding forwarded part, which is another record with the same starting and ending time and where the subscriber is the caller. If found, then it continues with the next subscribed feature. Otherwise, the CFBL property is violated and the FI is recorded into the analysis report.

The following is a snapshot taken when INFB and CFBL finish execution:

"OT !COMPLETED !INSERT (ITEM (A, A, B, TIME (2), TIME(3)), INSERT (ITEM (B, B, C, TIME (2), TIME (3)), {})) "

Since the subscriber B is initially set to busy in the test scenario, the CFBL property checking routine is called. The CFBL checking routine finds that there is an incoming call to B from A from time(2) to time(3), so it searches for the corresponding forwarded part. The latter is another record which has the same time period and is for a call from B to the predefined forwarding address C. The search is successful, so the CFBL property holds.

5.6.6.4 TWC

If the user subscribes to TWC in test scenario, the main checking routine will call the TWC property checking routine.

The TWC property checking routine examines every billing record where the subscriber is the originating party and searches for records whose starting time fits into any other records where the subscriber is either the originating party or terminating party. (See § 5.4.3 for the definition of the originating party and the terminating party) If found, the TWC property checking routine returns to the main checking routine. Otherwise, the TWC property is violated and the FI is recorded into the analysis report.

Consider the following example given in §5.6.6.1.

"OT !COMPLETED !INSERT (ITEM (A, A, B, TIME (5), TIME(7)), INSERT (ITEM (A, A, C, TIME (6), TIME (7)), {})) "

Since A subscribes to TWC, TWC property checking routine will search an occurrence of a three-way connection by examine the billing records. First, it finds the second record where A is the originating party from time(6) to time(7), then it searches for another record where A is either the originating part or the terminating party and the talking time period covers time(6). The search is successful. Thus, TWC property holds.

5.6.7 MSC Translator

Message Sequence Charts are a well-known technique for the description and specification of scenarios in distributed systems with asynchronous communication, especially telecommunication systems. They are also a standard language recommended by the International Telecommunication Union (ITU) [ITU-T96]. The MSC language consists of both a graphical and a textual syntax. It describes both system structure (i.e. components) and behavior (i.e. messages exchanged). Message Sequence Charts can be used as an overview language of services offered by distributed entities, as a requirement statements for SDL specifications, for simulation and validation, for the selection and specification of test cases, for formal specification of communication, and for interface specification.

To enhance the readability of our FI detection report, in the last step of FIDS, we transform the FI traces from LOTOS traces to a more easily understood MSC format.

Note that 53 MSCs were generated by FIDS to illustrate 150 FI that are found during the contest [FHLS98]. Fig 5.5 shows an example of MSC generated from CFBL&INFB (idle B) FI traces. (See §5.6.5 for the corresponding LOTOS FI traces). The network entities are represented using boxes on the top and extending lines under them. The signals (messages) sent between these entities are described using labeled arrowhead lines. The direction of the arrow indicates the sending direction of the message. The label above the arrowhead line is the name of the message and the bracket characters under the arrowhead line are the parameters passed in the message. For clarity, user A B C are listed as independent network entities in the MSC and parameters indicating the signals is from /to which user is omitted. For example, “user_sw !Dial !A !B” is mapped into an “Dial” message with parameter “B” passing from user A to the switch. “user_sw !StartRinging !B !A” is mapped into a “StartRinging” message with parameter “A” passing from the switch to user B. “sw_scp !Trigger !INFO_ANALYZED !B !A !B !Time (2)” is mapped into a “Trigger” message sent from the switch to the SCP with parameters “INFO_ANALYZED”, “B” “A” “B” “Time(2)”

5.7 FIDS evaluation - Comparing our result with the benchmark FI

The number and type of FIs detected and the efficiency of the tool are two basic factors when evaluating an FI detection tool. For this reason, the organizing committee of the Feature Interaction Contest (see §1.3 Feature Interaction Contest), published a benchmark document [BGGO99], listing the FIs that they believed to exist among the feature to be studied in the contest. In this section, we evaluate our tool by comparing the set of interactions detected by FIDS with the one provided in the benchmark.

Before presenting a detailed comparison, we should note two architectural issues that determine what and how many FIs would be generated. As mentioned in §5.4.1 Feature Compositions, the contest specifications were not specific concerning the composition of the features. We decided to use an interleaving composition method, i.e. features can execute in parallel (LOTOS operator “|||”) and do not define any specific behavior patterns on the user and the billing database side, so that they can synchronize on signals in any order and the call process will not be affected if conflicting signals occur. The advantage of designing such a robust system is that since FIs occurring under the same testing scenario are more or less related, a series of FIs can give us more clues than a single FI when analyzing and fixing FIs.

As to the benchmark, its authors did not mention assumptions on the system architecture, it is possible to infer from the FI scenario descriptions in [BGGO99] that 1) the features are executed in parallel, 2) the call process terminates when any conflict occurs.

The number and types of FI detected are easy to compare. However, the measurement of efficiency is more complicated. Due to the fact that different FI tools use different FI detecting methodologies and different implementation languages and the processing time highly depends on the hardware and software used, we choose the number of testing scenarios used per FI to calculate the efficiency. In this way, we can concentrate more on the methodology itself by excluding the implementation details.

Concerning the execution time, we limit ourselves to saying that this varied from few seconds to 24 hours, on a low-end Sparc machines, depending on the complexity of the feature involved.

5.7.1 Comparison Based on FI Types

As mentioned in §5.4.2 and §5.4.3, we clarify FIs according to the feature and system properties that they violate: 12 feature properties and 3 system properties. Thus, we have 12 feature property violation FI types and 3 system property violation FI types, Deadlock, Incorrect billing, and incompatible successive signals given to user. The benchmark instead tries a more general classification: FIs are categorized into corresponding conflict/failure types such as Billing conflict, Call termination conflict, Forwarding conflict, Disconnect conflict, Feature inhibition (Feature fails to activate), Number delivery failure (Number not displayed), PIN conflicts (over-ride PIN), Flash conflict. In our view, they don’t quite succeed, as pointed out below.

Table 5.2 lists the mapping relationship from the benchmark FI types to the FIDS FI types.

Benchmark FI Type
FIDS FI Type

Billing conflict
Incorrect billing

Call termination conflict
Incompatible successive signals to user

Flash conflict.
TWC/CW feature property violation

Disconnect conflict
Incompatible successive signals to user

Forwarding conflict
Incompatible successive signals to user (Audibleringing from different resource)

PIN conflicts

(over-ride PIN)
INTL/CC feature property violation

Number delivery failure (Number not displayed)
CND feature property violation

Feature inhibition

(Feature fails to activate)
Feature property violation

From the above comparison, we find that all benchmark FI types can be mapped to a corresponding FIDS FI type. Thus, theoretically speaking, FIDS can detect all benchmark FI. However, on the other hand, not all FIDS FI types can find a suitable benchmark FI mapping. For example, in FIDS, the feature property violation check is done to all features, but in benchmark FI detection, only some features properties, i.e. only the feature properties of CND, INTL, CC, TWC, CW are partially checked. The well-known FI between CFBL and TCS (Calls forwarded by CFBL bypass the incoming call screening of TCS) is not mentioned in the benchmark paper and can not be mapped to any of their types because no failure or conflict occurs in this case and only the feature property of TCS is violated (numbers in the screened list reach the subscriber anyway).

5.7.2 Comparison Based on the Number of FI Detected

Since FIDS can detect more types of FI than the benchmark FI, there is no surprise that FIDS detects more FIs, 150, than the benchmark FI, which detects only 99. Detailed comparisons of FI detected for each pair of features are listed in Appendix. However, there are two kinds of benchmark FIs that are not detected by FIDS:

· FI between feature and itself

According to our FI definition, FIs occur only among 2 or more than 2 integrated features. Any undesirable effects (interaction) between the feature and itself, which maybe due to recursive execution or multi-user simultaneously execution, are not considered as FIs but as design defects of the feature itself. Note this is another issue for discrepancy between our findings and those of the benchmark, because the latter lists such undesirable effects as FIs.

· FIs involving four users

Due to limited resource, the test scenario of FIDS is restricted to have only 3 users or less. Thus, FIs involving 4 users, i.e. FIs between CW and TWC features, cannot be detected by FIDS. This is because currently FIDS uses Caesar.Exhibitor as its trace searching tool, which does the trace searching on a fully pre-expanded behavior tree. Since the users’ behaviors in the system are interleaved with each other, the size of the expanded tree is growing exponentially when incrementing the number of users: if the number of users is more than 3, the expanded behavior tree will exceed the maximum size that Caesar.exhibitor can handle. This problem can be solved by using other techniques, however this is left for further research.

In total, the benchmark includes 23 FIs that are not detected by FIDS. Among those, 12 FIs are between a feature and itself and 11 FIs involve feature TWC or feature CW or both, and use at least four users.

5.7.3 Comparison Based on Testing Scenario Used Per FI

According to FI traces described in the benchmark paper, the call process will be terminated when it encounters the first FI. Thus, only one FI can be detected per scenario. However, since no specific behavior patterns are defined on the user or the billing database side, FIDS can tolerate any conflicting signals and the call process continues until all activated features finish. Thus, there is no wonder that FIDS can detect more than one FIs per scenario.

Chart 5.1 summarizes the comparison between FIDS and the benchmark FI.

The white columns represent the benchmark FI results and the black column represents the FIDS results. Each benchmark FI corresponds to one testing scenario, thus, 99 testing scenarios generate 99 benchmark FI of 8 types (see Table 5.1). FIDS uses 76 testing scenarios and detects 150 FI of 15 types (3 system property violation types + 12 feature property violation types).

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

UserBehaviorDescription

|[user_sw]|

System (InitialData)

|[user_sw, sw_db]|

 WatchDog

Fig 5.1 Feature Interaction Detection System

“A collection of features to be considered”

Scenario Designer

 “Validation Report”

MSC Translator

FI sequences violating the

feature properties

Property Checker

FI sequences violating the system properties

FI Hunter

Integrator

System

Test Scenario

WatchDog

Potential FI sequences

Fig 5.2 Test Scenario for INTL and CFBL

(* Initial Data Part *)

let Status_A: Status = Status (false, 9, Time(0), Time(20), Undefined, insert(5, {})) in

let Status_B: Status = Status (true, 0, Time(0), Time(0), C, insert (1, {})) in

let Status_C: Status = Status (false, 7, Time(0), Time(20), {}, false, Undefined, insert (1, {})) in

let InitSet: UserStatusSet = insertStatus (CreateUserStatus (A, Status_A),

 			 insertStatus (CreateUserStatus (B, Status_B),

 			 insertStatus (CreateUserStatus (C, Status_C),

 {} of UserStatusSet))) in

let InitBill:BillSet = {} in

(* User Scenario Part *)

process TestScenario [user_sw, ot]:noexit:=

 user_sw ! OffHook ! A;

 user_sw ! Announce ! A !AskForPIN;

 user_sw ! Dial ! A ! P;

 user_sw ! DialTone ! A;

 user_sw ! Dial ! A ! B;

 (

 Users[user_sw]

 [>

 ot ! Finish;

)

 stop

endproc (* Test_Scenario *)

� EMBED Word.Picture.8 ���

Ch. 5.1 Comparison between FIDS Result and the Benchmark FI

� EMBED MSGraph.Chart.8 \s ���

TestScenario

Fig 5.3 The WatchDog Process (partial)

process WatchDog[user_sw, sw_db,err,ot]: noexit:=

(*When it detects a StartAudibleRinging, WatchDog monitors the next signals given

 to that user, and raises an “error” message if it is LineBusyTone,

 ScreenedMessage, Disconnect or AudibleRing from another user*)

 (user_sw !StartAudibleRinging ?Ad ?Dest1:Address;

(user_sw !LineBusyTone !Ad;

 	 err !ConfictingSignals;

 	 WatchDog [user_sw, sw_db,err,ot]

 []

 user_sw !ScreenedMessage !Ad;

 	 err !ConfictingSignals;

 	 WatchDog [user_sw, sw_db,err,ot]

 []

 user_sw !Disconnect !Ad;

 err !ConfictingSignals;

 	 WatchDog [user_sw, sw_db,err,ot]

 []

 user_sw !StartAudibleRining !Ad ?Dest2:Address

 ([Dest1 ne Dest2]->

 	 err !ConfictingSignals;

 	 WatchDog [user_sw, sw_db,err,ot]

	 []

 [Dest1 eq Dest2]->

	 WatchDog [user_sw, sw_db,err,ot]

)	

	 []

 	 user_sw !StopAudibleRinging !Ad !Dest;

 	 WatchDog [user_sw, sw_db,err,ot]

….

)

)

(*When it detects LineBusyTone, WatchDog monitors the next signals given

 to that user, and raises an “error” message if it is StartAudibleRinging*)

 []

 (user_sw !LineBusyTone ?Ad ?Dest:Address;

(user_sw !StartAudibleRinging !Ad;

 	 err !ConflictingSignals;

 	 WatchDog [user_sw, sw_db,err,ot]

 	 []

 	 user_sw !Onhook !Ad;

 	 WatchDog [user_sw, sw_db,err,ot]

…

)

)

 []

….

 endproc (* Watch_Dog *)

Fig 5.5 A MSC Example

Fig 5.4 System Integrated with TestScenario and WatchDog

Table 5.2 The Mapping Table of FI Types

specification SystemModel [user_sw, sw_scp]: noexit

…

(* Data Part *)

…

behaviour

SYSTEM [user_sw, sw_scp]

|[user_sw]|

WatchDog [user_sw, sw_db, err]

where

process SYSTEM [user_sw, sw_scp]: noexit :=

		…

(* Initialization Part *)

…

hide, scp_db, sw_clk, sw_db in

 (

 (

		((TestScenario[user_sw]

 				 |[user_sw]|

 USERS [user_sw]

)

 	 |[user_sw]|

 	(SWITCH [user_sw, sw_scp, sw_db, sw_clk]

 	 |[sw_clk]|

	 CLOCK [sw_clk] (Initial Time)

)

	 |[user_sw, sw_db]|

	WatchDog [user_sw, sw_db, err, ot]

)

		 |[sw_scp]|

		 SCP [sw_scp, scp_db]

)

 	 |[sw_db,scp_db]|

 	 DBAPI [sw_db, scp_db] (Initial Data)

)

endproc (* SYSTEM*)

endspec (* SystemModel *)

Fig 5.5 An Example of MSC (to be continued)

Fig 5.5 An Example of MSC (continued)

Page 101

_995365658

_995365820

_998756057.doc
[image: image1.png]

_998723277

_995365710

_995365597

_995365598

