Chapter 2. Related Work: Formal Methods for Specifying the Telephony Networks and Detecting FI

Chapter 2. Related Work: Formal Methods for Specifying the Telephony Networks and Detecting FIs

Traditional engineering disciplines rely heavily on mathematical models and calculation to make judgments about designs. For example, aeronautical engineers make extensive use of Computational Fluid Dynamics (CFD) to calculate and predict how particular airframe designs will behave in flight. A variety of methods with similar goals are available in computer science and engineering. Quantitative simulation methods are among them; however, they do not relate to the research area of this thesis. We concentrate on methods that have their foundation in logic and formal semantics. Such methods are called “formal methods”[Turn93].

Formal methods can be used to determine the logical properties of systems with respect to their functional behaviors. Very well-known properties in this family are “deadlock” properties. Others all relate to the fact that certain post-condition are satisfied or not. We will see a number of such properties in this thesis.

In this chapter we conduct, with no attempt to be exhaustive, a survey of a number of formal methods and languages that are used for the specification of telephone systems and features, as well as of FI detection methods using Formal Description Techniques (FDT).

2.1 Formal Specification Methodologies for Telephony Systems

2.1.1 Finite State Machines

A Finite State Machine (FSM) is an abstract machine that is used to represent the behavior of a given system in terms of states and transitions. The most common notation used to represent a FSM is a directed graph whose nodes are system states and whose arcs are system transitions; the other notation being state transition matrices. The machine can be in only one state at a time. Upon receiving an input, the machine generates an output and may change to a new state. Both the output and the new state are functions of the input and the current state. A state is a mean by which one can describe an aspect of the system’s behavior. For example, one may talk about a Dialing state, a Ringing state, or a Talking state while describing the behavior of a telephone system. Telephony applications described using FSM can be found in [KaWa71] [WhCh81].

2.1.2 Petri Nets

Petri nets [Pete 77] [NaKa97] are abstract machines that are used to describe the behavior of systems. They are represented by a directed graph containing two types of elements: places and transitions. Places, which contain tokens, are represented by circles; transitions, which allow tokens to move between places, are represented by lines. Directed graphs connect places to transitions. A transition is said to fire if 1) it is triggered by a clock pulse and 2) all arrows entering the transition originate from places that contain tokens.

The Petri-net based model has been used to describe, among other applications [Ager79], the behavior of telephone switching systems [YoBa79]. Yoeli and Barzalai introduce the concept of extended Petri Nets (EPN) and use it to model the call processing operations in an automatic telephone exchange. In their approach, the telephone system is decomposed into a set of virtual subsystems: a virtual station subsystem (VSS) representing the user’s station, a virtual station control (VSC) representing the central exchange, a virtual dial control (VDC) collecting the dialed digits, and a virtual central control (VCC) representing the module which handles the establishment of a connection between two users. When a user dials a digit, it is transmitted to the VDC through the VSC. Once the caller has reached the callee, the connection is handled by the VCC.

Two common problems with the FSM and Petri-nets are: 1) the limited role they assign to data. Many features rely on data values and data structures for the essential aspects of their functionalities. However, data aspects take a secondary role in these formalisms. 2) the lack of process structure, which is very useful for design. Extended Finite State Machine (EFSM) methods, such as SDL, remedy this situation.

2.1.3 SDL

SDL (Specification and Description Language) is the most widely used FDT in the field of telecommunications [BeHo89]. It has been developed and standardized by CCITT (the International Telegraph and Telephone Consultative Committee) and ITU (International Telecommunication Union). SDL is used to describe both the behavior and structure of systems, from a high description level down to a detailed design level. The behavior of a system is described in terms of a set of processes, which are extended finite state machines. Processes work concurrently and communicate asynchronously with each other by sending and receiving discrete messages called signals. Signals are also the means by which SDL processes communicate with the environment. When signals are used to communicate between processes, they always carry the unique identifiers of the sending and receiving processes, along with possible data values. Examples of specifying telephony systems using SDL are presented in [CHCk89] [CoPi94].

A problem with SDL formal language is that it enforces rigid system boundaries in the form of process and blocks. Although these are useful to represent system architecture, they may increase the diffculties in the early design stage when the system architecture is not quite clear. LOTOS structure, which consists of only processes, is more flexible.

2.1.4 LOTOS

An early study [FaLS90] has shown that LOTOS is well suited for specifying elementary telephone systems, basically the Plain Old Telephone System (POTS). The results of that study further motivated the research on specification styles. A formal specification of telephone systems, using the constraints-oriented style was described in [FaLS91]. The work presented in [StLo93] describes a new approach for specifying telephony systems using a mixture of the constraint-oriented style and the state-oriented style. In [KaLo98], a formal specification of IN network model was developed using the resource-oriented style. The telephony network system model in this thesis is specified using a mixture of resource-oriented style and the state-oriented style. More details of the specification styles can be found in § 5.2 and in [FaLS97]
2.2 FI Detection Methods using FDTs

Feature interaction is a research area of some importance, and a number of papers are published every year on the subject. Five International Workshops have been held so far [1stInt.92] [2ndInt.94] [3rdInt.95][4thInt.97][5thInt.98], where detection approaches from various research areas, e.g. software engineering theory, formal description techniques etc., are presented.

In the following, we limit ourselves to briefly reviewing work closely related to ours, which uses LOTOS as FDT to detect FI at the specification level.

2.2.1 Step-by-Step Execution

Boumezberur and Logrippo [BoLo93] proposed a LOTOS specification of a sample telephone system and applied the step-by-step execution to detect feature interactions. At each step of the step-by-step execution, the user chooses the next action to be taken among all possible actions that are offered at that point. This methodology is useful for checking the conformance of a system defined informally to its formal description in LOTOS. In practice, this can be done by checking if 1) test sequences derived from the informal definition are accepted by the formal specification, 2) test sequences obtained by executing the specification are included in the formal definition of the system, 3) test sequences that are not specified in the informal definition are not accepted by the formal specification.

2.2.2 Model Checking

Model checking is a method for formally verifying finite-state concurrent systems. Specifications about the system are expressed as temporal logic formulas, and efficient symbolic algorithms are used to traverse the model defined by the system and check if the specification holds or not.

Many FI detection methods have been developed using Model Checking: 1) [BoZu92] modeled IN services as defined in the Global Functional Plan of the IN Conceptual Model in LOTOS and used model checking to validate properties of services when they are integrated together. Interaction is detected when a property of a service is not verified. 2) [CoPi94] developed an abstract model, representing the user external view, of the network and the introduced features using SDL as a formal language. Then, they expressed feature requirements and properties in a temporal logic language and applied the model checker tool to validate the features properties. 3) Using LOTOS as a formal language, [Thom97] modeled features as user view behavior trees, which are synchronized to form a network of users interacting with a “network manager” to complete the call process. Features’ properties are specified using (-calculus and verified using CAESAR model-checking evaluator.

2.2.3 Backward Reasoning

Stepien and Logrippo [StLo95] developed a method to detect feature interaction using backward reasoning, which involves specification of features in LOTOS. Interactions to be detected are caused by ambiguity of actions. An observable action in a LOTOS specification is ambiguous if in the behavior tree of the specification, there is a branching point where the action is the first observable one in at least two branches. Ambiguity represents non-deterministic behavior of the system being specified, and is a symptom of feature interaction. To prove that an action is ambiguous, backward reasoning for LOTOS is applied. It consists of a combination of backward and forward execution. Forward execution of the specification is applied to reach the action, then, using the resulting behavior expression, backward execution is performed to find a different trace leading to the action. A tool to help carry out backward execution is presented.

2.2.4 Conformance Theory

In [FaLS97], Faci and Logrippo developed a methodology for detecting feature interactions using conformance theory. First, they defined two notions of composition and integration of features. Composition expresses the synchronization of features on their common actions with POTS and their interleaving on their independent actions. Integration expresses the extension of POTS with the n features, such that each feature is able to execute all of its actions that are allowed in the context of POTS, when the other features are disabled. Then, they reason about interactions in terms of the conformance relation studied in testing theory, in the following way: an interaction exists between n features if their integration does not conform to their composition.

2.2.5 Abstract Data Types

In [SteL95], a method for representing and verifying intentions in telephony features using abstract data types is presented. Feature intentions describe the intended behavior of telephony features. The first step of the method is to specify a feature’s intentions using abstract data types. Intentions of a feature are described independently of other features without consideration of potential interactions at this stage. They are described for every operation that exists in the system regardless of which feature is actually used, and are implemented as Abstract Data Types operations which specify the intention’s violation. The specification language considered is LOTOS. The second step consists in executing a formal specification of the system with features. The abstract data types descriptions of feature intentions are included in the specification, and a monitor for verifying intentions of features described as LOTOS processes is introduced to verify the intentions as described in the abstract data types every time an action of the specification is executed.

2.2.6 Goal Oriented Method

In [KaLS98], Kamoun and Logrippo developed a method for detecting feature interactions between IN services using the Goal Oriented method. The method is limited to the detection of interactions caused by violation of features properties. It is based on formalization of feature’s properties, derivation of goals satisfying the negation of the feature properties and use of Goal Oriented Execution to detect traces satisfying these goals. A trace satisfying a goal shows that an interaction exists between the specified features by describing a scenario violating one of the properties of the introduced features.

Our FI Detection method presented in chapter 5, was first inspired from the idea of the Goal Oriented method. However, considering the burden that a complex goal may cause on the goal-matching tool, we simplified the goal to be just an “error reporting” event and a “call process finish” event. We also let a global monitoring process capture the violation of system properties and perform a static feature property check on the snapshot of the billing data taken right before the “call process finish” event.

Page 17

