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I

Abstract

Telephony systems have evolved from the Plain Old Telephony System providing only

the basic functionality of making phone calls, to sophisticated systems in which many features

have been introduced, providing network subscribers more control on the call establishment

process. The concept of Intelligent Network was developed to facilitate and accelerate the

introduction of new features in a cost-effective manner. However, this objective confronts a

major obstacle known as the feature interaction problem. A feature interaction occurs when at

least one feature is prevented from performing its functionality or when the system functions

incorrectly due to the presence of features.

In the first part of the thesis, we present a model for specifying a telephony network

integrated with both switch-based features and IN features using a mixture of resource-oriented

style and state-oriented style as well as a specially organized Abstract Data Type hierarchy. The

model is designed in a way that independent specification and rapid introduction of features is

provided.

In the second part of the thesis, we present an improved formal definition of the concept

of Feature Interaction and a Feature Interaction Detection System. The system is limited to

interactions caused by violation of features or system properties. Feature Interaction between the

given features can be detected and presented in the format of Message Sequence Charts via five

steps: Test Scenario Designer, Integrator, Feature Interaction Hunter, Property Checker and

Message Sequence Charts Translator.

It is concluded that LOTOS is useful as a Formal Description Technique in specifying the

telephony system with features and for detecting feature interactions at the abstract specification

level.
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Chapter 1. Introduction: Motivation and Background

1.1 Introduction

Telephony systems have evolved in several phases. First, telephones were based on central

offices where exchanges were operated manually. Later on, automatic switches were introduced.

They were operated electromechanically by using electrical relays. The development of transistors

permitted the development of electronic switches that made possible the storage of software

programs and data within switches.

This has resulted in a transition from basic telephony systems providing only the basic

functionality of making phone calls, to sophisticated systems in which many features have been

introduced, providing the network subscribers more control in the call establishment process.

However, with the infrastructure provided by the Plain Old Telephony System (POTS), the task of

introducing new features was tedious and very costly. This is because, before 1980s, features were

switch-based. All the data and logic processing required by the services were located within the

local node. This technique has two major drawbacks. First, since the software related to the new

introduced features must be located in all the local exchange nodes (local switches) to which end-

users are directly connected, any software modification should be done to all those local nodes.

Second, due to the fact that different types of switches provided by different telecommunication

companies could be deployed, the introduction of a new feature requires the adaptation of the

related software to every type of switch in the network. With these complexities and effort

required, a new feature typically requires three or four years to be deployed into the network

[Lee92], [Viss95].
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To overcome the limitations of POTS, Intelligent Networks (IN) were introduced to

facilitate and accelerate in a cost-effective manner service implementation and provisioning. One of

the aims of IN is independent service implementation. That is, every service provider will be able

to define and develop its own services independently and then deploy them in the network.

IN has two essential elements: Common Channel Signaling and Non-switching nodes

[Viss95].

� Common Channel Signaling

The Common Channel Signaling is a signaling system where all signalings are

performed over transmission paths completely separated from the voice path [Bern95].

Such a system enables the exchange of different signals, such as supervisory signals and

address signals, by transmitting messages between the different nodes over a network of

signaling links, instead of using the voice transmission paths. CCITT has defined two

Common Channel Signaling System: CCSS6 using analog voice-band transmission and

CCSS7 that evolved from the former, using the standard 64 kb/s digital transmission

link [Thor94].

� Non-switching Node

The CCSS7 common channel signaling has enabled the introduction of non-switching

nodes where feature logic and data could be stored. This means that the service control

can be centralized in some specific nodes. Those nodes are known as Service Control

Points (SCPs) and Service Data Points (SDP). They are accessible to the switch via

protocols using CCSS7.
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The first IN services introduced are the 800 services (known as freephone numbers) and

Automatic Calling Card Service [Viss95].

When an IN feature is to be invoked, a message indicating a request to process the feature

and other related information, i.e. the caller and callee’s addresses, the calling time, etc. is sent

from the switch to the SCP via the signaling network. Then the feature is processed within the SCP.

When the SCP finishes processing, a response of instructions, i.e. rerouting or terminating the call,

is sent from the SCP back to the switch. The switch will process the call as instructed, i.e. rerouting

or terminating the call.

However, although the CCSS7 and the SCP technology free the features from being located

in the switches, the features are dependent on specific activation events and each feature has its

own activating mechanism defined within the switch. A new approach was developed to handle this

problem by introducing a number of well-defined feature independent activation checkpoints

within the switch and defining a feature independent interface between the switch and the SCP. As

a result, the deployment of a new feature does not need a modification on the switch for the specific

activating mechanism. A simple information to the switch that a new feature has been deployed and

should be activated under certain criteria is sufficient.

1.2 Feature Interaction Problem

The introduction of the IN technology eased the difficulty of feature creation, deployment

and maintenance. However, with the abundance of new features and their co-existence in the

networks, a new problem called Feature Interaction (FI) problem was discovered [BDCG89]. A

Feature Interaction is understood to be any kind of unexpected interference among multiple

features. These interferences may prevent at least one of the features from behaving correctly
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[BDCG89]. The FI problem is complex. After several years of exploration [1stFITS92] [2ndFITS94]

[3rdFITS95][4thFITS97][5thFITS98], researchers have generally agreed that it is probably not

feasible to resolve all possible feature interactions at any single stage of a feature lifecycle or with

any single technique [Kell94].

Our work is motivated by the challenges, from a designer’s point of view, of detecting FIs

in telecommunication network systems.

The feature interaction problem can arise at any stage of the feature development lifecycle.

Therefore, the feature interaction problem can be approached from three different angles: detection,

avoidance, and resolution [CaVe93] [2ndFITS94]. Furthermore, detection and resolution may be

divided into on-line and off-line techniques, as discussed in the introduction of [2ndFITS94]. Off-

line methods deal with the problem before deployment. On-line methods deal with it after

deployment.

- Detection

The objective of a detection approach is to analyze a set of independently specified

features and determine whether or not there are any interactions between their joint

behavior [BoLo93], [Thom97], [FaL397], [NaKK97], [KaLo98]. Detection can be applied

through the whole lifecycle of a feature, since the cause of interaction can be related to any

phase of the feature lifecycle.

- Avoidance

An avoidance mechanism for unwanted interaction assumes that the causes of the

interaction are known and an architectural or analytical approach is defined to prevent the

manifestation of such interactions [MiTJ93]. The avoidance approach is most suitable in the
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early phases of specification and design of features. An example of the application using the

avoidance approach is the Wireless Intelligent Network (WIN) protocol, where the feature

interaction problem is solved by giving pre-defined priorities to different features [Grin97].

- Resolution

The objective of a resolution mechanism is to find appropriate solutions to interactions

that manifest themselves at execution time. Several approaches have been proposed in

[Chen94][IrEr97] [BAEQ98].

Formal Description Techniques (FDTs) such as LOTOS [ISO8807] and SDL [CCITT87]

have proven useful in detecting feature interactions at the specification level [Zave93]. A formal

description of the system behavior with the introduced features can provide an unambiguous and

precise view of the system and of the new integrated features. The formal analysis and validation

methods are also based on this formal description of the system.

The main subject of this thesis is the investigation of techniques based on FDT LOTOS for

the detection of unwanted feature interactions.

1.3 Feature Interaction Contest

On the occasion of the Fifth International Workshop on Feature Interactions in

Telecommunications and Software Systems (FIW’98), an international Feature Interaction (FI)

detection contest was held [GTGB98]. The contest offered an opportunity to compare the efficiency

and the adaptability of different methods and tools in the detection of feature interactions. Inviting

research teams of all schools of thought to compete, under controlled conditions, in accomplishing
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a specific and predetermined task, set a basis to permit the assessment of the advantages and

capabilities of the various methodologies.

The contest specifications modeled a telephony network as a collection of black boxes,

communicating with each other via defined interfaces. They defined POTS and 12 switch-based

and IN features as sequences of events taking place on these interfaces. The contestants were

required to develop an automated FI detection tool and apply it to detect the FI between these

features. The tool was evaluated by 1) its coverage, that is, the number of features actually defined

in the tool language, 2) the number of valid feature interactions found [NBGO98].

Six teams joined the contest as follows,

� AT&T Research Labs, in New Jersey, USA

� Institute d’Informatique et de Mathematiques Appliquees de Grenoble, in Grenoble,

France

� University of Ottawa

� University of Sherbrooke, in Quebec, Canada

� Uppsala University, in Sweden

� University of Waterloo, in Ontario, Canada.

The winner was the IMAG team from France and the University of Ottawa team was

ranked second.

The IMAG team adopted a synchronous approach using Lustre as the specification

language and Lustess as the FI detection tool [BORZ98], where the system, the features and the
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property checker are modeled as synchronous systems. Synchronous systems have cyclic

behaviors: at each tick of a global clock (also called instant of time), all inputs are read and all

outputs are emitted. Every reaction to inputs is theoretically instantaneous. The FI detection system

using Lustess consists of three components: the system under test, an input data generator and an

oracle system. The input and output of the system are both boolean. The input data generator is

built by Lustess according to the description of the environment that is interacting with the system

and randomly produces test data at each instant of time in response to the system outputs. The

oracle system plays the role of property checker, which checks the validity of the system based on

the dynamically produced input to and program-reaction output from the system under test and

outputs the verdict as Boolean.

The University of Ottawa team adopted two methods, both based on the use of the FDT

LOTOS and its tools: one of the methods is presented in this thesis; another method, is based on the

concept of Observers [QPLS99].

1.4 Contributions of the Thesis

The contributions of this thesis are in two areas: 1) a model of telephony network integrated

with both switch-based features and IN features and 2) a system for detecting feature interactions at

the specification level.

1.4.1 Contribution 1: A model for specifying in LOTOS a telephony system integrated with

both switch-based features and IN features

In chapter 3 and 4, we present a model for specifying a telephony system integrated with

both switch-based features and IN features using a mixture of resource-oriented style and state-
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oriented style as well as a specially organized Abstract Data Type hierarchy. The billing database

and the user status database are specified using ADT pyramids to reflect their hierarchical

architectures. The system framework is specified in a resource-oriented style to preserve its

interface integrity. The Basic Call Process and the integrated features are specified using the state-

oriented style to enhance reusability and to preserve consistency with their scenario definition. By

introducing Feature Activation Process, rapid feature integration is achieved in the sense that any

feature, switch-based feature or IN feature, can be added to the global specification without any

major modification.

1.4.2 Contribution 2: Adding the system properties into the traditional formal FI definition

In Chapter 5, we expand the traditional formal FI definition presented by P. Combes et. al

[CoPi94] and W. Bouma [BoZu92], which addresses the FI problem as a violation of integrated

feature properties due to the introduction of new features into the network, by adding system

properties into the set of properties to be checked. Such properties include the correctness of billing

and the consistency of successive signals given to user.

1.4.3 Contribution 3: A Feature Interaction Detection System

In Chapter 5, a Feature Interaction Detection System is described for detecting feature

interactions between switch-based features and IN features. This system is developed upon the

improved FI formal definition described in contribution 2. It is limited to interactions occurring at

the abstract specification level and resulting in violation of system/feature properties. The FI

Detection System consists of five parts: Scenario Designer designs specific test scenarios for the

pair of features to be considered; Integrator integrates the test scenario and a global process

monitoring system property violations into the system specification; FI Hunter detects those FI
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traces violating the system properties, e.g. conflicting signals given to users or incorrect billing

actions, and those potential FI traces where both features have been executed and need to be further

analyzed; Property Checker checks the potential FI traces found by FI hunter with the properties of

the activated features and filters out the real FI traces where the features properties do not hold; the

final step, MSC Translator translates FI traces found by both FI Hunter (FIs violating the system

properties) and Property Checker (FIs violating the feature properties) from LOTOS traces into the

format of Message Sequence Charts (MSC) and compiles them into a final FI report.

An application of the system on two switch-based (CFBL, TWC) and two IN features

(INTL, INFB) is presented in this thesis. However, all pair-wise combinations of twelve features

were analyzed for the contest.

1.4.4 Contribution 4: Towards a method for feature interaction detection.

Although we do not claim that a general method for feature interaction detection was

developed in this thesis, some contributions towards a method were presented. The main ideas are

described in §5.3 §5.4 §5.5 §5.6. We start from the specification of system and feature properties,

and then we provide several mechanisms for detecting violations of these properties.

1.5 Organization of the thesis

The four remaining chapters will cover the following issues:

Chapter 2: Related Work: Formal Methods for Specifying the telephony networks and

Detecting FI

We present a survey of related work on formalisms used to specify telephony systems and

on FI detection methods using FDT.
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Chapter 3: System Model Design

We describe the design to a telephony system model integrated with both switch-based

features and IN features and discuss the Basic Call Process, the classification of features, and the

concepts of feature integration and activation. Two switch-based and two IN features are used as

examples to illustrate the feature integration and the feature activation in the system model.

Chapter 4: LOTOS Specification of the System Model

First, we give a brief introduction to the LOTOS specification language by describing its

main operators and by giving examples of their use in the context of telephony network

specification. Then, we discuss four main styles of writing LOTOS specifications for

telecommunication systems. Finally, we present a LOTOS formal specification developed for the

telephony system model defined in Chapter 3. This is done using a mixture of resource-oriented

style and state-oriented style, as well as a specially organized ADT hierarchy.

Chapter 5: Feature Interaction Detection System

We describe an improved formal definition of FI and a Feature Interaction Detection

System (FIDS) developed based upon this definition. Two switch-based and two IN features are

used as examples to illustrate how FIDS is applied to detect feature interactions between the given

features. Finally, an evaluation of FIDS is performed by comparing the FIs detected by FIDS with

those in the FI benchmark issued by the contest committee.

Chapter 6: Conclusions and Future Work

Conclusions and future work are presented in this chapter.
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Chapter 2. Related Work: Formal Methods for Specifying the Telephony

Networks and Detecting FIs

Traditional engineering disciplines rely heavily on mathematical models and calculation to

make judgments about designs. For example, aeronautical engineers make extensive use of

Computational Fluid Dynamics (CFD) to calculate and predict how particular airframe designs will

behave in flight. A variety of methods with similar goals are available in computer science and

engineering. Quantitative simulation methods are among them; however, they do not relate to the

research area of this thesis. We concentrate on methods that have their foundation in logic and

formal semantics. Such methods are called “formal methods”[Turn93].

Formal methods can be used to determine the logical properties of systems with respect to

their functional behaviors. Very well-known properties in this family are “deadlock” properties.

Others all relate to the fact that certain post-condition are satisfied or not. We will see a number of

such properties in this thesis.

In this chapter we conduct, with no attempt to be exhaustive, a survey of a number of

formal methods and languages that are used for the specification of telephone systems and features,

as well as of FI detection methods using Formal Description Techniques (FDT).

2.1 Formal Specification Methodologies for Telephony Systems

2.1.1 Finite State Machines

A Finite State Machine (FSM) is an abstract machine that is used to represent the behavior

of a given system in terms of states and transitions. The most common notation used to represent a
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FSM is a directed graph whose nodes are system states and whose arcs are system transitions; the

other notation being state transition matrices. The machine can be in only one state at a time. Upon

receiving an input, the machine generates an output and may change to a new state. Both the output

and the new state are functions of the input and the current state. A state is a mean by which one

can describe an aspect of the system’s behavior. For example, one may talk about a Dialing state, a

Ringing state, or a Talking state while describing the behavior of a telephone system. Telephony

applications described using FSM can be found in [KaWa71] [WhCh81].

2.1.2 Petri Nets

Petri nets [Pete 77] [NaKa97] are abstract machines that are used to describe the behavior of

systems. They are represented by a directed graph containing two types of elements: places and

transitions. Places, which contain tokens, are represented by circles; transitions, which allow tokens

to move between places, are represented by lines. Directed graphs connect places to transitions. A

transition is said to fire if 1) it is triggered by a clock pulse and 2) all arrows entering the transition

originate from places that contain tokens.

The Petri-net based model has been used to describe, among other applications [Ager79],

the behavior of telephone switching systems [YoBa79]. Yoeli and Barzalai introduce the concept of

extended Petri Nets (EPN) and use it to model the call processing operations in an automatic

telephone exchange. In their approach, the telephone system is decomposed into a set of virtual

subsystems: a virtual station subsystem (VSS) representing the user’s station, a virtual station

control (VSC) representing the central exchange, a virtual dial control (VDC) collecting the dialed

digits, and a virtual central control (VCC) representing the module which handles the establishment
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of a connection between two users. When a user dials a digit, it is transmitted to the VDC through

the VSC. Once the caller has reached the callee, the connection is handled by the VCC.

Two common problems with the FSM and Petri-nets are: 1) the limited role they assign to

data. Many features rely on data values and data structures for the essential aspects of their

functionalities. However, data aspects take a secondary role in these formalisms. 2) the lack of

process structure, which is very useful for design. Extended Finite State Machine (EFSM) methods,

such as SDL, remedy this situation.

2.1.3 SDL

SDL (Specification and Description Language) is the most widely used FDT in the field of

telecommunications [BeHo89]. It has been developed and standardized by CCITT (the

International Telegraph and Telephone Consultative Committee) and ITU (International

Telecommunication Union). SDL is used to describe both the behavior and structure of systems,

from a high description level down to a detailed design level. The behavior of a system is described

in terms of a set of processes, which are extended finite state machines. Processes work

concurrently and communicate asynchronously with each other by sending and receiving discrete

messages called signals. Signals are also the means by which SDL processes communicate with the

environment. When signals are used to communicate between processes, they always carry the

unique identifiers of the sending and receiving processes, along with possible data values.

Examples of specifying telephony systems using SDL are presented in [CHCk89] [CoPi94].

A problem with SDL formal language is that it enforces rigid system boundaries in the form

of process and blocks. Although these are useful to represent system architecture, they may
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increase the diffculties in the early design stage when the system architecture is not quite clear.

LOTOS structure, which consists of only processes, is more flexible.

2.1.4 LOTOS

An early study [FaLS90] has shown that LOTOS is well suited for specifying elementary

telephone systems, basically the Plain Old Telephone System (POTS). The results of that study

further motivated the research on specification styles. A formal specification of telephone systems,

using the constraints-oriented style was described in [FaLS91]. The work presented in [StLo93]

describes a new approach for specifying telephony systems using a mixture of the constraint-

oriented style and the state-oriented style. In [KaLo98], a formal specification of IN network model

was developed using the resource-oriented style. The telephony network system model in this thesis

is specified using a mixture of resource-oriented style and the state-oriented style.  More details of

the specification styles can be found in § 5.2 and in [FaLS97]

2.2 FI Detection Methods using FDTs

Feature interaction is a research area of some importance, and a number of papers are

published every year on the subject. Five International Workshops have been held so far [1stInt.92]

[2ndInt.94] [3rdInt.95][4thInt.97][5thInt.98], where detection approaches from various research areas,

e.g. software engineering theory, formal description techniques etc., are presented.

In the following, we limit ourselves to briefly reviewing work closely related to ours, which

uses LOTOS as FDT to detect FI at the specification level.
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2.2.1 Step-by-Step Execution

Boumezberur and Logrippo [BoLo93] proposed a LOTOS specification of a sample

telephone system and applied the step-by-step execution to detect feature interactions. At each step

of the step-by-step execution, the user chooses the next action to be taken among all possible

actions that are offered at that point. This methodology is useful for checking the conformance of a

system defined informally to its formal description in LOTOS. In practice, this can be done by

checking if 1) test sequences derived from the informal definition are accepted by the formal

specification, 2) test sequences obtained by executing the specification are included in the formal

definition of the system, 3) test sequences that are not specified in the informal definition are not

accepted by the formal specification.

2.2.2 Model Checking

Model checking is a method for formally verifying finite-state concurrent systems.

Specifications about the system are expressed as temporal logic formulas, and efficient symbolic

algorithms are used to traverse the model defined by the system and check if the specification holds

or not.

Many FI detection methods have been developed using Model Checking: 1) [BoZu92]

modeled IN services as defined in the Global Functional Plan of the IN Conceptual Model in

LOTOS and used model checking to validate properties of services when they are integrated

together. Interaction is detected when a property of a service is not verified. 2) [CoPi94] developed

an abstract model, representing the user external view, of the network and the introduced features

using SDL as a formal language. Then, they expressed feature requirements and properties in a

temporal logic language and applied the model checker tool to validate the features properties. 3)
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Using LOTOS as a formal language, [Thom97] modeled features as user view behavior trees,

which are synchronized to form a network of users interacting with a “network manager” to

complete the call process. Features’ properties are specified using µ-calculus and verified using

CAESAR model-checking evaluator.

2.2.3 Backward Reasoning

Stepien and Logrippo [StLo95] developed a method to detect feature interaction using

backward reasoning, which involves specification of features in LOTOS. Interactions to be detected

are caused by ambiguity of actions. An observable action in a LOTOS specification is ambiguous if

in the behavior tree of the specification, there is a branching point where the action is the first

observable one in at least two branches. Ambiguity represents non-deterministic behavior of the

system being specified, and is a symptom of feature interaction. To prove that an action is

ambiguous, backward reasoning for LOTOS is applied. It consists of a combination of backward

and forward execution. Forward execution of the specification is applied to reach the action, then,

using the resulting behavior expression, backward execution is performed to find a different trace

leading to the action. A tool to help carry out backward execution is presented.

2.2.4 Conformance Theory

In [FaLS97], Faci and Logrippo developed a methodology for detecting feature interactions

using conformance theory. First, they defined two notions of composition and integration of

features. Composition expresses the synchronization of features on their common actions with

POTS and their interleaving on their independent actions. Integration expresses the extension of

POTS with the n features, such that each feature is able to execute all of its actions that are allowed

in the context of POTS, when the other features are disabled. Then, they reason about interactions
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in terms of the conformance relation studied in testing theory, in the following way: an interaction

exists between n features if their integration does not conform to their composition.

2.2.5 Abstract Data Types

In [SteL95], a method for representing and verifying intentions in telephony features using

abstract data types is presented. Feature intentions describe the intended behavior of telephony

features. The first step of the method is to specify a feature’s intentions using abstract data types.

Intentions of a feature are described independently of other features without consideration of

potential interactions at this stage. They are described for every operation that exists in the system

regardless of which feature is actually used, and are implemented as Abstract Data Types

operations which specify the intention’s violation. The specification language considered is

LOTOS. The second step consists in executing a formal specification of the system with features.

The abstract data types descriptions of feature intentions are included in the specification, and a

monitor for verifying intentions of features described as LOTOS processes is introduced to verify

the intentions as described in the abstract data types every time an action of the specification is

executed.

2.2.6 Goal Oriented Method

In [KaLS98], Kamoun and Logrippo developed a method for detecting feature interactions

between IN services using the Goal Oriented method. The method is limited to the detection of

interactions caused by violation of features properties. It is based on formalization of feature’s

properties, derivation of goals satisfying the negation of the feature properties and use of Goal

Oriented Execution to detect traces satisfying these goals. A trace satisfying a goal shows that an
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interaction exists between the specified features by describing a scenario violating one of the

properties of the introduced features.

Our FI Detection method presented in chapter 5, was first inspired from the idea of the Goal

Oriented method. However, considering the burden that a complex goal may cause on the goal-

matching tool, we simplified the goal to be just an “error reporting” event and a “call process

finish” event. We also let a global monitoring process capture the violation of system properties

and perform a static feature property check on the snapshot of the billing data taken right before the

“call process finish” event.
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Chapter 3. System Model Design

In this chapter, we present a telephony system model integrated with both switch-based

features and IN features. It should be noted that the system is modeled after the definition of the FI

detection contest rather than after the functionality of a ‘real’ telephony system.

3.1 General Architecture of the System Model

As depicted in Fig 3.1, our telephony network system is modeled as a collection of black

boxes communicating with each other via defined interfaces between them. Interfaces are

represented by solid black squares and named after the two components involved. For instance, the

interface between the switch and the clock is named by “sw_clk”.

sw_scp

user_sw
SWITCH

|||

|||

User
Status

D

B
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I

SCP

sw_db
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Fig 3.1 Architecture of the System Model
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• Users

Three users A, B and C send corresponding signals to the switch when users perform

offhook, onhook, dial actions on them; and respond with ringing, audibleringing (an audible

tone to the caller indicating that the destination phone is ringing) etc., when they receive

corresponding signals from the switch. Note that in this thesis, for simplicity, users model

both the “machines” and the people who operates them.

• Switch

The switch is the main engine of the whole system model. It consists of three parts: Basic

Call Process (BCP) providing only the basic functionality of making phone calls, 12

features providing the network subscribers more control in the call establishment process

and Feature Activation Process linking the BCP and the integrated features together.

The BCP processes the signals that come from users, consults user status information stored

in the user status database, establishes the call connection and logs the billing actions into

the billing database while the called party answers the call.

The twelve integrated features are as follows:

- CFBL

Call Forwarding on Busy Line (CFBL) that redirects all calls to the subscribing line to a

predetermined number when the line is busy.

- CND



Chapter 3. System Model Design

Page 21

Call Number Delivery (CND) that allows the called telephone to receive a calling party’s

directory number, and the date and time.

- INFB

IN Freephone Billing (INFB) that allows the subscriber to pay for incoming calls.

- INFR

IN Freephone Routing (INFR) that allows the subscriber to redirect a call to various

telephones potentially using the whole or part of the calling number and/or the time of day.

- INTL

IN Teen Line (INTL) that restricts outgoing calls based on the time of a day. This feature

can be overridden on a per-call basis by anyone with the proper identity code (PIN).

- TCS

Terminating Call Screening (TCS) that restricts incoming calls by redirecting calls from

lines that appear on a screening list to a vague but polite message.

- TWC

Three-way Calling (TWC) that allows the connection of three parties in a single

conversation.

- INCF

IN Call Forwarding (INCF) that permits the subscriber to have incoming calls redirected to

another number.
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- CW

Call Waiting (CW) that allows the subscriber to be notified that another party is trying to

reach him/her while the line is busy, and to accept the new call by placing the original call

on hold.

- CC

Charge Call (CC) that allows a caller to be automatically charged on a different telephone

number than the calling number.

- CELL

Cellular (Cell) that charges cellular subscribers a fixed fee for each minute when a call is in

progress

- RC

Return Call (RC) by which the subscriber can set up a call to the last caller by dialing *69.

• SCP

If the user subscribes to Intelligent Network (IN) features, the Service Control Point (SCP)

will replace the switch to control the call process when IN features are activated.

• Clock

The clock provides the switch with the global time to log billing actions or make time-

dependant decisions. For example, the user subscribing to INTL has to dial a valid PIN to

originate a call during the specific INTL time period while no PIN is required outside that

time period. The switch will get the current time from the clock and send the information to
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the SCP. The SCP compares the current time with the INTL time period stored in the user

status record and decides if a PIN validation procedure is necessary or not.

• Databases and DBAPI

Our database system consists of two parts: Databases and DB Application Interface

(DBAPI). Databases store billing data and subscription data. External applications (e.g. the

switch) get access to these information via the DBAPI. DBAPI hides implementation details

of the databases from external users (the switch and the SCP).

3.2 Notation Description

The notation used in this thesis to define BCP, FAP and the features is based on Labeled

Transition Systems.

Labeled Transition Systems (LTS) are a variation of the Finite State Machine formalism

where transitions are labeled with action names [Miln89]. The most common notation used to

represent LTS is a directed graph whose nodes are system states and whose arcs are system

transitions. The machine can be in only one state at a time. Upon executing the labeled action, the

system moves to a new state along that arc.

� States

In our model, LTS have three kinds of states: 1) start state which has only “out” arcs, 2)

intermediate states which have both “in’ and “out” arcs and 3) end states which have only

“in” arcs. For reference, the intermediate states of LTS presented in this thesis are numbered

from “1”, the start state and the end state are marked with “S” and “E” respectively, in gray

circles.
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� Transitions

In our model, transitions are labeled by actions of format as follows:

[[Guard] -> ] Interface_name, Signal_name, [Parameter1, Parameter2,…]

Guard

Guard is optional and only used for restricting the transition’s occurrence: only if the

guard is satisfied, could the transition be executed. In our model, guard is usually a logic

expression or a check on user status, e.g. guard “Busy B” means “user B is busy”.

Interface_name

Interface_name indicates the name of the interface where the signal occurs. We have

five interfaces in our system model: user_sw (the interface between the users and the

switch); sw_db (the interface between the switch and DBAPI); scp_db (the interface

between the SCP and DBAPI); sw_clk (the interface between the switch and the clock);

sw_scp (the interface between the switch and the SCP).

Signal_name

Signal_name identifies the name of the signal. Signal_name is unique and belongs to

only one interface. For example, the “offhook” signal can only occur at “user_sw” because

only the users can send out the “offhook” signal.

Different features may have different set of signals. We will discuss it along with the

individual description of features later.

Parameters
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Parameters carry the data information of signals. Signals can have 0 or more

parameters depending on the type of signals. For example, user signals (signals on

“user_sw” have 1 or 2 parameters where the first one indicates the address to or from which

the signal is given, the second parameter carries additional information such as, the

identification of the user that causes the signal, e.g. “user_sw Ringing B A” means the

ringing signal is sent to B because of A (dials B). We will explain this formula along with

signals in §3.3 Description of Features.

� Multiple-action Transitions

For simplicity, we compress LTS Trees using multiple-action transitions. Multiple-action

transitions are transitions labeled by a series of actions. To execute a multiple-action

transition is to execute all actions belonging to that transition sequentially.

3.3 BCP

Basic Call Process provides basic telephony functionalities. It identifies at a high level of

abstraction all the activities necessary to establish a normal call between parties in the system. As

described in Fig 3.2, BCP starts when the caller performs offhook and ends when both calling and

called parties hang up. Since the switch takes the role of controlling the whole call process, BCP is

implemented within the switch. Thus, signals from the user such as: offhook, onhook, dial, etc are

input signals to BCP and signals going to the user such as: ringing, audibleringing, announcement,

dialtone are responses from BCP to those input signals. Besides the end-users, BCP also

communicates with DBAPI and the clock, inquiring user’s status information from the user status

database to establish the call or adding new billing records with timestamps into the billing

database when the call is connected. Fig 3.2 shows the LTS tree of BCP.
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user_sw StopRinging B A   
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 sw_db SetBusy A

user_sw DialTone A
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Fig 3.2 The LTS Tree of BCP (To be continued)
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� Points In Call:

The numbered intermediate states in Fig 3.2 are also called Points In Call (PIC), where

1) the Feature Activation Process will be attached to activate corresponding features and

(Point of Initialization or POI) 2) the activated features return to BCP upon completion.

(Point of Return or POR) (see §3.4 Feature Activation Process)

� Interfaces

Three interfaces, user_sw, sw_clk, sw_db, are used by BCP.

user_sw Onhook A
sw_db SetIdle A

user_sw Onhook B
sw_db SetIdle BE

13

E

user_sw Disconnect B A
sw_db LogEnd A B A T

sw_clk GetTime T

user_sw Disconnect A B
sw_db LogEnd A B A T

8

14

sw_clk GetTime T 9

10

11

12

Fig 3.2 The LTS Tree of BCP (Continued)

user_sw Onhook B
sw_db SetIdle B

user_sw Onhook A
sw_db SetIdle A
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� Signals

In BCP, 1) signals at “user_sw” are: Offhook, Onhook, Dial, Dialtone,

LineBusyTone, StartRinging, StartAudibleRinging (when the called party is rung, the caller

can also hear a corresponding ringing tone) and Disconnect; 2) signals at “sw_db” is

GetStatus (inquire user’s status), SetBusy (set user’s status to be busy), SetIdle (set use’s

status to be Idle), LogBegin (Add a new billing record and log the call beginning time),

LogEnd (log the call ending time); 3) the only signal at “sw_clk” is GetTime (read the time

from the clock).

� Parameters

In BCP, 1) signals at “user_sw” have one or two parameters, where the first

parameter indicates the user who sends or receives the signal. For example, A is the sender

of the signal “user_sw Offhook A” and B is the receiver of the signal “user_sw StartRinging

B A”. The second parameter usually describes who causes the received signal. As in the

previous example, the second parameter specifies that B is rung by A.  However, in

“user_sw Dial A B”, the second parameter indicates the callee’s number that is dialed by A.

2) “Get status” , “SetBusy” and “SetIdle” signals at “sw_db” have one parameter indicating

whose status is inquired or changed. 3)“LogBegin” and “LogEnd” signals at “sw_db” have

four parameters, the first and the second parameters respectively specify the caller and the

callee of the call, the third parameter tells who is the payer of the call and the last parameter

holds the beginning (or ending) time of the call. (see transition from state 7 to state 8)

4)“GetTime” signal at “sw_clk” has one parameter, storing the current time read from the

clock.
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� Possible Exits

In BCP, after “Offhook A”, a call process has five possible exits: 1) the caller A

onhooks after it dials the callee’s number; 2) the callee B is busy when A is calling, thus

after hearing the linebusytone, A hangs up; 3) A onhooks while B is being rung; 4) the

caller A onhooks first when finishes talking with B; 5) the callee B onhooks first when it

finishes talking with A. Only in the last two cases, a real connection between A and B is

successfully established.

3.4 Feature Activation Process

3.4.1 Feature Integration: POI & POR

In an IN-like model, all telephony features other than BCP are built upon BCP and interact

with it at two points which, from the feature’s point of view, are called:

 i. Point Of Initialization (POI) is a PIC in BCP where the feature is activated. All telephony

features other than BCP have one and only one corresponding POIs.

 ii.  Point Of Return (POR) is a PIC in BCP where normal call processing should continue

after executing the feature. One feature could have 0 (if it never returns to BCP) or more

PORs.

Figure 3.3 illustrates the integrating relationship between BCP and feature INTL, CFBL,

TWC and CW.

For feature INTL (see §3.6.1 INTL), the POI is PIC_ 1. If the caller A subscribes to INTL,

the feature is activated right after caller A offhooks. The POR of INTL is PIC_2. If INTL does not



Chapter 3. System Model Design

Page 30

block the call (either not in INTL time period or in INTL time period but the user has a valid PIN

for the call origination), a dialtone is given to caller A. Then, INTL finishes and the call process

returns to BCP and resumes from PIC_2.

POI Basic Call Process (BCP)

IN Teen Line (INTL)

IN Free Billing (INFB)

Call Forward on Busy Line (CFBL)

POI(R)

Three Way Calling (TWC)

Fig 3.3 The Integrating Relationship between BCP and Other Features

PORPOIPOR
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 The POI of CFBL is PIC_3. If the callee B subscribes to CFBL, the feature is activated after

caller A dials the callee’s number B. If B is busy when A calls, CFBL of B forwards the call to C, a

predefined forwarded address. The POR of CFBL is PIC_5. If A calls B when B is idle, the call

process returns to BCP and continues from PIC_5.

The POI of INFB is PIC_3. If the callee B subscribes to INFB, the feature is activated after

the caller A dials the callee’s number B. If the call is connected to B, INFB of B charges the call to

the callee B. INFB has no POR.

The POI of TWC is PIC_8. If the caller A (or the callee B) has TWC, the feature can be

activated after A and B enter the talking state. A (or B) can dial the third party C during the call

with B (or A) by performing flashhook and can establish a three-way connection among A B C.

When one of A B C onhooks, TWC finishes and returns to PIC_8, which is the two-way connection

state.

3.4.2 Feature Activation Process

Feature Activation Process (FAP) is a process that is instantiated at every POI of the

integrated features to activate the subscribing features.

Two parameters are passed to FAP from BCP, user address and feature name. FAP will do

two things: 1) check if the user subscribes to the feature or not. The subscribing information is

stored in TheUser database; 2) If the feature is subscribed, FAD calls the feature process and passes

all associated parameters, such as the caller and or callee’s name to it. Otherwise, FAP returns to

BCP and the call process is resumed.
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Fig 3.4 BCP Integrated with FAPs
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At PICs that are POIs for more than one feature, FAP instances of different features are

mutually independent and of the same priority. Fig 3.4 lists FAPs integrated into BCP.

3.5 Feature Classification

Features in telecommunication systems are packages of incrementally added call functions

providing advanced call features to subscribers [Bowe89]. These packages are provided to users on

a subscribe-and-use basis.

We use a classification of features that is based on the way they are integrated to the system

and on the way that they can be activated only once or repeatedly. From the first point of view, we

talk about switch-based (Non-IN) and IN feature. From the second point of view, we talk of finite

and infinite feature.

3.5.1 Switch-based Features

Features that are implemented within the switch are called switch-based features. This is the

traditional way to add new features (before 1980s). In this method, since all data and processing

required by the features are located within the local node (the switch), new features must be added

to all local switches. Moreover, since different types of switches provided by different vendors are

deployed in a telephony network, the introduction of new features requires the adaptation of the

related software for every type of switch in the network.
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Fig 3.5 depicts an example of switch-based telephony network. Three features, BCP plus two new

added features are implemented in two local switches. Each switch has its own local database,

which stores data required by BCP and other switch-based features.

In our system model, CFBL, CND, TCS, TWC, CW,CC, CELL and RC are switch_based

features.

3.5.2 IN features

As mentioned before, switch-based telephony features and corresponding data must be

implemented in every local switch in the network. This method is tedious and it is costly to

introduce new features or improve old features. The introduction of Intelligent Network (IN) eased

the difficulty of feature creation, deployment and maintenance by facilitating creation and

provision of telecommunication services. In IN telephony networks, new features are implemented

in Service Control Point (SCP) and corresponding data required by IN features are stored and

managed by Service Data Point (SDP). Unlike BCP and other switch-based features that are

completely implemented within the local switch, part of the functionality of IN features is carried

out by the SCP. During the execution of IN features, the call process control remains in the switch

while the feature process control is done by the SCP. The switch provides the SCP with collected

information and follows the decision made by the SCP. The interface between the switch and the

SCP is service-independent, which means that the communication style between the SCP and the

switch remains the same for all IN features.

 Fig 3.6 depicts a simple IN telephony network, which consists of two local switches and

one SCP/SDP. We can see the advantage of the IN features directly from the picture. Unlike
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switch-based features, which need to be implemented in both switches in the network, IN features

and data are deployed only in the SCP/SDP.

Due to legacy, nowadays telephony systems usually have both switch-based features and IN

features.

In our model, IN features are: INTL, INFB, INFR, INCF and CC

3.5.3 Finite Features

 Finite Features are those features that can be executed only once during a single call

process. The main property of finite features is that PORs of finite features can only occur after the

POIs.

In our model, finite features are CFBL, CND, INFB, INFR, INTL, TCS, INCF, CC, CELL

and RC.

3.5.4 Infinite Features

Infinite Features are those features that can be executed repeatedly during one call process.

The main property of infinite features is that their PORs occur at the same time or earlier than the

POI.

 In our model, TWC and CW are infinite features for which the POR and the POI are the

same PIC (PIC_9).

Fig 3.7 shows the classifications of features.
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3.6 Descriptions of Features

Since it would be very long to describe all 12 features we implemented and analyzed, 4

representatives, INTL, INFB, INCF, TWC are selected as examples to show how different kinds of

features are designed.

Switch-based
Features

IN
Features Finite

Features

Infinite
Features

TWC, CW

RC
CFBL, CND
TCS, CELL

CC
INFB, INTL
INCF, INFR,

Fig 3.7 Classifications of Features
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3.6.1 INTL

INTL restricts outgoing calls based on the time of the day, such as hours when homework

should be the primary activity. However, the restriction of INTL can be overridden by entering the

correct PIN. When the user subscribes to INTL, the following information is required from the

user:

1) TeenTime1 TeenTime2: a time period from TeenTime1 to TeenTime2 when the

outgoing calls are restricted.

2) TeenPIN: a PIN used to originate a call during the TeenTime period

When the caller A, who subscribes to INTL, offhooks, INTL is activated by FAP from

PIC_1. Fig 3.8 illustrates the LTS tree of INTL. The first transitions of INTL involve reading the

current time, geting the TeenTime period of A from the user status database and checking if it is in

the TeenTime period. If it is, INTL sends a trigger, to the SCP with the trigger type

(ORIGINATION_ATTEMPT), the subscriber’s address (A), the caller’s address (A) and the time

just collected. Otherwise, a dialtone is given to user A and INTL returns to BCP at PIC_2, giving

the caller A a dialtone. After receiving INTL’s trigger message, the SCP responds to askPIN from

the caller A. INTL announces to A a prompting message to dial the PIN. Then, INTL sends a

“ resource” message to the SCP with the number P dialed by A. If P is the valid TeenPIN, the SCP

responds to continue the call, a dialtone is given to user A and INTL is returned back to BCP at

PIC_2. Otherwise, A will receive an announcement that an invalid PIN was given and the call is

blocked by the SCP’s “RES_DISCONNECT” response. (see §3.7.2 Switch/SCP for definitions of

Trigger, Response and Resource.) In Fig3.8, transitions between states from 3 to 10 are interactions

between the SCP and the user through the switch.
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2

 sw_clk GetTime T

4

user_sw Announce A AskForPIN

5

user_sw Dial A P

 [T1>T or T>T2]-> user_sw DialTone A

6

3

sw_scp Response SEND_TO_RESOURCE A AskForPIN

sw_scp Trigger ORIGINATION_ATTEMPT A A T [T1 ≤ T ≤ T2]->

PIC_2

user_sw Onhook A
sw_db SetIdle A

E

sw_scp Resource A P

Fig 3.8 The LTS Tree of INTL (To be continued)
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 sw_db GetTeenTime A T1 T2
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� Signals:

Signals of INTL feature occur at four interfaces.

1) Signals at user_sw. Comparing with BCP, INTL has only one new signal “Announce”.

The “Announce” signal has two parameters. The first one refers to the receiver of the

signal and the second parameter is the message to be announced, such as prompting the

user to input a PIN number (“AskForPIN”) or informing the user that an invalid PIN

number is input (“InvalidPIN”).

E

8

user_sw Announce A InvalidPIN
sw_scp Resource A

9

sw_scp Response SEND_TO_RESOURCE A InvalidPIN

10

sw_scp Response RES_DISCONNECT A

Fig 3.8 The LTS Tree of INTL (Continued)

 [ P eq TeenPIN] ->

 [P eq TeenPIN]->

( sw_scp Response CONTINUE A
  user_sw DialTone A )

7

PIC_2

user_sw Onhook A
sw_db SetIdle A
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2) Signal at sw_clk, “GetTime”, is the same as in BCP.

3) New Signal at sw_db is “GetTeenTime”. The “GetTeenTime” signal queries the

“TeenTime” period from the user status database. It has three parameters: the first one,

A, indicates the subscriber’s name; the last two parameters T1, T2 take the starting and

ending time of the “TeenTime” period.

4) Signals at sw_scp. As mentioned above, two kinds of signals, “Trigger” and “Resource”,

are sent to the SCP from INTL. The SCP responds to “Trigger” and “Resource” signals

with the signal named “Response”.

� Possible Exits

INTL has four exits: 1) The current time is not in TeenTime period, A dialtone is given to

user A and INTL returns to PIC_2. 2) The caller A onhooks after being announced the

prompting message to dial the PIN. 3) The caller inputs a valid PIN and the SCP responds to

continue the call. A dialtone is given to caller A and INTL returns to PIC_2. 4) The caller

inputs an invalid PIN and the SCP responds to disconnect the call. The caller A onhooks. Only

in the first and the third cases, A is allowed to originate a call.

3.6.2 INFB

INFB enables the subscriber to pay for incoming calls.

The LTS of INFB is shown in Fig 3.9.

When the callee B, who subscribes to INFB, is dialed by the caller A, INFB is activated by

FAP from PIC_3 and takes the place of BCP to control the call process. The first transitions of

INFB is to read the current time from the clock and send a trigger message to the SCP with the
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1

 sw_clk GetTime T

4

2

sw_scp Response ANALYZE_ROUTE B A B B

sw_scp Trigger INFO_ANALYZED B A B T

Fig 3.9 The LTS Tree of INFB (To be continued)

user_sw StopRinging B A   
user_sw StopAudibleRinging A B
sw_db LogBegin A B B T

[Idle B]-> ( user_sw StartRinging B A
sw_db SetBusy B
user_sw StartAudibleRinging A B )

[Busy B]->

5

user_sw  LineBusyTone A

16

E
15

E
7

user_sw Offhook B

6

sw_clk GetTime Tuser_sw StopRinging B A   
sw_db SetIdle B
user_sw StopAudibleRinging A B

8

3

sw_db GetStatus B S

user_sw Onhook A
sw_db SetIdle A

user_sw Onhook A
sw_db SetIdle A

S
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trigger type (INFO_ANALYZED), the subscriber’s address (B), the caller’s address (A), the

callee’s address (B) and the current time. After receiving INFB’s trigger message, the SCP sends

back an “ANALYZE_ROUTE” response to INFB, indicating that B should be the payer of the call

from A. In this feature, this is the only part where the SCP is involved. Then, INFB becomes very

similar to BCP. It checks B’s status and if it is busy, a LineBusyTone is given to A, otherwise the

call is connected and rings B. After B offhooks, the “LogBegin” signal logs the beginning time and

charges the call to B, as specified in the SCP’s response. When A (or B) finishes talking, A (or B)

onhooks. The “LogEnd” signal logs the ending time of the call. At the same time a “Disconnect”

signal is sent to B (or A) and B (or A) onhooks.

user_sw Onhook B
sw_db SetIdle BE

13

E

user_sw Disconnect B A
sw_db LogEnd A B B T

sw_clk GetTime T

user_sw Disconnect A B
sw_db LogEnd A B B T

8

14

sw_clk GetTime T 9

10

11

12

Fig 3.9 The FSM graph of INFB (Continued)

user_sw Onhook A
sw_db SetIdle A

user_sw Onhook B
sw_db SetIdle B

user_sw Onhook A
sw_db SetIdle A
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Like INTL, INFB has to consult the SCP and follows the SCP’s instructions to charge the

call.

� Signals:

Transitions of the INFB’s LTS are signals occurring at four interfaces.

1) Signals at user_sw in INFB are the same as those in BCP

2) Signal at sw_clk is the same as that in BCP.

3) Signal at sw_db is the same as that in BCP.

4) Signals at sw_scp. INFB has one “Trigger” signal, INFO_ANALYZED and one

“Response” signal, ANALYZE_ROUTE.   

“INFO_ANALYZED” trigger has four parameters. The first parameter indicates the

subscriber’s address (B), the second one specifies the caller’s address (A), the third one

takes the callee’s address (B) and the fourth one holds the current time (T).

“ANALYZE_ROUTE” is the response of the SCP to the trigger

“INFO_ANALYZED”. It has four parameters. The first parameter indicates the

subscriber’s address (B), the second one describes the caller’s address (A), the third one

specifies the callee’s address (B) and the fourth one designates the payer of the call (B).

� Possible Exits

INFB has four exits: 1) The caller A onhooks because the callee B is busy. 2) The caller A

onhooks when B is rung. 3) The caller A onhooks first after talking to B. 4) B onhooks first
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after talking to A. Only in the last two cases, the connections between A and B are successfully

established.

3.6.3 CFBL

CFBL, a switch-based feature, allows a subscriber to redirect incoming calls when it is

busy. The subscriber pays for the forwarded part of the call. For example, if B has CFBL and B is

busy when A calls, the call is forwarded to C given that C is the forwarded address. After the

connection is established, the call is separated into two parts and charged in the following way: A

pays for the part from A to B and B pays for the forwarded part from B to C.

Fig 3.10 gives the LTS tree of CFBL.

When caller A dials callee B who subscribes to CFBL, CFBL is activated by FAP at PIC_3.

The first transitions of CFBL are to check the status of both B and C. 1) If B is idle, the call

process returns to BCP at PIC_5. In this case, the call to B will be proceeded normally. 2) If

both B and C are busy, a LineBusyTone is given to A and A onhooks.  3) If B is busy and C is

idle, the call is forwarded to C. After C offhooks, there are two “LogBegin” signals of which
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1

 sw_db GetStatus B S

2

sw_db GetStatus C S

Fig 3.10 The LTS Tree of CFBL (To be continued)

user_sw StopRinging C A   
user_sw StopAudibleRinging A C
sw_db LogBegin A B A T
sw_db LogBegin B C B T

[Busy B and Idle C]->
( user_sw StartRinging C A
 sw_db SetBusy C
 user_sw StartAudibleRinging A C )

[Busy B and Busy C]->

3

user_sw  LineBusyTone A

14

E
13

E
5

user_sw Offhook C

4

sw_clk GetTime Tuser_sw StopRinging C A
sw_db SetIdle C
user_sw StopAudibleRinging A C

6

PIC_5

[Idle B]->

user_sw Onhook A
sw_db SetIdle A

user_sw Onhook A
sw_db SetIdle A

(user_sw StartRinging B A   
 sw_db    SetBusy B
 user_sw StartAudibleRinging A )

S
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one charges the A-B part of the call to A and the other charges the forwarded B-C part to B. When

A (or C) finishes talking, A (or C) onhooks. Two “LogEnd” signals log the ending time of the call

to each part of the call. At the same time, a “Disconnect” signal is sent to C (or A) and C (or A)

onhooks.

� Signals

Transitions of the CFBL’s FSM are for the same set of signals as for BCP.

� Possible Exits

user_sw Onhook A
sw_db SetIdle A

E

11

E

user_sw Disconnect B A
sw_db LogEnd A B A T
sw_db LogEnd B C B T

sw_clk GetTime T

user_sw Onhook C
sw_db SetIdle C

user_sw Disconnect A B
sw_db LogEnd A B A T
sw_db LogEnd B C B T

6

12

sw_clk GetTime T 7

8

9

10

Fig 3.10 The LTS Tree of CFBL (Continued)

user_sw Onhook C
sw_db SetIdle C

user_sw Onhook A
sw_db SetIdle A
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CFBL has five exits: 1) Caller A onhooks because both B and C are busy. 2) B is not busy

when A calls, thus the call process returns to PIC_5. 3) Caller A onhooks when C is rung,

without waiting for C’s answer. 4) Caller A onhooks first after talking to C. 5) C onhooks first

after talking to A.

3.6.4 TWC

Three Way Calling is a switch-based feature that allows the connection of three parties in a

single conversation.

Fig 3.11 illustrates the main part of the LTS tree of TWC. Since TWC is a very complex

feature that contains 60 states, we hide the details of some unimportant branches, where no three-

way connection is established, using blocks with dashed line. Details of these blocks can be found

in [GBGT98].

Three Way Calling is activated by FAP from PIC_8 when subscriber A has connected to

callee B.  To connect the third party C, subscriber A temporarily suspends conversation with B,

flashhooks and dials C. A’s “Threeway” flag is set to be true. 1) If C is busy, A gets the

LineBusyTone and flashhooks again. The call process returns to PIC_8. 2) If C is idle, A gets

connected to C after C offhooks. Then, A flashhooks again to make B join the conversation

between A and C and a three-way connection of A B C is established. Then, 1) If B (or C) finishes

talking and onhooks, A gets the “disconnect” signal from B (or C), and A’s “Threeway” flag is set

to be false. The call process of A and B (or A and C) returns to PIC_8.  2) If A flashhooks, A’s

“Threeway” flag is set to be false, C gets the “disconnect” signal from A, C onhooks. 3) If A

onhooks, A’s “Threeway” flag is set to be false. Both B and C get the “disconnect” signal from A

and onhook.
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 user_sw Flashook A
 sw_db SetThreeWay A True

user_sw StopRinging C A   
user_sw StopAudibleRinging A C
sw_db LogBegin A C A T

1

user_sw DialTone A

4

[Idle C]->
(user_sw StartRinging C A
  sw_db SetBusy C
  user_sw StartAudibleRinging A C )

[Busy C]->

5

user_sw  LineBusyTone A

23

user_sw Flashhook A
sw_db SetThreeWay A False

7

user_sw Offhook C

Fig 3.11 The LTS Tree of TWC (To be continued)

2

3

sw_db GetStatus C S

user_sw Dial A C

6

sw_clk GetTime T

8

TWC A

PIC_8

TWC B
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15

user_sw Onhook B
sw_db SetIdle B
sw_db SetThreeWay A False

user_sw Disconnect A B
sw_db LogEnd A B A T

9

sw_clk GetTime T

14

Fig 3.11 The LTS Tree of TWC (Continued)
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user_sw Flashhook A

TWC C
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user_sw Disconnect C A
sw_db LogEnd A C A T

sw_clk GetTime T

16

E

11

user_sw Onhook B
sw_db SetIdle B

user_sw Disconnect B A
user_sw Disconnect C A
sw_db LogEnd A B A T
sw_db LogEnd A C A T

12

sw_clk GetTime T

10

PIC_8

user_sw Onhook A
sw_db SetIdle A
sw_db SetThreeWay A False

user_sw Falshhook A
sw_db SetThreeWay A False

PIC_8

user_sw Onhook C
sw_db SetIdle C

13

user_sw Disconnect A C
sw_db LogEnd A C A T

sw_clk GetTime T

19

20

user_sw Onhook C
sw_db SetIdle C
sw_db SetThreeWay A False

PIC_8

user_sw Onhook C
sw_db SetIdle C

18
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� Signals

Transitions of the TWC’s FSM are for the same set of signals as for the BCP except a new

signal at sw_db, “SetThreeWay”. “SetThreeWay” has two parameters. The first parameter

indicates the user’s address and the second parameter specifies the value to be set. For example,

“SetThreeWay A True” means to set the “ThreeWay” flag of A to be “True”.

� Possible Exits

TWC has 19 possible exits. Four of them are where a three way connection is successfully

established: 1) Caller A onhooks to terminate the three-way-connection among A, B and C. 2)

C onhooks and A gets the “disconnect” signal from C. The three-way connection among A, B

and C becomes the two-way connection between A and B. 3) B onhooks and A gets the

“disconnect” signal from B. The three-way connection among A, B and C becomes the two-

way connection between A and C. 4) A flashhooks and C gets “disconnect” signal from A. The

three-way connection among A, B and C becomes the two-way connection between A and B.

Except the first one, all other exits may make TWC a loop since they bring it back to the same

PIC where TWC is activated, hence the user can invoke TWC again.

3.7 Interface definition

In this section, we describe the complete set of signals defined in our system model. To

describe signals, we use the following notation: the name of the signal is followed by the name and

type of parameters, Signal-name X1: ParameterType, X2: ParameterType, …, Xn: ParameterType.
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3.7.1 User/Switch (user_sw)

User to Switch (signals are sent from the users to the switch):

• Offhook X: Address ( User with phone number X offhooks)

• Onhook X: Address ( User with phone number X onhooks)

• Dial X: Address Y: Address ( User at address X dials address Y)

• Flashhook X: Address (User at address X flashhooks. Flash X is equivalent to an

Onhook X immediately followed by an Offhook X, unless a feature uses it otherwise. We

assume that end-users have a Flash button)

Switch to User (Signals are sent from the switch to the user):

• DialTone X: Address (A dialTone is given to user X. DialTone means that the switch

has approved the user to make an outgoing call. DialTone stops automatically when the

user dials or hangs up )

• LineBusyTone X: Address (A lineBusyTone is given to user X. LineBusyTone is a

negative signal for a call establishment attempt. LineBusyTone stops when the user

onhooks or flashhooks)

• StartAudibleRinging X: Address Y: Address (The ringback tone is provided at address

X while waiting for user Y to answer the call. AudibleRinging is a positive signal for a

call establishment attempt.)

• StopAudibleRinging X: Address Y: Address (The ringback tone at address X from Y is

disabled.)
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• StartRinging X: Address Y: Address (Ringing starts at address X for a call originated at

address Y.)

• StopRinging X: Address Y: Address (Ringing at address X from Y is disabled)

• Disconnect X: Address Y: Address (The switch informs user X that Y has disconnected

a connection with X. User X should either hang up or flashhook after receiving the

disconnect signal)

• Announce X: Address M: Message ( An announcement M is played at address X)

• Start CallWaitingTone X:Address Y:Address (A special signal given to user X

indicating that Y is trying to reach him/her)

• Display X:Address M:Message (It uses a display screen on telephone at address X to

display the message M concerning the call)

3.7.2 Switch/SCP

The Bellcore AIN document GR-1298-CORE has been a reference for this interface, but the

contest committee decided to use a simplified version of the message parameters. Messages sent

from the switch to the SCP are of two kinds, “Trigger” and “Resource”. Messages sending from the

SCP back to the switch are of one kind, “Response”.

� Trigger

A general format of “Trigger” is:

Trigger  Trigger_type  subscriber’s address  [parameter1, …]
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When SCP receives the trigger message, the corresponding routine for that trigger type is

invoked. Besides the subscriber address, parameters may include information such as the

calling party address, the called party address, and the time, etc.

� Resource

A general format of Resource is:

Resource  Subscriber’s address, Parameter1,[ Parameter2…]

Resource responds to the SEND_TO_RESOURCE message from SCP, which is caused by

a trigger. Besides subscriber’s address, parameters in a resource message may include data

collected from users, e.g. a PIN number

SCP to Switch (messages are sent from the SCP to the switch )

� Response

Response ResponseType Subscriber address [parameter1, parameter2…]

Different ResponseTypes indicate different instructions given from SCP to process the call

listed as follows:

Response ANALYZE_ROUTE S: Address A: Address B: Address C: Address means to route

a call from A to B and charge the call to C. S is the subscriber address.   

Response CONTINUE S: Address A: Address B: Address means to continue processing the

call from A to B using BCP. S is the subscriber address.

Response SEND_TO _RESOURCE S: Address A: Address M: Message means to play the

message M at address A and collect the input data ( if any )
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Response RES_DISCONNECTS: Address A: Address means to terminate the processing of

calls from A .

3.7.3 Switch to DBAPI

Billing signals:

• LogBegin X: Address Y: Address P: Address T: Time (DBAPI starts to charge P for a

call from X to Y by opening a new billing record and logging the beginning time. T is

the time when the called party offhooks. )

• LogEnd X: Address Y: Address P: Address T: Time (DBAPI stops charging the call

from X to Y by logging the ending time T and closing the record. )

User status inquiry and setting signal:

• GetSatus X: Address S:Status (The switch queries the status information of user X.)

• GetSubscribingFeatures X:Address S:SubscribedFeatureSet (The switch queries the

subscribing information of  user X.)

• GetTeenTime X:Address T1:Time T2:Time (The switch queries the TeenTime period

defined by user X )

• SetIdle X: Address ( The status of X is set to be “idle” )

• SetBusy X: Address (The status of X is set to be “busy”)

• SetThreeWay X: Address B: Bool ( The  “ThreeWay” of X is set with the Boolean

value B)
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3.7.4 Switch to Clock

• GetTime T: Time ( The switch queries the current time from the clock)

3.7.5 SCP to DBAPI

• Get TeenPIN X: Address P: PIN (The SCP queries the TeenPIN number of user X,

which is stored in the user status database)
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Chapter 4 LOTOS Specification of the System Model

In this chapter, we describe the LOTOS formal specification of our system model and of

some features (BCP, INTL, INFB, CFBL and TWC) as defined in the functional plane of the

system model. Our main objective in specifying the system model and features in LOTOS is to

provide a specification that can be used as a test-bed for specifying, validating and detecting FIs. In

the LOTOS specification, only the external behavior of the system is captured, that is, describing

what the system does for the user, not how it does it (black-box specification).

Before introducing the details of the LOTOS specification of our model, we give an

overview of the LOTOS specification language and of its main operators by describing some

examples in the context of the telephony networks.

  4.1 An Overview of LOTOS

LOTOS (Language Of Temporal Ordering Specification) is a Formal Description

Technique (FDT) developed within ISO (International Organization for Standardization) as a

formal specification language for the purpose of describing and specifying the different elements of

OSI (Open System Interconnection) architecture such as services and protocols. It has been an ISO

standard (8807) since 1989 [ISO8807]. Nowadays, LOTOS applications have been extended to

cover some other domains such as hardware [FaLS97] and telephony [FaLS91], [StLo93].

A LOTOS specification consists of two parts, data part and control part. The control part

defines the external observable behavior of the system that is described. It is based on Milner’s

Calculus of Communicating Systems (CCS) [Miln89] and Hoare’s (CSP) [Hoar85]. The data part

defines all the data types and value expressions needed to specify the behavior of the system. It is
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based on the formal theory of algebraic abstract data types ACT-ONE [EhMa85]. A number of

excellent LOTOS tutorials can be found in the literature [BoBr87]. Therefore, we limit ourselves to

a brief overview of the language and its use in the context of our research.

All key words of LOTOS used in this thesis are highlighted in bold.

4.1.1 LOTOS Abstract Data Types

LOTOS adopts ACT-ONE, an algebraic abstract data type language, to define data types.

ACT-ONE defines abstractly data operations without reference to implementation details.

A data type definition in LOTOS consists of a definition of a signature and possibly of a list

of eqns (equations). A signature of a type is a definition of its sorts and opns (operations). Sorts

defines the domain name of the data. Opns defines the formats of operations on the data. Eqns

provide a means to define the semantics of operations.

LOTOS Data Types can be built hierarchically by using is. That is, one data type can be a

collection of other data types. This constitutes an inheritance mechanism of a simple kind.

Consider the following type definition of the bill item in the billing database:

type TypeBillItem (*define the type name*)

is TypeAddress,TypeTime (*list other sorts used to construct this data type*)

(* Signature *)

sorts BillItem (*define the sort name*)

opns (*specify the format of operations*)

Item(* Constructor *):Address(* Charged *), Address(* Caller *), Address(* Callee *),

Time(* LogBegin *), Time(* LogEnd *) -> BillItem

setLogEndTime:Time,BillItem -> BillItem

getCaller,getCallee : BillItem -> Address

(* List of equations *)
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eqns

forall a1,a2,a3,a4,a5,a6:Address, t1,t2,t3:Time

ofsort BillItem (*specify the return type of the operations list below*)

setLogEndTime(t3,Item(a5,a1,a2,t1,t2))= Item(a5,a1,a2,t1,t3);

ofsort Address (* these are query functions *)

getCaller(item(a1,a2,a3,t1,t2))=a2;

getCallee(item(a1,a2,a3,t1,t2))=a3;

endtype (* TypeBillItem *)

Type TypeBillItem defines the billing items stored in the billing database. The format of

“BillItem” is: Item(Payer, Caller, Callee, StartTime, EndTime). The “payer”, “caller” and “callee”

are of type Address.  “StartTime” and “EndTime” are of type Time. “BillItem” has four operations:

1)“Item” is the constructor operation building a new “BillItem”; 2)“setLogEndItem” is a setting

operation to set the “EndTime” of the “BillItem”; 3) “getCaller” is a query operation that returns

the “Caller” address of the “BillItem”; 4)“getCallee” is a query operation that returns the “Callee”

address of the “BillItem”.

4.1.2 The Control Part

The control part of LOTOS specification deals with the description of the system behavior.

It this part, systems are described by means of processes defined in a top down hierarchy.

4.1.2.1 LOTOS Process

A process is viewed as a black box interacting with other processes or with the system

environment via synchronization on its observable gates. It is basically defined by a set of

observable gates, on which synchronization occurs, and by a behavior expression. A behavior

expression is built by combining LOTOS actions by means of operators and possibly instantiations

of other processes.
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The syntax of a process definition is of the form:

process process_name [gate_list] (parameter_list): functionality

<behavior expression>

endproc

In addition to the set of observable gates and the behavior expression, a process can also

have a set of parameters, denoted in the definition above by parameter_list. This set represents the

set of parameters through which values can be passed to the process from outside. The

parameterization of a process also enables its reusability.

4.1.2.2 LOTOS Action

Action is the basic element of the behavior expressions. It consists of a gate name, a list

(possibly empty) of events, and possibly a predicate that defines the conditions that should hold for

the event to be offered. An event can either offer (represented by “!”) or accept (represented by

“?”) a value.  Predicates establish a condition on the values that can be accepted or offered.

An example of action is:

 user_sw  ! Offhook  ? caller:Address

Offhook is of sort UserSignal that defines a set of all possible signals occuring at gate

user_sw. When the action happens, it will obtain a value of sort Address from the environment for

the caller.

Actions are considered to be atomic in the sense that they occur instantaneously, without

consuming time. Generally speaking, actions in LOTOS are always executed by synchronization

with the environment. However, there is a special type of actions in LOTOS, the internal action,
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which is represented by “i”. It can be executed independently by the process and it is unobservable

to the environment.

4.1.2.3 LOTOS Behavior Expressions

� Inaction: stop

It represents a deadlock, i.e. No more actions can be executed.

� Successful Termination: exit

It indicates a normal termination of the behavior, i.e. a process has successfully performed all

its actions.

The key word “exit” can also be used in the process definition to express the process

functionality (denoted in the syntax given above by functionality). In fact, a process has

functionality “exit” if it can terminate successfully, i.e. it is able to perform an exit at the end. If the

process cannot perform an “exit”, the functionality is noexit.

� Process Instantiation: Process_Name [gate_list] (initial_value_list)

The instantiation of a LOTOS process is equivalent to the invocation of a procedure in a

programming language (such as Pascal). Parameters of the process listed in “parameter_list” are

initialized by the values given in “initial_value_list”.

Process Instantiation can occur either in the behavior expression of other processes or in the

behavior expression of the process itself.

4.1.2.4 LOTOS Operators

� Action Prefix Operator: a ; B
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The action prefix operator, represented as a semi-colon “;”, expresses sequential composition of

action a and behavior expression B. It is used to sequentially order actions. For example, user_sw

!Dialtone !A; user_sw !Dial !A !B denotes that caller A must get the dialtone before dialing the

callee’s number B.

� Choice Operator:B1 [] B2

The choice operator “[]” is used to express a choice between two alternatives, B1 and B2.

Consider the following scenario as an example: after dialing the callee’s number, the caller may 1)

either get the linebusytone from the switch (if the callee is busy) 2) or get the audibleringing

indicating that the call is connected and the callee is ringing. 3) or change his/her mind of making

the call and hang up. This is expressed by the behavior expression listed below.

user_sw   ! LineBusyTone   ! A
[]
user_sw   ! StartAudibleRinging   ! A   ! B
[]
user_sw   ! Onhook   ! A

� Enabling Operator: B1 >> B2

The enabling operator “>>” has a similar function as the action prefix operator. The difference

between them is that the action prefix operator “;” expresses the sequential composition of an

action and a behavior expression; the enabling operator “>>” expresses the sequential composition

of two behavior expressions. B2 is executed if and only if B1 is successfully terminated (exit).

� Disabling Operator: B1 [> B2

The disable operator “[>” is used to express situations where B1 can be interrupted by B2

during normal functioning. For example, a normal processing of a call could be interrupted at any

point if the caller onhooks. This could be expressed by the behavior expression as follows.
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( user_sw   ! DailTone   ! A;
  user_sw   ! Dial   ! A   ! B;

  …
 ) [> user_sw   ! Onhook  ! A;…

� Interleaving Operator: B1 ||| B2

We say that B1 and B2 interleave if they can perform their actions independently of each other.

The interleaving operator “|||” expresses the concept of parallelism between behaviors where no

synchronization is required. For example, three users A, B and C in the network behave

independently of each other. If we use process “User” to describe one user’s behavior, the

relationship between user A, B and C can be represented as follows.

  USER [user_sw] (A)
   |||
  USER [user_sw] (B)
  |||
  USER [user_sw] (C)

� Parallel Composition Operator: B1 |[ g1, …, gn]| B2

The parallel composition of B1 and B2 on the gate list g1,…,gn expresses the fact that B1 and B2

behave independently, with the exception that they must synchronize on the gates g1,…gn, which

means that processes B1 and B2 must participate in the execution of every action defined with a

gate name gi, i ∈ {1, …,n}. Then interleaving can be defined as a parallel composition on an empty

gate list.

Synchronization of processes on a gate gi, i ∈ {1, …,n} occurs, if each process provides an

action with a gate name gi, the lists of events offered by the actions match, and the predicates (if

any) are satisfied. The lists of events of two actions “match” if the following conditions are

satisfied:
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1) The numbers of events of the two actions match.

2) If an event in one action offers (!) a value, then the “matching” event in another action,

should either offer (!) the same value or accept (?) a value of the same sort.

Consider the following example where two processes USER and BCP synchronize on the gate

“user_sw”.

( USER [user_sw](A)

   |||

  USER [user_sw] (B)

   |||

   USER [user_sw] (C)

where

process USER [user_sw] ( X: Address ): noexit :=

( user_sw !Offhook !X;

  user_sw !DialTone !X;

   …

   ) 

       endproc (* USER*)

)

      |[user_sw]|

     ( hide sw_clk, sw_db in SWITCH [user_sw, sw_clk, sw_scp, sw_db]

 where

process SWITCH [user_sw, sw_clk, sw_scp, sw_db]: noexit :=

 BCP[user_sw, sw_clk, sw_scp, sw_db]

endproc (* SWITCH *)

process BCP [user_sw, sw_clk, sw_scp, sw_db]: noexit :=

( user_sw !Offhook ?Caller:Address;

  user_sw !DialTone !Caller;

  …
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  )

endproc (* BCP *)

       )

Process USER stands for a user of the telephony network. It takes a parameter that holds the

user’s address, i.e. the process that simulates user A is USER[user_sw](A). The three users above

are independent of each other. However, they all have to synchronize with the switch at gate

“user_sw”. Process SWITCH consists of only one process called BCP. Process USER actually

synchronizes with process BCP at gate “user_sw”. The first action of BCP is user_sw !Offhook

?Caller:Address, so it synchronizes with the first action of USER, user_sw !Offhook !X. In other

words, the following two actions synchronize at the very beginning:

 user_sw !Offhook ?Caller:Address offered by USER

user_sw !Offhook !X offered by BCP

As a result of synchronization, Caller acquires the value of X, which contains the address of the

calling user.

� Full Synchronization Operator: B1 || B2

The full synchronization of B1 and B2 is a parallel composition in which B1 and B2 must

synchronize on all their gates.

� Hiding Operator: hide g1, …, gn in B

The hiding operator “hide in” is used to hide actions synchronizing on gates (g1,…gn) within the

process. These actions become internal actions (i) to the environment. As mentioned above, these

internal actions cannot synchronize with the environment. In the previous example, gates sw_db,

sw_clk are hidden within process SWITCH from the environment.
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� Guarded Behavior: [P] → B

The behavior expression B can be executed if and only if the predicate P is true; otherwise it

equals to stop. For example, the callee can be rung only if it is not busy. Otherwise, a linebusytone

should give back to the caller. The following behavior expression represents such scenario.

sw_db  ! GetStatus ! Callee ? S: Status;

( [busy(S)] → user_sw !LineBusyTone !Caller

 []

[not busy(S)] → user_sw  !StartRinging  !Callee  !Caller;

…

)

4.1.3 Expansion

A basic concept in process algebraic languages is expansion. Any LOTOS behavior

expression can be rewritten as an equivalent expression containing only choice, action prefix, and

stop (although this expression could be infinite) [Miln89]. An expanded LOTOS specification

represents directly the labeled transition system (LTS) of the system in consideration (LTS is a

Finite-State Machine whose transitions are labeled with actions, more details can be found in §3.2).

Each alternative path in an expanded specification, or each branch in an LTS, represents explicitly

a possible sequence of actions in the system. Sequences of visible actions are called traces. Internal

actions (see § 4.1.2.2) such as i or hidden actions (see § 4.1.2.4) usually are not included in traces,

although sometime they are shown for completeness.

4.1.4 LOTOS Supported Tool: CADP

CADP (CAESAR/ALDEBARAN Development Package) is a toolbox for protocol

engineering. CADP is jointly developed by the VASY action at INRIA Rhone-Alpes / DYADE and
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the Verimag laboratory. It is dedicated to the efficient compilation, simulation, formal verification,

and testing of descriptions written in the ISO language LOTOS [Fern96]. The CADP toolbox

contains 1) two compilers (CAESAR and CAESAR.ADT) which translate LOTOS descriptions

into C code which can be used for simulation, verification and testing purposes and 2) a set of

applications (OPEN/CAESAR) which provides user extended functionalities such as interactive

simulation, trace-searching tool, model checking, etc.

� CAESAR

CAESAR is a compiler that translates the control part of a LOTOS specification into either a C

program (to be executed or simulated) or into an LTS (to be verified using bisimulation tools and/or

temporal logic evaluators).

The CAESAR translation algorithms proceed in several steps. First the LOTOS description is

translated into a simplified process algebra called SUBLOTOS. Then an intermediate Petri Net

model is generated, which provides a compact, structured and user-readable representation of both

the control and data flow. Eventually the LTS is produced by performing reachability analysis on

the Petri net.

CAESAR accepts full LOTOS with the following restriction as regards the control part: process

recursion is not allowed on the left and right hand sides of |[...]|, nor on the left hand side of >> and

[>. Despite these restrictions, the subset of LOTOS handled by CAESAR is large and usually

sufficient for real-life needs. The current version of CAESAR allows the generation of large LTSs

(some million states) within a reasonable lapse of time.
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The most recent version of CAESAR provides functionality called EXEC/CAESAR for C code

generation. This C code interfaces with the real world, and can be embedded in applications. This

allows rapid prototyping directly from the LOTOS specification.

� CAESAR.ADT

CAESAR.ADT is a compiler that translates the abstract data part of LOTOS specifications into

libraries of C types and functions.

Each LOTOS sort is translated into an equivalent C type and each LOTOS operation is translated

into an equivalent C function (or macro-definition). CAESAR.ADT also generates C functions for

comparing and printing abstract data type values, as well as iterators for sorts having finite domain.

� OPEN/CAESAR

OPEN/CAESAR is an extensible, language-independent environment that allows user-defined

programs for simulation, execution, verification (partial, on-the-fly, etc.), and test case generation

to be developed in a simple and modular way. Various modules are involved in the

OPEN/CAESAR framework. However, only two of them are used in our work:

- Caesar.Simulator, an interactive simulator.

Caesar.Simulator provides an interactive environment where a user can execute the

specification in a step-by-step way. The GUI has two parts: one displaying the traces of actions

that have been executed and the other listing all available actions that could be executed next.

The executed action traces are initially empty and the list of next available actions includes all

possible actions to be executed at the beginning. After the user selects one action to execute,
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that action is performed and added to the executed action traces and the next available action

list is refreshed.

- Caesar.Exhibitor, a trace-searching tool.

Caesar.Exhibitor provides a searching environment where users specify the patterns of traces

using predicates and keywords. The tool executes the C program generated by Caesar and

Caesar.ADT. Traces matching the given patterns are output. The user could choose whether the

searching algorithm should be breadth-first or depth-first, and also can choose to find all

occurrences or just the first one.

Patterns could reflect complex semantics by using various predicates. However, the pattern we

used in our work is very simple: only one predicate “~” and two keywords: <until>

<deadlock>.  ~ means “no”. <until>“ActionA” refers to all traces leading to ActionA.

<deadlock> refers to a state where no action can be further executed. See §5.6.5 FI Hunter for

examples.

4.2 Specification Styles of Telephony Systems

Vissers, Scollo, van Sinderen and Brinksma [ViSV88] [VSVB91] identify four main styles

for writing LOTOS specifications. They are the monolithic style, the state-oriented style, the

constraint-oriented style and the resource-oriented style. Each style has its own uses in telephony

system specifications and they can be mixed in one specification to meet different requirements.

� The monolithic style gives explicitly all possible sequences of actions allowed by a

specification. The main operator is the choice operator “[]”, and the specification is
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shown as a tree of choices. Therefore, this style is useful for debugging the specification

and generating test sequences.

� In the state-oriented style, explicit system states are identified, e.g. by using state

variables. Using the state-oriented style may lead to increased readability of the

specification in cases where the informal specification uses the state concept, as is quite

common for telephone devices. It may also lead to LOTOS specifications that can be

implemented directly.

� The constraint-oriented style focuses on event sequencing and logical constraints as seen

from the external interaction points. It is useful for implementation-independent

specifications [Turn87]

� In the resource-oriented style, the processes are chosen in such a way as to represent

resources, which means implementation modules. This style is useful for

implementation specification.

In our specification, we used a mixture of the resource-oriented style and state-oriented

style. The observable behavior of the system is described as a composition of separate resources

which functionalities are well defined, and these resources may be specified using any style. The

resource-oriented style is used to preserve the architectural model of the system at the specification

level and the state-oriented style is used to specify features (BCP, INTL, INFB, CFBL, TWC) that

are defined as LTSs.
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4.3 LOTOS Specification of the system model

In this section, we are going to describe the LOTOS specification of the system and its

features by describing the Abstract Data Types (ADT), the architecture of the specification and the

different processes of which it is composed.

4.3.1 Abstract Data Types

In our specification of the system model, ADTs are built in a hierarchical way, by using the

inheritance mechanism described in §4.1.1.

The basic level are standard ADTs: Boolean and Natural Numbers, which are provided by

the standard LOTOS ADT library.

� The value of a “Boolean” type variable is either “True” or “False”, so we call “True”

and “False” constructors of Boolean. A couple of logic operators are also defined as

equations in Boolean, such as “and”, “or”, “not” etc.

� We limit the domain of “Natural Number” to be [0 .. 20] because specifications with

infinite ADTs cannot be fully expanded. Operators defined in “Natural Number” that

are used by second level ADT are the comparing operators “=”, “ <”, “ >” and the

increasing operator “inc”.

The second level ADTs are enumerations, whose elements can be mapped to corresponding

“Natural Number”, so that they can inherit the comparing functionality of “Natural Number”.

“AddressType”, “SignalType”, “FeatureType”, “MessageType”, “TriggerName” and

“ResponseType” are second level ADTs. Fig 4.1 uses “FeatureType” as an example to show how

second level ADTs are built. The keyword “is” in the first row indicates the inheritance relationship
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between Natural Number and FeatureType. Then we define the mapping function “h” between

Features and Natural Numbers so that the equivalence comparison between two features becomes

comparing the corresponding natural numbers, as indicated in equation “f1 eq f2 = h(f1) eq h(f2)”.

“eq” in the LHS of the equation is the equivalence operator of the “FeatureType” and “eq” in the

RHS of the equation is the equivalence operator of the natural number.

The third level ADT defines sets. “SubscribedFeatures”, which is a set of features, is the

third level ADT. Basic set manipulation operators such as “e eleof S” are defined in

“SubscribedFeatures”. “eleof” returns a Boolean value True if e is in set S. For example, the

expression “INTL eleof {INTL, CFBL}” is true because INTL is an element of {INTL, CFBL}.

type FeatureType is NaturalNumber

 sorts FeatureType

 opns
 INTL, CFBL, INFB, TWC :->FeatureType
 h: FeatureType->Nat
 _eq_, _ne_: FeatureType, FeatureType->Bool

 eqns for all f1,f2:FeatureType
     ofsort Nat

h(INTL)=1;
 h(CFBL)=2;
 h(INFB)=3;
 h(TWC)=4;

    ofsort Bool
 f1 eq f2 = h (f1) eq h (f2);
 f1 ne f2=  h (f1) ne h (f2 );

endtype (* FeatureType *)

Fig 4.1 An Example of Second Level ADTs
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The fourth level ADT are record ADTs, which represent fixed-length records. “BillItem”

and “Status” are fourth level ADT.

� “BillItem” is a billing record data type, which stores all the necessary information to

charge a single call. The format of “BillItem” is (a3, a1, a2, t1, t2), where a3 is the

address of the paying party, a1 is the address of the caller, a2 is the address of the

callee, t1 is the time when charging starts and t2 is the time when charging stops.

� The “Status” record stores the user’s status information (busy or idle) and subscribing

information (a set of features subscribed by the user). The format of “Status” is (b, p, t1,

t2, a, s), where b is a boolean variable indicating whether the subscriber is busy or not;

p, t1, t2 are variables of INTL, respectively “TeenPIN”, “TeenTime1” and

“TeenTime2” (see §3.2.3 INTL for details); a is a variable of CFBL, “BLForward”,

which stores the forwarded address to be used when the subscriber is busy; s is a set that

stores subscribed features of the user.

The fifth level ADT is a multiple record ADT. “UserStatus” is a fifth level ADT and

consists of an “address” ADT and a “Status” record ADT. The format of “UserStatus” is (a, S),

where a is the subscriber’s address and S is the corresponding status information.

The sixth level ADTs are database ADTs which simulate two databases: “TheUser” and

“TheBill”. “TheUser” database stores status information of all users in the telephony network.

Records in “TheUser” database are of sort “UserStatus”. Records in “TheBill” database are of sort

“BillItem”. Basic database operations are defined on each database such as “add”, “inquire” and

“set” data etc. Fig 4.2 depicts the ADT hierarchy pyramid.
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Fig 4.2 ADT Hierarchy Pyramid
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4.3.2 Architecture of the specification

In order to achieve a clear and readable specification, it is required to put it together in a

step-wise fashion. First, the system is described by the highest level processes that represent the

highest abstract view of the different objects composing it, then each resulting process is

decomposed into sub-processes. The process of system refinement is repeated until we end up with

simple descriptions where no further decomposition is possible.

The structure of the LOTOS specification corresponds to the system structure defined in

Chapter 3. In the LOTOS specification, components and interfaces between them, which are

described in Fig. 3.1, are simulated by corresponding processes and gates with the same names.

Fig. 4.3 gives a graphical representation of the top level of our system model specification and the

corresponding LOTOS top level specification is given in Fig 4.4.

The control part of the specification has only one process SYSTEM, which consists of five

processes: USERS, SWITCH, SCP, CLOCK and DBAPI. First, the SWITCH synchronizes with the

CLOCK at gate sw_clk. Second, the USERS synchronizes with the SWITCH and the CLOCK at

gate user_sw. Then, the SCP synchronizes with the SWITCH, the CLOCK and the USERS at gate

sw_scp. Last, the DBAPI synchronizes with the SWITCH, the CLOCK, the USERS and the SCP at

gates sw_db and scp_db.

� The USER has only one gate user_sw, so it can only interact with the SWITCH.

� The CLOCK has one gate sw_clk through which it can only communicate with the

SWITCH.

� The SWITCH has four gates, user_sw, sw_scp, sw_clk and sw_db, through which it can

synchronize with the USERS, the SCP, the CLOCK and the DBAPI respectively.
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Fig 4.3 Graphical Representation of the Top Levels of the Specification
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� The SCP can synchronize with the SWITCH and the DBAPI at gate sw_scp and scp_db,

respectively.

specification SystemModel [user_sw, sw_scp, sw_db, sw_clk, scp_db]: noexit
…
(* Data Part *)
…

behaviour
SYSTEM [user_sw, sw_scp, sw_db, sw_clk, scp_db]
where
process SYSTEM [user_sw, sw_scp, sw_db, sw_clk, scp_db]: noexit :=

…
(* Initialization Part *)
…
      (

( USERS [user_sw]
   |[user_sw]|
  ( SWITCH [user_sw, sw_scp, sw_db, sw_clk]
    |[sw_clk]|

  CLOCK [sw_clk] (Initial Time)
)

 )
         |[sw_scp]|
         SCP [sw_scp, scp_db]
       )

      |[sw_db, scp_db]|
      DBAPI [sw_db, scp_db] (Initial Data)

endproc (* SYSTEM*)

endspec (* SystemModel *)

Fig 4.4 Top-level LOTOS Specification
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� The DBAPI has two gates sw_db and scp_db, through which it can communicate with

the SWITCH and the SCP.

Process CLOCK is instantiated with the initial time, Time(1). Process DBAPI is instantiated

with the initial data of TheUser and TheBill. (For more details about the initial data of TheUser and

TheBill, see §5.2 Test Scenario Design)

4.3.3 Process USER & USERS

USER is a very simple entity that accepts any valid signal and does nothing with them. As

shown in Fig 4.5, process USERS consists of three users A B C. Since each user is independent of

the others, we use the interleaving operator “|||” to compose them. Each user, A, B and C, is

instantiated from process USER with address A, B and C respectively. Process USER synchronizes

with any signal that comes from the SWITCH through gate user_sw. After synchronization on one

signal, a new instance of user with the same address will be generated to synchronize on successive

signals. In order to catch as many FI sequences generated from the switch as possible, no constraint

is put on the order of user sequential behaviors.

Fig 4.5 gives the LOTOS specification of process USERS and process USER.

For this process, as well of as for similar processes below, note that the specification could

have been stuctured in order to make possible to have an arbitrary number of users, by using

recursive instantiation. However, in practice this would have complicated the simulation process.
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 process USERS [user_sw]: noexit :=
       USER [USER_sw] (A)
       |||
       USER [USER_sw] (B)
       |||
       USER[USER_sw] (C)

 endproc (* USERs *)

 process USER [user_sw] (Ad: Address) : noexit :=
   ( user_sw   ? e:Signal   ! Ad;
     USER [User_sw] (Ad)
    )
     []
    ( user_sw   ? e:Signal   ! Ad   ? Dest:Address;
      USER [User_sw] (Ad)
    )
     []
   ( user_sw   ! StartRinging   ! Ad   ? Orig:Address;
      USER [User_sw] (Ad)
   )
     []
   ( user_sw   ? e:Signal   ! Ad   ? p:Nat;
     USER [User_sw] (Ad)
    )
     []
   ( user_sw   ? e:Signal   ! Ad   ? M:MessageType;
     USER [User_sw] (Ad)
   )

 endproc (* USER *)

Fig 4.5 LOTOS Specification of Process USER and USERS
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4.3.4 Process CLOCK

Process CLOCK takes one parameter, T, which holds the current reading of the CLOCK.

The Initial time is Time(0). When the SWITCH reads the time via “GetTime” signal, the CLOCK

sends the current time, T, to the SWITCH and instantiates a new CLOCK with the reading

increased by one. The specification of the CLOCK is given in Fig 4.6. Note that this process does

not attempt to simulate real time, however it is sufficient for our purpose.

4.3.5 Process SWITCH

The switch controls the whole call process. Three Basic Call Processes (BCP) instantiated

with user’s addresses control the call process originated from A, B and C respectively. Due to the

mutual independence of the users, three BCPs are also independent of each other and composed

using the interleaving operator “|||”. The specification of process SWITCH is shown in Fig 4.7.

 process CLOCK [sw_clk] (T: Time): noexit :=

       sw_clk !GetTime !T;
       CLOCK [sw_clk] ( inc (T) )

 endproc (* CLOCK *)

Fig 4.6 LOTOS Specification of Process CLOCK
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4.3.5.1 BCP

The BCP process controls a general call process (see §3.3). It is like a backbone. Other new

features are integrated into BCP and get activated from BCP.

The BCP is specified in the state-oriented style. The mapping rules from the LTS (see Fig

4.2 LTS Tree of BCP) to LOTOS processes (see Fig 4.8 LOTOS PIC Processes) are as follows:

- States

Eighteen numbered states of the LTS are mapped to 16 LOTOS processes with the

same name. The starting state S is mapped into the process BCP. The Ending state E is

mapped into a stop action in the last process.

process SWITCH [user_sw, sw_scp, sw_db, sw_clk]: noexit :=

BCP [user_sw, sw_scp, sw_db, sw_clk] (A)
|||
BCP [user_sw, sw_scp, sw_db, sw_clk] (B)
|||
BCP [user_sw, sw_scp, sw_db, sw_clk] (C)

FAP [user_sw, sw_scp, sw_db, sw_clk ] (F: Feature, Ad_A, Ad_B: Address)

(* Integrated features *)
INTL [user_sw, sw_scp, sw_db, sw_clk ] (Ad_A: Address)
…
CFBL [user_sw, sw_scp, sw_db, sw_clk ] (Ad_A: Address, Ad_B:Address)
…
INFB [user_sw, sw_scp, sw_db, sw_clk ] (Ad_A: Address, Ad_B:Address)
…
TWC [user_sw, sw_scp, sw_db, sw_clk ] (Ad_A: Address, Ad_B:Address, Ad_C:Address)
…

endproc (* SWITCH *)

Fig 4.7 LOTOS Specification of Process SWITCH
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process BCP [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address): noexit :=
user_sw   ! OffHook    ? Ad_A: Address ;
sw_db   ! SetBusy    !Ad_A ;
FAP [user_sw, sw_scp, sw_db, sw_clk] (INTL, Ad_A)

endproc (* BCP *)

process PIC_1 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address): noexit :=
user_sw   ! DialTone    ! Ad_A: Address ;
PIC_2 [user_sw, sw_scp, sw_db, sw_clk] ( Ad_A)

endproc (* PIC_1 *)

process PIC_2 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address): noexit :=
user_sw   ! Dial   ! Ad_A: Address   ? Ad_B: Address ;
PIC_3 [user_sw, sw_scp, sw_db, sw_clk] ( Ad_A, Ad_B)

endproc (* PIC_2 *)

process PIC_3 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B: Address): noexit :=
user_sw   ! Onhook   ! Ad_A: Address ;
sw_db   ! SetIdle   ! Ad_A;
stop
[]
(  FAP [user_sw, sw_scp, sw_db, sw_clk] ( CFBL, Ad_A, Ad_B)
      |||
     FAP [user_sw, sw_scp, sw_db, sw_clk] ( INFB, Ad_A, Ad_B)
      |||
     … )
[]
sw_db  ! Get Status  !B ?S:Status;
PIC_4 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B, S)

endproc (* PIC_3 *)

process PIC_4 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B: Address, S:Status): noexit :=
([Busy(S)]->
      PIC_16 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A))
[]
([Idle(S)]->
      PIC_5 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B))

endproc (* PIC_4 *)

       …

Fig 4.8 LOTOS PIC Processes (partial)
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-     Transitions

Transitions are mapped into actions in corresponding state process. For example, In

LTS, after executing the transition “DialTone A”, the system moves from state PIC_1 to

state PIC_2. Thus, in process PIC_1, after the action user_sw !DialTone !Ad_A, process

PIC_2 is instantiated and all associated parameters, i.e. the caller and callee’s address, are

passed to it.

- POI

Unlike normal PICs which instantiate another PIC process at the end, at each POIs, (

PICs where the features is activated), POIs call the FAP process, which detects subscribed

features and activates them if there are any. If two features have the same POI, such as

PIC_3, then two FAP processes are instantiated for the two features respectively. Since

features are independent of each other, these two FAP processes are interleaved.

4.3.5.2 Feature Activation Process (FAP)

At the POI of each feature, PIC_1 (INTL), PIC_3 (CFBL, INFB) and PIC_8 (TWC), BCP

calls the Feature Activation Process (FAP) to activate each feature.

FAP takes three parameters:

- F, indicating which feature is going to be activated;

- Ad_A, holds the caller’s address;

- Ad_B holds the callee’s address (If any)
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process FAP [ user_sw, sw_scp, sw_db, sw_clk ] (F: Feature, Ad_A, Ad_B: Address): noexit :=
       ( [F eq INTL]->

sw_db !GetStatus !Ad_A  ?S:Status;
( [eleof (INTL, S)]->

 INTL [ user_sw, sw_scp, sw_db, sw_clk] ( Ad_A)
   []
   [not (eleof (INTL, S))]->

 PIC_1[ user_sw, sw_scp, sw_db, sw_clk] ( Ad_A)) )
    []
   ( [F eq CFBL]->

sw_db !GetStatus !Ad_B  ?S:Status;
( [eleof (CFBL, S)]->

 CFBL [ user_sw, sw_scp, sw_db, sw_clk] ( Ad_A, Ad_B)
   []
   [not (eleof (CFBL, S))]->

 PIC_4[ user_sw, sw_scp, sw_db, sw_clk] ( Ad_A, Ad_B, S)) )
    []
   ( [F eq INFB]->

sw_db !GetStatus !Ad_B  ?S:Status;
( [eleof (INFB, S)]->

 INFB [ user_sw, sw_scp, sw_db, sw_clk] ( Ad_A, Ad_B)
   []
   [not (eleof (INFB, S))]->

 PIC_4[ user_sw, sw_scp, sw_db, sw_clk] ( Ad_A, Ad_B, S)) )
    []
   ( [F eq TWC]->

!GetStatus !Ad_A  ?SA:Status;
!GetStatus !Ad_B  ?SB:Status;
( [eleof (TWC, SA)]->

 TWC [ user_sw, sw_scp, sw_db, sw_clk] ( Ad_A, Ad_B, Ad_A)
   []
  [eleof (TWC, SB)]->

 TWC [ user_sw, sw_scp, sw_db, sw_clk] ( Ad_A, Ad_B, Ad_B)
   []
   [not (eleof (TWC, SA) and eleof (TWC,SB))]->

 PIC_8[ user_sw, sw_scp, sw_db, sw_clk] ( Ad_A, Ad_B)) )

endproc (* ActivateFeatures3 *)

Fig 4.9  Feature Activation Process
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FAP inquires about the status information of the caller or callee’s or both (depending on

different features). Then the FAP checks if the feature to be activated has been subscribed or not. If

it has, the corresponding feature process is called. Otherwise, the call process returns to BCP. Fig

4.9 gives the LOTOS specification of FAP.

FAP uses “eleof”, an operation defined on ADT “Status”, to check if a user subscribes to a

specific feature, i.e. expression “eleof (INTL, Status)” is TRUE if INTL is an element of “Status”. A

feature is activated by generating an instance of the corresponding feature process with specific

parameters, i.e. addresses of the caller and the callee.

4.3.5.3 Features

The LOTOS processes of the features are obtained from the LTSs of those features in the

same way as BCP and PIC process mapped from the LTS of BCP. (Refer to §3.2.3 INTL, §3.2.4

CFBL, §3.2.5 INFB, §3.2.6 TWC, § 4.3.5.2 BCP for the details of the LTSs and the mapping rules)

4.3.6 Process SCP

In our system model, the SCP includes five IN feature specifications. Every IN feature has a

unique trigger name, i.e. INFB’s trigger name is INFO_ANAYZED, and INTL’s trigger name is

ORIGINATION_ATTEMPT, so that the SCP can know which trigger message was sent from

which feature by checking their trigger names.  Responses to different features are composed

together using the choice operator “[]” in the SCP. A new instance of the SCP is generated when

the processing of the feature finishes.

Fig 4.10 illustrates the LOTOS specification of the SCP.
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4.3.7 Process DBAPI

Process DBAPI is an interface of the user status database (TheUser) and the billing database

(TheBill), which are represented using ADTs.

Its main functions are: 1) processing the queries of “GetStatus”, “GetSubscribedFeatures”

from the switch and the query of “GetTeenPIN” from the SCP and outputing the corresponding

process SCP [sw_scp, scp_db] : noexit :=
   …
  (* INTL Feature *)
   sw_scp  ! Trigger  ? Trig:TriggerName  ? Ad_S:Address  ? Ad_A:Address  ? T:Time;
   (  [Trig eq ORIGINATION_ATTEMPT]->

      scp_db   ! getStatusReq   ! Ad_S;
      scp_db   ! getStatusRes   ? S:Status;
      sw_scp   ! Response   ! SEND_TO_RESOURCE   ! Ad_S   ! AskForPIN;
      sw_scp   ! Resource   ? Ad_S:Address   ? P:Nat;
      (  [P eq GetTeenPIN(S)]->

sw_scp   ! Response  ! CONTINUE  ! Ad_S;
                      SCP [sw_scp, scp_db]

              []
               [P ne GetTeenPIN(S)]-> sw_scp  ! Response   ! SEND_TO_RESOURCE   ! Ad_S   ! InvalidPIN;
    sw_scp  ! Resource  ? Ad_S:Address;
   sw_scp  ! Response  ! RES_DISCONNECT   ! Ad_S;
              SCP [sw_scp, scp_db]
                   )
    )
  []
 (* INFB & INFR Feature *)
 sw_scp  !Trigger   ?Trig:TriggerName   ?Ad_S:Address   ?Ad_A:Address  ?Ad_B:Address  ?T:Time;

     [Trig eq INFO_ANALYZED]->
sw_scp  ! Response  ! ANALYZED_ROUTE   ! Ad_S   !Ad_A   !Ad_B   !Ad_B;

             SCP [sw_scp, scp_db]

endproc (* SCP *)

Fig 4.10  LOTOS Process of SCP (partial)
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replies using query operations of the ADTs and 2) following the setting instructions of “SetBusy”,

“SetIdle”, “SetThreeWay”, “LogBegin” and “LogEnd” to set or construct records (“LogBegin”)

using setting or constructor operations of the ADTs.

process DBAPI [sw_db,scp_db](TheStatus:UserStatusSet,TheBill:BillSet) : noexit :=
  ( ( sw_db ! GetStatus ? Ad_A:Address ! GetStatus(GetUserStatus(Ad_A,TheStatus));
        DBAPI [sw_db,scp_db] (TheStatus,TheBill) )
     []
    ( sw_db !SetIdle ? Ad_A:Address;
      DBAPI [sw_db,scp_db]
      (SetUserStatus(Ad_A,Idle(GetStatus(GetUserStatus(Ad_A,TheStatus))),TheStatus),TheBill) )
    []
     ( sw_db! SetBusy ? Ad_A:Address;
       DBAPI [sw_db,scp_db]

(SetUserStatus(Ad_A,Busy(GetStatus(GetUserStatus(Ad_A,TheStatus))),TheStatus),TheBill) )
    []
    ( sw_db! SetThreeWay ? Ad_A:Address ?b:Bool;

 DBAPI [sw_db,scp_db]
(SetUserStatus(Ad_A,SetThreeWay(b,GetStatus(GetUserStatus(Ad_A,TheStatus))),TheStatus),TheBill) )

   []
    ( sw_db! LogBegin ?Ad_A:Address ?Ad_B:Address ?Ad_C:Address ?T:Time;
      DBAPI [sw_db,scp_db]
      (TheStatus,LogLogbegin(Ad_C,Ad_A,Ad_B,T,TheBill)) )
   []
    ( sw_db ! LogEnd ?Ad_A:Address ?Ad_B:Address ?T:Time;
      DBAPI [sw_db,scp_db]
      (TheStatus,LogLogEnd(Ad_A,Ad_B,T,TheBill)) )
   []
    ( sw_db !GetSubscribedFeatures ? Ad_A:Address !GetFeatures(GetUserStatus(Ad_A,TheStatus));
       DBAPI [sw_db,scp_db]
       (TheStatus,TheBill) )
   []
    ( scp_db !GetTeenPIN ? Ad_A:Address !GetTeenPIN(GetUserStatus(Ad_A,TheStatus));
       DBAPI [sw_db,scp_db]
       (TheStatus,TheBill) ) )
   []
    ( sw_db !GetTeenTime ? Ad_A:Address !GetTeenTime(GetUserStatus(Ad_A,TheStatus));
       DBAPI [sw_db,scp_db]
       (TheStatus,TheBill) ) )
    []
    …

  endproc (*DBAPI*)

Fig 4.11 LOTOS Process of DBAPI (partial)
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Chapter 5. Feature Interaction Detection System

In Chapter 1, the FI problem is explained in a general way. In this chapter, we

give FI a precise and formal definition and explain how a FI Detection System (FIDS) is

developed according to this formal definition. Since it would be very long to cover all 12

features, we will use four representative features, INTL, CFBL, INFB, TWC as examples

to show how feature properties are derived and how FIs are detected by FIDS. The full

results of our FI analysis on all contest features are reported in [FHLS98].

5.1 Classification of FI

During the feature development process, a feature is defined at several different

levels of abstraction, from a high level view to implementation code. Therefore, FIs can

occur at all these levels. In [BDCG89], FIs occurring at the level of abstract specification

are called logical feature interactions, those occurring when the feature specification is

mapped onto a network architecture are called network feature interactions and those

occurring when the feature software is mapped onto an execution environment are called

implementation feature interactions.

Clearly, FI detection must be done as early as possible, otherwise FIs will

propagate through the whole feature development process. Since we are dealing with

formal specification of features, which abstracts from design and implementation details,

the FIs that we detect here are logical feature interactions.
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5.2 Formal definition of FI

Many definitions of Feature Interaction are either too inclusive or too exclusive.

For example, Cameron et al. [CGDN93] understood feature interactions “to be all

interactions that interfere with the desired operation of the feature”. Here, the “desired

operation” of a feature is an imprecise notion, which might have different meanings to

subscribers, to designers, and to people who made the specifications.

P. Combes et. al [CoPi94] and W. Bouma [BoZu92] formalize the above “desired

operation” to be properties of features, and address the FI problem as violations of these

properties when a new feature is introduced into the network. However, they concentrate

only on the violation of features’ properties and miss the FI cases where the system

properties are violated, while the features’ properties hold.

We improve the definition of FI by adding system properties to the set of

properties that must be checked after the introduction of a new feature. The definition

then becomes the following one.

Let S be an executable specification of a basic telephony system (POTS), and let

F1, F2, …, Fn, be specifications of n features.

We use S ⊕ F1 ⊕ F2 ⊕ … ⊕ Fi to denote the system obtained by integrating i

features, 1≤ i ≤ n, to the basic telephony system (POTS).

Let SP (System Property) be logical formulae expressing the properties of the

basic telephony system (POTS), FP1, FP2, …, FPn (Feature Property) be n formulas
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expressing respectively the feature properties of F1, F2, …, Fn, and let N |= P denote that a

system specification N satisfies formula P, i.e. N is a model of P.

We say that there is interaction between features F1, F2, …, Fn if :

∀ i, 1 ≤  i  ≤  n, S ⊕ Fi  |= SP ∧ FPi, but

¬ ( S ⊕ F1 ⊕ F2 ⊕ … ⊕ Fi  |= SP∧ FP1 ∧ FP2 ∧ … ∧ FPn )

Examples of SP and FP will be given in §5.4.2 and §5.4.3 respectively.

5.3 Two Phases of FI Detection Process

According to the FI definition of the previous section, our FI detection process is

divided into two phases:

1) Validation phase to validate that every feature works well individually after

having been integrated into BCP, that is, both the feature property and system

properties hold. Thus, the first part of the FI definition, S ⊕ Fi  |= SP ∧ FPi  is

checked.

2) Detection phase to detect any undesirable effect caused when two or more

features work together, that is, to detect if any feature property or system

property is violated. Thus, the latter part of the FI definition, ¬ ( S ⊕ F1 ⊕ F2

⊕ … ⊕ Fi  |= SP ∧ FP1 ∧ FP2 ∧ … ∧ FPn ), is checked.

5.3.1 Validation Phase

The validation phase has two stages:
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- First, using a LOTOS tool called CAESAR.Simulator to validate the

consistency between the LTS specification and the LOTOS executable

specification in a step-by-step fashion. That is, it is checked that our LOTOS

specification has all and only those traces specified in its LTS tree (described

in Chapter 3.)

- Then, the FI Detection System (FIDS) is used to verify that both the system

properties and the feature properties hold when there is only one feature

activated during a call process. FIDS, given the name of a feature, activates

the feature during a call process and checks the presence of the feature’s

properties. We will explain how FIDS works in § 5.5 FI Detection System.

5.3.2 Detection Phase

In the detection phase, we use FIDS to detect FI pair-wise, that is, two features

will be activated during a call process. Then, the feature properties, together with the

system properties, will be checked by analyzing the billing data and monitoring

conflicting signals.

Although FIDS is used in both the detection phase and the validation phase, the

differences between them are listed below.

1) Only one feature is activated in the validation phase while two features are

activated in the detection phase.
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2)  The goal of the validation phase is to find defects in the specification, and

then to fix them. Therefore, the faults found in the validation phase are not

FIs.

3) The goal of the detection phase is to find interactions between features when

they are activated and to report them. So, any abnormality found in this phase

is a symptom of FI.

5.4 Deriving the Properties of Features

How to derive the properties of features and how to represent them are the biggest

challenges of FI detection since a feature’s property is usually defined informally using

natural language and people may have different understandings of a given feature. For

example, the informal description of feature INFB is “The IN Freephone Billing(INFB)

feature allows the subscriber to pay for incoming calls.” When deriving the properties of

a feature from such definitions, divergences could occur in understanding the exact scope

of  “incoming calls”. Is a forwarded call an “incoming” call? If it is, should the subscriber

of INFB pay for the whole call or only for the forwarded part of the call? We experienced

the same interpretation problems during the property derivation process. Since some

features such as INFB are so new that little research has been done on them, we could not

compare our work with any reference concerning a “standard” explanation of them.

Therefore, the derived feature’s properties listed here are based on the best of our

knowledge and on our practical experience with FI detection.

Beside the problem of interpretation, how to establish the necessity and the

completeness of the derived feature property set is another big challenge. If the derived
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feature property set is not a minimum set of all necessary properties, then much extra

work may have to be done to validate those unnecessary properties, or even “false” FI

might be detected. We call these “false” FIs because in such cases, only the unnecessary

properties are violated while other necessary properties are all well preserved.

On the other hand, a derived property set should be complete. Otherwise, some FI

may not be found due to the incompleteness of the set.

However, given the fact that feature properties normally are provided in a semi-

formal notation, completeness and necessity cannot be checked formally and depend on

judgement.

Furthermore, the completeness and the necessity of a property set are system-

dependent. That is to say, we cannot derive a feature’s property set without considering

the system and the specific activation mechanism of the integrated features.

Thus, before discussing derived feature properties, let us briefly describe the

feature integration and activation mechanism in our system model.

5.4.1 Feature Composition

In our system model, features are represented using LOTOS processes. All new

features are integrated into the BCP, a basic call control feature, via FAPs at

corresponding PICs. One feature’s activation will not affect the activation of other

features. Therefore, if two features are integrated into the same PIC, their FAPs are

mutually independent of each other. We use the interleaving LOTOS operator “|||” to

describe the mutual independence between FAPs.
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Inappropriate feature composition may “solve” or “invent” some “FIs”. For

example, feature activation might result in some unintended priorities if the features are

not properly composed. If the priorities are given correctly, we will miss the FI because it

has already been solved. If the priorities are not given correctly, we may get FIs with

misleading symptoms, e.g. one feature’s activation “disables” another feature’s

activation. So, we use the interleaving operator “|||” to preserve the mutual independence

of the feature activations.

5.4.2 System Properties

 In our system model, the system properties are derived as follows:

� Absence of deadlock.

That is, at any time, the telephony system has at least one event to occur next.

� Valid billing records.

A billing record, (c, a, b, t1, t2) is valid if

1) a, b, c are in the registered network address set. (caller a, callee b and

payer c are all valid registered network addresses)

2) a ≠ b (the caller a and the callee b should not be the same address)

3) t1,t2 ≠ 0 ∧ t1< t2 ( the call starting time t1 and the call ending  time t2 are

set and t1 is earlier than t2)

� Correctness of the billing database.



Chapter 5. Feature Interaction Detection System

Page 96

The billing database is correct if all calls occuring in the system have one and

only one corresponding billing record stored in the billing database.

� Compatiblity of successive signals given to the user.

In our system model, three types of audible signals are given to the user

during the call establishment process:

- AudibleRinging

AudibleRinging is a positive signal to the caller because it means that the call

is connected to the callee and the callee is being rung.

- LineBusyTone

- Announcement of ScreenedMessage (INTL)

- Disconnect

LineBusyTone, announcement of  ScreenedMessage and Disconnect are

negative signals to the caller because the call connection is blocked

/terminated in such cases. A LineBusyTone  is generated because the callee is

busy and it has no CFBL feature or it has the CFBL feature but the forwarded

address is also busy. The SceenedMessage is played to the caller when the

caller attempts to originate a call during the TeenTime period but fails to input

the correct TeenPIN, thus the call is blocked. A disconnect signal is given to

the user when the other party hangs up, thus the call is terminated.

We say that two signals are “compatible” if they have the same meaning to the

user. So, negative signals are compatible with each other because they have the same
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meaning to the user. Negative signals are incompatible with positive signals because they

have conflicting meanings to the user. Positive signals are compatible with each other if

they correspond to the same destination that is being rung and incompatible if different

destinations are being rung.

Table 5.1 depicts the compatible relations among LineBusyTone,

AudibleRinging, Disconnect and the announcement of ScreenedMessage.

Table 5.1 Compatible Relations of Signals Given to User

LineBusy
Tone

Screened
Message

Disconnect AudibleRining
from A

AudibleRining
From B

LineBusy
Tone

Compatible

Screened
Message

Compatible Compatible

Disconnect Compatible Compatible Compatible

Audible
Ringing
from A

Incompatible Incompatible Incompatible Compatible

Audible
Ringing
from B

Incompatible Incompatible Incompatible Incompatible Compatible

5.4.3 Feature Property

The telephony features that we discuss here are marketable services [FaLS97].

The subscribers who buy the services know nothing about the implementation details of

either the system or the feature. To them, the telephony network is like a black box. They

interact with it through the telephones (through gate “user_sw” in our model) and

periodically pay the bill for the services (in our model, all billing records are created by

the billing actions occurring at gate “sw_db”). Therefore, the feature properties can be
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described from the user’s point of view. That is, the feature properties can be mapped

into specific restrictions on billing actions and/or user’s behavior traces. For example,

INFB can be mapped as follows: “for all billing records where the subscriber is the

callee, the payer should be the subscriber too.” It is important to note that all features that

were considered in this study could be characterized by one property only.

The feature property validation process is effectively simplified by adopting such

feature property representation. Instead of checking the entire trace of a call process to

validate the feature properties, we only need to examine the billing records and user

behavior traces to detect FI.

Before specifying the properties of features, let us define some basic concepts.

For the description of billing records, refer to §4.3.1 Abstract Data Types.

� Forwarded Call

If there exist two billing records, (p1, a, b, t1, t2), (p2, c, d, t3, t4),  which

have the same LogBegin time and LogEnd time, t1=t3, t2=t4, and the caller of

one record is the callee of the other record, b=c, we say that there is a forwarded

call from a to d through b(c). a is the originating party of the forwarded call. d is

the terminating party of the call.

� Next Forwarded Address

In the above example, d is the next forwarded address after b.

� Direct call
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We say the call is a direct call if 1) it is not a forwarded call, 2) the

originating party of a direct call is the caller and 3) the terminating party of a

direct call is the callee.

5.4.3.1 Derived Property of INTL

The informal requirement description of INTL is “INTL restricts outgoing calls

based on the time of day. This can be overridden on a per-call basis by anyone with the

proper identity code.”

The property of INTL derived from the above informal specification is:

If user X subscribes to INTL and defines that the TeenTime period is from T1 to T2

and the TeenPIN is P, then if X originates any call (direct or forwarded), during the

TeenTime period, a valid TeenPIN P must have been input by X.

In FIDS, the property of INTL is validated in the following way:

1) Checking all billing records whose LogBegin time is within the TeenTime

period of X to see whether X is the originating party or not. If X does originate a call

during the TeenTime period, turn to step 2).

2) Checking the user’s behavior traces to see if signal “user_sw !Dial !X !P” (P

is equal to the TeenPIN) occurs before. If it does, the property of INTL holds. Otherwise,

the property is violated.

5.4.3.2 Derived Property of INFB

The informal requirement description of INFB is “INFB allows the subscriber to

pay for all incoming calls.”
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The property of INFB derived from the above informal specification is:

If user X subscribes to INFB, then X pays for all incoming calls.

In FIDS, the property of INFB is validated as follows:

Checking all billing records where X is the callee to see whether the payer is also

X or not. If it is, the property of INFB holds, otherwise, the property is violated.

5.4.3.3 Derived Property of CFBL

The informal requirement description of CFBL is “with the CFBL feature, all

calls to the subscribing line are redirected to a predetermined number when the line is

busy. The subscriber pays any charges for the forwarded call from his station to the new

destination.”

The property of CFBL is derived as follows:

If user X subscribes to CFBL, then all incoming calls made to X when X is busy

must be forwarded to a third party predefined by X.

In FIDS, the property of CFBL is validated in two steps:

1) Checking if X is initially set to be busy in the testing scenario. If it is, turn to

step 2).

2)  Checking all billing records where X is the callee to see if the call is a

forwarded call and the next forwarded address is the predefined party. If it is,

the property of CFBL holds and otherwise it is violated.
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5.4.3.4 Derived Property of TWC

The informal requirement description of TWC is “TWC allows the connection of

three parties in a single conversation.”

 Every successful connection has a corresponding billing record in TheBill

database, which consists of five parts: Payer, Caller, Callee, LogBeginTime, and

LogEndtime. Thus, if a three-way connection is established, there must be two billing

records such that 1) the TWC subscriber is either the caller or callee in one call (the TWC

subscriber must first be engaged in one call before it can initiate a second one) 2) the

TWC subscriber is caller in the other call (the second call must be initiated by the TWC

subscriber) 3) their logging time periods are overlapped (the second call must be

established during the first call’s connection.).

 The property of TWC derived from the above informal specification is:

If user X subscribes to TWC and TWC is activated, then there are two billing

records that 1) in one call X is the originating party and in the other call X is either the

originating party or the terminating party 2) the LogBegin time of the first call is within

the log time of the second call.

Unlike the previous three policy features whose activation condition is predefined

(e.g., IN Teen Time for INTL, the subscriber’s busy time for CFBL or no extra activation

condition for INFB except the registration to the feature), in the case of TWC, it is the

subscriber who decides whether the feature is to be activated or not during a call process.

In FIDS, we assure the activation of TWC by making the system synchronized with a
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specific test scenario where the TWC subscriber A flashhooks and dials the third party C

when talking to B (see detailed description in §5.6.1 Scenario Designer: Test Scenario

Generation).

In FIDS, the property of TWC is validated as follows:

1) Checking the whole billing history, find all the billing records where X is the

originating party.

2) For each above billing record, check all the billing records whose log time is

overlapped and see if X is either the originating party or the terminating party.

If it is, the TWC property is preserved. Otherwise, the TWC property is

violated.

5.5 Feature Interaction Detection System

In the previous sections, we have discussed the definition of FI and the derived

system properties and feature properties. In this section, we introduce an FI Detection

System (FIDS) using the above method to detect FI.

The input of FIDS is a collection of feature names whose properties are going to

be validated. The output are traces that violate either the system properties or the feature

properties or both, reported using the Message Sequence Charts (MSC) format with a

brief description of the symptoms.

In the validation phase, only one feature is input into FIDS, where it gets activated

and validated. Property violations found in this phase are not FI but design defects of the
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feature. In the detection phase, the input of FIDS is a collection of two or more features

to be considered.

All of the input features are activated during one call process via synchronization

between the system and a pre-designed test scenario. Their activations are interleaved.

The system property checking is done during execution by a global monitoring process,

WatchDog, which raises an error flag when system property violations are detected, e.g

conflicting signals given to user or incorrect billing actions. The feature property is

validated by the “Property Checker”, a component of FIDS which checks the feature

property by analyzing a snapshot of the billing database, taken at the end of the scenario

by the WatchDog process, together with user’s behavior trace if necessary.

As illustrated in Fig 5.1, FIDS consists of five parts: Scenario Designer,

Integrator, FI Hunter, Property Checker and MSC translator. Below, we give a brief

description of each part and in the next section § 5.6 FI detection between INTL and

CFBL, INFB, TWC, we illustrate in detail how FIDS works, using four features INTL,

CFBL, INFB, and TWC as examples.
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Fig 5.1 Feature Interaction Detection System

UserBehaviorDescription
|[user_sw]|
System (InitialData)
|[user_sw, sw_db]|
 WatchDog

TestScenario



Chapter 5. Feature Interaction Detection System

Page 105

� Scenario Designer

 Scenario Designer is the first step of FIDS. It takes the names of features to be

tested and designs specific test scenarios for them. A test scenario consists of two

parts: 1) the initial data that indicates the subscribing data and status of A, B and

C 2) the user behavior description that describes events that must occur at the

user side to activate the input features during a call process. For each pair of

features to be considered, the Scenario Designer will design 4 test scenarios

where the user behavior descriptions are the same and the initial data cover all 4

possible combinations of B and C’s initial busy/idle status, (A should be always

idle at the beginning since A is the caller). By synchronizing the system with such

test scenarios, we could reduce the size of the expanded specification without

losing any possible FIs, since the user behavior description only restricts the

system behavior until all features are activated. Only one FI type could possibly

occur during this period, that is, one feature’s activation is inhibited due to other

activated features. If such FI happens, the system will deadlock since it cannot

synchronize with the test scenario any more, since the latter is designed in a way

to assure that all features are activated. This deadlock can be detected by the FI

Hunter later while searching for FI traces.
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� Integrator

Integrator of FIDS takes the test scenario generated by Scenario Designer,

initializes the user status and billing database as specified in the initial data and

lets the system synchronize with the users behavior description at gate “usr_sw”

and with a global monitoring process “WatchDog” at gate “usr_sw” and “sw_db”.

“WatchDog” is general to the system and monitors the same events for all pairs of

features:

1) Incorrect billing actions

2) Conflicting signals

3) End of scenario reached

In addition to this run-time analysis, each time the end of a scenario is reached,

WatchDog also saves data records to be analyzed in a post-test analysis performed

by Property Checker.

� FI Hunter

The third step of FIDS is “FI Hunter”. In “FI Hunter”, 1) the new integrated

system is translated to a C program which can be further executed or simulated

using Caesar and Caesar.ADT 2) the trace-matching tool, Caesar.exhibitor, will

execute the generated C program and filter out all traces leading to either “error”

flags or a “finish” flags raised by “WatchDog”. Traces where WatchDog raises

the “error” flags are FI traces violating the system properties. Traces where

WatchDog raises the “finish” flag are potential FI traces that need to be further
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analyzed by the “Property Checker.” We call these “potential FI traces” because

they might become real FI traces if the feature properties are found to be violated

in the subsequent analysis of the billing data.

� Property Checker

For each potential FI trace generated from FI Hunter, Property Checker examines

the final billing data saved by WatchDog, and checks if there is any violation of

the properties of the activated features. If there is, the trace becomes a FI trace

and will be output by the “Translator”, along with a brief diagnostic.

� MSC Translator

The last step, the “Translator” takes all detected FI traces generated from either

the “FI Hunter” or the “Property Checker”, translates them into the format of

Message Sequence Charts (MSC) and generates a final validation report.

5.6 FI detection between INTL and CFBL, INFB, TWC

In our model, FI are detected pair-wise. Thus, to detect the FI between INTL and

CFBL, INFB, TWC, the input of FIDS is {INTL, CFBL}, {INTL, INFB}, {INTL,

TWC}, respectively.

5.6.1 Scenario Designer: Test Scenario Generation

The Test scenario process describes the testing environment, which interacts with

the telephony network system so that all input features can be activated during a single

call process from caller A to callee B.
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The Test Scenario process consists of two parts: initial data part and user behavior

description part.

- Initial data part

The initial data part specifies the initial data stored in the billing database

“TheBill” and user status database “TheUser”. The billing database is initially an empty

database and grows along with the execution of the system. Unlike the billing database,

the size of the user status database will not change once it is initialized. The user status

database consists of three user status records, carrying busy/idle status and subscription

information for each user. The initial busy/idle status of A is set to be idle to originate a

call. B and C can be either idle or busy at the beginning. Therefore, FI needs to be

analyzed with four initial scenarios: 1) both B and C are busy; 2) both B and C are idle;

3) B is busy while C is idle; 4) B is idle while C is busy.

- User behavior description part

In our model, we define 1) A to be the caller of the call process and to subscribe to

features affecting outgoing calls, e.g. INTL; 2) B to be the callee and to subscribe to

features affecting incoming calls, such as INFB and CFBL 3) C to be the third party of

features involving three users, e.g. CFBL or TWC. TWC can be subscribed by either the

caller or the callee but in our model, we let the caller, A, subscribe to TWC.

The user behavior description part specifies a call origination process from A to B.

Different features are activated by different scenarios.

The basic scenario is “A offhooks; A gets DialTone; A dials B”. INFB, CFBL can

be triggered in this scenario. Some features such as INTL and TWC need more specific
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actions occurring on part of the user’s behavior: The scenario for INTL is “A offhooks; A

gets an announcement of AskForPIN; A dials the valid PIN, P; A dials B”. The scenario

needed by TWC is “A offhooks; A gets DialTone; A dials B; Ringing tone at B,

audibleRinging tone at A; B offhooks; AudibleRinging tone at A stops; Ringing tone at B

stops; A flashhooks; A dials C”.

If input features have different scenarios to be activated, the “Scenario Designer”

will combine corresponding scenarios into a comprehensive one so that all features can

be triggered within it. For example, if input features are INTL and CFBL, the combined

scenario is “A offhooks; A gets an announcement of AskForPIN; A dials the valid PIN, P;

A dials B”.

Fig 5.2 illustrates one of four LOTOS test scenarios for INTL and CFBL when B

is busy and C is idle. The initial data part consists of five sentences “let”. The first three

assignment sentences define the status of users A B C.  User A is initially idle and

subscribes to INTL. B is initially busy and subscribes to CFBL. The forwarded address (a

parameter of CFBL that indicates the next forwarded address while the subscriber is

busy) of B is C. C is initially idle and subscribes to CFBL. The fourth “let” sentence

defines the user status database “TheUser” which is composed of above three user status
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records. The fifth “let” sentence states that the initial billing database is empty. The user

scenario part describes the combined user scenario of INTL and CFBL. Since the

“TestScenario” process specifies the signal occurring at the user side, it synchronizes

(* Initial Data Part *)

let Status_A: Status = Status ( false, 9, Time(0), Time(20), Undefined, insert(5, {}) ) in

let Status_B: Status = Status ( true, 0, Time(0), Time(0), C, insert ( 1, {})) in

let Status_C: Status = Status ( false, 7, Time(0), Time(20), {}, false, Undefined, insert ( 1, {} ) ) in

let InitSet: UserStatusSet = insertStatus ( CreateUserStatus ( A, Status_A ),
     insertStatus ( CreateUserStatus ( B, Status_B ),
         insertStatus ( CreateUserStatus (C, Status_C ),

      {} of UserStatusSet ) ) ) in
let InitBill:BillSet = {} in

(* User Scenario Part *)

process TestScenario [user_sw, ot]:noexit:=
   user_sw    ! OffHook    ! A;
   user_sw    ! Announce ! A !AskForPIN;
   user_sw    ! Dial   ! A   ! P;
   user_sw    ! DialTone   ! A;
   user_sw    ! Dial    ! A    ! B;
   (
      Users[user_sw]
     [>
  ot    ! Finish;
   )
  stop

endproc (* Test_Scenario *)

Fig 5.2 Test Scenario for INTL and CFBL
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with the telephony system through “user_sw” gate. When all activated features finish, the

“WatchDog” process will send a signal “finish” on gate “ot” to terminate the execution of

the “TestScenario”.

5.6.2 Watch Dog

 Unlike the “TestScenario” which needs to be tailored for different features, the

global monitoring process, the “WatchDog”, does not need to change for different

features. Besides the system property violation monitoring, it is also responsible for

monitoring the end of scenario reached (all activated features finish execution) and for

taking a snapshot of the billing database when the call process finishes. The snapshot of

the billing database will be further analyzed by the “Property Checker” to see if the

activated feature properties are violated or not.

 The “WatchDog” monitors every billing action and signal given to users by

synchronizing with the telephony network system at gate “user_sw” and “sw_db”. When

conflicting signals going to the user are detected, the “WatchDog” reports an error

message “ConflictingSignals” at “err” gate; when an invalid billing action is detected, the

error message reported is “InvalidBilling”.

Fig 5.3 lists part of the WatchDog process.
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process WatchDog[user_sw, sw_db,err,ot]: noexit:=

(*When it detects a StartAudibleRinging, WatchDog monitors the next signals given
     to  that user, and raises an “error” message if it is LineBusyTone,
    ScreenedMessage, Disconnect or AudibleRing from another user*)
  (user_sw !StartAudibleRinging ?Ad ?Dest1:Address;

(user_sw !LineBusyTone !Ad;
      err !ConfictingSignals;
      WatchDog [user_sw, sw_db,err,ot]

  []
  user_sw !ScreenedMessage !Ad;

      err !ConfictingSignals;
      WatchDog [user_sw, sw_db,err,ot]

  []
  user_sw !Disconnect !Ad;
  err !ConfictingSignals;

      WatchDog [user_sw, sw_db,err,ot]
  []
  user_sw !StartAudibleRining !Ad ?Dest2:Address
  ( [Dest1 ne Dest2]->

        err !ConfictingSignals;
        WatchDog [user_sw, sw_db,err,ot]

     []
     [Dest1 eq Dest2]->
     WatchDog [user_sw, sw_db,err,ot]
  )
  []

      user_sw !StopAudibleRinging !Ad !Dest;
      WatchDog [user_sw, sw_db,err,ot]

….
)

  )
(*When it detects LineBusyTone, WatchDog monitors the next signals given
     to  that user, and raises an “error” message if it is StartAudibleRinging*)
  []
  ( user_sw !LineBusyTone ?Ad ?Dest:Address;

(user_sw !StartAudibleRinging !Ad;
      err !ConflictingSignals;
      WatchDog [user_sw, sw_db,err,ot]
      []
      user_sw !Onhook !Ad;
      WatchDog [user_sw, sw_db,err,ot]

…
)

  )
 []
….

 endproc (* Watch_Dog *)

Fig 5.3 The WatchDog Process (partial)
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5.6.4 Integrator

The Integrator composes the “Test Scenario” and the “WatchDog” into the

telephony system in the following way: the initial data part of the “Test Scenario”

replaces the initialization part of the telephony system. The “TestScenario” process of

“Test Scenario” is selectively synchronized with the system at gate “user_sw”.

“WatchDog” monitors billing actions and signals going to users and the end of scenario

reached. It is partially synchronized with the system at gate “sw_db”, “user_sw”. Fig 5.4

illustrates the new system integrated with TestScenario and WatchDog.

5.6.5 FI Hunter

FI hunter uses 1) Caesar and Caesar.ADT to compile the new system integrated

with TestScenario and WatchDog process into a C program, and 2) the trace-searching

tool Caesar.Exhibitor to filter out all FI traces where WatchDog raises a “error” or

“finish” message by executing the generated C program.

Four types of traces are detected by FI hunter:

1) FI traces leading to deadlock before the call process is completed.

The pattern specified for this type of traces is: ~“ot !Finish”<until>

<deadlock>. The goal event is <deadlock>, which is a Caesar.Exhibitor keyword

representing the deadlock state of the system. The condition of this goal is ~“ot

!Finish”, which means “no ‘ot !Finish’ event occurs before reaching the goal

event”. <until> is a keyword separating the condition and the goal.
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specification SystemModel [user_sw, sw_scp]: noexit
…
(* Data Part *)
…

behaviour
SYSTEM [user_sw, sw_scp]
|[user_sw]|
WatchDog [user_sw, sw_db, err]

where
process SYSTEM [user_sw, sw_scp]: noexit :=

…
(* Initialization Part *)
…
hide, scp_db, sw_clk, sw_db in
 (
      (

( ( TestScenario[user_sw]
     |[user_sw]|

  USERS [user_sw]
 )

      |[user_sw]|
  ( SWITCH [user_sw, sw_scp, sw_db, sw_clk]
    |[sw_clk]|

  CLOCK [sw_clk] (Initial Time)
)
   |[user_sw, sw_db]|
WatchDog [user_sw, sw_db, err, ot]

 )
         |[sw_scp]|
         SCP [sw_scp, scp_db]
       )

      |[sw_db,scp_db]|
      DBAPI [sw_db, scp_db] (Initial Data)

)

endproc (* SYSTEM*)

endspec (* SystemModel *)

Fig 5.4 System Integrated with TestScenario and WatchDog
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2) FI traces leading to conflicting signals to user.

Since the “WatchDog” process will report an error message

“ConflictingSignals” at gate “err” when catching conflicting signals give to users,

the searching goal for this type of FI traces is: <until> “err !ConflictingSignals”.

The goal event is “err !ConflictingSignals”. No condition is required in this goal.

3) FI traces leading to invalid billing actions.

Since the “WatchDog” process will report an error message “InvalidBilling”

at gate “err” when the invalid billing actions are detected, the searching goal for

this type of FI traces is: <until> “err !InvalidBilling”.  The goal event is “err

!InvalidBilling”. No condition is required in this goal.

4) Potential FI traces.

Potential FI traces are those traces reflecting the entire scenario. When all

activated features finish at the end of the scenario, the “WatchDog” process will

take a snapshot of the billing database and raise the “Finish” signal at gate ‘ot”.

Therefore, the searching goal for potential FI traces should be: ~ “err !*” <until>

“ot !Finish” . The goal event is “ot !Finish” . A condition for this goal is that no

“err” flag has been raised before.

The following is the example of the FI hunter output:

 Test features: CFBL and INFB

Test Scenario: B subscribes to CFBL and INFB; The forwarded address of CFBL

is C; B is initially BUSY. C subscribes to INFB; C is initially idle.
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Output of FI hunter:

� FI traces leading to deadlock: None

� FI traces leading to conflicting signals:

        <initial state>
"USER_SW !OFFHOOK !A"
"i" (SW_DB [971])
"USER_SW !DIALTONE !A"
"USER_SW !DIAL !A !B"
"i" (SW_DB [971])
"i" (SW_DB [971])
"i" (SW_DB [971])
"i" (SW_DB [971])

/* INFB gives caller A a linebusytone since B is busy */
"USER_SW !LINEBUSYTONE !A"
"i" (SW_DB [971])
"i" (SW_DB [971])
"i" (SW_DB [971])
"i" (SW_DB [971])

/* CFBL forwards the call to C and gives back to caller A an audibleringing tone
when rings C */
"USER_SW !STARTAUDIBLERINGING !A !C"

/* Error flag raised because linebusytone and audibleringing are conflicting
successive signals given to user A   */
"ERR !CONFLICTINGSIGNALS"
<goal state>

� FI traces leading to invalid billings: NONE

� Potential FI traces: None

Another example of FI hunter output for the same pair of features but with

different initial states of the callee is as follows:

Test features: CFBL and INFB

Test Scenario: B subscribes to CFBL and INFB; The forwarded address of CFBL

is C; B is initially IDLE.
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Output of FI hunter:

� FI traces leading to deadlock: None

� FI traces leading to conflicting signals: NONE

� FI traces leading to invalid billings: None

� Potential FI traces:

<initial state>
"USER_SW !OFFHOOK !A"
"i" (SW_DB [971])
"USER_SW !DIALTONE !A"
"USER_SW !DIAL !A !B"
"i" (SW_DB [971])
"i" (SW_DB [971])
"i" (SW_CLK [971])
"i" (SW_CLK [971])
"i" (SW_DB [971])
"i" (SW_DB [971])
"i" (SW_DB [971])
"SW_SCP !TRIGGER !INFO_ANALYZED !B !A !B !TIME (2)"
"i" (SW_DB [971])
"i" (SW_DB [971])
"i" (SW_DB [971])
"SW_SCP !RESPONSE !ANALYZE_ROUTE !B !A !B !B"
"i" (SW_DB [971])

/*Since B is idle, CFBL processes the call normally */
"USER_SW !STARTAUDIBLERINGING !A !B"
"USER_SW !STARTRINGING !B !A"
"USER_SW !STARTRINGING !B !A"
"i" (SW_DB [971])
"i" (exit)
"USER_SW !OFFHOOK !B"
"USER_SW !STOPRINGING !B !A"
"USER_SW !STOPAUDIBLERINGING !A !B"
"USER_SW !STARTAUDIBLERINGING !A !B"
"i" (SW_DB [971])
"i" (SW_CLK [971])

/* CFBL charges the call to caller A*/
"SW_DB !LOGBEGIN !A !B !B !TIME (3)"
"i" (exit)
/* INFB connects the call to B*/

"i" (SW_DB [971])
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"i" (exit)
"USER_SW !OFFHOOK !B"
"USER_SW !STOPAUDIBLERINGING !A !B"
"USER_SW !STOPRINGING !B !A"
"i" (SW_DB [971])
"i" (SW_CLK [971])

/* INFB charges the call to B */
"SW_DB !LOGBEGIN !A !B !A !TIME (4)"
"i" (exit)
"USER_SW !ONHOOK !B"
"i" (SW_DB [971])
"i" (SW_CLK [971])
"USER_SW !DISCONNECT !A !B"

"SW_DB !LOGEND !A !B !TIME (5)"
"i" (exit)
"USER_SW !DISCONNECT !A !B"
"SW_DB !LOGEND !A !B !TIME (6)"

"USER_SW !ONHOOK !A"
"i" (SW_DB [971])
"USER_SW !ONHOOK !A"
"i" (SW_DB [971])
"i" (exit)
"i" (SW_DB [971])
"i" (SW_DB [971])

"i" (SW_DB [971])

 /* When the WatchDog detects that the call process is completed, it takes a
snapshot of the billing database at that moment and sends a “finish” signal at gate
“ot” to stop the whole system. Note that two billing records are generated here,
since CFBL and INFB were executed in parallel. One of them billed B from
time(4) to time(5). The other billed A from time(3) to time(6). Only the first record
is correct. The WatchDog process is unable to detect this FI, however further
analysis done by the Property Checker will detect it. Two records have different
start and ending times because two features read the clock separately. */
"OT !COMPLETED !INSERT (ITEM (B, A, B, TIME (3),
TIME(5)), INSERT (ITEM (A, A, B, TIME (4), TIME (6)),
{})) "
"OT !FINISH"
<goal state>

5.6.6 Property Checker

“Property Checker” consists of two parts, the main checking routine and the

property checking routines.
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The main checking routine analyzes the test scenario and invokes the

corresponding property checking routines to validate the property presence in the final

status of the billing database (the snapshot taken by the “WatchDog”), which is stored at

the second -to-last event in the potential traces. The property of the feature in the detected

pair is not always checked by the “Property Checker”. For example, if the test scenario is

CFBL&INFB (Busy B) (the detected pair is CFBL and INFB and B is initially busy), the

“Property Checker” will check both the properties of CFBL and INFB. However, for the

same pair, if the initial state of B is idle, only the property of INFB is checked because

CFBL processes the call as a normal call if subscriber B is idle when the call comes.

Every derived feature property described in § 5.4.3 has a corresponding property

checking routine in the “Property Checker”. The property validating routine takes one

parameter passed from the checking routine, the subscriber’s address, and validates the

presence of the property by examining every record in the billing database.

5.6.6.1 INTL

 If the user subscribes to INTL, the main checking routine will call the INTL

property checking routine.

The INTL property checking routine examines the billing records generated

during a given TeenTime period and counts the billing records where the subscriber is the

originating party (See §5.4.3 for the definition of the originating party). Note that since

features are executed in parallel, one call may have been charged more than once. INTL

property checking routine only counts those billing records reflecting different calls. If

the number of such billing records is 0, it returns to the main checking routine.
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Otherwise, the INTL property will check how many times the TeenPIN has been input. If

the number of input TeenPINs is no less than the number of billing records where the

subscriber is the originating part, then the property holds. Otherwise the INTL property is

violated and this FI is written into the analysis report.

The following is a snapshot taken when INTL and TWC feature finish execution:

"OT !COMPLETED !INSERT (ITEM (A, A, B, TIME (5),
TIME(7)), INSERT (ITEM (A, A, C, TIME (6), TIME (7)), {}))
"

Since A subscribes to INTL and there are two billing records where A are the

originating parties, INTL checking routine will check the traces backwards seeing if at

least two TeenPINs have been input. However, since the call from A to C is a second call

of the three-way calling among A, B and C, INTL feature is bypassed and no TeenPIN is

required for the second call, INTL can find only one TeenPIN. Thus, the INTL property

is violated and this FI trace is written into the analysis report.

5.6.6.2 INFB

 If the user subscribes to INFB, the main checking routine will call the INFB

property checking routine.

The INFB property checking routine examines the billing records where the

subscriber is the callee and sees if the payer is also the subscriber. If it is, then it returns

to the main checking routine. Otherwise, the INFB property is violated and the FI is

recorded into the analysis report.

The following is a snapshot taken when INFB and CFBL finish execution:
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"OT !COMPLETED !INSERT (ITEM (B, A, B, TIME (4),
TIME(5)), INSERT (ITEM (A, A, B, TIME (3), TIME (6)), {}))
"

The second record from time(3) to time (6) is not correct since B is the callee but

not the payer. Thus, INFB property is violated and this FI is written into the analysis

report.

5.6.6.3 CFBL

 If the user subscribes to the CFBL, the main checking routine will further check if

the subscriber is initially set to busy when the call comes. If it is, the CFBL property

checking routine is called. Otherwise, the main checking rountine continues to check the

next subscribed feature.

The CFBL property checking routine examines all billing records where the

subscriber is the callee and searches for the corresponding forwarded part, which is

another record with the same starting and ending time and where the subscriber is the

caller. If found, then it continues with the next subscribed feature. Otherwise, the CFBL

property is violated and the FI is recorded into the analysis report.

The following is a snapshot taken when INFB and CFBL finish execution:

"OT !COMPLETED !INSERT (ITEM (A, A, B, TIME (2),
TIME(3)), INSERT (ITEM (B, B, C, TIME (2), TIME (3)), {}))
"

Since the subscriber B is initially set to busy in the test scenario, the CFBL

property checking routine is called. The CFBL checking routine finds that there is an

incoming call to B from A from time(2) to time(3), so it searches for the corresponding

forwarded part. The latter is another record which has the same time period and is for a
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call from B to the predefined forwarding address C. The search is successful, so the

CFBL property holds.

5.6.6.4 TWC

 If the user subscribes to TWC in test scenario, the main checking routine will call

the TWC property checking routine.

The TWC property checking routine examines every billing record where the

subscriber is the originating party and searches for records whose starting time fits into

any other records where the subscriber is either the originating party or terminating party.

(See § 5.4.3 for the definition of the originating party and the terminating party) If found,

the TWC property checking routine returns to the main checking routine. Otherwise, the

TWC property is violated and the FI is recorded into the analysis report.

Consider the following example given in §5.6.6.1.

"OT !COMPLETED !INSERT (ITEM (A, A, B, TIME (5), TIME(7)),
INSERT (ITEM (A, A, C, TIME (6), TIME (7)), {})) "

Since A subscribes to TWC, TWC property checking routine will search an

occurrence of a three-way connection by examine the billing records. First, it finds the

second record where A is the originating party from time(6) to time(7), then it searches

for another record where A is either the originating part or the terminating party and the

talking time period covers time(6). The search is successful. Thus, TWC property holds.

5.6.7 MSC Translator

Message Sequence Charts are a well-known technique for the description and

specification of scenarios in distributed systems with asynchronous communication,
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especially telecommunication systems. They are also a standard language recommended

by the International Telecommunication Union (ITU) [ITU-T96]. The MSC language

consists of both a graphical and a textual syntax. It describes both system structure (i.e.

components) and behavior (i.e. messages exchanged). Message Sequence Charts can be

used as an overview language of services offered by distributed entities, as a requirement

statements for SDL specifications, for simulation and validation, for the selection and

specification of test cases, for formal specification of communication, and for interface

specification.

To enhance the readability of our FI detection report, in the last step of FIDS, we

transform the FI traces from LOTOS traces to a more easily understood MSC format.

Note that 53 MSCs were generated by FIDS to illustrate 150 FI that are found

during the contest [FHLS98]. Fig 5.5 shows an example of MSC generated from

CFBL&INFB (idle B) FI traces. (See §5.6.5 for the corresponding LOTOS FI traces).

The network entities are represented using boxes on the top and extending lines under

them. The signals (messages) sent between these entities are described using labeled

arrowhead lines. The direction of the arrow indicates the sending direction of the

message. The label above the arrowhead line is the name of the message and the bracket

characters under the arrowhead line are the parameters passed in the message. For clarity,

user A B C are listed as independent network entities in the MSC and parameters

indicating the signals is from /to which user is omitted. For example, “user_sw !Dial !A

!B” is mapped into an “Dial” message with parameter “B” passing from user A to the

switch. “user_sw !StartRinging !B !A” is mapped into a “StartRinging” message with

parameter “A” passing from the switch to user B. “sw_scp !Trigger !INFO_ANALYZED
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!B !A !B !Time (2)” is mapped into a “Trigger” message sent from the switch to the SCP

with parameters  “INFO_ANALYZED”, “B” “A” “B” “Time(2)”

Fig 5.5 A MSC Example

Fig 5.5 An Example of MSC (to be continued)
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Fig 5.5 An Example of MSC (continued)
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5.7 FIDS evaluation - Comparing our result with the benchmark FI

The number and type of FIs detected and the efficiency of the tool are two basic

factors when evaluating an FI detection tool. For this reason, the organizing committee of

the Feature Interaction Contest (see §1.3 Feature Interaction Contest), published a

benchmark document [BGGO99], listing the FIs that they believed to exist among the

feature to be studied in the contest. In this section, we evaluate our tool by comparing the

set of interactions detected by FIDS with the one provided in the benchmark.

Before presenting a detailed comparison, we should note two architectural issues

that determine what and how many FIs would be generated. As mentioned in §5.4.1

Feature Compositions, the contest specifications were not specific concerning the

composition of the features. We decided to use an interleaving composition method, i.e.

features can execute in parallel (LOTOS operator “|||”) and do not define any specific

behavior patterns on the user and the billing database side, so that they can synchronize

on signals in any order and the call process will not be affected if conflicting signals

occur. The advantage of designing such a robust system is that since FIs occurring under

the same testing scenario are more or less related, a series of FIs can give us more clues

than a single FI when analyzing and fixing FIs.

As to the benchmark, its authors did not mention assumptions on the system

architecture, it is possible to infer from the FI scenario descriptions in  [BGGO99] that 1)

the features are executed in parallel, 2) the call process terminates when any conflict

occurs.
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The number and types of FI detected are easy to compare. However, the

measurement of efficiency is more complicated. Due to the fact that different FI tools use

different FI detecting methodologies and different implementation languages and the

processing time highly depends on the hardware and software used, we choose the

number of testing scenarios used per FI to calculate the efficiency. In this way, we can

concentrate more on the methodology itself by excluding the implementation details.

Concerning the execution time, we limit ourselves to saying that this varied from

few seconds to 24 hours, on a low-end Sparc machines, depending on the complexity of

the feature involved.

5.7.1 Comparison Based on FI Types

As mentioned in §5.4.2 and §5.4.3, we clarify FIs according to the feature and

system properties that they violate: 12 feature properties and 3 system properties. Thus,

we have 12 feature property violation FI types and 3 system property violation FI types,

Deadlock, Incorrect billing, and incompatible successive signals given to user. The

benchmark instead tries a more general classification: FIs are categorized into

corresponding conflict/failure types such as Billing conflict, Call termination conflict,

Forwarding conflict, Disconnect conflict, Feature inhibition (Feature fails to activate),

Number delivery failure (Number not displayed), PIN conflicts (over-ride PIN), Flash

conflict. In our view, they don’t quite succeed, as pointed out below.

Table 5.2 lists the mapping relationship from the benchmark FI types to the FIDS

FI types.
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Benchmark FI Type FIDS FI Type

Billing conflict Incorrect billing

Call termination conflict Incompatible successive signals to user

Flash conflict. TWC/CW feature property violation

Disconnect conflict Incompatible successive signals to user

Forwarding conflict Incompatible successive signals to user

(Audibleringing from different resource)

PIN conflicts

(over-ride PIN)

INTL/CC feature property violation

Number delivery failure

(Number not displayed)

CND feature property violation

Feature inhibition

(Feature fails to activate)

Feature property violation

From the above comparison, we find that all benchmark FI types can be mapped

to a corresponding FIDS FI type. Thus, theoretically speaking, FIDS can detect all

benchmark FI. However, on the other hand, not all FIDS FI types can find a suitable

benchmark FI mapping. For example, in FIDS, the feature property violation check is

done to all features, but in benchmark FI detection, only some features properties, i.e.

only the feature properties of CND, INTL, CC, TWC, CW are partially checked. The

well-known FI between CFBL and TCS (Calls forwarded by CFBL bypass the incoming

call screening of TCS) is not mentioned in the benchmark paper and can not be mapped

to any of their types because no failure or conflict occurs in this case and only the feature

property of TCS is violated (numbers in the screened list reach the subscriber anyway).

Table 5.2 The Mapping Table of FI Types
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5.7.2 Comparison Based on the Number of FI Detected

Since FIDS can detect more types of FI than the benchmark FI, there is no

surprise that FIDS detects more FIs, 150, than the benchmark FI, which detects only 99.

Detailed comparisons of FI detected for each pair of features are listed in Appendix.

However, there are two kinds of benchmark FIs that are not detected by FIDS:

- FI between feature and itself

According to our FI definition, FIs occur only among 2 or more than 2 integrated

features. Any undesirable effects (interaction) between the feature and itself,

which maybe due to recursive execution or multi-user simultaneously execution,

are not considered as FIs but as design defects of the feature itself. Note this is

another issue for discrepancy between our findings and those of the benchmark,

because the latter lists such undesirable effects as FIs.

- FIs involving four users

Due to limited resource, the test scenario of FIDS is restricted to have only 3 users

or less. Thus, FIs involving 4 users, i.e. FIs between CW and TWC features,

cannot be detected by FIDS. This is because currently FIDS uses Caesar.Exhibitor

as its trace searching tool, which does the trace searching on a fully pre-expanded

behavior tree. Since the users’ behaviors in the system are interleaved with each

other, the size of the expanded tree is growing exponentially when incrementing

the number of users: if the number of users is more than 3, the expanded behavior

tree will exceed the maximum size that Caesar.exhibitor can handle. This problem

can be solved by using other techniques, however this is left for further research.
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In total, the benchmark includes 23 FIs that are not detected by FIDS. Among

those, 12 FIs are between a feature and itself and 11 FIs involve feature TWC or feature

CW or both, and use at least four users.

5.7.3 Comparison Based on Testing Scenario Used Per FI

According to FI traces described in the benchmark paper, the call process will be

terminated when it encounters the first FI. Thus, only one FI can be detected per scenario.

However, since no specific behavior patterns are defined on the user or the billing

database side, FIDS can tolerate any conflicting signals and the call process continues

until all activated features finish. Thus, there is no wonder that FIDS can detect more

than one FIs per scenario.

Chart 5.1 summarizes the comparison between FIDS and the benchmark FI.
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Ch. 5.1 Comparison between FIDS Result and the Benchmark FI
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The white columns represent the benchmark FI results and the black column

represents the FIDS results. Each benchmark FI corresponds to one testing scenario, thus,

99 testing scenarios generate 99 benchmark FI of 8 types (see Table 5.1). FIDS uses 76

testing scenarios and detects 150 FI of 15 types (3 system property violation types + 12

feature property violation types).
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Chapter 6. Conclusions and Future Work

Although much progress has been made on accelerating the development and

introduction of new telephony features (for example, the Intelligent Network concept)

[Viss95], the feature interaction problem [BDCG89] remains one major obstacle for the

rapid development and introduction of new features into modern telecommunications

systems. This thesis describes a model, based on a formal approach, for specifying a

telephony system integrated with both switch-based features and IN features, together

with an implemented feature interaction detection systems.  Our system rated among the

best world wide in a recently held international context (see §1.3 Feature Interaction

Contest)

6.1 Summary

The background and motivation for our work is given in Chapter 1. This chapter

also includes a list of contributions.

Chapter 2 presents a survey of related work on the formalisms that are used to

specify telephony systems and of FI detection methodologies using FDTs.

Chapter 3 gives an overview of the Basic Call Process, a classification of features,

and presents the concepts of feature integration and activation. It describes the design of a

telephony system model integrated with both switch-based features and IN features, finite

or infinite. Four features, INTL, CFBL, INFB and TWC, are used as examples to

illustrate the feature integration and activation mechanism.
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Chapter 4 shows the use of LOTOS as a Formal Description Technique (FDT) in

specifying the telephony system model and features. First, it gives a brief overview of the

LOTOS language by describing its main operators and some examples in the context of

telephony network systems. Then, it discusses four main styles of writing LOTOS

specifications of telecommunication systems. They are the monolithic style, the state-

oriented style, the constraint-oriented style and the resource-oriented style. Each style

has its own uses in telephony system specifications and styles can be mixed in one

specification to meet different requirements. In our system model, since the observable

behavior of the system is described as a composition of separate resources whose

functionality is well defined, we chose a mixture of resource-oriented style and state-

oriented style: the resource-oriented style is used to reflect the architectural model of the

system at the specification level, and the state-oriented style is used to specify features

(BCP, INTL, INFB, CFBL, TWC) that are defined by LTSs.

In Chapter 5, a formal definition of Feature Interaction is provided and an FI

Detection System (FIDS) is developed based upon the definition. FIDS deals with the

detection of logical interactions which occur when some of the requirements or

assumptions (the properties of the system and the features), that must be satisfied when a

feature is introduced separately in the network, are violated. Our FI definition improves

on the traditional one given by P. Combes et. al [CoPi94] and W. Bouma [BoZu92] by

adding system properties into the set of properties that must be checked. This includes the

correctness of billing and the consistency of successive signals given to user.

FIDS consists of five parts: Scenario Designer, which takes the names of features

to be considered and designs specific test scenario for them; Integrator, which integrates
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the test scenarios generated by the Scenario Designer, and the WatchDog process, that

monitors the system property violation, into the system specification; FI Hunter, which

can find FI sequences violating the system properties and potential FI sequences that will

be further analyzed; Property Checker, which examines the potential FI sequences

generated from the FI hunter to check the property of the activated features and filters out

the FI sequences violating the feature property; and Translator which translates the FI

sequences generated from the FI Hunter and the Property Checker into the format of

Message Sequence Charts (MSC) and compiles the final FI report. An evaluation of FIDS

with respect to the Feature Interaction contest benchmark is given at the end of Chapter 5

in terms of detected FI type, FI number and test scenarios used. The discussion shows

that FIDS can detect 7 more FI types and 51 more FIs than the benchmark by using 23

fewer testing scenarios. On the negative side, 23 benchmark FIs were not detected by

FIDS and the reasons for this are also discussed in Chapter 5.

The methodology presented in this thesis does not give a general solution to the

feature interaction problem but a partial solution limited to the detection of logical

interactions at the specification level. Detecting feature interactions at the specification

level contributes significantly to speed up the design phase and to the correctness of the

design. We have shown that telecommunication system designers can give precise

descriptions and validate their designs with respect to potential feature interaction

problems before the implementation stage.
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6.2 Future Work

The results of this thesis provide a basis for several future research directions. As

new telecommunication features emerge, the need to provide a sound and flexible

architecture becomes even greater.  We believe that the model we present here for

specifying telecommunications features and for the formalization of the notion of

interactions provides a good starting point for defining such architecture. Still, there are

many ways by which other contributions can improve and complement our model.

6.2.1 Goal-Oriented Exploration

As mentioned before, the trace-searching tool of FIDS, Caesar.Exhibitor, needs a

fully pre-expanded specification to do the trace-searching. Because of the very large

global state space generated, this greatly limits the size of the telephony network, the

number of the end-users it can have and the number of features that can be introduced.

Therefore, FIDS cannot detect those FIs that involve more than 3 users or complicated

features such as CW, TWC, although theoretically they could be handled, see §5.7 FIDS

evaluation. One solution to this problem could be using “on-the-fly” state exploration

techniques [Pele96], which do not require saving the whole state space. Unfortunately,

however, these techniques require more complicated algorithms.

Another solution to this problem could use Goal-Oriented Exploration

methodology. Haj-Hussein et al. [HaLS93] define a new type of inference rules which are

capable of generating traces of actions leading to pre-selected actions in the specification.

Unlike Caesar.Exhibitor, which needs a full expansion for searching, the goal-oriented
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exploration tool expands a small part of the behavior tree at a time. However, appropriate

tools for this techniques are not available yet.

6.2.2 Enrichment of the system property set

As mentioned above, to establish the completeness and necessity of the derived

property set is a big challenge of FI detection. No reference so far provides a systematic

way for deriving the property set nor for proving its completeness and necessity.

Deriving system properties is even more difficult than deriving feature properties.

Unlike feature properties, which express expectations of marketable services well known

by both sellers and buyers, the system properties are an iceberg of various assumptions

made about the network, where the underwater part is noticed only when violated. Work

needs to be done in this area.

In our simplified telephony network model, only the basic signals, i.e. signals

given to user and billing signals, are considered and investigated. However, in a real

system, there are more advanced signals, i.e. signals used for routing and roaming, which

need to be analyzed and added into the system property set.
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Appendix. Comparison between FIDS Result and the Benchmark
FI

CFBL Related FIs

Feature Pair           Scenairos    Feature Interactions           FI Types 

CFBL-CFBL 1 * 0 * 0 *

CFBL-CND 1 2 1 3 1 3

CFBL-INFB 2 2 2 5 2 3

CFBL-INFR 3 4 3 11 1 3

CFBL-INTL 0 0 0 0 0 0

CFBL-TCS 2 2 2 4 1 2

CFBL-TWC 2 * 2 * 2 *

CFBL-INCF 3 3 3 8 1 3

CFBL-CW 1 1 1 1 1 1

CFBL-INCC 1 1 1 1 1 1

CFBL-RC 0 1 0 1 0 1

CFBL-CELL 2 1 2 3 1 1

Total 18 17 17 37 11 18
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CND Related FIs

Feature Pair           Scenairos    Feature Interactions           FI Types 

CND-CND 0 * 0 * 0 *

CND-INFB 1 1 1 1 1 1

CND-INFR 2 3 2 9 1 4

CND-INTL 0 0 0 0 0 0

CND-TCS 1 1 1 2 1 2

CND-TWC 1 1 1 1 1 1

CND-INCF 2 3 2 9 1 3

CND-CW 1 1 1 1 1 1

CND-INCC 1 1 1 1 1 1

CND-RC 1 1 1 1 1 1

CND-CELL 0 0 0 0 0 0

Total 10 12 10 25 8 14
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INFB Related FIs

Feature Pair           Scenairos    Feature Interactions           FI Types 

INFB-INFB 0 * 0 * 0 *

INFB-INFR 2 4 2 12 2 5

INFB-INTL 0 0 0 0 0 0

INFB-TCS 1 2 1 4 1 4

INFB-TWC 2 1 2 1 1 1

INFB-INCF 2 3 2 10 2 4

INFB-CW 1 1 1 1 1 1

INFB-INCC 1 1 1 1 1 1

INFB-RC 1 1 1 1 1 1

INFB-CELL 2 1 2 2 1 1

Total 12 14 12 32 10 18
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INFR Related FIs

Feature Pair           Scenairos    Feature Interactions           FI Types 

INFR-INFR 2 * 2 * 1 *

INFR-INTL 0 0 0 0 0 0

INFR-TCS 2 3 2 8 1 4

INFR-TWC 3 1 3 1 2 1

INFR-INCF 3 2 3 8 1 4

INFR-CW 1 1 1 1 1 1

INFR-INCC 2 1 2 1 1 1

INFR-RC 1 2 1 2 1 1

INFR-CELL 2 1 2 3 1 1

Total 16 11 16 24 9 13
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INTL Related FIs

Feature Pair           Scenairos    Feature Interactions           FI Types 

INTL-INTL 0 * 0 * 0 *

INTL-TCS 0 0 0 0 0 0

INTL-TWC 1 1 1 1 1 1

INTL-INCF 0 0 0 0 0 0

INTL-CW 0 0 0 0 0 0

INTL-INCC 1 0 1 0 1 0

INTL-RC 1 2 1 2 1 1

INTL-CELL 0 0 0 0 0 0

Total 3 3 3 3 3 2
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TCS Related FIs

Feature Pair           Scenairos    Feature Interactions           FI Types 

TCS-TCS 0 * 0 * 0 *

TCS-TWC 1 1 1 1 1 1

TCS-INCF 2 2 2 5 1 4

TCS-CW 1 1 1 1 1 1

TCS-INCC 2 1 2 1 1 1

TCS-RC 1 2 1 2 1 1

TCS-CELL 0 0 0 0 0 0

Total 7 7 7 10 5 8

TWC Related FIs

Feature Pair           Scenairos    Feature Interactions           FI Types 

TWC-TWC 1 * 1 * 1 *

TWC-INCF 3 1 3 1 2 1

TWC-CW 9 * 9 * 3 *

TWC-INCC 4 0 4 0 1 0

TWC-RC 1 1 1 1 1 1

TWC-CELL 4 1 4 3 2 2

Total 22 3 22 5 10 4
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INCF Related FIs

Feature Pair           Scenairos    Feature Interactions           FI Types 

INCF-INCF 1 * 1 * 1 *

INCF-CW 1 1 1 1 1 1

INCF-INCC 2 2 2 2 1 1

INCF-RC 1 2 1 2 1 1

INCF-CELL 2 1 2 4 1 2

Total 7 6 7 9 5 5

CW Related FIs

Feature Pair           Scenairos    Feature Interactions           FI Types 

CW-CW 0 * 0 * 0 *

CW-INCC 1 0 1 0 1 0

CW-RC 1 1 1 1 1 1

CW-CELL 2 1 2 2 1 1

Total 4 2 4 3 3 2
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INCC Related FIs

Feature Pair           Scenairos    Feature Interactions           FI Types 

INCC-INCC 0 * 0 * 0 *

INCC-RC 0 0 0 0 0 0

INCC-CELL 0 1 0 2 0 1

Total 0 1 0 2 0 1

RC Related FIs

Feature Pair           Scenairos    Feature Interactions           FI Types 

RC-RC 0 * 0 * 0 *

RC-CELL 0 0 0 0 0 0

Total 0 0 0 0 0 0

CELL Related FIs

Feature Pair           Scenairos    Feature Interactions           FI Types 

CELL-CELL 0 * 0 * 0 *

Total 0 0 0 0 0 0
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ADT Abstract Data Type, §4.1.1

B

BCP Basic Call Process, §3.3

C

CC Charge Call, §3.1

CCITT Committee Consulative Interactional de Telephonie et Telegraphie, §2.1.3

CCSS Common Channel Signaling System, §1.1

CELL Cellular, §3.1

CFBL Call Forward on Busy Line, §3.6.3

CFD Computational Fluid Dynamics, §2

CND Call Number Delivery, §3.1

CW Call Waiting, §3.1

D

DBAPI Database Application Interface, §3.1

F

FAP Feature Activation Process, §3.4

FDTs Formal Description Techniques, §1.2

FI Feature Interaction, §5.2

FIDS Feature Interaction Detection System, §5.5

FPP Feature Property, §5.2

FSM Finite State Machine, §2.1.1

I

IMAG Informatique et de Mathematiques Appliquees de Grenoble, §1.3
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IN Intelligent Network, §1.1

INCF IN Call Forwarding, §3.1

INFB IN Free Billing, §3.6.2

INFR IN Free Routing, §3.1

INTL IN Teen Line, §3.6.1

ISO International Organization for Standardization, §4.1

ITU International Telecommunication Union, §2.1.3

L

LOTOS Language Of Temporal Ordering Specification, §4.1

LTS Label Transition System, §3.2

M

MSC Message Sequence Charts, §5.6.7

O

OSI Opening System Interconnection, §4.1

P

PIC Points In Call, §3.3

POI Point of Initialization, §3.4

POR Point of Return, §3.4

POTS Plain Old Telephony System, §1.1

R

RC Return Call, §3.1

S

SCP Service Control Point, §3.5.2

SDP Service Data Point, §3.5.2

SDL Specification and Description Language, §2.1.3



List of Acronyms

Page 152

SP System Property, §5.2

T

TCS Terminating Call Screening, §3.1

TWC Three Way Calling, §3.6.4

V

VCC Virtual Central Control, §2.1.2

VDC Virtual Dial Control, §2.1.2

VSC Virtual Station Control, §2.1.2

VSS Virtual Station Subsystem, §2.1.2

W

WIN Wireless Intelligent Network, §1.2


