[image: image1.wmf]Chapter 3. System Model Design

Chapter 3. System Model Design

In this chapter, we present a telephony system model integrated with both switch-based features and IN features. It should be noted that the system is modeled after the definition of the FI detection contest rather than after the functionality of a ‘real’ telephony system.

3.1 General Architecture of the System Model

[image: image2.wmf]
As depicted in Fig 3.1, our telephony network system is modeled as a collection of black boxes communicating with each other via defined interfaces between them. Interfaces are represented by solid black squares and named after the two components involved. For instance, the interface between the switch and the clock is named by “sw_clk”.

· Users

Three users A, B and C send corresponding signals to the switch when users perform offhook, onhook, dial actions on them; and respond with ringing, audibleringing (an audible tone to the caller indicating that the destination phone is ringing) etc., when they receive corresponding signals from the switch. Note that in this thesis, for simplicity, users model both the “machines” and the people who operates them.

· Switch

The switch is the main engine of the whole system model. It consists of three parts: Basic Call Process (BCP) providing only the basic functionality of making phone calls, 12 features providing the network subscribers more control in the call establishment process and Feature Activation Process linking the BCP and the integrated features together.

The BCP processes the signals that come from users, consults user status information stored in the user status database, establishes the call connection and logs the billing actions into the billing database while the called party answers the call.

The twelve integrated features are as follows:

· CFBL

Call Forwarding on Busy Line (CFBL) that redirects all calls to the subscribing line to a predetermined number when the line is busy.

· CND

Call Number Delivery (CND) that allows the called telephone to receive a calling party’s directory number, and the date and time.

· INFB

IN Freephone Billing (INFB) that allows the subscriber to pay for incoming calls.

· INFR

IN Freephone Routing (INFR) that allows the subscriber to redirect a call to various telephones potentially using the whole or part of the calling number and/or the time of day.

· INTL

IN Teen Line (INTL) that restricts outgoing calls based on the time of a day. This feature can be overridden on a per-call basis by anyone with the proper identity code (PIN).

· TCS

Terminating Call Screening (TCS) that restricts incoming calls by redirecting calls from lines that appear on a screening list to a vague but polite message.

· TWC

Three-way Calling (TWC) that allows the connection of three parties in a single conversation.

· INCF

IN Call Forwarding (INCF) that permits the subscriber to have incoming calls redirected to another number.

· CW

Call Waiting (CW) that allows the subscriber to be notified that another party is trying to reach him/her while the line is busy, and to accept the new call by placing the original call on hold.

· CC

Charge Call (CC) that allows a caller to be automatically charged on a different telephone number than the calling number.

· CELL

Cellular (Cell) that charges cellular subscribers a fixed fee for each minute when a call is in progress

· RC

Return Call (RC) by which the subscriber can set up a call to the last caller by dialing *69.

· SCP

If the user subscribes to Intelligent Network (IN) features, the Service Control Point (SCP) will replace the switch to control the call process when IN features are activated.

· Clock

The clock provides the switch with the global time to log billing actions or make time-dependant decisions. For example, the user subscribing to INTL has to dial a valid PIN to originate a call during the specific INTL time period while no PIN is required outside that time period. The switch will get the current time from the clock and send the information to the SCP. The SCP compares the current time with the INTL time period stored in the user status record and decides if a PIN validation procedure is necessary or not.

· Databases and DBAPI

Our database system consists of two parts: Databases and DB Application Interface (DBAPI). Databases store billing data and subscription data. External applications (e.g. the switch) get access to these information via the DBAPI. DBAPI hides implementation details of the databases from external users (the switch and the SCP).

3.2 Notation Description

The notation used in this thesis to define BCP, FAP and the features is based on Labeled Transition Systems.

Labeled Transition Systems (LTS) are a variation of the Finite State Machine formalism where transitions are labeled with action names [Miln89]. The most common notation used to represent LTS is a directed graph whose nodes are system states and whose arcs are system transitions. The machine can be in only one state at a time. Upon executing the labeled action, the system moves to a new state along that arc.

· States

In our model, LTS have three kinds of states: 1) start state which has only “out” arcs, 2) intermediate states which have both “in’ and “out” arcs and 3) end states which have only “in” arcs. For reference, the intermediate states of LTS presented in this thesis are numbered from “1”, the start state and the end state are marked with “S” and “E” respectively, in gray circles.

· Transitions

In our model, transitions are labeled by actions of format as follows:

[[Guard] ->] Interface_name, Signal_name, [Parameter1, Parameter2,…]
Guard

Guard is optional and only used for restricting the transition’s occurrence: only if the guard is satisfied, could the transition be executed. In our model, guard is usually a logic expression or a check on user status, e.g. guard “Busy B” means “user B is busy”.

Interface_name

Interface_name indicates the name of the interface where the signal occurs. We have five interfaces in our system model: user_sw (the interface between the users and the switch); sw_db (the interface between the switch and DBAPI); scp_db (the interface between the SCP and DBAPI); sw_clk (the interface between the switch and the clock); sw_scp (the interface between the switch and the SCP).

Signal_name

Signal_name identifies the name of the signal. Signal_name is unique and belongs to only one interface. For example, the “offhook” signal can only occur at “user_sw” because only the users can send out the “offhook” signal.

Different features may have different set of signals. We will discuss it along with the individual description of features later.

Parameters

Parameters carry the data information of signals. Signals can have 0 or more parameters depending on the type of signals. For example, user signals (signals on “user_sw” have 1 or 2 parameters where the first one indicates the address to or from which the signal is given, the second parameter carries additional information such as, the identification of the user that causes the signal, e.g. “user_sw Ringing B A” means the ringing signal is sent to B because of A (dials B). We will explain this formula along with signals in §3.3 Description of Features.

· Multiple-action Transitions

For simplicity, we compress LTS Trees using multiple-action transitions. Multiple-action transitions are transitions labeled by a series of actions. To execute a multiple-action transition is to execute all actions belonging to that transition sequentially.

3.3 BCP

Basic Call Process provides basic telephony functionalities. It identifies at a high level of abstraction all the activities necessary to establish a normal call between parties in the system. As described in Fig 3.2, BCP starts when the caller performs offhook and ends when both calling and called parties hang up. Since the switch takes the role of controlling the whole call process, BCP is implemented within the switch. Thus, signals from the user such as: offhook, onhook, dial, etc are input signals to BCP and signals going to the user such as: ringing, audibleringing, announcement, dialtone are responses from BCP to those input signals. Besides the end-users, BCP also communicates with DBAPI and the clock, inquiring user’s status information from the user status database to establish the call or adding new billing records with timestamps into the billing database when the call is connected. Fig 3.2 shows the LTS tree of BCP.

[image: image3.wmf][image: image4.wmf][image: image5.wmf][image: image6.wmf][image: image7.wmf][image: image8.wmf][image: image9.wmf][image: image10.wmf][image: image11.wmf][image: image12.wmf][image: image13.wmf][image: image14.wmf][image: image15.wmf][image: image16.wmf]

· Points In Call:

The numbered intermediate states in Fig 3.2 are also called Points In Call (PIC), where 1) the Feature Activation Process will be attached to activate corresponding features and (Point of Initialization or POI) 2) the activated features return to BCP upon completion. (Point of Return or POR) (see §3.4 Feature Activation Process)
· Interfaces

Three interfaces, user_sw, sw_clk, sw_db, are used by BCP.

· Signals

In BCP, 1) signals at “user_sw” are: Offhook, Onhook, Dial, Dialtone, LineBusyTone, StartRinging, StartAudibleRinging (when the called party is rung, the caller can also hear a corresponding ringing tone) and Disconnect; 2) signals at “sw_db” is GetStatus (inquire user’s status), SetBusy (set user’s status to be busy), SetIdle (set use’s status to be Idle), LogBegin (Add a new billing record and log the call beginning time), LogEnd (log the call ending time); 3) the only signal at “sw_clk” is GetTime (read the time from the clock).

· Parameters

In BCP, 1) signals at “user_sw” have one or two parameters, where the first parameter indicates the user who sends or receives the signal. For example, A is the sender of the signal “user_sw Offhook A” and B is the receiver of the signal “user_sw StartRinging B A”. The second parameter usually describes who causes the received signal. As in the previous example, the second parameter specifies that B is rung by A. However, in “user_sw Dial A B”, the second parameter indicates the callee’s number that is dialed by A. 2) “Get status” , “SetBusy” and “SetIdle” signals at “sw_db” have one parameter indicating whose status is inquired or changed. 3)“LogBegin” and “LogEnd” signals at “sw_db” have four parameters, the first and the second parameters respectively specify the caller and the callee of the call, the third parameter tells who is the payer of the call and the last parameter holds the beginning (or ending) time of the call. (see transition from state 7 to state 8) 4)“GetTime” signal at “sw_clk” has one parameter, storing the current time read from the clock.

· Possible Exits

In BCP, after “Offhook A”, a call process has five possible exits: 1) the caller A onhooks after it dials the callee’s number; 2) the callee B is busy when A is calling, thus after hearing the linebusytone, A hangs up; 3) A onhooks while B is being rung; 4) the caller A onhooks first when finishes talking with B; 5) the callee B onhooks first when it finishes talking with A. Only in the last two cases, a real connection between A and B is successfully established.

3.4 Feature Activation Process

3.4.1 Feature Integration: POI & POR

In an IN-like model, all telephony features other than BCP are built upon BCP and interact with it at two points which, from the feature’s point of view, are called:

i. Point Of Initialization (POI) is a PIC in BCP where the feature is activated. All telephony features other than BCP have one and only one corresponding POIs.

ii. Point Of Return (POR) is a PIC in BCP where normal call processing should continue after executing the feature. One feature could have 0 (if it never returns to BCP) or more PORs.

Figure 3.3 illustrates the integrating relationship between BCP and feature INTL, CFBL, TWC and CW.

For feature INTL (see §3.6.1 INTL), the POI is PIC_ 1. If the caller A subscribes to INTL, the feature is activated right after caller A offhooks. The POR of INTL is PIC_2. If INTL does not block the call (either not in INTL time period or in INTL time period but the user has a valid PIN for the call origination), a dialtone is given to caller A. Then, INTL finishes and the call process returns to BCP and resumes from PIC_2.

The POI of CFBL is PIC_3. If the callee B subscribes to CFBL, the feature is activated after caller A dials the callee’s number B. If B is busy when A calls, CFBL of B forwards the call to C, a predefined forwarded address. The POR of CFBL is PIC_5. If A calls B when B is idle, the call process returns to BCP and continues from PIC_5.

The POI of INFB is PIC_3. If the callee B subscribes to INFB, the feature is activated after the caller A dials the callee’s number B. If the call is connected to B, INFB of B charges the call to the callee B. INFB has no POR.

The POI of TWC is PIC_8. If the caller A (or the callee B) has TWC, the feature can be activated after A and B enter the talking state. A (or B) can dial the third party C during the call with B (or A) by performing flashhook and can establish a three-way connection among A B C. When one of A B C onhooks, TWC finishes and returns to PIC_8, which is the two-way connection state.

3.4.2 Feature Activation Process

Feature Activation Process (FAP) is a process that is instantiated at every POI of the integrated features to activate the subscribing features.

Two parameters are passed to FAP from BCP, user address and feature name. FAP will do two things: 1) check if the user subscribes to the feature or not. The subscribing information is stored in TheUser database; 2) If the feature is subscribed, FAD calls the feature process and passes all associated parameters, such as the caller and or callee’s name to it. Otherwise, FAP returns to BCP and the call process is resumed.

At PICs that are POIs for more than one feature, FAP instances of different features are mutually independent and of the same priority. Fig 3.4 lists FAPs integrated into BCP.

3.5 Feature Classification

Features in telecommunication systems are packages of incrementally added call functions providing advanced call features to subscribers [Bowe89]. These packages are provided to users on a subscribe-and-use basis.

We use a classification of features that is based on the way they are integrated to the system and on the way that they can be activated only once or repeatedly. From the first point of view, we talk about switch-based (Non-IN) and IN feature. From the second point of view, we talk of finite and infinite feature.

3.5.1 Switch-based Features

Features that are implemented within the switch are called switch-based features. This is the traditional way to add new features (before 1980s). In this method, since all data and processing required by the features are located within the local node (the switch), new features must be added to all local switches. Moreover, since different types of switches provided by different vendors are deployed in a telephony network, the introduction of new features requires the adaptation of the related software for every type of switch in the network.

Fig 3.5 depicts an example of switch-based telephony network. Three features, BCP plus two new added features are implemented in two local switches. Each switch has its own local database, which stores data required by BCP and other switch-based features.

In our system model, CFBL, CND, TCS, TWC, CW,CC, CELL and RC are switch_based features.

3.5.2 IN features

As mentioned before, switch-based telephony features and corresponding data must be implemented in every local switch in the network. This method is tedious and it is costly to introduce new features or improve old features. The introduction of Intelligent Network (IN) eased the difficulty of feature creation, deployment and maintenance by facilitating creation and provision of telecommunication services. In IN telephony networks, new features are implemented in Service Control Point (SCP) and corresponding data required by IN features are stored and managed by Service Data Point (SDP). Unlike BCP and other switch-based features that are completely implemented within the local switch, part of the functionality of IN features is carried out by the SCP. During the execution of IN features, the call process control remains in the switch while the feature process control is done by the SCP. The switch provides the SCP with collected information and follows the decision made by the SCP. The interface between the switch and the SCP is service-independent, which means that the communication style between the SCP and the switch remains the same for all IN features.

 Fig 3.6 depicts a simple IN telephony network, which consists of two local switches and one SCP/SDP. We can see the advantage of the IN features directly from the picture. Unlike

switch-based features, which need to be implemented in both switches in the network, IN features and data are deployed only in the SCP/SDP.

Due to legacy, nowadays telephony systems usually have both switch-based features and IN features.

In our model, IN features are: INTL, INFB, INFR, INCF and CC

3.5.3 Finite Features

 Finite Features are those features that can be executed only once during a single call process. The main property of finite features is that PORs of finite features can only occur after the POIs.

In our model, finite features are CFBL, CND, INFB, INFR, INTL, TCS, INCF, CC, CELL and RC.

3.5.4 Infinite Features
Infinite Features are those features that can be executed repeatedly during one call process. The main property of infinite features is that their PORs occur at the same time or earlier than the POI.

 In our model, TWC and CW are infinite features for which the POR and the POI are the same PIC (PIC_9).

Fig 3.7 shows the classifications of features.

3.6 Descriptions of Features

Since it would be very long to describe all 12 features we implemented and analyzed, 4 representatives, INTL, INFB, INCF, TWC are selected as examples to show how different kinds of features are designed.

3.6.1 INTL

INTL restricts outgoing calls based on the time of the day, such as hours when homework should be the primary activity. However, the restriction of INTL can be overridden by entering the correct PIN. When the user subscribes to INTL, the following information is required from the user:

1) TeenTime1 TeenTime2: a time period from TeenTime1 to TeenTime2 when the outgoing calls are restricted.

2) TeenPIN: a PIN used to originate a call during the TeenTime period

When the caller A, who subscribes to INTL, offhooks, INTL is activated by FAP from PIC_1. Fig 3.8 illustrates the LTS tree of INTL. The first transitions of INTL involve reading the current time, geting the TeenTime period of A from the user status database and checking if it is in the TeenTime period. If it is, INTL sends a trigger, to the SCP with the trigger type (ORIGINATION_ATTEMPT), the subscriber’s address (A), the caller’s address (A) and the time just collected. Otherwise, a dialtone is given to user A and INTL returns to BCP at PIC_2, giving the caller A a dialtone. After receiving INTL’s trigger message, the SCP responds to askPIN from the caller A. INTL announces to A a prompting message to dial the PIN. Then, INTL sends a “resource” message to the SCP with the number P dialed by A. If P is the valid TeenPIN, the SCP responds to continue the call, a dialtone is given to user A and INTL is returned back to BCP at PIC_2. Otherwise, A will receive an announcement that an invalid PIN was given and the call is blocked by the SCP’s “RES_DISCONNECT” response. (see §3.7.2 Switch/SCP for definitions of Trigger, Response and Resource.) In Fig3.8, transitions between states from 3 to 10 are interactions between the SCP and the user through the switch.

· Signals:

Signals of INTL feature occur at four interfaces.

1) Signals at user_sw. Comparing with BCP, INTL has only one new signal “Announce”. The “Announce” signal has two parameters. The first one refers to the receiver of the signal and the second parameter is the message to be announced, such as prompting the user to input a PIN number (“AskForPIN”) or informing the user that an invalid PIN number is input (“InvalidPIN”).
2) Signal at sw_clk, “GetTime”, is the same as in BCP.

3) New Signal at sw_db is “GetTeenTime”. The “GetTeenTime” signal queries the “TeenTime” period from the user status database. It has three parameters: the first one, A, indicates the subscriber’s name; the last two parameters T1, T2 take the starting and ending time of the “TeenTime” period.

4) Signals at sw_scp. As mentioned above, two kinds of signals, “Trigger” and “Resource”, are sent to the SCP from INTL. The SCP responds to “Trigger” and “Resource” signals with the signal named “Response”.

· Possible Exits

INTL has four exits: 1) The current time is not in TeenTime period, A dialtone is given to user A and INTL returns to PIC_2. 2) The caller A onhooks after being announced the prompting message to dial the PIN. 3) The caller inputs a valid PIN and the SCP responds to continue the call. A dialtone is given to caller A and INTL returns to PIC_2. 4) The caller inputs an invalid PIN and the SCP responds to disconnect the call. The caller A onhooks. Only in the first and the third cases, A is allowed to originate a call.

3.6.2 INFB

INFB enables the subscriber to pay for incoming calls.

The LTS of INFB is shown in Fig 3.9.

When the callee B, who subscribes to INFB, is dialed by the caller A, INFB is activated by FAP from PIC_3 and takes the place of BCP to control the call process. The first transitions of INFB is to read the current time from the clock and send a trigger message to the SCP with the

trigger type (INFO_ANALYZED), the subscriber’s address (B), the caller’s address (A), the callee’s address (B) and the current time. After receiving INFB’s trigger message, the SCP sends back an “ANALYZE_ROUTE” response to INFB, indicating that B should be the payer of the call from A. In this feature, this is the only part where the SCP is involved. Then, INFB becomes very similar to BCP. It checks B’s status and if it is busy, a LineBusyTone is given to A, otherwise the call is connected and rings B. After B offhooks, the “LogBegin” signal logs the beginning time and charges the call to B, as specified in the SCP’s response. When A (or B) finishes talking, A (or B) onhooks. The “LogEnd” signal logs the ending time of the call. At the same time a “Disconnect” signal is sent to B (or A) and B (or A) onhooks.

Like INTL, INFB has to consult the SCP and follows the SCP’s instructions to charge the call.

· Signals:

Transitions of the INFB’s LTS are signals occurring at four interfaces.

1) Signals at user_sw in INFB are the same as those in BCP
2) Signal at sw_clk is the same as that in BCP.

3) Signal at sw_db is the same as that in BCP.

4) Signals at sw_scp. INFB has one “Trigger” signal, INFO_ANALYZED and one “Response” signal, ANALYZE_ROUTE.

“INFO_ANALYZED” trigger has four parameters. The first parameter indicates the subscriber’s address (B), the second one specifies the caller’s address (A), the third one takes the callee’s address (B) and the fourth one holds the current time (T).

“ANALYZE_ROUTE” is the response of the SCP to the trigger “INFO_ANALYZED”. It has four parameters. The first parameter indicates the subscriber’s address (B), the second one describes the caller’s address (A), the third one specifies the callee’s address (B) and the fourth one designates the payer of the call (B).

· Possible Exits

INFB has four exits: 1) The caller A onhooks because the callee B is busy. 2) The caller A onhooks when B is rung. 3) The caller A onhooks first after talking to B. 4) B onhooks first after talking to A. Only in the last two cases, the connections between A and B are successfully established.

3.6.3 CFBL

CFBL, a switch-based feature, allows a subscriber to redirect incoming calls when it is busy. The subscriber pays for the forwarded part of the call. For example, if B has CFBL and B is busy when A calls, the call is forwarded to C given that C is the forwarded address. After the connection is established, the call is separated into two parts and charged in the following way: A pays for the part from A to B and B pays for the forwarded part from B to C.

Fig 3.10 gives the LTS tree of CFBL.

When caller A dials callee B who subscribes to CFBL, CFBL is activated by FAP at PIC_3. The first transitions of CFBL are to check the status of both B and C. 1) If B is idle, the call process returns to BCP at PIC_5. In this case, the call to B will be proceeded normally. 2) If both B and C are busy, a LineBusyTone is given to A and A onhooks. 3) If B is busy and C is idle, the call is forwarded to C. After C offhooks, there are two “LogBegin” signals of which

one charges the A-B part of the call to A and the other charges the forwarded B-C part to B. When A (or C) finishes talking, A (or C) onhooks. Two “LogEnd” signals log the ending time of the call to each part of the call. At the same time, a “Disconnect” signal is sent to C (or A) and C (or A) onhooks.

· Signals

Transitions of the CFBL’s FSM are for the same set of signals as for BCP.

· Possible Exits

CFBL has five exits: 1) Caller A onhooks because both B and C are busy. 2) B is not busy when A calls, thus the call process returns to PIC_5. 3) Caller A onhooks when C is rung, without waiting for C’s answer. 4) Caller A onhooks first after talking to C. 5) C onhooks first after talking to A.

3.6.4 TWC

Three Way Calling is a switch-based feature that allows the connection of three parties in a single conversation.

Fig 3.11 illustrates the main part of the LTS tree of TWC. Since TWC is a very complex feature that contains 60 states, we hide the details of some unimportant branches, where no three-way connection is established, using blocks with dashed line. Details of these blocks can be found in [GBGT98].

Three Way Calling is activated by FAP from PIC_8 when subscriber A has connected to callee B. To connect the third party C, subscriber A temporarily suspends conversation with B, flashhooks and dials C. A’s “Threeway” flag is set to be true. 1) If C is busy, A gets the LineBusyTone and flashhooks again. The call process returns to PIC_8. 2) If C is idle, A gets connected to C after C offhooks. Then, A flashhooks again to make B join the conversation between A and C and a three-way connection of A B C is established. Then, 1) If B (or C) finishes talking and onhooks, A gets the “disconnect” signal from B (or C), and A’s “Threeway” flag is set to be false. The call process of A and B (or A and C) returns to PIC_8. 2) If A flashhooks, A’s “Threeway” flag is set to be false, C gets the “disconnect” signal from A, C onhooks. 3) If A onhooks, A’s “Threeway” flag is set to be false. Both B and C get the “disconnect” signal from A and onhook.

· Signals

Transitions of the TWC’s FSM are for the same set of signals as for the BCP except a new signal at sw_db, “SetThreeWay”. “SetThreeWay” has two parameters. The first parameter indicates the user’s address and the second parameter specifies the value to be set. For example, “SetThreeWay A True” means to set the “ThreeWay” flag of A to be “True”.

· Possible Exits

TWC has 19 possible exits. Four of them are where a three way connection is successfully established: 1) Caller A onhooks to terminate the three-way-connection among A, B and C. 2) C onhooks and A gets the “disconnect” signal from C. The three-way connection among A, B and C becomes the two-way connection between A and B. 3) B onhooks and A gets the “disconnect” signal from B. The three-way connection among A, B and C becomes the two-way connection between A and C. 4) A flashhooks and C gets “disconnect” signal from A. The three-way connection among A, B and C becomes the two-way connection between A and B. Except the first one, all other exits may make TWC a loop since they bring it back to the same PIC where TWC is activated, hence the user can invoke TWC again.

3.7 Interface definition

In this section, we describe the complete set of signals defined in our system model. To describe signals, we use the following notation: the name of the signal is followed by the name and type of parameters, Signal-name X1: ParameterType, X2: ParameterType, …, Xn: ParameterType.

3.7.1 User/Switch (user_sw)
User to Switch (signals are sent from the users to the switch):

· Offhook X: Address (User with phone number X offhooks)

· Onhook X: Address (User with phone number X onhooks)

· Dial X: Address Y: Address (User at address X dials address Y)

· Flashhook X: Address (User at address X flashhooks. Flash X is equivalent to an Onhook X immediately followed by an Offhook X, unless a feature uses it otherwise. We assume that end-users have a Flash button)

Switch to User (Signals are sent from the switch to the user):

· DialTone X: Address (A dialTone is given to user X. DialTone means that the switch has approved the user to make an outgoing call. DialTone stops automatically when the user dials or hangs up)

· LineBusyTone X: Address (A lineBusyTone is given to user X. LineBusyTone is a negative signal for a call establishment attempt. LineBusyTone stops when the user onhooks or flashhooks)

· StartAudibleRinging X: Address Y: Address (The ringback tone is provided at address X while waiting for user Y to answer the call. AudibleRinging is a positive signal for a call establishment attempt.)

· StopAudibleRinging X: Address Y: Address (The ringback tone at address X from Y is disabled.)

· StartRinging X: Address Y: Address (Ringing starts at address X for a call originated at address Y.)

· StopRinging X: Address Y: Address (Ringing at address X from Y is disabled)

· Disconnect X: Address Y: Address (The switch informs user X that Y has disconnected a connection with X. User X should either hang up or flashhook after receiving the disconnect signal)

· Announce X: Address M: Message (An announcement M is played at address X)

· Start CallWaitingTone X:Address Y:Address (A special signal given to user X indicating that Y is trying to reach him/her)

· Display X:Address M:Message (It uses a display screen on telephone at address X to display the message M concerning the call)

3.7.2 Switch/SCP

The Bellcore AIN document GR-1298-CORE has been a reference for this interface, but the contest committee decided to use a simplified version of the message parameters. Messages sent from the switch to the SCP are of two kinds, “Trigger” and “Resource”. Messages sending from the SCP back to the switch are of one kind, “Response”.

· Trigger

A general format of “Trigger” is:

Trigger Trigger_type subscriber’s address [parameter1, …]

When SCP receives the trigger message, the corresponding routine for that trigger type is invoked. Besides the subscriber address, parameters may include information such as the calling party address, the called party address, and the time, etc.

· Resource

A general format of Resource is:

Resource Subscriber’s address, Parameter1,[Parameter2…]

Resource responds to the SEND_TO_RESOURCE message from SCP, which is caused by a trigger. Besides subscriber’s address, parameters in a resource message may include data collected from users, e.g. a PIN number

SCP to Switch (messages are sent from the SCP to the switch)

· Response

Response ResponseType Subscriber address [parameter1, parameter2…]

Different ResponseTypes indicate different instructions given from SCP to process the call listed as follows:

Response ANALYZE_ROUTE S: Address A: Address B: Address C: Address means to route a call from A to B and charge the call to C. S is the subscriber address.

Response CONTINUE S: Address A: Address B: Address means to continue processing the call from A to B using BCP. S is the subscriber address.

Response SEND_TO _RESOURCE S: Address A: Address M: Message means to play the message M at address A and collect the input data (if any)

Response RES_DISCONNECTS: Address A: Address means to terminate the processing of calls from A .

3.7.3 Switch to DBAPI

Billing signals:

· LogBegin X: Address Y: Address P: Address T: Time (DBAPI starts to charge P for a call from X to Y by opening a new billing record and logging the beginning time. T is the time when the called party offhooks.)

· LogEnd X: Address Y: Address P: Address T: Time (DBAPI stops charging the call from X to Y by logging the ending time T and closing the record.)

User status inquiry and setting signal:

· GetSatus X: Address S:Status (The switch queries the status information of user X.)

· GetSubscribingFeatures X:Address S:SubscribedFeatureSet (The switch queries the subscribing information of user X.)

· GetTeenTime X:Address T1:Time T2:Time (The switch queries the TeenTime period defined by user X)

· SetIdle X: Address (The status of X is set to be “idle”)

· SetBusy X: Address (The status of X is set to be “busy”)

· SetThreeWay X: Address B: Bool (The “ThreeWay” of X is set with the Boolean value B)

3.7.4 Switch to Clock

· GetTime T: Time (The switch queries the current time from the clock)

3.7.5 SCP to DBAPI

· Get TeenPIN X: Address P: PIN (The SCP queries the TeenPIN number of user X, which is stored in the user status database)

Fig 3.11 The LTS Tree of TWC (To be continued)

 user_sw Flashook A

 sw_db SetThreeWay A True

user_sw StopRinging C A

user_sw StopAudibleRinging A C

sw_db LogBegin A C A T

Fig 3.9 The LTS Tree of INFB (To be continued)

user_sw StopRinging B A

user_sw StopAudibleRinging A B

sw_db LogBegin A B B T

1

user_sw DialTone A

POR

FAP(A, INTL)

user_sw Onhook A

sw_db SetIdle A

Switch-based Feature B

S

W

I

T

C

H

2

Switch-based Feature A

POI

DATABASES

sw_clk

U

S

E

R

S

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

IN Teen Line (INTL)

� EMBED MS_ClipArt_Gallery ���

Fig 3.1 Architecture of the System Model

CLOCK

8

Billing

sw_db

SCP

POI

D

B

A

P

I

User

Status

|||

[Idle B]-> (

|||

Basic Call Process (BCP)

SWITCH

[Busy B]->

5

user_sw LineBusyTone A

16

E

15

user_sw

E

Data

Basic Call Process

 (BCP)

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

Switch-based Feature B

Fig 3.5 An Example of Switch-based Telephony Network

S

W

I

T

C

H

1

Switch-based Feature A

Data

Basic Call Process

 (BCP)

4

[Idle C]->

(user_sw StartRinging C A

 sw_db SetBusy C

 user_sw StartAudibleRinging A C)

[Busy C]->

5

user_sw LineBusyTone A

23

user_sw Flashhook A

sw_db SetThreeWay A False

7

user_sw Offhook C

2

3

sw_scp GetStatus C S

user_sw Dial A C

6

sw_db GetTime T

8

7

TWC A

user_sw Offhook B

PIC_8

TWC B

S

S

(user_sw StartRinging B A

 user_sw SetBusy B

 user_sw StartAudibleRinging A) B

user_sw Onhook A

sw_db SetIdle A

user_sw Onhook A

sw_db SetIdle A

[Idle B]->

PIC_5

6

user_sw StopRinging C A

sw_db SetIdle C

user_sw StopAudibleRinging A C

sw_db GetTime T

4

user_sw Offhook C

5

E

13

E

14

user_sw LineBusyTone A

3

[Busy B and Busy C]->

(user_sw StartRinging C A

 sw_db SetBusy C

 user_sw StartAudibleRinging A C)

[Busy B and Idle C]->

user_sw StopRinging C A

user_sw StopAudibleRinging A C

sw_db LogBegin A B A T

sw_db LogBegin B C B T

Fig 3.10 The LTS Tree of CFBL (To be continued)

sw_db GetStatus C S

2

 sw_clk GetStatus B S

1

Fig 3.9 The FSM graph of INFB (Continued)

E

E

user_sw Onhook B

sw_db SetIdle B

11

user_sw Onhook A

sw_db SetIdle A

user_sw Disconnect B A

sw_db LogEnd A B B T

14

user_sw Disconnect A B

sw_db LogEnd A B B T

10

13

sw_clk GetTime T

sw_clk GetTime T

9

8

user_sw Onhook B

sw_db SetIdle B

user_sw StopRinging B A

sw_db SetIdle B

user_sw StopAudibleRinging A B

user_sw Onhook A

sw_db SetIdle A

12

user_sw StartRinging B A

sw_db SetBusy B

user_sw StartAudibleRinging A B)

1

 sw_clk GetTime T

4

FAP(A, RC)

FAP(A, CELL)

FAP(A, CC)

sw_scp Trigger INFO_ANALYZED B A B T

2

sw_scp Response ANALYZE_ROUTE B A B B

FAP(B, INFB)

FAP(B,CFBL)

FAP(B,CND)

FAP(B, INFR)

FAP(B,TCS)

FAP(B,INCF)

FAP(A, TWC)

FAP(A, CW)

user_sw Onhook A

sw_db SetIdle A

8

user_sw StopRinging B A

user_sw StopAudibleRinging A B

sw_db SetIdle B

sw_clk GetTime T

6

user_sw Dial A B

sw_db GetStatus B S

3

2

Fig 3.4 BCP Integrated with FAPs

user_sw Offhook B

7

E

15

E

16

user_sw LineBusyTone A

E

5

[Busy B]->

user_sw Onhook A

sw_db SetIdle A

(user_sw StartRinging B A

 sw_db SetBusy B

 user_sw StartAudibleRinging A) B

[Idle B]->

4

user_sw DialTone A

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

sw_scp

Three Way Calling (TWC)

� EMBED MS_ClipArt_Gallery ���

POI(R)

Fig 3.3 The Integrating Relationship between BCP and Other Features

IN Free Billing (INFB)

Call Forward on Busy Line (CFBL)

Fig 3.2 The LTS Tree of BCP (Continued)

12

11

10

9

sw_clk GetTime T

14

user_sw Onhook A

sw_db SetIdle A

8

8

user_sw StopRinging B A

user_sw StopAudibleRinging A B

sw_db SetIdle B

user_sw Onhook A

sw_db SetIdle A

sw_clk GetTime T

6

user_sw Dial A B

sw_db GetStatus B S

3

2

Fig 3.2 The LTS Tree of BCP (To be continued)

user_sw Offhook B

7

E

15

E

user_sw Onhook A

sw_db SetIdle A

16

user_sw LineBusyTone A

E

 user_sw Offhook A

 sw_db SetBusy A

5

[Busy B]->

user_sw Onhook A

sw_db SetIdle A

(user_sw StartRinging B A

 sw_db SetBusy B

 user_sw StartAudibleRinging A) B

user_sw Disconnect A B

sw_db LogEnd A B A T

user_sw Onhook A

sw_db SetIdle A

user_sw Onhook B

sw_db SetIdle B

user_sw Onhook B

sw_db SetIdle B

1

[Idle B]->

4

user_sw DialTone A

 user_sw Offhook A

 sw_db SetBusy A

1

S

user_sw StopRinging B A

user_sw StopAudibleRinging A B

sw_db LogBegin A B A T

sw_clk GetTime T

user_sw Disconnect B A

sw_db LogEnd A B A T

E

13

E

S

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

� EMBED MS_ClipArt_Gallery ���

Service-Independent Interface

Service-Independent Interface

SCP/SDP

IN Feature

B

IN Feature

A

Data

Switch-based Feature B

S

W

I

T

C

H

2

Switch-based Feature A

Data

Basic Call Process

 (BCP)

Switch-based Feature B

Fig 3.6 An Example of IN Telephony Network

S

W

I

T

C

H

1

Switch-based Feature A

Data

Basic Call Process

 (BCP)

Fig 3.7 Classifications of Features

CC

INFB, INTL

INCF, INFR,

RC

CFBL, CND

TCS, CELL

TWC, CW

user_sw StopRinging B A

user_sw StopAudibleRinging A B

sw_db LogBegin A B A T

Infinite

Features

Finite

Features

Switch-based

Features

IN

Features

PIC_2

7

(sw_scp Response CONTINUE A

 user_sw DialTone A)

 [P eq TeenPIN]->

6

7

 sw_db GetTeenTime A T1 T2

1

Fig 3.8 The LTS Tree of INTL (To be continued)

sw_scp Resource A P

 [P eq TeenPIN] ->

Fig 3.8 The LTS Tree of INTL (Continued)

sw_scp Response RES_DISCONNECT A

10

sw_db GetTime T

sw_scp Response SEND_TO_RESOURCE A InvalidPIN

9

user_sw Announce A InvalidPIN

sw_scp Resource A

E

user_sw Onhook A

sw_db SetIdle A

user_sw Onhook A

sw_db SetIdle A

PIC_2

 [T1 (T (T2]->

sw_scp Trigger ORIGINATION_ATTEMPT A A T

sw_scp Response SEND_TO_RESOURCE A AskForPIN

3

S

6

 [T1>T or T>T2]-> user_sw DialTone A

user_sw Dial A P

5

8

user_sw Announce A AskForPIN

4

 sw_clk GetTime T

E

scp_db

2

1

S

3

 sw_clk GetTime T

8

4

user_sw Offhook B

7

E

user_sw StopRinging B A

sw_db SetIdle B

user_sw StopAudibleRinging A B

15

6

2

sw_scp Response ANALYZE_ROUTE B A B B

sw_scp Trigger INFO_ANALYZED B A B T

user_sw Onhook A

sw_db SetIdle A

sw_clk GetTime T

E

user_sw Onhook A

sw_db SetIdle A

16

Fig 3.9 The LTS Tree of INFB (To be continued)

5

user_sw Onhook A

sw_db SetIdle A

user_sw LineBusyTone A

12

11

10

9

sw_clk GetTime T

14

user_sw Onhook A

sw_db SetIdle A

8

user_sw Disconnect A B

sw_db LogEnd A B B T

user_sw Onhook A

sw_db SetIdle A

18

user_sw Onhook B

sw_db SetIdle B

sw_clk GetTime T

user_sw Disconnect B A

sw_db LogEnd A B B T

E

13

[Busy B]->

user_sw StartRinging B A

sw_db SetBusy B

user_sw StartAudibleRinging A B)

user_sw Onhook A

sw_db SetIdle A

[Idle B]-> (

Fig 3.9 The FSM graph of INFB (Continued)

user_sw StopRinging B A

user_sw StopAudibleRinging A B

sw_db LogBegin A B B T

E

user_sw StopRinging C A

sw_db SetIdle C

user_sw StopAudibleRinging A C

user_sw Onhook A

sw_db SetIdle A

sw_clk GetTime T

4

user_sw Offhook C

5

E

13

E

user_sw Onhook A

sw_db SetIdle A

14

user_sw LineBusyTone A

(user_sw StartRinging B A

 sw_db SetBusy B

 user_sw StartAudibleRinging A) B

3

[Busy B and Busy C]->

(user_sw StartRinging C A

 sw_db SetBusy C

 user_sw StartAudibleRinging A C)

sw_db GetStatus B S

[Busy B and Idle C]->

user_sw StopRinging C A

user_sw StopAudibleRinging A C

sw_db LogBegin A B A T

sw_db LogBegin B C B T

sw_db GetStatus C S

[Idle B]->

PIC_5

2

 sw_db GetStatus B S

1

S

6

Fig 3.10 The LTS Tree of CFBL (To be continued)

10

user_sw Onhook A

sw_db SetIdle A

6

user_sw Onhook C

sw_db SetIdle C

7

sw_clk GetTime T

sw_clk GetTime T

8

user_sw Disconnect A B

sw_db LogEnd A B A T

sw_db LogEnd B C B T

11

12

user_sw Disconnect B A

sw_db LogEnd A B A T

sw_db LogEnd B C B T

9

user_sw Onhook A

sw_db SetIdle A

user_sw Onhook C

sw_db SetIdle C

E

E

Fig 3.10 The LTS Tree of CFBL (Continued)

sw_db GetStatus B S

3

POR

TWC B

user_sw Onhook C

sw_db SetIdle C

PIC_8

PIC_8

TWC A

S

8

sw_clk GetTime T

6

user_sw Dial A C

sw_db GetStatus C S

3

user_sw Onhook C

sw_db SetIdle C

sw_db SetThreeWay A False

2

20

Fig 3.11 The LTS Tree of TWC (To be continued)

user_sw Offhook C

7

user_sw Flashhook A

sw_db SetThreeWay A False

23

user_sw LineBusyTone A

� EMBED MS_ClipArt_Gallery ���

5

[Busy C]->

(user_sw StartRinging C A

 sw_db SetBusy C

 user_sw StartAudibleRinging A C)

S

[Idle C]->

4

user_sw DialTone A

 user_sw Flashook A

 sw_db SetThreeWay A True

1

user_sw StopRinging C A

user_sw StopAudibleRinging A C

sw_db LogBegin A C A T

19

sw_clk GetTime T

user_sw Disconnect A C

sw_db LogEnd A C A T

13

user_sw Onhook C

sw_db SetIdle C

PIC_8

user_sw Falshhook A

sw_db SetThreeWay A False

user_sw Onhook A

sw_db SetIdle A

sw_db SetThreeWay A False

PIC_8

10

sw_clk GetTime T

12

user_sw Disconnect B A

user_sw Disconnect C A

sw_db LogEnd A B A T

sw_db LogEnd A C A T

user_sw Onhook B

sw_db SetIdle B

11

E

16

sw_clk GetTime T

user_sw Onhook B

sw_db SetIdle B

user_sw Disconnect C A

sw_db LogEnd A C A T

17

TWC C

user_sw Flashhook A

8

Fig 3.11 The LTS Tree of TWC (Continued)

14

sw_clk GetTime T

9

user_sw Disconnect A B

sw_db LogEnd A B A T

user_sw Onhook B

sw_db SetIdle B

sw_db SetThreeWay A False

15

Page 37

_996826475

_996826601

_996826656

_996826512

_996826315

_996483947

