Chapter 4. LOTOS Specification of the System Model

Chapter 4 LOTOS Specification of the System Model

In this chapter, we describe the LOTOS formal specification of our system model and of some features (BCP, INTL, INFB, CFBL and TWC) as defined in the functional plane of the system model. Our main objective in specifying the system model and features in LOTOS is to provide a specification that can be used as a test-bed for specifying, validating and detecting FIs. In the LOTOS specification, only the external behavior of the system is captured, that is, describing what the system does for the user, not how it does it (black-box specification).

Before introducing the details of the LOTOS specification of our model, we give an overview of the LOTOS specification language and of its main operators by describing some examples in the context of the telephony networks.

 4.1 An Overview of LOTOS

LOTOS (Language Of Temporal Ordering Specification) is a Formal Description Technique (FDT) developed within ISO (International Organization for Standardization) as a formal specification language for the purpose of describing and specifying the different elements of OSI (Open System Interconnection) architecture such as services and protocols. It has been an ISO standard (8807) since 1989 [ISO8807]. Nowadays, LOTOS applications have been extended to cover some other domains such as hardware [FaLS97] and telephony [FaLS91], [StLo93].

A LOTOS specification consists of two parts, data part and control part. The control part defines the external observable behavior of the system that is described. It is based on Milner’s Calculus of Communicating Systems (CCS) [Miln89] and Hoare’s (CSP) [Hoar85]. The data part defines all the data types and value expressions needed to specify the behavior of the system. It is based on the formal theory of algebraic abstract data types ACT-ONE [EhMa85]. A number of excellent LOTOS tutorials can be found in the literature [BoBr87]. Therefore, we limit ourselves to a brief overview of the language and its use in the context of our research.

All key words of LOTOS used in this thesis are highlighted in bold.

4.1.1 LOTOS Abstract Data Types

LOTOS adopts ACT-ONE, an algebraic abstract data type language, to define data types. ACT-ONE defines abstractly data operations without reference to implementation details.

A data type definition in LOTOS consists of a definition of a signature and possibly of a list of eqns (equations). A signature of a type is a definition of its sorts and opns (operations). Sorts defines the domain name of the data. Opns defines the formats of operations on the data. Eqns provide a means to define the semantics of operations.

LOTOS Data Types can be built hierarchically by using is. That is, one data type can be a collection of other data types. This constitutes an inheritance mechanism of a simple kind.

Consider the following type definition of the bill item in the billing database:
type TypeBillItem (*define the type name*)

is TypeAddress,TypeTime (*list other sorts used to construct this data type*)

(* Signature *)

sorts BillItem (*define the sort name*)

opns (*specify the format of operations*)
Item(* Constructor *):Address(* Charged *), Address(* Caller *), Address(* Callee *), Time(* LogBegin *), Time(* LogEnd *) -> BillItem

setLogEndTime:Time,BillItem -> BillItem

getCaller,getCallee : BillItem -> Address

(* List of equations *)
eqns
forall a1,a2,a3,a4,a5,a6:Address, t1,t2,t3:Time

ofsort BillItem (*specify the return type of the operations list below*)

setLogEndTime(t3,Item(a5,a1,a2,t1,t2))= Item(a5,a1,a2,t1,t3);

ofsort Address (* these are query functions *)

getCaller(item(a1,a2,a3,t1,t2))=a2;

getCallee(item(a1,a2,a3,t1,t2))=a3;

endtype (* TypeBillItem *)

Type TypeBillItem defines the billing items stored in the billing database. The format of “BillItem” is: Item(Payer, Caller, Callee, StartTime, EndTime). The “payer”, “caller” and “callee” are of type Address. “StartTime” and “EndTime” are of type Time. “BillItem” has four operations: 1)“Item” is the constructor operation building a new “BillItem”; 2)“setLogEndItem” is a setting operation to set the “EndTime” of the “BillItem”; 3) “getCaller” is a query operation that returns the “Caller” address of the “BillItem”; 4)“getCallee” is a query operation that returns the “Callee” address of the “BillItem”.

4.1.2 The Control Part

The control part of LOTOS specification deals with the description of the system behavior. It this part, systems are described by means of processes defined in a top down hierarchy.

4.1.2.1 LOTOS Process

A process is viewed as a black box interacting with other processes or with the system environment via synchronization on its observable gates. It is basically defined by a set of observable gates, on which synchronization occurs, and by a behavior expression. A behavior expression is built by combining LOTOS actions by means of operators and possibly instantiations of other processes.

The syntax of a process definition is of the form:

process process_name [gate_list] (parameter_list): functionality

<behavior expression>

endproc

In addition to the set of observable gates and the behavior expression, a process can also have a set of parameters, denoted in the definition above by parameter_list. This set represents the set of parameters through which values can be passed to the process from outside. The parameterization of a process also enables its reusability.

4.1.2.2 LOTOS Action

Action is the basic element of the behavior expressions. It consists of a gate name, a list (possibly empty) of events, and possibly a predicate that defines the conditions that should hold for the event to be offered. An event can either offer (represented by “!”) or accept (represented by “?”) a value. Predicates establish a condition on the values that can be accepted or offered.

An example of action is:

user_sw ! Offhook ? caller:Address

Offhook is of sort UserSignal that defines a set of all possible signals occuring at gate user_sw. When the action happens, it will obtain a value of sort Address from the environment for the caller.

Actions are considered to be atomic in the sense that they occur instantaneously, without consuming time. Generally speaking, actions in LOTOS are always executed by synchronization with the environment. However, there is a special type of actions in LOTOS, the internal action, which is represented by “i”. It can be executed independently by the process and it is unobservable to the environment.

4.1.2.3 LOTOS Behavior Expressions

· Inaction: stop

It represents a deadlock, i.e. No more actions can be executed.

· Successful Termination: exit

It indicates a normal termination of the behavior, i.e. a process has successfully performed all its actions.

The key word “exit” can also be used in the process definition to express the process functionality (denoted in the syntax given above by functionality). In fact, a process has functionality “exit” if it can terminate successfully, i.e. it is able to perform an exit at the end. If the process cannot perform an “exit”, the functionality is noexit.

· Process Instantiation: Process_Name [gate_list] (initial_value_list)

The instantiation of a LOTOS process is equivalent to the invocation of a procedure in a programming language (such as Pascal). Parameters of the process listed in “parameter_list” are initialized by the values given in “initial_value_list”.

Process Instantiation can occur either in the behavior expression of other processes or in the behavior expression of the process itself.

4.1.2.4 LOTOS Operators

· Action Prefix Operator: a ; B
The action prefix operator, represented as a semi-colon “;”, expresses sequential composition of action a and behavior expression B. It is used to sequentially order actions. For example, user_sw !Dialtone !A; user_sw !Dial !A !B denotes that caller A must get the dialtone before dialing the callee’s number B.

· Choice Operator:B1 [] B2
The choice operator “[]” is used to express a choice between two alternatives, B1 and B2. Consider the following scenario as an example: after dialing the callee’s number, the caller may 1) either get the linebusytone from the switch (if the callee is busy) 2) or get the audibleringing indicating that the call is connected and the callee is ringing. 3) or change his/her mind of making the call and hang up. This is expressed by the behavior expression listed below.

user_sw ! LineBusyTone ! A

[]

user_sw ! StartAudibleRinging ! A ! B

[]

user_sw ! Onhook ! A

· Enabling Operator: B1 >> B2
The enabling operator “>>” has a similar function as the action prefix operator. The difference between them is that the action prefix operator “;” expresses the sequential composition of an action and a behavior expression; the enabling operator “>>” expresses the sequential composition of two behavior expressions. B2 is executed if and only if B1 is successfully terminated (exit).

· Disabling Operator: B1 [> B2

The disable operator “[>” is used to express situations where B1 can be interrupted by B2 during normal functioning. For example, a normal processing of a call could be interrupted at any point if the caller onhooks. This could be expressed by the behavior expression as follows.

(user_sw ! DailTone ! A;

 user_sw ! Dial ! A ! B;

 …

) [> user_sw ! Onhook ! A;…

· Interleaving Operator: B1 ||| B2
We say that B1 and B2 interleave if they can perform their actions independently of each other. The interleaving operator “|||” expresses the concept of parallelism between behaviors where no synchronization is required. For example, three users A, B and C in the network behave independently of each other. If we use process “User” to describe one user’s behavior, the relationship between user A, B and C can be represented as follows.

 USER [user_sw] (A)

 |||

 USER [user_sw] (B)

 |||

 USER [user_sw] (C)

· Parallel Composition Operator: B1 |[g1, …, gn]| B2
The parallel composition of B1 and B2 on the gate list g1,…,gn expresses the fact that B1 and B2 behave independently, with the exception that they must synchronize on the gates g1,…gn, which means that processes B1 and B2 must participate in the execution of every action defined with a gate name gi, i ({1, …,n}. Then interleaving can be defined as a parallel composition on an empty gate list.

Synchronization of processes on a gate gi, i ({1, …,n} occurs, if each process provides an action with a gate name gi, the lists of events offered by the actions match, and the predicates (if any) are satisfied. The lists of events of two actions “match” if the following conditions are satisfied:

1) The numbers of events of the two actions match.

2) If an event in one action offers (!) a value, then the “matching” event in another action, should either offer (!) the same value or accept (?) a value of the same sort.

Consider the following example where two processes USER and BCP synchronize on the gate “user_sw”.

(USER [user_sw](A)

 |||

 USER [user_sw] (B)

 |||

 USER [user_sw] (C)

where

process USER [user_sw] (X: Address): noexit :=

(user_sw !Offhook !X;

 user_sw !DialTone !X;

 …

)

 endproc (* USER*)

)

 |[user_sw]|

 (hide sw_clk, sw_db in SWITCH [user_sw, sw_clk, sw_scp, sw_db]

 where

process SWITCH [user_sw, sw_clk, sw_scp, sw_db]: noexit :=

 BCP[user_sw, sw_clk, sw_scp, sw_db]

endproc (* SWITCH *)

process BCP [user_sw, sw_clk, sw_scp, sw_db]: noexit :=

(user_sw !Offhook ?Caller:Address;

 user_sw !DialTone !Caller;

 …

)

endproc (* BCP *)

)

Process USER stands for a user of the telephony network. It takes a parameter that holds the user’s address, i.e. the process that simulates user A is USER[user_sw](A). The three users above are independent of each other. However, they all have to synchronize with the switch at gate “user_sw”. Process SWITCH consists of only one process called BCP. Process USER actually synchronizes with process BCP at gate “user_sw”. The first action of BCP is user_sw !Offhook ?Caller:Address, so it synchronizes with the first action of USER, user_sw !Offhook !X. In other words, the following two actions synchronize at the very beginning:

 user_sw !Offhook ?Caller:Address offered by USER
user_sw !Offhook !X offered by BCP

As a result of synchronization, Caller acquires the value of X, which contains the address of the calling user.

· Full Synchronization Operator: B1 || B2
The full synchronization of B1 and B2 is a parallel composition in which B1 and B2 must synchronize on all their gates.

· Hiding Operator: hide g1, …, gn in B
The hiding operator “hide in” is used to hide actions synchronizing on gates (g1,…gn) within the process. These actions become internal actions (i) to the environment. As mentioned above, these internal actions cannot synchronize with the environment. In the previous example, gates sw_db, sw_clk are hidden within process SWITCH from the environment.

· Guarded Behavior: [P] (B

The behavior expression B can be executed if and only if the predicate P is true; otherwise it equals to stop. For example, the callee can be rung only if it is not busy. Otherwise, a linebusytone should give back to the caller. The following behavior expression represents such scenario.

sw_db ! GetStatus ! Callee ? S: Status;

([busy(S)] (user_sw !LineBusyTone !Caller

 []

[not busy(S)] (user_sw !StartRinging !Callee !Caller;

…

)

4.1.3 Expansion

A basic concept in process algebraic languages is expansion. Any LOTOS behavior expression can be rewritten as an equivalent expression containing only choice, action prefix, and stop (although this expression could be infinite) [Miln89]. An expanded LOTOS specification represents directly the labeled transition system (LTS) of the system in consideration (LTS is a Finite-State Machine whose transitions are labeled with actions, more details can be found in §3.2). Each alternative path in an expanded specification, or each branch in an LTS, represents explicitly a possible sequence of actions in the system. Sequences of visible actions are called traces. Internal actions (see § 4.1.2.2) such as i or hidden actions (see § 4.1.2.4) usually are not included in traces, although sometime they are shown for completeness.
4.1.4 LOTOS Supported Tool: CADP

CADP (CAESAR/ALDEBARAN Development Package) is a toolbox for protocol engineering. CADP is jointly developed by the VASY action at INRIA Rhone-Alpes / DYADE and the Verimag laboratory. It is dedicated to the efficient compilation, simulation, formal verification, and testing of descriptions written in the ISO language LOTOS [Fern96].
The CADP toolbox contains 1) two compilers (CAESAR and CAESAR.ADT) which translate LOTOS descriptions into C code which can be used for simulation, verification and testing purposes and 2) a set of applications (OPEN/CAESAR) which provides user extended functionalities such as interactive simulation, trace-searching tool, model checking, etc.

· CAESAR

CAESAR is a compiler that translates the control part of a LOTOS specification into either a C program (to be executed or simulated) or into an LTS (to be verified using bisimulation tools and/or temporal logic evaluators).

The CAESAR translation algorithms proceed in several steps. First the LOTOS description is translated into a simplified process algebra called SUBLOTOS. Then an intermediate Petri Net model is generated, which provides a compact, structured and user-readable representation of both the control and data flow. Eventually the LTS is produced by performing reachability analysis on the Petri net.

CAESAR accepts full LOTOS with the following restriction as regards the control part: process recursion is not allowed on the left and right hand sides of |[...]|, nor on the left hand side of >> and [>. Despite these restrictions, the subset of LOTOS handled by CAESAR is large and usually sufficient for real-life needs. The current version of CAESAR allows the generation of large LTSs (some million states) within a reasonable lapse of time.

The most recent version of CAESAR provides functionality called EXEC/CAESAR for C code generation. This C code interfaces with the real world, and can be embedded in applications. This allows rapid prototyping directly from the LOTOS specification.

· CAESAR.ADT

CAESAR.ADT is a compiler that translates the abstract data part of LOTOS specifications into libraries of C types and functions.

Each LOTOS sort is translated into an equivalent C type and each LOTOS operation is translated into an equivalent C function (or macro-definition). CAESAR.ADT also generates C functions for comparing and printing abstract data type values, as well as iterators for sorts having finite domain.

· OPEN/CAESAR

OPEN/CAESAR is an extensible, language-independent environment that allows user-defined programs for simulation, execution, verification (partial, on-the-fly, etc.), and test case generation to be developed in a simple and modular way. Various modules are involved in the OPEN/CAESAR framework. However, only two of them are used in our work:

· Caesar.Simulator, an interactive simulator.

Caesar.Simulator provides an interactive environment where a user can execute the specification in a step-by-step way. The GUI has two parts: one displaying the traces of actions that have been executed and the other listing all available actions that could be executed next. The executed action traces are initially empty and the list of next available actions includes all possible actions to be executed at the beginning. After the user selects one action to execute, that action is performed and added to the executed action traces and the next available action list is refreshed.

· Caesar.Exhibitor, a trace-searching tool.

Caesar.Exhibitor provides a searching environment where users specify the patterns of traces using predicates and keywords. The tool executes the C program generated by Caesar and Caesar.ADT. Traces matching the given patterns are output. The user could choose whether the searching algorithm should be breadth-first or depth-first, and also can choose to find all occurrences or just the first one.

Patterns could reflect complex semantics by using various predicates. However, the pattern we used in our work is very simple: only one predicate “~” and two keywords: <until> <deadlock>. ~ means “no”. <until>“ActionA” refers to all traces leading to ActionA. <deadlock> refers to a state where no action can be further executed. See §5.6.5 FI Hunter for examples.

4.2 Specification Styles of Telephony Systems

Vissers, Scollo, van Sinderen and Brinksma [ViSV88] [VSVB91] identify four main styles for writing LOTOS specifications. They are the monolithic style, the state-oriented style, the constraint-oriented style and the resource-oriented style. Each style has its own uses in telephony system specifications and they can be mixed in one specification to meet different requirements.

· The monolithic style gives explicitly all possible sequences of actions allowed by a specification. The main operator is the choice operator “[]”, and the specification is shown as a tree of choices. Therefore, this style is useful for debugging the specification and generating test sequences.

· In the state-oriented style, explicit system states are identified, e.g. by using state variables. Using the state-oriented style may lead to increased readability of the specification in cases where the informal specification uses the state concept, as is quite common for telephone devices. It may also lead to LOTOS specifications that can be implemented directly.

· The constraint-oriented style focuses on event sequencing and logical constraints as seen from the external interaction points. It is useful for implementation-independent specifications [Turn87]

· In the resource-oriented style, the processes are chosen in such a way as to represent resources, which means implementation modules. This style is useful for implementation specification.

In our specification, we used a mixture of the resource-oriented style and state-oriented style. The observable behavior of the system is described as a composition of separate resources which functionalities are well defined, and these resources may be specified using any style. The resource-oriented style is used to preserve the architectural model of the system at the specification level and the state-oriented style is used to specify features (BCP, INTL, INFB, CFBL, TWC) that are defined as LTSs.

4.3 LOTOS Specification of the system model

In this section, we are going to describe the LOTOS specification of the system and its features by describing the Abstract Data Types (ADT), the architecture of the specification and the different processes of which it is composed.

4.3.1 Abstract Data Types

In our specification of the system model, ADTs are built in a hierarchical way, by using the inheritance mechanism described in §4.1.1.

The basic level are standard ADTs: Boolean and Natural Numbers, which are provided by the standard LOTOS ADT library.

· The value of a “Boolean” type variable is either “True” or “False”, so we call “True” and “False” constructors of Boolean. A couple of logic operators are also defined as equations in Boolean, such as “and”, “or”, “not” etc.

· We limit the domain of “Natural Number” to be [0 .. 20] because specifications with infinite ADTs cannot be fully expanded. Operators defined in “Natural Number” that are used by second level ADT are the comparing operators “=”, “<”, “>” and the increasing operator “inc”.

The second level ADTs are enumerations, whose elements can be mapped to corresponding “Natural Number”, so that they can inherit the comparing functionality of “Natural Number”. “AddressType”, “SignalType”, “FeatureType”, “MessageType”, “TriggerName” and “ResponseType” are second level ADTs. Fig 4.1 uses “FeatureType” as an example to show how second level ADTs are built. The keyword “is” in the first row indicates the inheritance relationship between Natural Number and FeatureType. Then we define the mapping function “h” between Features and Natural Numbers so that the equivalence comparison between two features becomes comparing the corresponding natural numbers, as indicated in equation “f1 eq f2 = h(f1) eq h(f2)”. “eq” in the LHS of the equation is the equivalence operator of the “FeatureType” and “eq” in the RHS of the equation is the equivalence operator of the natural number.

The third level ADT defines sets. “SubscribedFeatures”, which is a set of features, is the third level ADT. Basic set manipulation operators such as “e eleof S” are defined in “SubscribedFeatures”. “eleof” returns a Boolean value True if e is in set S. For example, the expression “INTL eleof {INTL, CFBL}” is true because INTL is an element of {INTL, CFBL}.

The fourth level ADT are record ADTs, which represent fixed-length records. “BillItem” and “Status” are fourth level ADT.

· “BillItem” is a billing record data type, which stores all the necessary information to charge a single call. The format of “BillItem” is (a3, a1, a2, t1, t2), where a3 is the address of the paying party, a1 is the address of the caller, a2 is the address of the callee, t1 is the time when charging starts and t2 is the time when charging stops.

· The “Status” record stores the user’s status information (busy or idle) and subscribing information (a set of features subscribed by the user). The format of “Status” is (b, p, t1, t2, a, s), where b is a boolean variable indicating whether the subscriber is busy or not; p, t1, t2 are variables of INTL, respectively “TeenPIN”, “TeenTime1” and “TeenTime2” (see §3.2.3 INTL for details); a is a variable of CFBL, “BLForward”, which stores the forwarded address to be used when the subscriber is busy; s is a set that stores subscribed features of the user.

The fifth level ADT is a multiple record ADT. “UserStatus” is a fifth level ADT and consists of an “address” ADT and a “Status” record ADT. The format of “UserStatus” is (a, S), where a is the subscriber’s address and S is the corresponding status information.

The sixth level ADTs are database ADTs which simulate two databases: “TheUser” and “TheBill”. “TheUser” database stores status information of all users in the telephony network. Records in “TheUser” database are of sort “UserStatus”. Records in “TheBill” database are of sort “BillItem”. Basic database operations are defined on each database such as “add”, “inquire” and “set” data etc. Fig 4.2 depicts the ADT hierarchy pyramid.

4.3.2 Architecture of the specification

In order to achieve a clear and readable specification, it is required to put it together in a step-wise fashion. First, the system is described by the highest level processes that represent the highest abstract view of the different objects composing it, then each resulting process is decomposed into sub-processes. The process of system refinement is repeated until we end up with simple descriptions where no further decomposition is possible.

The structure of the LOTOS specification corresponds to the system structure defined in Chapter 3. In the LOTOS specification, components and interfaces between them, which are described in Fig. 3.1, are simulated by corresponding processes and gates with the same names. Fig. 4.3 gives a graphical representation of the top level of our system model specification and the corresponding LOTOS top level specification is given in Fig 4.4.

The control part of the specification has only one process SYSTEM, which consists of five processes: USERS, SWITCH, SCP, CLOCK and DBAPI. First, the SWITCH synchronizes with the CLOCK at gate sw_clk. Second, the USERS synchronizes with the SWITCH and the CLOCK at gate user_sw. Then, the SCP synchronizes with the SWITCH, the CLOCK and the USERS at gate sw_scp. Last, the DBAPI synchronizes with the SWITCH, the CLOCK, the USERS and the SCP at gates sw_db and scp_db.

· The USER has only one gate user_sw, so it can only interact with the SWITCH.

· The CLOCK has one gate sw_clk through which it can only communicate with the SWITCH.

· The SWITCH has four gates, user_sw, sw_scp, sw_clk and sw_db, through which it can synchronize with the USERS, the SCP, the CLOCK and the DBAPI respectively.

· The SCP can synchronize with the SWITCH and the DBAPI at gate sw_scp and scp_db, respectively.

· The DBAPI has two gates sw_db and scp_db, through which it can communicate with the SWITCH and the SCP.

Process CLOCK is instantiated with the initial time, Time(1). Process DBAPI is instantiated with the initial data of TheUser and TheBill. (For more details about the initial data of TheUser and TheBill, see §5.2 Test Scenario Design)

4.3.3 Process USER & USERS

USER is a very simple entity that accepts any valid signal and does nothing with them. As shown in Fig 4.5, process USERS consists of three users A B C. Since each user is independent of the others, we use the interleaving operator “|||” to compose them. Each user, A, B and C, is instantiated from process USER with address A, B and C respectively. Process USER synchronizes with any signal that comes from the SWITCH through gate user_sw. After synchronization on one signal, a new instance of user with the same address will be generated to synchronize on successive signals. In order to catch as many FI sequences generated from the switch as possible, no constraint is put on the order of user sequential behaviors.

Fig 4.5 gives the LOTOS specification of process USERS and process USER.

For this process, as well of as for similar processes below, note that the specification could have been stuctured in order to make possible to have an arbitrary number of users, by using recursive instantiation. However, in practice this would have complicated the simulation process.

4.3.4 Process CLOCK

Process CLOCK takes one parameter, T, which holds the current reading of the CLOCK. The Initial time is Time(0). When the SWITCH reads the time via “GetTime” signal, the CLOCK sends the current time, T, to the SWITCH and instantiates a new CLOCK with the reading increased by one. The specification of the CLOCK is given in Fig 4.6. Note that this process does not attempt to simulate real time, however it is sufficient for our purpose.

4.3.5 Process SWITCH

The switch controls the whole call process. Three Basic Call Processes (BCP) instantiated with user’s addresses control the call process originated from A, B and C respectively. Due to the mutual independence of the users, three BCPs are also independent of each other and composed using the interleaving operator “|||”. The specification of process SWITCH is shown in Fig 4.7.

4.3.5.1 BCP

The BCP process controls a general call process (see §3.3). It is like a backbone. Other new features are integrated into BCP and get activated from BCP.

The BCP is specified in the state-oriented style. The mapping rules from the LTS (see Fig 4.2 LTS Tree of BCP) to LOTOS processes (see Fig 4.8 LOTOS PIC Processes) are as follows:

· States

Eighteen numbered states of the LTS are mapped to 16 LOTOS processes with the same name. The starting state S is mapped into the process BCP. The Ending state E is mapped into a stop action in the last process.

- Transitions

Transitions are mapped into actions in corresponding state process. For example, In LTS, after executing the transition “DialTone A”, the system moves from state PIC_1 to state PIC_2. Thus, in process PIC_1, after the action user_sw !DialTone !Ad_A, process PIC_2 is instantiated and all associated parameters, i.e. the caller and callee’s address, are passed to it.

· POI

Unlike normal PICs which instantiate another PIC process at the end, at each POIs, (PICs where the features is activated), POIs call the FAP process, which detects subscribed features and activates them if there are any. If two features have the same POI, such as PIC_3, then two FAP processes are instantiated for the two features respectively. Since features are independent of each other, these two FAP processes are interleaved.

4.3.5.2 Feature Activation Process (FAP)

At the POI of each feature, PIC_1 (INTL), PIC_3 (CFBL, INFB) and PIC_8 (TWC), BCP calls the Feature Activation Process (FAP) to activate each feature.

FAP takes three parameters:

- F, indicating which feature is going to be activated;

- Ad_A, holds the caller’s address;

- Ad_B holds the callee’s address (If any)

FAP inquires about the status information of the caller or callee’s or both (depending on different features). Then the FAP checks if the feature to be activated has been subscribed or not. If it has, the corresponding feature process is called. Otherwise, the call process returns to BCP. Fig 4.9 gives the LOTOS specification of FAP.

FAP uses “eleof”, an operation defined on ADT “Status”, to check if a user subscribes to a specific feature, i.e. expression “eleof (INTL, Status)” is TRUE if INTL is an element of “Status”. A feature is activated by generating an instance of the corresponding feature process with specific parameters, i.e. addresses of the caller and the callee.

4.3.5.3 Features

The LOTOS processes of the features are obtained from the LTSs of those features in the same way as BCP and PIC process mapped from the LTS of BCP. (Refer to §3.2.3 INTL, §3.2.4 CFBL, §3.2.5 INFB, §3.2.6 TWC, § 4.3.5.2 BCP for the details of the LTSs and the mapping rules)

4.3.6 Process SCP

In our system model, the SCP includes five IN feature specifications. Every IN feature has a unique trigger name, i.e. INFB’s trigger name is INFO_ANAYZED, and INTL’s trigger name is ORIGINATION_ATTEMPT, so that the SCP can know which trigger message was sent from which feature by checking their trigger names. Responses to different features are composed together using the choice operator “[]” in the SCP. A new instance of the SCP is generated when the processing of the feature finishes.

Fig 4.10 illustrates the LOTOS specification of the SCP.

4.3.7 Process DBAPI

Process DBAPI is an interface of the user status database (TheUser) and the billing database (TheBill), which are represented using ADTs.

Its main functions are: 1) processing the queries of “GetStatus”, “GetSubscribedFeatures” from the switch and the query of “GetTeenPIN” from the SCP and outputing the corresponding replies using query operations of the ADTs and 2) following the setting instructions of “SetBusy”, “SetIdle”, “SetThreeWay”, “LogBegin” and “LogEnd” to set or construct records (“LogBegin”) using setting or constructor operations of the ADTs.

Fig 4.6 LOTOS Specification of Process CLOCK

 process CLOCK [sw_clk] (T: Time): noexit :=

 sw_clk !GetTime !T;

 CLOCK [sw_clk] (inc (T))

 endproc (* CLOCK *)

Fig 4.9 Feature Activation Process

Fig 4.4 Top-level LOTOS Specification

specification SystemModel [user_sw, sw_scp, sw_db, sw_clk, scp_db]: noexit

…

(* Data Part *)

…

behaviour

SYSTEM [user_sw, sw_scp, sw_db, sw_clk, scp_db]

where

process SYSTEM [user_sw, sw_scp, sw_db, sw_clk, scp_db]: noexit :=

		…

(* Initialization Part *)

…

 (

			(USERS [user_sw]

 |[user_sw]|

 	(SWITCH [user_sw, sw_scp, sw_db, sw_clk]

 	 |[sw_clk]|

	 CLOCK [sw_clk] (Initial Time)

)

)

		 |[sw_scp]|

		 SCP [sw_scp, scp_db]

)

 	 |[sw_db, scp_db]|

 	 DBAPI [sw_db, scp_db] (Initial Data)

endproc (* SYSTEM*)

endspec (* SystemModel *)

Fig 4.7 LOTOS Specification of Process SWITCH

process SWITCH [user_sw, sw_scp, sw_db, sw_clk]: noexit :=

BCP [user_sw, sw_scp, sw_db, sw_clk] (A)

|||

BCP [user_sw, sw_scp, sw_db, sw_clk] (B)

|||

BCP [user_sw, sw_scp, sw_db, sw_clk] (C)

		

FAP [user_sw, sw_scp, sw_db, sw_clk] (F: Feature, Ad_A, Ad_B: Address)

(* Integrated features *)

INTL [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address)

…

CFBL [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address, Ad_B:Address)

…

INFB [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address, Ad_B:Address)

…

TWC [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address, Ad_B:Address, Ad_C:Address)

…

endproc (* SWITCH *)

Fig 4.8 LOTOS PIC Processes (partial)

process BCP [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address): noexit :=

user_sw ! OffHook ? Ad_A: Address ;

sw_db ! SetBusy !Ad_A ;

FAP [user_sw, sw_scp, sw_db, sw_clk] (INTL, Ad_A)

endproc (* BCP *)

process PIC_1 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address): noexit :=

user_sw ! DialTone ! Ad_A: Address ;

PIC_2 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A)

endproc (* PIC_1 *)

process PIC_2 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address): noexit :=

user_sw ! Dial ! Ad_A: Address ? Ad_B: Address ;

PIC_3 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B)

endproc (* PIC_2 *)

process PIC_3 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B: Address): noexit :=

user_sw ! Onhook ! Ad_A: Address ;

sw_db ! SetIdle ! Ad_A;

stop

[]

(FAP [user_sw, sw_scp, sw_db, sw_clk] (CFBL, Ad_A, Ad_B)

 |||

 FAP [user_sw, sw_scp, sw_db, sw_clk] (INFB, Ad_A, Ad_B)

 |||

 …)

[]

sw_db ! Get Status !B ?S:Status;

PIC_4 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B, S)

endproc (* PIC_3 *)

process PIC_4 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B: Address, S:Status): noexit :=

([Busy(S)]->

 PIC_16 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A))

[]

([Idle(S)]->

 PIC_5 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B))

endproc (* PIC_4 *)

 …

process FAP [user_sw, sw_scp, sw_db, sw_clk] (F: Feature, Ad_A, Ad_B: Address): noexit :=

 ([F eq INTL]->

		sw_db !GetStatus !Ad_A ?S:Status;

([eleof (INTL, S)]->

 INTL [user_sw, sw_scp, sw_db, sw_clk] (Ad_A)

 []

 [not (eleof (INTL, S))]->

 PIC_1[user_sw, sw_scp, sw_db, sw_clk] (Ad_A)))

 []

 ([F eq CFBL]->

		sw_db !GetStatus !Ad_B ?S:Status;

([eleof (CFBL, S)]->

 CFBL [user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B)

 []

 [not (eleof (CFBL, S))]->

 PIC_4[user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B, S)))

 []

 ([F eq INFB]->

		sw_db !GetStatus !Ad_B ?S:Status;

([eleof (INFB, S)]->

 INFB [user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B)

 []

 [not (eleof (INFB, S))]->

 PIC_4[user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B, S)))

 []

 ([F eq TWC]->

		!GetStatus !Ad_A ?SA:Status;

!GetStatus !Ad_B ?SB:Status;

([eleof (TWC, SA)]->

 TWC [user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B, Ad_A)

 []

 [eleof (TWC, SB)]->

 TWC [user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B, Ad_B)

 []

 [not (eleof (TWC, SA) and eleof (TWC,SB))]->

 PIC_8[user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B)))

endproc (* ActivateFeatures3 *)

FAP

Fig 4.2 ADT Hierarchy Pyramid

Fig 4.10 LOTOS Process of SCP (partial)

Fig 4.5 LOTOS Specification of Process USER and USERS

 process USERS [user_sw]: noexit :=

 USER [USER_sw] (A)

 |||

 USER [USER_sw] (B)

 |||

 USER[USER_sw] (C)

 endproc (* USERs *)

 process USER [user_sw] (Ad: Address) : noexit :=

 (user_sw ? e:Signal ! Ad;

 USER [User_sw] (Ad)

)

 []

 (user_sw ? e:Signal ! Ad ? Dest:Address;

 USER [User_sw] (Ad)

)

 []

 (user_sw ! StartRinging ! Ad ? Orig:Address;

 USER [User_sw] (Ad)

)

 []

 (user_sw ? e:Signal ! Ad ? p:Nat;

 USER [User_sw] (Ad)

)

 []

 (user_sw ? e:Signal ! Ad ? M:MessageType;

 USER [User_sw] (Ad)

)

 endproc (* USER *)

process SCP [sw_scp, scp_db] : noexit :=

 …

 (* INTL Feature *)

 sw_scp ! Trigger ? Trig:TriggerName ? Ad_S:Address ? Ad_A:Address ? T:Time;

 ([Trig eq ORIGINATION_ATTEMPT]->

 scp_db ! getStatusReq ! Ad_S;

 scp_db ! getStatusRes ? S:Status;

 sw_scp ! Response ! SEND_TO_RESOURCE ! Ad_S ! AskForPIN;

 sw_scp ! Resource ? Ad_S:Address ? P:Nat;

 ([P eq GetTeenPIN(S)]->

sw_scp ! Response ! CONTINUE ! Ad_S;

	 	SCP [sw_scp, scp_db]	

 	 []

 	 [P ne GetTeenPIN(S)]-> sw_scp ! Response ! SEND_TO_RESOURCE ! Ad_S ! InvalidPIN;

 			sw_scp ! Resource ? Ad_S:Address;

 			sw_scp ! Response ! RES_DISCONNECT ! Ad_S;

 		 	SCP [sw_scp, scp_db]

)

)

 []

 (* INFB & INFR Feature *)

 sw_scp !Trigger ?Trig:TriggerName ?Ad_S:Address ?Ad_A:Address ?Ad_B:Address ?T:Time;

 [Trig eq INFO_ANALYZED]->

sw_scp ! Response ! ANALYZED_ROUTE ! Ad_S !Ad_A !Ad_B !Ad_B;

 SCP [sw_scp, scp_db]

endproc (* SCP *)

BillItem Status

UserStatus

Boolean

NaturalNumber

FeatureType AddressType

TriggerName ResponseType

TimeType SignalType MessageType

SubscribedFeature

TheBill TheUser

Fig 4.1 An Example of Second Level ADTs

type FeatureType is NaturalNumber

 sorts FeatureType

 opns

 	INTL, CFBL, INFB, TWC :->FeatureType

 	h: FeatureType->Nat

 	eq, _ne_: FeatureType, FeatureType->Bool

 eqns for all f1,f2:FeatureType

 ofsort Nat

h(INTL)=1;

 	h(CFBL)=2;

 	h(INFB)=3;

 	h(TWC)=4;

 ofsort Bool

 	f1 eq f2 = h (f1) eq h (f2);

 	f1 ne f2= h (f1) ne h (f2);

endtype (* FeatureType *)

BCP

Fig 4.3 Graphical Representation of the Top Levels of the Specification

SYSTEM

sw_db, scp_db

DBAPI

sw_scp

SCP

CLOCK

INFB

sw_clk

TWC

CFBL

INTL

BCP A

SWITCH

BCP B

BCP C

user_sw

USER A

USERS

USER B

USER C

Fig 4.11 LOTOS Process of DBAPI (partial)

process DBAPI [sw_db,scp_db](TheStatus:UserStatusSet,TheBill:BillSet) : noexit :=

 ((sw_db ! GetStatus ? Ad_A:Address ! GetStatus(GetUserStatus(Ad_A,TheStatus));

 DBAPI [sw_db,scp_db] (TheStatus,TheBill))

 []

 (sw_db !SetIdle ? Ad_A:Address;

 DBAPI [sw_db,scp_db]

 (SetUserStatus(Ad_A,Idle(GetStatus(GetUserStatus(Ad_A,TheStatus))),TheStatus),TheBill))

 []

 (sw_db! SetBusy ? Ad_A:Address;

 DBAPI [sw_db,scp_db] (SetUserStatus(Ad_A,Busy(GetStatus(GetUserStatus(Ad_A,TheStatus))),TheStatus),TheBill))

 []

 (sw_db! SetThreeWay ? Ad_A:Address ?b:Bool;

 DBAPI [sw_db,scp_db] (SetUserStatus(Ad_A,SetThreeWay(b,GetStatus(GetUserStatus(Ad_A,TheStatus))),TheStatus),TheBill))

 []

 (sw_db! LogBegin ?Ad_A:Address ?Ad_B:Address ?Ad_C:Address ?T:Time;

 DBAPI [sw_db,scp_db]

 (TheStatus,LogLogbegin(Ad_C,Ad_A,Ad_B,T,TheBill)))

 []

 (sw_db ! LogEnd ?Ad_A:Address ?Ad_B:Address ?T:Time;

 DBAPI [sw_db,scp_db]

 (TheStatus,LogLogEnd(Ad_A,Ad_B,T,TheBill)))

 []

 (sw_db !GetSubscribedFeatures ? Ad_A:Address !GetFeatures(GetUserStatus(Ad_A,TheStatus));

 DBAPI [sw_db,scp_db]

 (TheStatus,TheBill))

 []

 (scp_db !GetTeenPIN ? Ad_A:Address !GetTeenPIN(GetUserStatus(Ad_A,TheStatus));

 DBAPI [sw_db,scp_db]

 (TheStatus,TheBill)))

 []

 (sw_db !GetTeenTime ? Ad_A:Address !GetTeenTime(GetUserStatus(Ad_A,TheStatus));

 DBAPI [sw_db,scp_db]

 (TheStatus,TheBill)))

 []

 …

 endproc (*DBAPI*)

Page 70

