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Abstract

Telephony systems have evolved from the Plain Old Telephony System providing only
the basic functionality of making phone calls, to sophisticated systems in which many features
have been introduced, providing network subscribers more control on the cal establishment
process. The concept of Intelligent Network was developed to facilitate and accelerate the
introduction of new features in a cost-effective manner. However, this objective confronts a
major obstacle known as the feature interaction problem. A feature interaction occurs when at
least one feature is prevented from performing its functionality or when the system functions
incorrectly due to the presence of features.

In the first part of the thesis, we present a model for specifying a telephony network
integrated with both switch-based features and IN features using a mixture of resource-oriented
style and state-oriented style as well as a specially organized Abstract Data Type hierarchy. The
model is designed in a way that independent specification and rapid introduction of features is

provided.

In the second part of the thesis, we present an improved formal definition of the concept
of Feature Interaction and a Feature Interaction Detection System. The system is limited to
interactions caused by violation of features or system properties. Feature Interaction between the
given features can be detected and presented in the format of Message Sequence Charts via five
steps: Test Scenario Designer, Integrator, Feature Interaction Hunter, Property Checker and

Message Sequence Charts Tranglator.

It is concluded that LOTOS is useful asaFormal Description Technique in specifying the
telephony system with features and for detecting feature interactions at the abstract specification

level.
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Chapter 1. Introduction: Motivation and Background

Chapter 1. Introduction: Motivation and Background

1.1 Introduction

Telephony systems have evolved in severa phases. First, telephones were based on central
offices where exchanges were operated manually. Later on, automatic switches were introduced.
They were operated electromechanically by using electrical relays. The development of transistors
permitted the development of electronic switches that made possible the storage of software

programs and data within switches.

This has resulted in a transition from basic telephony systems providing only the basic
functionality of making phone calls, to sophisticated systems in which many features have been
introduced, providing the network subscribers more control in the call establishment process.
However, with the infrastructure provided by the Plain Old Telephony System (POTS), the task of
introducing new features was tedious and very costly. Thisis because, before 1980s, features were
switch-based. All the data and logic processing required by the services were located within the
local node. This technique has two major drawbacks. First, since the software related to the new
introduced features must be located in all the local exchange nodes (local switches) to which end-
users are directly connected, any software modification should be done to all those local nodes.
Second, due to the fact that different types of switches provided by different telecommunication
companies could be deployed, the introduction of a new feature requires the adaptation of the
related software to every type of switch in the network. With these complexities and effort
required, a new feature typicaly requires three or four years to be deployed into the network

[Lee9?], [Viss95).
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Chapter 1. Introduction: Motivation and Background

To overcome the limitations of POTS, Intelligent Networks (IN) were introduced to

facilitate and accelerate in a cost-effective manner service implementation and provisioning. One of

the ams of IN isindependent service implementation. That is, every service provider will be able

to define and devel op its own services independently and then deploy them in the network.

IN has two essential elements. Common Channel Signaling and Non-switching nodes

[Viss9s].

Common Channel Signaling

The Common Channel Signaling is a signaling system where al signalings are
performed over transmission paths completely separated from the voice path [Bern95].
Such a system enables the exchange of different signals, such as supervisory signals and
address signals, by transmitting messages between the different nodes over a network of
signaling links, instead of using the voice transmission paths. CCITT has defined two
Common Channel Signaling System: CCSS6 using analog voice-band transmission and
CCSS7 that evolved from the former, using the standard 64 kb/s digital transmission

link [Thor94].

Non-switching Node

The CCSS7 common channel signaling has enabled the introduction of non-switching
nodes where feature logic and data could be stored. This means that the service control
can be centralized in some specific nodes. Those nodes are known as Service Control
Points (SCPs) and Service Data Points (SDP). They are accessible to the switch via

protocols using CCSSY.
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Chapter 1. Introduction: Motivation and Background

The first IN services introduced are the 800 services (known as freephone numbers) and

Automatic Calling Card Service [Viss95].

When an IN feature is to be invoked, a message indicating a request to process the feature
and other related information, i.e. the caller and callee’s addresses, the calling time, etc. is sent
from the switch to the SCP via the signaling network. Then the feature is processed within the SCP.
When the SCP finishes processing, a response of instructions, i.e. rerouting or terminating the call,
is sent from the SCP back to the switch. The switch will process the call as instructed, i.e. rerouting

or terminating the call.

However, although the CCSS7 and the SCP technology free the features from being located
in the switches, the features are dependent on specific activation events and each feature has its
own activating mechanism defined within the switch. A new approach was developed to handle this
problem by introducing a number of well-defined feature independent activation checkpoints
within the switch and defining a feature independent interface between the switch and the SCP. As
a result, the deployment of a new feature does not need a modification on the switch for the specific
activating mechanism. A simple information to the switch that a new feature has been deployed and

should be activated under certain criteria is sufficient.

1.2 Feature Interaction Problem

The introduction of the IN technology eased the difficulty of feature creation, deployment
and maintenance. However, with the abundance of new features and their co-existence in the
networks, a new problem calldekature Interaction (FI) problem was discovered [BDCG89]. A
Feature Interaction is understood to be any kind of unexpected interference among multiple

features. These interferences may prevent at least one of the features from behaving correctly
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Chapter 1. Introduction: Motivation and Background

[BDCG89]. The FI problem is complex. After several years of exploration [1¥FITS92] [2™FITS94]
[3FITS95][4"FITSI7][5"FITS98], researchers have generally agreed that it is probably not
feasible to resolve all possible feature interactions at any single stage of afeature lifecycle or with

any single technique [Kell94].

Our work is motivated by the challenges, from a designer’s point of view, of detecting Fls

in telecommunication network systems.

The feature interaction problem can arise at any stage of the feature development lifecycle.
Therefore, the feature interaction problem can be approached from three different angles: detection,
avoidance, and resolution [CaVe93[2TS94]. Furthermore, detection and resolution may be
divided into on-line and off-line techniques, as discussed in the introductiof’BF[894]. Off-
line methods deal with the problem before deployment. On-line methods deal with it after

deployment.
- Detection

The objective of a detection approach is to analyze a set of independently specified
features and determine whether or not there are any interactions between their joint
behavior [BoL093], [Thom97], [FaL397], [NaKK97], [KaL098]. Detection can be applied
through the whole lifecycle of a feature, since the cause of interaction can be related to any

phase of the feature lifecycle.
- Avoidance

An avoidance mechanism for unwanted interaction assumes that the causes of the
interaction are known and an architectural or analytical approach is defined to prevent the

manifestation of such interactions [MiTJ93]. The avoidance approach is most suitable in the
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Chapter 1. Introduction: Motivation and Background

early phases of specification and design of features. An example of the application using the
avoidance approach is the Wireless Intelligent Network (WIN) protocol, where the feature

interaction problem is solved by giving pre-defined priorities to different features [Grin97].

- Resolution

The objective of a resolution mechanism is to find appropriate solutions to interactions
that manifest themselves at execution time. Several approaches have been proposed in

[Chen94][IrEr97] [BAEQ98].

Formal Description Techniques (FDTs) such as LOTOS [1SO8807] and SDL [CCITT87]
have proven useful in detecting feature interactions at the specification level [Zave93]. A formal
description of the system behavior with the introduced features can provide an unambiguous and
precise view of the system and of the new integrated features. The formal analysis and validation

methods are also based on this formal description of the system.

The main subject of this thesis is the investigation of techniques based on FDT LOTOS for

the detection of unwanted feature interactions.

1.3Feature Interaction Contest

On the occasion of the Fifth International Workshop on Feature Interactions in
Telecommunications and Software Systems (FIW’98), an international Feature Interaction (FI)
detection contest was held [GTGB98]. The contest offered an opportunity to compare the efficiency
and the adaptability of different methods and tools in the detection of feature interactions. Inviting

research teams of al schools of thought to compete, under controlled conditions, in accomplishing
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Chapter 1. Introduction: Motivation and Background

a specific and predetermined task, set a basis to permit the assessment of the advantages and

capabilities of the various methodologies.

The contest specifications modeled a telephony network as a collection of black boxes,
communicating with each other via defined interfaces. They defined POTS and 12 switch-based
and IN features as sequences of events taking place on these interfaces. The contestants were
required to develop an automated Fl detection tool and apply it to detect the FI between these
features. The tool was evaluated by 1) its coverage, that is, the number of features actually defined

in the tool language, 2) the number of valid feature interactions found [NBGO98].

Six teams joined the contest as follows,

AT&T Research Labs, in New Jersey, USA

» Institute d’Informatique et de Mathematiques Appliquees de Grenoble, in Grenoble,

France
» University of Ottawa
» University of Sherbrooke, in Quebec, Canada
» Uppsala University, in Sweden
» University of Waterloo, in Ontario, Canada.

The winner was the IMAG team from France and the University of Ottawa team was

ranked second.

The IMAG team adopted a synchronous approach using Lustre as the specification

language and Lustess as the FI detection tool [BORZ98], where the system, the features and the
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Chapter 1. Introduction: Motivation and Background

property checker are modeled as synchronous systems. Synchronous systems have cyclic
behaviors. at each tick of a global clock (also called instant of time), all inputs are read and all
outputs are emitted. Every reaction to inputs is theoretically instantaneous. The FI detection system
using Lustess consists of three components: the system under test, an input data generator and an
oracle system. The input and output of the system are both boolean. The input data generator is
built by Lustess according to the description of the environment that is interacting with the system
and randomly produces test data at each instant of time in response to the system outputs. The
oracle system plays the role of property checker, which checks the validity of the system based on
the dynamically produced input to and program-reaction output from the system under test and

outputs the verdict as Boolean.

The University of Ottawa team adopted two methods, both based on the use of the FDT
LOTOS and itstools: one of the methods is presented in this thesis; another method, is based on the

concept of Observers [QPLS99].

1.4 Contributions of the Thesis

The contributions of thisthesis arein two areas: 1) amodel of telephony network integrated
with both switch-based features and IN features and 2) a system for detecting feature interactions at

the specification level.

1.4.1 Contribution 1: A model for specifying in LOTOS a telephony system integrated with

both switch-based features and IN features

In chapter 3 and 4, we present a model for specifying a telephony system integrated with

both switch-based features and IN features using a mixture of resource-oriented style and state-
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Chapter 1. Introduction: Motivation and Background

oriented style as well as a specialy organized Abstract Data Type hierarchy. The billing database
and the user status database are specified using ADT pyramids to reflect their hierarchical
architectures. The system framework is specified in a resource-oriented style to preserve its
interface integrity. The Basic Call Process and the integrated features are specified using the state-
oriented style to enhance reusability and to preserve consistency with their scenario definition. By
introducing Feature Activation Process, rapid feature integration is achieved in the sense that any
feature, switch-based feature or IN feature, can be added to the global specification without any

major modification.

1.4.2 Contribution 2: Adding the system properties into the traditional formal FI definition

In Chapter 5, we expand the traditional formal Fl definition presented by P. Combes et. a
[CoPi94] and W. Bouma [BoZu92], which addresses the FI problem as a violation of integrated
feature properties due to the introduction of new features into the network, by adding system
properties into the set of properties to be checked. Such properties include the correctness of billing

and the consistency of successive signals given to user.

1.4.3 Contribution 3: A Feature Interaction Detection System

In Chapter 5, a Feature Interaction Detection System is described for detecting feature
interactions between switch-based features and IN features. This system is developed upon the
improved Fl formal definition described in contribution 2. It is limited to interactions occurring at
the abstract specification level and resulting in violation of system/feature properties. The Fl
Detection System consists of five parts: Scenario Designer designs specific test scenarios for the
pair of features to be considered; Integrator integrates the test scenario and a global process

monitoring system property violations into the system specification; FI Hunter detects those Fl
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Chapter 1. Introduction: Motivation and Background

traces violating the system properties, e.g. conflicting signals given to users or incorrect billing
actions, and those potential Fl traces where both features have been executed and need to be further
analyzed; Property Checker checks the potential FI traces found by FlI hunter with the properties of
the activated features and filters out the real Fl traces where the features properties do not hold; the
final step, MSC Trandator translates Fl traces found by both FI Hunter (FIs violating the system
properties) and Property Checker (FlIs violating the feature properties) from LOTOS traces into the

format of Message Sequence Charts (M SC) and compiles them into afinal FI report.

An application of the system on two switch-based (CFBL, TWC) and two IN features
(INTL, INFB) is presented in this thesis. However, al pair-wise combinations of twelve features

were analyzed for the contest.

1.4.4 Contribution 4: Towards a method for feature interaction detection.

Although we do not claim that a general method for feature interaction detection was
developed in this thesis, some contributions towards a method were presented. The main ideas are
described in 85.3 85.4 85.5 85.6. We start from the specification of system and feature properties,

and then we provide several mechanisms for detecting violations of these properties.

1.5 Organization of the thesis

The four remaining chapters will cover the following issues:

Chapter 2: Related Work: Formal Methods for Specifying the telephony networks and

Detecting Fl

We present a survey of related work on formalisms used to specify telephony systems and

on FI detection methods using FDT.
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Chapter 3: System Model Design

We describe the design to a telephony system model integrated with both switch-based
features and IN features and discuss the Basic Call Process, the classification of features, and the
concepts of feature integration and activation. Two switch-based and two IN features are used as

examplesto illustrate the feature integration and the feature activation in the system model.

Chapter 4: LOTOS Specification of the System Model

First, we give a brief introduction to the LOTOS specification language by describing its
main operators and by giving examples of their use in the context of telephony network
specification. Then, we discuss four main styles of writing LOTOS specifications for
telecommunication systems. Finally, we present a LOTOS formal specification developed for the
telephony system model defined in Chapter 3. This is done using a mixture of resource-oriented

style and state-oriented style, aswell as a specially organized ADT hierarchy.

Chapter 5: Feature Interaction Detection System

We describe an improved formal definition of FI and a Feature Interaction Detection
System (FIDS) developed based upon this definition. Two switch-based and two IN features are
used as examples to illustrate how FIDS is applied to detect feature interactions between the given
features. Finally, an evaluation of FIDS is performed by comparing the FIs detected by FIDS with

those in the FI benchmark issued by the contest committee.

Chapter 6: Conclusions and Future Work

Conclusions and future work are presented in this chapter.
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Chapter 2. Related Work: Formal Methods for Specifying the Telephony

Networks and Detecting Fls

Traditional engineering disciplines rely heavily on mathematical models and calculation to
make judgments about designs. For example, aeronautical engineers make extensive use of
Computational Fluid Dynamics (CFD) to calculate and predict how particular airframe designs will
behave in flight. A variety of methods with similar goals are available in computer science and
engineering. Quantitative simulation methods are among them; however, they do not relate to the
research area of this thesis. We concentrate on methods that have their foundation in logic and

formal semantics. Such methods are called “formal methods”[Turn93].

Formal methods can be used to determine the logical properties of systems with respect to
their functional behaviors. Very well-known properties in this family are “deadlock” properties.
Others all relate to the fact that certain post-condition are satisfied or not. We will see a number of

such properties in this thesis.

In this chapter we conduct, with no attempt to be exhaustive, a survey of a number of
formal methods and languages that are used for the specification of telephone systems and features,

as well as of FI detection methods using Formal Description Techniques (FDT).

2.1 Formal Specification Methodologies for Telephony Systems

2.1.1 Finite State Machines

A Finite State Machine (FSM) is an abstract machine that is used to represent the behavior

of a given system in terms shtes andtransitions. The most common notation used to represent a
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FSM is a directed graph whose nodes are system states and whose arcs are system transitions; the

other notation being state transition matrices. The machine can be in only one state at atime. Upon
receiving an input, the machine generates an output and may change to a new state. Both the output

and the new state are functions of the input and the current state. A state is a mean by which one

can describe an aspect of the system’s behavior. For example, one may talkibbugatate, a
Ringing state, or aralking state while describing the behavior of a telephone system. Telephony

applications described using FSM can be found in [KaWa71] [WhCh81].

2.1.2 Petri Nets

Petri nets [Pete 77] [NaKa97] are abstract machines that are used to describe the behavior of
systems. They are represented by a directed graph containing two types of elements: places and
transitions. Places, which contain tokens, are represented by circles; transitions, which allow tokens
to move between places, are represented by lines. Directed graphs connect places to transitions. A
transition is said to fire if 1) it is triggered by a clock pulse and 2) all arrows entering the transition

originate from places that contain tokens.

The Petri-net based model has been used to describe, among other applications [Ager79],
the behavior of telephone switching systems [YoBa79]. Yoeli and Barzalai introduce the concept of
extended Petri Nets (EPN) and use it to model the call processing operations in an automatic
telephone exchange. In their approach, the telephone system is decomposed into a set of virtual
subsystems: a virtual station subsystem (VSS) representing the user’s station, a virtual station
control (VSC) representing the central exchange, a virtual dial control (VDC) collecting the dialed

digits, and a virtual central control (VCC) representing the module which handles the establishment
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of a connection between two users. When a user dials a digit, it is transmitted to the VDC through

the VSC. Once the caller has reached the callee, the connection is handled by the VCC.

Two common problems with the FSM and Petri-nets are: 1) the limited role they assign to
data. Many features rely on data values and data structures for the essential aspects of their
functionalities. However, data aspects take a secondary role in these formalisms. 2) the lack of
process structure, which is very useful for design. Extended Finite State Machine (EFSM) methods,

such as SDL, remedy this situation.

2.1.3 SDL

SDL (Specification and Description Language) is the most widely used FDT in the field of
telecommunications [BeH089]. It has been developed and standardized by CCITT (the
International Telegraph and Telephone Consultative Committee) and ITU (International
Telecommunication Union). SDL is used to describe both the behavior and structure of systems,
from a high description level down to a detailed design level. The behavior of a system is described
in terms of a set of processes, which are extended finite state machines. Processes work
concurrently and communicate asynchronously with each other by sending and receiving discrete
messages called signals. Signals are al so the means by which SDL processes communicate with the
environment. When signals are used to communicate between processes, they aways carry the
unique identifiers of the sending and receiving processes, along with possible data values.

Examples of specifying telephony systems using SDL are presented in [CHCk89] [CoPi94].

A problem with SDL formal language is that it enforces rigid system boundariesin the form

of process and blocks. Although these are useful to represent system architecture, they may
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increase the diffculties in the early design stage when the system architecture is not quite clear.

LOTOS structure, which consists of only processes, is more flexible.

2.1.4LOTOS

An early study [FaLS90] has shown that LOTOS is well suited for specifying elementary
telephone systems, basically the Plain Old Telephone System (POTS). The results of that study
further motivated the research on specification styles. A formal specification of telephone systems,
using the constraints-oriented style was described in [FaLS91]. The work presented in [StL093]
describes a new approach for specifying telephony systems using a mixture of the constraint-
oriented style and the state-oriented style. In [KaL 098], aformal specification of IN network model
was developed using the resource-oriented style. The telephony network system model in thisthesis
Is specified using a mixture of resource-oriented style and the state-oriented style. More details of

the specification styles can be found in 8 5.2 and in [FaLS97]

2.2 FI Detection Methods using FDTs

Feature interaction is a research area of some importance, and a number of papers are
published every year on the subject. Five International Workshops have been held Yotfap]1
[2™Int.94] [3%Int.95][4"Int.97][5"Int.98], where detection approaches from various research areas,

e.g. software engineering theory, formal description techniques etc., are presented.

In the following, we limit ourselves to briefly reviewing work closely related to ours, which

uses LOTOS as FDT to detect FI at the specification level.
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2.2.1 Step-by-Step Execution

Boumezberur and Logrippo [BoL093] proposed a LOTOS specification of a sample
telephone system and applied the step-by-step execution to detect feature interactions. At each step
of the step-by-step execution, the user chooses the next action to be taken among all possible
actions that are offered at that point. This methodology is useful for checking the conformance of a
system defined informally to its formal description in LOTOS. In practice, this can be done by
checking if 1) test sequences derived from the informal definition are accepted by the formal
specification, 2) test sequences obtained by executing the specification are included in the formal
definition of the system, 3) test sequences that are not specified in the informal definition are not

accepted by the formal specification.

2.2.2 Model Checking

Model checking is a method for formally verifying finite-state concurrent systems.
Specifications about the system are expressed as temporal logic formulas, and efficient symbolic
algorithms are used to traverse the model defined by the system and check if the specification holds

or not.

Many Fl detection methods have been developed using Model Checking: 1) [BoZu92]
modeled IN services as defined in the Global Functional Plan of the IN Conceptual Model in
LOTOS and used model checking to validate properties of services when they are integrated
together. Interaction is detected when a property of a service is not verified. 2) [CoPi94] developed
an abstract model, representing the user external view, of the network and the introduced features
using SDL as a formal language. Then, they expressed feature requirements and properties in a

temporal logic language and applied the model checker tool to validate the features properties. 3)
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Using LOTOS as a formal language, [Thom97] modeled features as user view behavior trees,
which are synchronized to form a network of users interacting with a “network manager” to
complete the call process. Features’ properties are specified psmigulus and verified using

CAESAR model-checking evaluator.

2.2.3 Backward Reasoning

Stepien and Logrippo [StLo95] developed a method to detect feature interaction using
backward reasoning, which involves specification of features in LOTOS. Interactions to be detected
are caused by ambiguity of actions. An observable action in a LOTOS specification is ambiguous if
in the behavior tree of the specification, there is a branching point where the action is the first
observable one in at least two branches. Ambiguity represents non-deterministic behavior of the
system being specified, and is a symptom of feature interaction. To prove that an action is
ambiguous, backward reasoning for LOTOS is applied. It consists of a combination of backward
and forward execution. Forward execution of the specification is applied to reach the action, then,
using the resulting behavior expression, backward execution is performed to find a different trace

leading to the action. A tool to help carry out backward execution is presented.

2.2.4 Conformance Theory

In [FaLS97], Faci and Logrippo developed a methodology for detecting feature interactions
using conformance theory. First, they defined two notiongonfiposition and integration of
features. Composition expresses the synchronization of features on their common actions with
POTS and their interleaving on their independent actions. Integration expresses the extension of
POTS with the n features, such that each feature is able to execute all of its actions that are allowed

in the context of POTS, when the other features are disabled. Then, they reason about interactions
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in terms of the conformance relation studied in testing theory, in the following way: an interaction

exists between n featuresif their integration does not conform to their composition.

2.2.5 Abstract Data Types

In [SteL95], a method for representing and verifying intentions in telephony features using
abstract data types is presented. Feature intentions describe the intended behavior of telephony
features. The first step of the method is to specify a feature’s intentions using abstract data types.
Intentions of a feature are described independently of other features without consideration of
potential interactions at this stage. They are described for every operation that exists in the system
regardless of which feature is actually used, and are implemented as Abstract Data Types
operations which specify the intention’s violation. The specification language considered is
LOTOS. The second step consists in executing a formal specification of the system with features.
The abstract data types descriptions of feature intentions are included in the specification, and a
monitor for verifying intentions of features described as LOTOS processes is introduced to verify
the intentions as described in the abstract data types every time an action of the specification is

executed.

2.2.6 Goal Oriented Method

In [KaLS98], Kamoun and Logrippo developed a method for detecting feature interactions
between IN services using the Goal Oriented method. The method is limited to the detection of
interactions caused by violation of features properties. It is based on formalization of feature’'s
properties, derivation of goals satisfying the negation of the feature properties and use of Goal

Oriented Execution to detect traces satisfying these goals. A trace satisfying a goal shows that an
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interaction exists between the specified features by describing a scenario violating one of the

properties of the introduced features.

Our FI Detection method presented in chapter 5, was first inspired from the idea of the Goal
Oriented method. However, considering the burden that a complex goal may cause on the goal-
matching tool, we simplified the goal to be just an “error reporting” event and a “call process
finish” event. We also let a global monitoring process capture the violation of system properties
and perform a static feature property check on the snapshot of the billing data taken right before the

“call process finish” event.

Page 18



Chapter 3. System Model Design

Chapter 3. System Model Design

In this chapter, we present a telephony system model integrated with both switch-based
features and IN features. It should be noted that the system is modeled after the definition of the FI

detection contest rather than after the functionality of a ‘real’ telephony system.

3.1 General Architecture of the System Model

M SW_Sscp mscp_db
\ D
User
B Status
u SWITCH n A
user_sw sw_db
- P
| | T Billing
T sw_clk
o3 DATABASES
/o 2 Q
( 2 3 )
CLOCK

Fig 3.1 Architecture of the System Model

As depicted in Fig 3.1, our telephony network system is modeled as a collection of black
boxes communicating with each other via defined interfaces between them. Interfaces are
represented by solid black squares and named after the two components involved. For instance, the

interface between the switch and the clock is named by “sw_clk”.
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» Usars

Three users A, B and C send corresponding signals to the switch when users perform
offhook, onhook, dial actions on them; and respond with ringing, audibleringing (an audible
tone to the caller indicating that the destination phone is ringing) etc., when they receive
corresponding signals from the switch. Note that in this thesis, for simplicity, users model

both the “machines” and the people who operates them.

* Switch

The switch is the main engine of the whole system model. It consists of three parts: Basic
Call Process (BCP) providing only the basic functionality of making phone calls, 12
features providing the network subscribers more control in the call establishment process

and Feature Activation Process linking the BCP and the integrated features together.

The BCP processes the signals that come from users, consults user status information stored
in the user status database, establishes the call connection and logs the billing actions into

the billing database while the called party answers the call.

The twelve integrated features are as follows:

- CFBL

Call Forwarding on Busy Line (CFBL) that redirects all calls to the subscribing line to a

predetermined number when the line is busy.

- CND
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Call Number Delivery (CND) that allows the called telephone to receive a calling party’'s

directory number, and the date and time.

- INFB

IN Freephone Billing (INFB) that allows the subscriber to pay for incoming calls.

- INFR

IN Freephone Routing (INFR) that allows the subscriber to redirect a call to various

telephones potentially using the whole or part of the calling number and/or the time of day.

- INTL

IN Teen Line (INTL) that restricts outgoing calls based on the time of a day. This feature

can be overridden on a per-call basis by anyone with the proper identity code (PIN).

- TCS

Terminating Call Screening (TCS) that restricts incoming calls by redirecting calls from

lines that appear on a screening list to a vague but polite message.

- TWC

Three-way Calling (TWC) that allows the connection of three parties in a single

conversation.

- INCF

IN Call Forwarding (INCF) that permits the subscriber to have incoming calls redirected to

another number.
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- CWwW

Call Waiting (CW) that allows the subscriber to be notified that another party is trying to
reach him/her while the line is busy, and to accept the new call by placing the original call

on hold.

- CC

Charge Call (CC) that alows a caller to be automatically charged on a different telephone

number than the calling number.

- CELL

Cdlular (Cell) that charges cellular subscribers a fixed fee for each minute when acall isin

progress

- RC

Return Call (RC) by which the subscriber can set up acall to the last caller by dialing * 69.

. SCP

If the user subscribes to Intelligent Network (IN) features, the Service Control Point (SCP)

will replace the switch to control the call process when IN features are activated.

* Clock

The clock provides the switch with the globa time to log billing actions or make time-
dependant decisions. For example, the user subscribing to INTL has to dial avalid PIN to
originate a call during the specific INTL time period while no PIN is required outside that

time period. The switch will get the current time from the clock and send the information to
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the SCP. The SCP compares the current time with the INTL time period stored in the user

status record and decidesif a PIN validation procedure is necessary or not.

+ Databases and DBAPI

Our database system consists of two parts. Databases and DB Application Interface
(DBAPI). Databases store billing data and subscription data. External applications (e.g. the
switch) get access to these information viathe DBAPI. DBAPI hides implementation details

of the databases from external users (the switch and the SCP).

3.2 Notation Description

The notation used in this thesis to define BCP, FAP and the features is based on Labeled

Transition Systems.

Labeled Transition Systems (LTS) are a variation of the Finite State Machine formalism
where transitions are labeled with action names [Miln89]. The most common notation used to
represent LTS is a directed graph whose nodes are system states and whose arcs are system
transitions. The machine can be in only one state at a time. Upon executing the labeled action, the

system moves to a new state along that arc.

= Sates

In our model, LTS have three kinds of states: 1) start state which has only “out” arcs, 2)
intermediate states which have both “in’ and “out” arcs and 3) end states which have only
“in” arcs. For reference, the intermediate states of LTS presented in this thesis are numbered
from “1”, the start state and the end state are marked with “S” and “E” respectively, in gray

circles.
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=  Transitions

In our model, transitions are labeled by actions of format as follows:

[[Guard] -> ] Interface_name, Signal_name, [Parameterl, Parameter2,...]

Guard

Guard isoptiona and only used for restricting the transition’s occurrence: only if the
guard is satisfied, could the transition be executed. In our model, guard is usually a logic

expression or a check on user status, e.g. guard “Busy B” means “user B is busy”.

Interface_name

Interface_name indicates the name of the interface where the signal occurs. We have
five interfaces in our system modelser_sw (the interface between the users and the
switch); sw_db (the interface between the switch and DBAPYp db (the interface
between the SCP and DBAPBy_clk (the interface between the switch and the clock);

sw_scp (the interface between the switch and the SCP).

Sgnal_name

Signal_name identifies the name of the signal. Signal_name is unique and belongs to
only one interface. For example, the “offhook” signal can only occur at “user_sw” because

only the users can send out the “offhook” signal.

Different features may have different set of signals. We will discuss it along with the

individual description of features later.

Parameters
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Parameters carry the data information of signals. Signals can have 0 or more
parameters depending on the type of signals. For example, user signals (signals on
“user_sw” have 1 or 2 parameters where the first one indicates the address to or from which
the signal is given, the second parameter carries additional information such as, the
identification of the user that causes the signal, e.g. “user_sw Ringing B A” means the
ringing signal is sent to B because of A (dials B). We will explain this formula along with

signals in83.3 Description of Features.

= Multiple-action Transitions

For simplicity, we compress LTS Trees using multiple-action transitions. Multiple-action
transitions are transitions labeled by a series of actions. To execute a multiple-action

transition is to execute al actions belonging to that transition sequentially.

3.3 BCP

Basic Call Process provides basic telephony functionalities. It identifies at a high level of
abstraction all the activities necessary to establish a normal call between parties in the system. As
described in Fig 3.2, BCP starts when the caler performs offhookand ends when both calling and
called parties hang up. Since the switch takes the role of controlling the whole call process, BCP is
implemented within the switch. Thus, signals from the user such as: offhook, onhook, diaktc are
input signals to BCP and signals going to the user such as: ringing, audibleringing, announcement,
dialtone are responses from BCP to those input signals. Besides the end-users, BCP aso
communicates with DBAPI and the clock, inquiring user’s status information from the user status
database to establish the call or adding new billing records with timestamps into the billing

database when the call is connected. Fig 3.2 shows the LTS tree of BCP.
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user_sw Offhook A
sw_db SetBusy A

©

luser_sw DialTone A

©)

iuser_sw Dial AB

user_sw Onhook A
sw_db Setldle A
im_db GetStatusB S

@W’L.meBuwToneA

[Idle B]->|(user_sw StartRinging B A user_sw Onhook A
sw_db SetBusy B sw_db Setldle A
user_sw StartAudibleRinging A )

user_sw Onhook A
sw_db Setldle A

user_sw StopRinging B A sw_clk GetTime T
user_sw StopAudibleRinging A B

sw_db SetldleB

user_sw StopRinging B A
user_sw StopAudibleRinging A B
sw_dbLogBegin ABAT

Fig 3.2 The LTS Tree of BCP (To be continued)
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user_sw Onhook B
sw_db Setldle B

user_sw Onhook A
sw_db Setldle A

sw_clk GetTimeT

v
@ sw_clk GetTimeT

user_sw Disconnect A B

sw dbLogEnd ABAT

user_sw Disconnect B A
14 sw doLogEnd ABAT

(2)

user_sw Onhook A
sw_db Setldle A

user_sw Onhook B
sw_db Setldle B

(=)

Fig 3.2 The LTS Tree of BCP (Continued)

=  PointsIn Call:

The numbered intermediate states in Fig 3.2 are also called Points In Call (PIC), where
1) the Feature Activation Process will be attached to activate corresponding features and
(Point of Initialization or POI) 2) the activated features return to BCP upon completion.

(Point of Return or POR) (see 83.4 Feature Activation Process)

= |nterfaces

Three interfaces, user_sw, sw_clk, sw_gdére used by BCP.
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= Signals

In BCP, 1) signals at “user_sw” areDffhook, Onhook, Dial, Dialtone,
LineBusyTone, SartRinging, SartAudibleRinging (when the called party is rung, the caller
can also hear a corresponding ringing tone) Bigtonnect; 2) signals at “sw_db” is
GetSatus (inquire user’s statusgetBusy (set user’s status to be bus$tidie (set use’s
status to be Idle),.ogBegin (Add a new billing record and log the call beginning time),
LogEnd (log the call ending time); 3) the only signal at “sw_clkGeaTime (read the time

from the clock).

= Parameters

In BCP, 1) signals at “user_sw” have one or two parameters, where the first
parameter indicates the user who sends or receives the signal. For example, A is the sender
of the signal User_sw Offhook A” and B is the receiver of the signakér_sw StartRinging
B A”. The second parameter usually describes who causes the received signal. As in the
previous example, the second parameter specifies that B is rung by A. However, in
“user_sw Dial A B”, the second parameter indicates the callee’s number that is dialed by A.

2) “Get status” , “SetBusy” and “Setldle” signals at “sw_db” have one parameter indicating
whose status is inquired or changed. 3)“LogBegin” and “LogEnd” signals at “sw_db” have
four parameters, the first and the second parameters respectively specify the caller and the
callee of the call, the third parameter tells who is the payer of the call and the last parameter
holds the beginning (or ending) time of the call. (see transition from state 7 to state 8)
4)“GetTime” signal at “sw_clk” has one parameter, storing the current time read from the

clock.

Page 28



Chapter 3. System Model Design

=  Possible Exits

In BCP, after “Offhook A”, a call process has five possible exits: 1) the caller A
onhooks after it dials the callee’s number; 2) the callee B is busy when A is calling, thus
after hearing the linebusytone, A hangs up; 3) A onhooks while B is being rung; 4) the
caller A onhooks first when finishes talking with B; 5) the callee B onhooks first when it
finishes talking with A. Only in the last two cases, a real connection between A and B is

successfully established.

3.4 Feature Activation Process

3.4.1 Feature Integration: POl & POR

In an IN-like model, all telephony features other than BCP are built upon BCP and interact

with it at two points which, from the feature’s point of view, are called:

i. Point Of Initialization (POI) is a PIC in BCP where the feature is activated. All telephony

features other than BCP have one and only one corresponding POls.

ii. Point Of Return (POR) is a PIC in BCP where normal call processing should continue
after executing the feature. One feature could have O (if it never returns to BCP) or more

PORs.

Figure 3.3 illustrates the integrating relationship between BCP and feature INTL, CFBL,

TWC and CW.

For feature INTL (se&3.6.1 INTL), the POl isPIC_ 1. If the caller A subscribesto INTL,

the feature is activated right after caller A offhooks. The POR of INTL isPIC_2. If INTL does not
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block the call (either not in INTL time period or in INTL time period but the user has avalid PIN
for the call origination), a dialtone is given to caler A. Then, INTL finishes and the call process

returns to BCP and resumes from PIC_2.

| INTeenLine(INTL)

i

POI POR| |POI POR POI(R) Basic Call Process (BCP)

—» Three Way Calling (TWC)

—»| Call Forward on Busy Line (CFBL)

— | IN Free Billing (INFB)

Fig 3.3 The Integrating Relationship between BCP and Other Features
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The POI of CFBL isPIC_3. If the callee B subscribes to CFBL, the feature is activated after
caller A diasthe callee’s number B. If B is busy when A calls, CFBL of B forwards the call to C, a
predefined forwarded address. The POR of CFBL is PIC_5. If A calls B when B is idle, the call

process returns to BCP and continues from PIC_5.

The POI of INFB is PIC_3. If the callee B subscribes to INFB, the feature is activated after
the caller A dials the callee’s number B. If the call is connected to B, INFB of B charges the call to

the callee B. INFB has no POR.

The POI of TWC is PIC_8. If the caller A (or the callee B) has TWC, the feature can be
activated after A and B enter the talking state. A (or B) can dial the third party C during the call
with B (or A) by performing flashhook and can establish a three-way connection among A B C.
When one of A B C onhooks, TWC finishes and returns to PIC_8, which is the two-way connection

state.

3.4.2 Feature Activation Process

Feature Activation Process (FAP) is a process that is instantiated at every POI of the

integrated features to activate the subscribing features.

Two parameters are passed to FAP from BCP, user address and feature name. FAP will do
two things: 1) check if the user subscribes to the feature or not. The subscribing information is
stored in TheUser database; 2) If the feature is subscribed, FAD calls the feature process and passes
all associated parameters, such as the caller and or callee’s name to it. Otherwise, FAP returns to

BCP and the call process is resumed.
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(s)

user_sw Offhook A
sw_db SetBusy A v

@ ........... B FAP(A, INTL)

user_sw DialTone A

@ ---------- »| FAP(A, CC)

. FAP(B, INFB)
user_sw Dial A B FAP(B.CFBL)
v FAP(B,CND)
user sw Onhook A (3 ) > FAP(B, INFR)
sw_db Setldle A FAP(B,TCYS)
iSN_db GetStatusB S FAP(B,INCF)
@ [Busy B]->user_sw LineBusyTone A
[Idle B]->|(user_sw StartRinging B A user_sw Onhook A
sw_db SetBusy B sw_db Setldle A
user_sw StartAudibleRinging A )

user_sw Onhook A

sw_db Setldle A user_sw Offhook B

____________ FAP(A, RC)

user_sw StopRinging B A sw_clk GetTime T
user_sw StopAudibleRinging A B

sw_db Setldle B

____________________ »| FAP(A, CELL)

user_sw StopRinging B A
user_sw StopAudibleRinging A B
sw_dbLogBegin ABAT

___________ 5| FAP(A, TWC)
FAP(A, CW)

Fig 3.4 BCP Integrated with FAPs
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At PICs that are POls for more than one feature, FAP instances of different features are

mutually independent and of the same priority. Fig 3.4 lists FAPs integrated into BCP.

3.5 Feature Classification

Features in telecommunication systems are packages of incrementally added call functions
providing advanced call features to subscribers [Bowe89]. These packages are provided to users on

a subscribe-and-use basis.

We use a classification of features that is based on the way they are integrated to the system
and on the way that they can be activated only once or repeatedly. From the first point of view, we
talk about switch-based (Non-IN) and IN feature. From the second point of view, we talk of finite

and infinite feature.

3.5.1 Switch-based Features

Features that are implemented within the switch are called switch-based features. Thisisthe
traditional way to add new features (before 1980s). In this method, since all data and processing
required by the features are located within the local node (the switch), new features must be added
to all local switches. Moreover, since different types of switches provided by different vendors are
deployed in a telephony network, the introduction of new features requires the adaptation of the

related software for every type of switch in the network.
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Switch-based
Feature A

Basic Call Process

(BCP)

Switch-based
FeatureB

P I Od—=Swm

Basic Call Process
(BCP)

Switch-based
FeatureB

Switch-based
Feature A

MNIOA—Sow

Fig 3.5 An Example of Switch-based Telephony Network
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Fig 3.5 depicts an example of switch-based telephony network. Three features, BCP plus two new
added features are implemented in two local switches. Each switch has its own local database,

which stores data required by BCP and other switch-based features.

In our system model, CFBL, CND, TCS, TWC, CW,CC, CELL and RC are switch_based

features.

3.5.2 IN features

As mentioned before, switch-based telephony features and corresponding data must be
implemented in every local switch in the network. This method is tedious and it is costly to
introduce new features or improve old features. The introduction of Intelligent Network (IN) eased
the difficulty of feature creation, deployment and maintenance by facilitating creation and
provision of telecommunication services. In IN telephony networks, new features are implemented
in Service Control Point (SCP) and corresponding data required by IN features are stored and
managed by Service Data Point (SDP). Unlike BCP and other switch-based features that are
completely implemented within the local switch, part of the functionality of IN features is carried
out by the SCP. During the execution of IN features, the call process control remains in the switch
while the feature process control is done by the SCP. The switch provides the SCP with collected
information and follows the decision made by the SCP. The interface between the switch and the
SCP is service-independent, which means that the communication style between the SCP and the

switch remains the same for all IN features.

Fig 3.6 depicts a simple IN telephony network, which consists of two local switches and

one SCP/SDP. We can see the advantage of the IN features directly from the picture. Unlike
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Switch-based
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Fig 3.6 An Example of IN Telephony Network
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switch-based features, which need to be implemented in both switches in the network, IN features

and data are deployed only in the SCP/SDP.

Due to legacy, nowadays tel ephony systems usually have both switch-based features and IN

features.

In our moddl, IN featuresare: INTL, INFB, INFR, INCF and CC

3.5.3 Finite Features

Finite Features are those features that can be executed only once during a single call
process. The main property of finite featuresis that PORs of finite features can only occur after the

PQOls.

In our model, finite features are CFBL, CND, INFB, INFR, INTL, TCS, INCF, CC, CELL

and RC.

3.5.4 Infinite Features

Infinite Features are those features that can be executed repeatedly during one call process.
The main property of infinite features is that their PORs occur at the same time or earlier than the

POI.

In our moddel, TWC and CW are infinite features for which the POR and the POI are the

same PIC (PIC_9).

Fig 3.7 shows the classifications of features.
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A
TWC, CW
Infinite Switch-based
Features Features
P>
< IN .
Features Finite
Features
CcC RC
INFB, INTL CFBL, CND
INCF, INFR, TCS, CELL
\4

Fig 3.7 Classifications of Features

3.6 Descriptions of Features

Since it would be very long to describe all 12 features we implemented and analyzed, 4
representatives, INTL, INFB, INCF, TWC are selected as examples to show how different kinds of

features are designed.
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3.6.1 INTL

INTL restricts outgoing calls based on the time of the day, such as hours when homework
should be the primary activity. However, the restriction of INTL can be overridden by entering the
correct PIN. When the user subscribes to INTL, the following information is required from the

user:

1) TeenTimel TeenTime2: a time period from TeenTimel to TeenTime2 when the

outgoing calls are restricted.
2) TeenPIN: aPIN used to originate a call during the TeenTime period

When the caler A, who subscribes to INTL, offhooks, INTL is activated by FAP from
PIC_1. Fig 3.8 illustrates the LTS tree of INTL. The first transitions of INTL involve reading the
current time, geting the TeenTime period of A from the user status database and checking if it isin
the TeenTime period. If it is, INTL sends a trigger, to the SCP with the trigger type
(ORIGINATION_ATTEMPT), the subscriber’s address (A), the caller's address (A) and the time
just collected. Otherwise, a dialtone is given to user A and INTL returns to BCP at PIC_2, giving
the caller A a dialtone. After receiving INTL’s trigger message, the SCP responds to askPIN from
the caller A. INTL announces to A a prompting message to dial the PIN. Then, INTL sends a
“resource” message to the SCP with the number P dialed by A. If Pisthe valid TeenPIN, the SCP
responds to continue the call, a dialtone is given to user A and INTL is returned back to BCP at
PIC_2. Otherwise, A will receive an announcement that an invalid PIN was given and the call is
blocked by the SCP’s “RES_DISCONNECT” response. (f#7.2 Switch/SCRor definitions of
Trigger, Response and Resource.) In Fig3.8, transitions between states from 3 to 10 are interactions

between the SCP and the user through the switch.
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©,

sw_db GetTeenTime A T1T2

©

sw_clk GetTime T

) 4

[T1>T or T>T2]-> user A Tone A i[Tl <T < T2]->SW_scp Trigger ORIGINATION_ATTEMPT AA T

©)

isxv_scp Response SEND_TO_RESOURCE A AskForPIN

@

user_sw Announce A AskForPIN

PIC 2

user_sw Onhook A
sw_db Setldle A

user_sw Dial AP

®

sw_scp Resource A P

v

Fig3.8 The LTS Tree of INTL (To be continued)
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[P eq TeenPIN]->

[ Heg TeenPIN] ->

sw| scp Response SEND_TO_RESOURCE A InvalidPIN
v
®

user_sw Announce A InvalidPIN
sw_scp Resource A

PIC_2

@)+

sw_scp Response RES DISCONNECT A
v
10

user_sw Onhook A
sw_db Setldle A

®

Fig 3.8 The LTS Tree of INTL (Continued)

= Signds:

Signals of INTL feature occur at four interfaces.

1) Signals at user_sw. Comparing with BCP, INTL has only one new signal “Announce”.
The “Announce” signal has two parameters. The first one refers to the receiver of the
signal and the second parameter is the message to be announced, such as prompting the
user to input a PIN number (“AskForPIN”) or informing the user that an invalid PIN

number is input (“InvalidPIN”).
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2) Signd at sw_clk, “GetTime”, is the same as in BCP.

3) New Signal atsw db is “GetTeenTime”. The “GetTeenTime” signal queries the
“TeenTime” period from the user status database. It has three parameters: the first one,
A, indicates the subscriber’s name; the last two parameters T1, T2 take the starting and

ending time of the “TeenTime” period.

4) Signals abw_scp. As mentioned above, two kinds of signals, “Trigger” and “Resource”,
are sent to the SCP from INTL. The SCP responds to “Trigger” and “Resource” signals

with the signal named “Response”.

=  Possible Exits

INTL has four exits: 1) The current time is not in TeenTime period, A dialtone is given to
user A and INTL returns to PIC_2. 2) The caller A onhooks after being announced the
prompting message to dial the PIN. 3) The caller inputs a valid PIN and the SCP responds to
continue the call. A dialtone is given to caller A and INTL returns to PIC_2. 4) The caller
inputs an invalid PIN and the SCP responds to disconnect the call. The caller A onhooks. Only

in the first and the third cases, A is allowed to originate a call.

3.6.2 INFB

INFB enables the subscriber to pay for incoming calls.

The LTS of INFB is shown in Fig 3.9.

When the callee B, who subscribes to INFB, is dialed by the caller A, INFB is activated by
FAP from PIC_3 and takes the place of BCP to control the call process. The first transitions of

INFB is to read the current time from the clock and semthger message to the SCP with the
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sw_clk GetTimeT

@

sw_scp Trigger INFO_ ANALYZEDBABT

sw_scp Response ANALYZE_ROUTEBABB
©
sw_db GetStatusB S
v

[Busy B]-> user_sw LineBusyTone A

[Idle B]-> (user_sw StartRinging B A
sw_db SetBusy B
user_sw StartAudibleRinging A B)

) 4 user_sw Onhook A
sw_db Setldle A

user_sw Onhook A
sw_db Setldle A

user_sw StopRinging B A sw_clk GetTime T
sw_db Setldle B

user_sw StopAudibleRinging A B

user_sw StopRinging B A
user_sw StopAudibleRinging A B
sw_dbLogBegin ABBT

Fig 3.9 The LTS Tree of INFB (To be continued)
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user_sw Onhook B
sw_db SetldleB

user_sw Onhook A
sw_db Setldle A

sw_clk GetTime T

v
@ sw_clk GetTime T
user_sw Disconnect A B b4
sw doLogeEnd ABBT @
user_sw Disconnect B A
14 sw dbLogEnd ABBT
user_sw Onhook A b4
sw_db Setldle A @
user_sw Onhook B
sw_db Setldle B

Fig 3.9 The FSM graph of INFB (Continued)

trigger type (INFO_ANALYZED), the subscriber's address (B), the caller's address (A), the
callee’s address (B) and the current time. After receiving INFB’s trigger message, the SCP sends
back an “ANALYZE_ROUTE” response to INFB, indicating that B should be the payer of the call
from A. In this feature, this is the only part where the SCP is involved. Then, INFB becomes very
similar to BCP. It checks B’s status and if it is busy, a LineBusyTone is given to A, otherwise the
call is connected and rings B. After B offhooks, the “LogBegin” signal logs the beginning time and
charges the call to B, as specified in the SCP’s response. When A (or B) finishes talking, A (or B)
onhooks. The “LogEnd” signal logs the ending time of the call. At the same time a “Disconnect”

signal is sent to B (or A) and B (or A) onhooks.
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Like INTL, INFB has to consult the SCP and follows the SCP’s instructions to charge the

call.

= Signals:

Transitions of the INFB’s LTS are signals occurring at four interfaces.

1) Signals auser_swin INFB are the same as those in BCP

2) Signal atsw_clk is the same as that in BCP.

3) Signal atsw_db is the same as that in BCP.

4) Signals atsw_scp. INFB has one “Trigger” signal]NFO_ANALYZED and one

“Response” signalANALYZE_ROUTE.

“INFO_ANALYZED? trigger has four parameters. The first parameter indicates the
subscriber’s address (B), the second one specifies the caller’s address (A), the third one

takes the callee’s address (B) and the fourth one holds the current time (T).

“ANALYZE_ROUTE” is the response of the SCP to the trigger
“INFO_ANALYZED”. It has four parameters. The first parameter indicates the
subscriber’s address (B), the second one describes the caller's address (A), the third one

specifies the callee’s address (B) and the fourth one designates the payer of the call (B).

=  Possible Exits

INFB has four exits: 1) The caller A onhooks because the callee B is busy. 2) The caller A

onhooks when B is rung. 3) The caller A onhooks first after talking to B. 4) B onhooks first
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after talking to A. Only in the last two cases, the connections between A and B are successfully

established.

3.6.3 CFBL

CFBL, a switch-based feature, alows a subscriber to redirect incoming calls when it is
busy. The subscriber pays for the forwarded part of the call. For example, if B has CFBL and B is
busy when A cals, the call is forwarded to C given that C is the forwarded address. After the
connection is established, the call is separated into two parts and charged in the following way: A

pays for the part from A to B and B pays for the forwarded part from B to C.
Fig 3.10 givesthe LTS tree of CFBL.

When caller A dials callee B who subscribes to CFBL, CFBL is activated by FAP a PIC_3.
The first transitions of CFBL are to check the status of both B and C. 1) If B isidle, the call
process returns to BCP at PIC_5. In this case, the call to B will be proceeded normally. 2) If
both B and C are busy, aLineBusyToneis givento A and A onhooks. 3) If B isbusy and C is

idle, the call isforwarded to C. After C offhooks, there are two “LogBegin” signals of which
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©,

l sw_db GetStatusB S

®

[IdleB]->
(user_sw StartRinging B A
sw db SetBusy B

user_sw StartAudibleRj

PIC 5

v

user_sw Onhook A
sw_db Setldle A

user_sw StopRingingC A
sw_db Setldle C
user_sw StopAudibleRinging A C

[Busy B and Idle C]->
_bw StartRinging C A
sw_dh SetBusy C

user_gw StartAudibleRinging A C)

user_sw Offhook C

sw_db GetStatusC S

[Busy B and Busy C]-> user_sw LineBusyToneA

user_sw Onhook A
sw_db Setldle A

sw_clk GetTime T

user_sw StopRinging C A
user_sw StopAudibleRinging A C
sw_dbLogBegin ABAT
sw dbLogBeginBCBT

v

®

Fig 3.10 The LTS Tree of CFBL (To be continued)

Page 47




Chapter 3. System Model Design

user_sw Onhook C
sw_db SetldleC

user_sw Onhook A
sw_db Setldle A

sw_clk GetTime T @
@ sw_clk GetTime T

v

user_sw Disconnect A B @
sw dboLogeEnd ABAT

sw_doLogendBCBT user_sw Disconnect B A
v sw doLogEnd ABAT
sw dboLogeEndBCBT

user_sw Onhook A

v
sw_db Setidle A @

user_sw Onhook C
sw_db SetldleC

Fig 3.10 The LTS Tree of CFBL (Continued)

one charges the A-B part of the call to A and the other charges the forwarded B-C part to B. When
A (or C) finishes talking, A (or C) onhooks. Two “LogEnd” signals log the ending time of the call

to each part of the call. At the same time, a “Disconnect” signal is sent to C (or A) and C (or A)

onhooks.
= Signals
Transitions of the CFBL’s FSM are for the same set of signals as for BCP.

=  Possible Exits
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CFBL has five exits: 1) Caller A onhooks because both B and C are busy. 2) B is not busy
when A calls, thus the call process returns to PIC_5. 3) Caller A onhooks when C is rung,
without waiting for C’s answer. 4) Caller A onhooks first after talking to C. 5) C onhooks first

after talking to A.

3.6.4 TWC

Three Way Calling is a switch-based feature that allows the connection of three parties in a

single conversation.

Fig 3.11 illustrates the main part of the LTS tree of TWC. Since TWC is a very complex
feature that contains 60 states, we hide the details of some unimportant branches, where no three-
way connection is established, using blocks with dashed line. Details of these blocks can be found

in [GBGTO8].

Three Way Calling is activated by FAP from PIC_8 when subscriber A has connected to
callee B. To connect the third party C, subscriber A temporarily suspends conversation with B,
flashhooks and dials C. A’'s “Threeway” flag is set to be true. 1) If C is busy, A gets the
LineBusyTone and flashhooks again. The call process returns to PIC_8. 2) If C is idle, A gets
connected to C after C offhooks. Then, A flashhooks again to make B join the conversation
between A and C and a three-way connection of A B C is established. Then, 1) If B (or C) finishes
talking and onhooks, A gets the “disconnect” signal from B (or C), and A’s “Threeway” flag is set
to be false. The call process of A and B (or A and C) returns to PIC_8. 2) If A flashhooks, A’s
“Threeway” flag is set to be false, C gets the “disconnect” signal from A, C onhooks. 3) If A
onhooks, A’'s “Threeway” flag is set to be false. Both B and C get the “disconnect” signal from A

and onhook.
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©

user_sw Flashook A
sw_db SetThreeWay A True

®
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Fig3.11 The LTS Tree of TWC (To be continued)
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TWCC
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Fig3.11 The LTS Tree of TWC (Continued)
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= Signas

Transitions of the TWC’s FSM are for the same set of signals as for the BCP except a new
signal atsw_db, “SetThreeWay”. “SetThreeWay” has two parameters. The first parameter
indicates the user’s address and the second parameter specifies the value to be set. For example,

“SetThreeWay A True” means to set the “ThreeWay” flag of A to be “True”.
» Possible Exits

TWC has 19 possible exits. Four of them are where a three way connection is successfully
established: 1) Caller A onhooks to terminate the three-way-connection among A, B and C. 2)
C onhooks and A gets the “disconnect” signal from C. The three-way connection among A, B
and C becomes the two-way connection between A and B. 3) B onhooks and A gets the
“disconnect” signal from B. The three-way connection among A, B and C becomes the two-
way connection between A and C. 4) A flashhooks and C gets “disconnect” signal from A. The
three-way connection among A, B and C becomes the two-way connection between A and B.
Except the first one, all other exits may make TWC a loop since they bring it back to the same

PIC where TWC is activated, hence the user can invoke TWC again.

3.7 Interface definition

In this section, we describe the complete set of signals defined in our system model. To
describe signals, we use the following notation: the name of the signal is followed by the name and

type of parameters, Signal-namg RarameterType, XParameterType, ..., XParameterType.
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3.7.1 User/Switch (user_sw)

User to Switch (signals are sent from the users to the switch):

o Offhook X: Address ( User with phone number X offhooks)

e Onhook X: Address ( User with phone number X onhooks)

* Dia X: AddressY: Address ( User at address X dials address Y)

e Flashhook X: Address (User at address X flashhooks. Flash X is equivalent to an
Onhook X immediately followed by an Offhook X, unless a feature uses it otherwise. We

assume that end-users have a Flash button)

Switch to User (Signals are sent from the switch to the user):

» DiadTone X: Address (A diaTone is given to user X. Dial'Tone means that the switch
has approved the user to make an outgoing call. Dial Tone stops automatically when the

user dials or hangsup )

* LineBusyTone X: Address (A lineBusyTone is given to user X. LineBusyTone is a
negative signal for a call establishment attempt. LineBusyTone stops when the user

onhooks or flashhooks)

» StartAudibleRinging X: Address Y: Address (The ringback tone is provided at address
X while waiting for user Y to answer the call. AudibleRinging is a positive signal for a

call establishment attempt.)

* StopAudibleRinging X: Address Y: Address (The ringback tone at address X from Y is

disabled.)
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» StartRinging X: Address Y: Address (Ringing starts at address X for a call originated at

addressY.)

» StopRinging X: Address Y: Address (Ringing at address X from Y is disabled)

» Disconnect X: Address Y: Address (The switch informs user X that Y has disconnected
a connection with X. User X should either hang up or flashhook after receiving the

disconnect signal)

* Announce X: Address M: Message ( An announcement M is played at address X)

o Start CalWaitingTone X:Address Y:Address (A speciad signa given to user X

indicating that Y istrying to reach him/her)

* Display X:Address M:Message (It uses a display screen on telephone at address X to

display the message M concerning the call)

3.7.2 Switch/SCP

The Bellcore AIN document GR-1298-CORE has been areference for this interface, but the
contest committee decided to use a simplified version of the message parameters. Messages sent
from the switch to the SCP are of two kinds, “Trigger” and “Resource”. Messages sending from the

SCP back to the switch are of one kind, “Response”.

= Trigger

A general format of “Trigger” is:

Trigger Trigger_type subscriber's address [parameterl, ...]
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When SCP receives the trigger message, the corresponding routine for that trigger type is
invoked. Besides the subscriber address, parameters may include information such as the

calling party address, the called party address, and the time, etc.

= Resource

A general format of Resourceis:

Resource Subscriber’'s address, Parameterl,[ Parameter2...]

Resource responds to the SEND_TO_RESOURCE message from SCP, which is caused by
a trigger. Besides subscriber's address, parameters in a resource message may include data

collected from users, e.g. a PIN number
SCP to Switch (messages are sent from the SCP to the switch )
= Response
Response ResponseType Subscriber address [parameterl, parameter2...]

Different ResponseTypes indicate different instructions given from SCP to process the call

listed as follows:

Response ANALYZE_ROUTE S: Address A: Address B: Address C: Adahesgis to route

acall from A to B and charge the call to C. Sisthe subscriber address.

Response CONTINUE S: Address A: Address B: Addregsns to continue processing the

call from A to B using BCP. Sis the subscriber address.

Response SEND_TO _RESOURCE Address A: Address M: Messageans to play the

message M at address A and collect the input data ( if any )
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Response RES DISCONNECTS: Address A: Address means to terminate the processing of

calsfromA .

3.7.3 Switch to DBAPI

Billing signds:

LogBegin X: Address Y: Address P: Address T: Time (DBAPI starts to charge P for a
call from X to Y by opening a new billing record and logging the beginning time. T is

the time when the called party offhooks. )

LogEnd X: Address Y: Address P. Address T: Time (DBAPI stops charging the call

from X to Y by logging the ending time T and closing the record. )

User status inquiry and setting signal:

GetSatus X: Address S:Status (The switch queries the status information of user X.)

GetSubscribingFeatures X:Address S:SubscribedFeatureSet (The switch queries the

subscribing information of user X.)

GetTeenTime X:Address T1:Time T2:Time (The switch queries the TeenTime period

defined by user X')

Setldle X: Address ( The status of X is set to be “idle”)

SetBusy X: Address (The status of X is set to be “busy”)

SetThreeWay X: Address B: Bool ( TheThreeWay” of X is set with the Boolean

value B)
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3.7.4 Switch to Clock

* GetTimeT: Time ( The switch queries the current time from the clock)

3.7.5 SCP to DBAPI

* Get TeenPIN X: Address P: PIN (The SCP queries the TeenPIN number of user X,

which is stored in the user status database)
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Chapter 4 LOTOS Specification of the System Model

In this chapter, we describe the LOTOS formal specification of our system model and of
some features (BCP, INTL, INFB, CFBL and TWC) as defined in the functional plane of the
system model. Our main objective in specifying the system model and features in LOTOS is to
provide a specification that can be used as a test-bed for specifying, validating and detecting Fls. In
the LOTOS specification, only the external behavior of the system is captured, that is, describing

what the system does for the user, not how it does it (black-box specification).

Before introducing the details of the LOTOS specification of our model, we give an
overview of the LOTOS specification language and of its main operators by describing some

examples in the context of the telephony networks.

4.1 An Overview of LOTOS

LOTOS (Language Of Tempora Ordering Specification) is a Forma Description
Technique (FDT) developed within ISO (International Organization for Standardization) as a
formal specification language for the purpose of describing and specifying the different elements of
OSl (Open System Interconnection) architecture such as services and protocols. It has been an 1SO
standard (8807) since 1989 [ISO8807]. Nowadays, LOTOS applications have been extended to

cover some other domains such as hardware [FalL. S97] and telephony [FalL S91], [StL093].

A LOTOS specification consists of two parts, data part and control part. The control part
defines the external observable behavior of the system that is described. It is based on Milner’s
Calculus of Communicating Systems (CCS) [Miln89] and Hoare’s (CSP) [Hoar85]. The data part

defines all the data types and value expressions needed to specify the behavior of the system. It is
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based on the formal theory of algebraic abstract data types ACT-ONE [EhMa85]. A number of
excellent LOTOS tutorials can be found in the literature [BoBr87]. Therefore, we limit ourselves to

abrief overview of the language and its use in the context of our research.

All key words of LOTOS used in thisthesis are highlighted in bold.

4.1.1 LOTOS Abstract Data Types

LOTOS adopts ACT-ONE, an algebraic abstract data type language, to define data types.

ACT-ONE defines abstractly data operations without reference to implementation details.

A datatype definition in LOTOS consists of a definition of a signature and possibly of alist
of egns (equations). A signature of a type is a definition of its sorts and opns (operations). Sorts
defines the domain name of the data. Opns defines the formats of operations on the data. Eqns

provide a means to define the semantics of operations.

LOTOS Data Types can be built hierarchically by using is. That is, one data type can be a

collection of other data types. This constitutes an inheritance mechanism of asimple kind.

Consider the following type definition of the bill item in the billing database:

type TypeBillltem (* define the type name*)
is TypeAddress, TypeTime (*list other sorts used to construct this data type*)
(* Signature*)
sorts Billltem (* define the sort name*)
opns (* specify the format of operations*)
Item(* Constructor *):Address(* Charged *), Address(* Caller *), Address(* Calee *),
Time(* LogBegin *), Time(* LogEnd *) -> Billltem
setLogEndTime: Time,Billltem -> Billltem
getCaller,getCalee: Billltem -> Address
(* List of equations *)
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eqns

forall al,a2,a3,a4,ab,a6:Address, t1,t2,t3: Time

ofsort Billltem (* specify the return type of the operations list below*)
setLogEndTime(t3,Item(ab,al,a2,t1,t2))= Item(ab,al,a2,t1,t3);

ofsort Address (* these are query functions *)
getCaller(item(al,a2,a3,t1,t2))=a2;
getCallee(item(al,a2,a3,t1,t2))=a3;

endtype (* TypeBillltem *)

Type TypeBillltem defines the billing items stored in the billing database. The format of
“Billltem” is: Item(Payer, Caller, Callee, StartTime, EndTime). The “payer”, “caller” and “callee”
are of typeAddress. “StartTime” and “EndTime” are of typEme. “Billltem” has four operations:
1)“Item” is the constructor operation building a new “Billitem”; 2)“setLogEnditem” is a setting
operation to set the “EndTime” of the “Billitem”; 3) “getCaller” is a query operation that returns
the “Caller” address of the “Billitem”; 4)“getCallee” is a query operation that returns the “Callee”

address of the “Billltem”.

4.1.2 The Control Part

The control part of LOTOS specification deals with the description of the system behavior.

It this part, systems are described by means of processes defined in a top down hierarchy.

4.1.2.1 LOTOS Process

A process is viewed as a black box interacting with other processes or with the system
environment via synchronization on its observable gates. It is basically defined by a set of
observable gates, on which synchronization occurs, and by a behavior expression. A behavior
expression is built by combining LOTOS actions by means of operators and possibly instantiations

of other processes.
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The syntax of a process definition is of the form:

process process_name [gate list] (parameter_list): functionality
<behavior expresson>

endproc

In addition to the set of observable gates and the behavior expression, a process can aso
have a set of parameters, denoted in the definition above by parameter _list. This set represents the
set of parameters through which values can be passed to the process from outside. The

parameterization of aprocess also enables its reusability.

4122 LOTOSAction

Action is the basic element of the behavior expressions. It consists of a gate name, a list
(possibly empty) of events, and possibly a predicate that defines the conditions that should hold for
the event to be offered. An event can either offer (represented by!™) or accept (represented by

“?") avalue. Predicates establish a condition on the values that can be accepted or offered.

An example of action is:

user_sw ! Offhook ? caller:Address

Offhook is of sortUserSgnal that defines a set of all possible signals occuring at gate
user_sw. When the action happens, it will obtain a value ofAsidress from the environment for

thecaller.

Actions are considered to be atomic in the sense that they occur instantaneously, without
consuming time. Generally speaking, actions in LOTOS are always executed by synchronization

with the environment. However, there is a special type of actions in LOTOSteéhmal action,
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which is represented by “i”. It can be executed independently by the process and it is unobservable

to the environment.

4.1.2.3LOTOSBehavior Expressions

= |naction: stop

It represents a deadlock, i.e. No more actions can be executed.

= Successful Terminatioexit

It indicates a normal termination of the behavior, i.e. a process has successfully performed all

its actions.

The key word “exit” can also be used in the process definition to express the process
functionality (denoted in the syntax given above foyctionality). In fact, a process has
functionality “exit” if it can terminate successfully, i.e. it is able to perform an exit at the end. If the

process cannot perform an “exit”, the functionality is noexit.

» Process Instantiation: Process Name[gate list] (initial_value list)

The instantiation of a LOTOS process is equivalent to the invocation of a procedure in a
programming language (such as Pascal). Parameters of the process listed in “parameter_list” are

initialized by the values given in “initial_value_list”.

Process Instantiation can occur either in the behavior expression of other processes or in the

behavior expression of the process itself.

4124 LOTOSOperators

= Action Prefix Operator: a ; B
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The action prefix operator, represented as a semi-colon “;”, expresses sequential composition of
actiona and behavior expressidh It is used to sequentially order actions. For examyse, sw
IDialtone 'A; user_sw !Dial 'A IB denotes that caller A must get the dialtone before dialing the

callee’s number B.

» Choice Operator:B; [] B,

The choice operator “[]” is used to express a choice between two altern&jvasd B,.
Consider the following scenario as an example: after dialing the callee’s number, the caller may 1)
either get the linebusytone from the switch (if the callee is busy) 2) or get the audibleringing
indicating that the call is connected and the callee is ringing. 3) or change his/her mind of making

the call and hang up. This is expressed by the behavior expression listed below.

user_sw ! LineBusyTone ! A

[]
user_sw ! SartAudibleRinging 'A !'B

[]

user_sw ! Onhook ! A

= Enabling Operator: B; >> B;

The enabling operator “>>" has a similar function as the action prefix operator. The difference
between them is that the action prefix operator “;” expresses the sequential composition of an
action and a behavior expression; the enabling operator “>>" expresses the sequential composition

of two behavior expressions; B executed if and only if Bs successfully terminated (exit).

= Disabling Operator: B; [> B>

The disable operator “[>" is used to express situations whei@B be interrupted by,B
during normal functioning. For example, a normal processing of a call could be interrupted at any

point if the caller onhooks. This could be expressed by the behavior expression as follows.
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(user_sw ! DailTone ! A
user sw !Dial A !B;

) [> user_sw ! Onhook !A;...

» Interleaving OperatorB; ||| B,

We say that B; and B; interleave if they can perform their actions independently of each other.
The interleaving operator “|||” expresses the concept of parallelism between behaviors where no
synchronization is required. For example, three users A, B and C in the network behave
independently of each other. If we use process “User” to describe one user's behavior, the

relationship between user A, B and C can be represented as follows.

USER [user_sw] (A)

Il
USER [user_sw] (B)

Il
USER [user_sw] (C)

» Parallel Composition Operator: By |[ 01, ..., &]| B2

The paralel composition of B; and B, on the gate list gs,...,0, expresses the fact that Bnd B
behave independently, with the exception that they must synchronize on the;gatgs which
means that processes 81d B must participate in the execution of every action defined with a
gate name;gi 0 {1, ...,n}. Then interleaving can be defined as a parallel composition on an empty

gate list.

Synchronization of processes on a gate @ {1, ...,n} occurs, if each process provides an
action with a gate name, gdhe lists of events offered by the actions match, and the predicates (if
any) are satisfied. The lists of events of two actions “match” if the following conditions are

satisfied:
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1) Thenumbers of events of the two actions match.

2) If an event in one action offers (!) a value, then the “matching” event in another action,

should either offer (!) the same value or accept (?) a value of the same sort.

Consider the following example where two processes USER and BCP synchronize on the gate

‘user_sw”.

(USER [user_sw] (A)
Il
USER [user_sw] (B)
Il
USER [user_sw] (C)
where
process USER [user_sw] ( X: Address): noexit :=
(‘user_sw !0Offhook !'X;
user_sw !DialTone!X;

)
endproc (* USER¥)
)
[[user_sw]|
(hide sw_clk, sw_din SWITCH [user_sw, sw_clk, sw_scp, sw_db]
where
process SWITCH [user_sw, sw_clk, sw_scp, sw_adigexit :=
BCPJ[user_sw, sw_clk, sw_scp, sw_db]
endproc (* SWITCH *)
process BCP [user_sw, sw_clk, sw_scp, sw_digexit :=
(user_sw !Offhook ?Caller:Address;

user_sw !DialTone !Caller;
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)
endproc (* BCP *)

)

Process USER stands for a user of the telephony network. It takes a parameter that holds the
user’'s address, i.e. the process that simulates usetJ8ER[user _sw] (A). The three users above
are independent of each other. However, they all have to synchronize with the switch at gate
“user_sw”. Process SWITCH consists of only one process called BCP. Process USER actually
synchronizes with process BCP at gate “user_sw”. The first action of BGgerisw !Offhook
?Caller: Address, so it synchronizes with the first action of USHRer_sw !Offhook !X. In other
words, the following two actions synchronize at the very beginning:

user_sw [ Offhook ?Caller: Address offered by USER
user_sw !Offhook ! X offered by BCP

As a result of synchronization, Caller acquires the value of X, which contains the address of the

calling user.

= Full Synchronization Operator: B, || B,

The full synchronization of B1 and B2 is a parallel composition in which B1 and B2 must

synchronize on all their gates.

» Hiding Operator: hideg;, ..., gin B

The hiding operator “hide in” is used to hide actions synchronizing on gatesgiywithin the
process. These actions become internal actigris (he environment. As mentioned above, these
internal actions cannot synchronize with the environment. In the previous exampleswgalies

sw_clk are hidden within process SWITCH from the environment.
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» Guarded Behavior: [P] - B

The behavior expression B can be executed if and only if the predicate P is true; otherwise it
equals to stop. For example, the callee can be rung only if it is not busy. Otherwise, a linebusytone

should give back to the caller. The following behavior expression represents such scenario.

sw_db ! GetSatus! Callee? S Satus;
([busy(S)] — user_sw!LineBusyTone!Caller

[]
[not busy(S)] — user_sw !SartRinging !Callee !Caller;

4.1.3 Expansion

A basic concept in process algebraic languages is expansion Any LOTOS behavior
expression can be rewritten as an equivaent expression containing only choice, action prefix, and
stop (although this expression could be infinite) [Miln89]. An expanded LOTOS specification
represents directly the labeled transition system (LTS) of the system in consideration (LTS is a
Finite-State Machine whose transitions are labeled with actions, more details can be found in 8§3.2).
Each alternative path in an expanded specification, or each branch in an LTS, represents explicitly
a possible sequence of actions in the system. Sequences of visible actions ateacedlddternal
actions (see 8§ 4.1.2.2) suchiag hidden actions (see § 4.1.2.4) usually are not included in traces,

although sometime they are shown for completeness.

4.1.4 LOTOS Supported Tool: CADP

CADP (CAESAR/ALDEBARAN Development Package) is a toolbox for protocol

engineering. CADP is jointly developed by the VASY action at INRIA Rhone-Alpes / DYADE and
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the Verimag laboratory. It is dedicated to the efficient compilation, simulation, formal verification,
and testing of descriptions written in the 1SO language LOTOS [Fern96]. The CADP toolbox
contains 1) two compilers (CAESAR and CAESAR.ADT) which trandate LOTOS descriptions
into C code which can be used for simulation, verification and testing purposes and 2) a set of
applications (OPEN/CAESAR) which provides user extended functionalities such as interactive

simulation, trace-searching tool, model checking, etc.

= CAESAR

CAESAR is a compiler that translates the control part of a LOTOS specification into either a C
program (to be executed or ssmulated) or into an LTS (to be verified using bisimulation tools and/or

temporal logic evaluators).

The CAESAR trandation algorithms proceed in several steps. First the LOTOS description is
trandated into a simplified process algebra called SUBLOTOS. Then an intermediate Petri Net
model is generated, which provides a compact, structured and user-readable representation of both
the control and data flow. Eventually the LTS is produced by performing reachability analysis on

the Petri net.

CAESAR accepts full LOTOS with the following restriction as regards the control part: process
recursion is not allowed on the left and right hand sides of |[...]|, nor on the left hand side of >> and
[>. Despite these restrictions, the subset of LOTOS handled by CAESAR is large and usually
sufficient for real-life needs. The current version of CAESAR alows the generation of large LTSs

(some million states) within areasonable | apse of time.
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The most recent version of CAESAR provides functionality called EXEC/CAESAR for C code
generation. This C code interfaces with the real world, and can be embedded in applications. This

allows rapid prototyping directly from the LOTOS specification.

= CAESARADT

CAESAR.ADT is a compiler that trandates the abstract data part of LOTOS specifications into

libraries of C types and functions.

Each LOTOS sort is trandated into an equivalent C type and each LOTOS operation is transated
into an equivalent C function (or macro-definition). CAESAR.ADT also generates C functions for

comparing and printing abstract data type values, aswell as iterators for sorts having finite domain.

= OPEN/CAESAR

OPEN/CAESAR is an extensible, language-independent environment that allows user-defined
programs for simulation, execution, verification (partial, on-the-fly, etc.), and test case generation
to be developed in a smple and modular way. Various modules are involved in the

OPEN/CAESAR framework. However, only two of them are used in our work:

- Caesar.Simulator, an interactive simulator.

Caesar.Simulator provides an interactive environment where a user can execute the
specification in a step-by-step way. The GUI has two parts. one displaying the traces of actions
that have been executed and the other listing all available actions that could be executed next.
The executed action traces are initially empty and the list of next available actions includes all

possible actions to be executed at the beginning. After the user selects one action to execute,
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that action is performed and added to the executed action traces and the next available action

list isrefreshed.

- Caesar.Exhibitor, atrace-searching tool.

Caesar.Exhibitor provides a searching environment where users specify the patterns of traces
using predicates and keywords. The tool executes the C program generated by Caesar and
Caesar.ADT. Traces matching the given patterns are output. The user could choose whether the
searching algorithm should be breadth-first or depth-first, and also can choose to find all

occurrences or just the first one.

Patterns could reflect complex semantics by using various predicates. However, the pattern we
used in our work is very simple: only one predicate “~” and two keywords: <until>
<deadlock>. ~ means “no”. <until>“ActionA” refers to all traces leading to ActionA.
<deadlock> refers to a state where no action can be further execut&h.&8d-1 Hunterfor

examples.

4.2 Specification Styles of Telephony Systems

Vissers, Scollo, van Sinderen and Brinksma [ViSV88] [VSVB91] identify four main styles
for writing LOTOS specifications. They are the monolithic style, the state-oriented style, the
constraint-oriented styland the resource-oriented stylBach style has its own uses in telephony

system specifications and they can be mixed in one specification to meet different requirements.

= The monolithic style gives explicitly al possible sequences of actions allowed by a

specification. The main operator is the choice operator “[]”, and the specification is
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shown as atree of choices. Therefore, this style is useful for debugging the specification

and generating test sequences.

* In the state-oriented style, explicit system states are identified, e.g. by using state
variables. Using the state-oriented style may lead to increased readability of the
specification in cases where the informal specification uses the state concept, as is quite
common for telephone devices. It may also lead to LOTOS specifications that can be

implemented directly.

» The constraint-oriented style focuses on event sequencing and logical constraints as seen
from the external interaction points. It is useful for implementation-independent

specifications [ Turn87]

* In the resource-oriented style, the processes are chosen in such a way as to represent
resources, which means implementation modules. This style is useful for

implementation specification.

In our specification, we used a mixture of the resource-oriented style and state-oriented
style. The observable behavior of the system is described as a composition of separate resources
which functionalities are well defined, and these resources may be specified using any style. The
resource-oriented style is used to preserve the architectural model of the system at the specification
level and the state-oriented style is used to specify features (BCP, INTL, INFB, CFBL, TWC) that

aredefined as LTSs.
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4.3 LOTOS Specification of the system model

In this section, we are going to describe the LOTOS specification of the system and its
features by describing the Abstract Data Types (ADT), the architecture of the specification and the

different processes of which it is composed.

4.3.1 Abstract Data Types

In our specification of the system model, ADTs are built in a hierarchical way, by using the

inheritance mechanism described in 84.1.1.

The basic level are standard ADBoolean andNatural Numbers, which are provided by

the standard LOTOS ADT library.

» The value of a “Boolean” type variable is either “True” or “False”, so we call “True”
and “False”constructors of Boolean. A couple of logic operators are also defined as

equations in Boolean, such as “and”, “or”, “not” etc.

=  We limit the domain of “Natural Number” to be [0 .. 20] because specifications with
infinite ADTs cannot be fully expanded. Operators defined in “Natural Number” that
are used by second level ADT are the comparing operatdts“<”, “>” and the

increasing operatoiric’.

The second level ADTs are enumerations, whose elements can be mapped to corresponding
“Natural Number”, so that they can inherit the comparing functionality of “Natural Number”.
“AddressType”, “SignalType”, “FeatureType”, “MessageType”, “TriggerName” and
“ResponseType” are second level ADTs. Fig 4.1 uses “FeatureType” as an example to show how

second level ADTs are built. The keyword “is” in the first row indicates the inheritance relationship
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between Natural Number and FeatureType. Then we define the mapping function “h” between
Features and Natural Numbers so that the equivalence comparison between two features becomes
comparing the corresponding natural numbers, as indicated in equation “f1 eq f2 = h(f1) eq h(f2)".
“eq” in the LHS of the equation is the equivalence operator of the “FeatureType” and “eq” in the

RHS of the equation is the equivalence operator of the natural number.

type FeatureType is NaturalNumber
sorts FeatureType

opns
INTL, CFBL, INFB, TWC :->FeatureType
h: FeatureType->Nat
_eq , _he_: FeatureType, FeatureType->Baool

egnsfor all f1,f2:FeatureType
ofsort Nat
h(INTL)=1;
h(CFBL)=2;
h(INFB)=3;
h(TWC)=4;

ofsort Bool
fleqf2=h(f1) eqh (f2);
flnef2= h(f1) neh (f2);

endtype (* FeatureType*)

Fig 4.1 An Example of Second Level ADTs

The third level ADT defines sets. “SubscribedFeatures”, which is a set of features, is the
third level ADT. Basic set manipulation operators such asefeof S' are defined in
“SubscribedFeatures”. “eleof’ returns a Boolean valuee if e is in setS For example, the

expression “INTL eleof {INTL, CFBL}" is true because INTL is an element of {INTL, CFBL}.
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The fourth level ADT are record ADTs, which represent fixed-length records. “Billitem”

and “Status” are fourth level ADT.

= “Billitem” is a billing record data type, which stores all the necessary information to
charge a single call. The format of “Billitem” is (a3, al, a2, t1, t2), wh8res the
address of the paying partgl is the address of the calla? is the address of the

calleetl is the time when charging starts d8ds the time when charging stops.

= The “Status” record stores the user’s status information (busy or idle) and subscribing
information (a set of features subscribed by the user). The format of “Status” is (b, p, t1,
t2, a, s), wheré is a boolean variable indicating whether the subscriber is busy or not;
p, tl, t2 are variables of INTL, respectively “TeenPIN”, “TeenTimel” and
“TeenTime2” (see83.2.3 INTLfor details); a is a variable of CFBL, “BLForward”,
which stores the forwarded address to be used when the subscriber sibasyet that

stores subscribed features of the user.

The fifth level ADT is a multiple record ADT. “UserStatus” is a fifth level ADT and
consists of an “address” ADT and a “Status” record ADT. The format of “UserStat(s,’ $,

wherea is the subscriber’s address &g the corresponding status information.

The sixth level ADTs are database ADTs which simulate two databases: “TheUser” and
“TheBill”. “TheUser” database stores status information of all users in the telephony network.
Records in “TheUser” database are of sort “UserStatus”. Records in “TheBill” database are of sort
“Billltem”. Basic database operations are defined on each database such as “add”, “inquire” and

“set” data etc. Fig 4.2 depicts the ADT hierarchy pyramid.
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User Status

/ Billltem Status

SubscribedFeature

FeatureType AddressType
TriggerName  ResponseType
TimeType SignalType MessageType

/ Natur al Number Boolean

Fig 4.2 ADT Hierarchy Pyramid
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4.3.2 Architecture of the specification

In order to achieve a clear and readable specification, it is required to put it together in a
step-wise fashion. First, the system is described by the highest level processes that represent the
highest abstract view of the different objects composing it, then each resulting process is
decomposed into sub-processes. The process of system refinement is repeated until we end up with

simple descriptions where no further decomposition is possible.

The structure of the LOTOS specification corresponds to the system structure defined in
Chapter 3. In the LOTOS specification, components and interfaces between them, which are
described in Fig. 3.1, are smulated by corresponding processes and gates with the same names.
Fig. 4.3 gives a graphical representation of the top level of our system model specification and the

corresponding LOTOS top level specificationisgivenin Fig 4.4.

The control part of the specification has only one process SYSTEM, which consists of five
processes. USERS, SWMITCH, SCP, CLOCK and DBAPI. First, the SWITCH synchronizes with the
CLOCK at gate sw_clk. Second, the USERS synchronizes with the SWITCH and the CLOCK at
gate user_sw. Then, the SCP synchronizes with the SWITCH, the CLOCK and the USERS at gate
sw_scp. Last, the DBAPI synchronizes with the SWITCH, the CLOCK, the USERS and the SCP at

gates sw_db and scp_db.
» TheUSER hasonly one gate user_sw, so it can only interact with the SWITCH.

= The CLOCK has one gate sw_clk through which it can only communicate with the

SWITCH.

=  The SWITCH has four gates, user_sw, sw_scp, sw_clk and sw_db, through which it can

synchronize with the USERS, the SCP, the CLOCK and the DBAPI respectively.
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user_sw
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sw_db, scp_db

Fig 4.3 Graphical Representation of the Top Levels of the Specification
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specification SystemModel [user_sw, sw_scp, sw_db, sw_clk, scp_db]: noexit

(* Data Part *)

behaviour
SYSTEM [user_sw, sw_scp, sw_db, sw_clk, scp_db]
where
process SYSTEM Juser_sw, sw_scp, sw_db, sw_clk, scp_db]: noexit :=

i’.*.lnitialization Part *)
(
(USERS {iser_sw]
|[user_sw]|

( SWITCH Juser_sw, sw_scp, sw_db, sw_clK]
|[sw_clK]|
CLOCK [sw_clK] (Initial Time)

)

)

|Bw_scp]|
SCP9w_scp, scp_db]

)
|ew_db, scp_db]|
DBAPI [sw_db, scp_db] (Initial Data)

endproc (* SYSTEM¥*)

endspec (* SystemModel *)

Fig 4.4 Top-level LOTOS Specification

=  The SCP can synchronize with the SWITCH and the DBAPI at gate sw_scp and scp_db,

respectively.
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= The DBAPI has two gates sw_db and scp_db, through which it can communicate with

the SWITCH and the SCP.

Process CLOCK isinstantiated with the initial time, Time(1). Process DBAPI is instantiated
with theinitial data of TheUser and TheBill. (For more details about the initial data of TheUser and

TheBill, see 85.2 Test Scenario Design

4.3.3 Process USER & USERS

USER is avery simple entity that accepts any valid signal and does nothing with them. As
shown in Fig 4.5, process USERS consists of three users A B C. Since each user is independent of
the others, we use the interleaving operator “|||” to compose them. Each user, A, B and C, is
instantiated from proce4$SER with address A, B and C respectively. Process USER synchronizes
with any signal that comes from the SWITCH through gaée sw. After synchronization on one
signal, a new instance of user with the same address will be generated to synchronize on successive
signals. In order to catch as many Fl sequences generated from the switch as possible, no constraint

is put on the order of user sequential behaviors.
Fig 4.5 gives the LOTOS specification of proceSERS and processlSER.

For this process, as well of as for similar processes below, note that the specification could
have been stuctured in order to make possible to have an arbitrary number of users, by using

recursive instantiation. However, in practice this would have complicated the simulation process.
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process USERS [user_sw]: noexit :=
USER [USER_sw] (A)
Il
USER [USER_sw] (B)

Il
USER[USER sw] (C)

endproc (* USERs*)

process USER [user_sw] (Ad: Address) : noexit :=
(user_sw ?eSigna !Ad;
USER [User_sw] (Ad)
)

(]
(user_sw ?eSignad ! Ad ?Dest:Address,

USER [User_sw] (Ad)
)
(]
(user_sw ! StartRinging ! Ad ? Orig:Address;
USER [User_sw] (Ad)
)
(]
(user_sw ?eSigna ! Ad ?p:Nat;
USER [User_sw] (Ad)
)
(]
(user_sw ?eSignal ! Ad ?M:MessageType;
USER [User_sw] (Ad)
)

endproc (* USER *)

Fig 4.5 LOTOS Specification of Process USER and USERS
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4.3.4 Process CLOCK

Process CLOCK takes one parameter, T, which holds the current reading of the CLOCK.
The Initial time is Time(0). When the SWITCH reads the time via “GetTime” signal, the CLOCK
sends the current time, T, to the SWITCH and instantiates a new CLOCK with the reading
increased by one. The specification of the CLOCK is given in Fig 4.6. Note that this process does

not attempt to simulate real time, however it is sufficient for our purpose.

process CLOCK [sw_clK] (T: Time): noexit :=

sw_clk!GetTime!T;
CLOCK [sw_clK] (inc(T))

endproc (* CLOCK *)

Fig 4.6 LOTOS Specification of Process CLOCK

4.3.5 Process SWITCH

The switch controls the whole call process. Three Basic Call Processes (BCP) instantiated
with user’'s addresses control the call process originated from A, B and C respectively. Due to the
mutual independence of the users, three BCPs are also independent of each other and composed

using the interleaving operator “|||”. The specification of pro8883CH is shown in Fig 4.7.

Page 81



Chapter 4. LOTOS Specification of the System Model

process SWITCH [user_sw, sw_scp, sw_db, sw_clk]: noexit :=
BCP [user_sw, sw_scp, sw_db, sw_clk] (A)

BCP [user_sw, sw_scp, sw_db, sw_clk] (B)

1l

BCP [user_sw, sw_scp, sw_db, sw_clk] (C)

FAP [user_sw, sw_scp, sw_db, sw_clk] (F: Feature, Ad_A, Ad_B: Address)

(* Integrated features *)
INTL [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address)

6FBL [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address, Ad_B:Address)
iNFB [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address, Ad_B:Address)

TWC [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address, Ad_B:Address, Ad_C:Address)

endproc (* SWITCH *)

Fig 4.7 LOTOS Specification of Process SWITCH

4.35.1BCP

The BCP process controls a general call process (see 83.3). It is like a backbone. Other new

features are integrated into BCP and get activated from BCP.

The BCP is specified in the state-oriented style. The mapping rules from the LTS dsee

4.2 LTS Tree of BCP) to LOTOS processes (sBgg 4.8 LOTOSPIC Processes) are as follows:

- States

Eighteen numbered states of the LTS are mapped to 16 LOTOS processes with the
same name. The starting st&és mapped into the proceBCP. The Ending stat& is

mapped into atop action in the last process.
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process BCP [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address): noexit :=
user_ sw ! OffHook ?Ad A: Address;
sw_db ! SetBusy !'Ad A;
FAP [user_sw, sw_scp, sw_db, sw_clk] (INTL, Ad_A)

endproc (* BCP*)

process PIC_1 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address): noexit :=
user sw ! DiaTone ! Ad_A:Address;
PIC 2 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A)

endproc (* PIC_1%*)

process PIC 2 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A: Address): noexit :=
user_sw ! Dial ! Ad_A: Address ? Ad_B: Address;
PIC_3[user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B)

endproc (* PIC 2 %)

process PIC_3 [user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B: Address): noexit :=
user sw ! Onhook ! Ad A: Address;
sw_db ! Setldle ' Ad A;
stop
(]
( FAPJuser_sw, sw_scp, sw_db, sw_clk] (CFBL, Ad_A, Ad_B)
Il
FAP [user_sw, sw_scp, sw_db, sw_clk] (INFB, Ad_A, Ad_B)
Il

)
I
sw_db ! Get Status !B ?S:Status;

PIC_4 juser_sw, sw_scp, sw_db, sw _clk] (Ad_A, Ad_B, S)
endproc (* PIC_3 *)

process PIC_4 pser_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B: Address, S:Status)oexit :=
([Busy(S)]->
PIC_16fiser_sw, sw_scp, sw_db, sw_clk] (Ad_A))
I

([Idle(S)]>

PIC_5 piser_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B))
endproc (* PIC_4 *)

Fig 4.8 LOTOS PIC Processes (partial)
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- Trangtions

Transitions are mapped into actions in corresponding state process. For example, In
LTS, after executing the transition “DialTone A”, the system moves from state PIC_1 to
state PIC_2. Thus, iprocess PIC_1, after the actionser_sw !DialTone 'Ad_A, process
PIC_2 is instantiated and all associated parameters, i.e. the caller and callee’s address, are

passed to it.
- POI

Unlike normal PICs which instantiate another PIC process at the end, at each POls, (
PICs where the features is activated), POls call the FAP process, which detects subscribed
features and activates them if there are any. If two features have the same POI, such as
PIC_3, then two FAP processes are instantiated for the two features respectively. Since

features are independent of each other, these two FAP processes are interleaved.

4.3.5.2 Feature Activation Process (FAP)

At the POI of each feature, PIC_1 (INTL), PIC_3 (CFBL, INFB) and PIC_8 (TWC), BCP

calls theFeature Activation Process (FAP) to activate each feature.
FAP takes three parameters:
- F, indicating which feature is going to be activated;
- Ad_A, holds the caller’s address;

- Ad_B holds the callee’s address (If any)
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process FAP [ user_sw, sw_scp, sw_db, sw_clk ] (F: Feature, Ad_A, Ad_B: Address): noexit :=
([FegINTL]->
sw_db !GetStatus 'Ad_A ?S:Status;
([eleof (INTL, S)]->
INTL [ user_sw, sw_scp, sw_db, sw_clk] (Ad_A)
(]

[not (eleof (INTL, S))]->
PIC_1] user_sw, sw_scp, sw_db, sw_clk] (Ad_A)))
(]
([Feq CFBL]->
sw_db !GetStatus |Ad B ?S.Status,
([eleof (CFBL, 9)]->
CFBL [ user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad B)
(]

[not (eleof (CFBL, S))]->
PIC 4] user_sw, sw_scp, sw_db, sw clk] (Ad_A,Ad B, S)))
(]
([F eg INFB]->
sw_db !GetStatus !Ad_B ?S:Status;
([eleof (INFB, S)]->
INFB [ user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B)
(]

[not (eleof (INFB, S))]->
PIC 4] user_sw, sw_scp, sw_db, sw clk] (Ad_A,Ad B, S)))
(]
([FegTWC]->
IGetStatus 'Ad_A ?SA:Status;
IGetStatus 'Ad B 7SB:Status;
([eleof (TWC, SA)]->
TWC [ user_sw, sw_scp, sw_db, sw clk] (Ad_A, Ad B, Ad_A)
(]

[eleof (TWC, SB)]->
TWC [ user_sw, sw_scp, sw_db, sw_clk] (Ad_A, Ad_B, Ad B)
(]

[not (eleof (TWC, SA) and eeof (TWC,SB))]->
PIC 8[ user_sw, sw_scp, sw_db, sw _clk] (Ad_A, Ad B)))

endproc (* ActivateFeatures3 *)

Fig 4.9 Feature Activation Process
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FAP inquires about the status information of the caller or callee’s or both (depending on
different features). Then the FAP checks if the feature to be activated has been subscribed or not. If
it has, the corresponding feature process is called. Otherwise, the call process returns to BCP. Fig

4.9 gives the LOTOS specification of FAP.

FAP uses éeof”, an operation defined on ADTXatus’, to check if a user subscribes to a
specific feature, i.e. expressiod€of (INTL, Satus)” is TRUE if INTL is an element ofStatus’. A
feature is activated by generating an instance of the corresponding feature process with specific

parameters, i.e. addresses of the caller and the callee.
4.3.5.3 Features

The LOTOS processes of the features are obtained from the LTSs of those features in the
same way as BCP and PIC process mapped from the LTS of BCP. (R8%2.®INTL, 83.2.4

CFBL, 83.2.5INFB, 83.2.6 TWC, § 4.3.5.2 Bf©oPthe details of the LTSs and the mapping rules)

4.3.6 Process SCP

In our system model, the SCP includes five IN feature specifications. Every IN feature has a
unique trigger name, i.e. INFB’s trigger name is INFO_ANAYZED, and INTL’s trigger name is
ORIGINATION_ATTEMPT, so that the SCP can know which trigger message was sent from
which feature by checking their trigger names. Responses to different features are composed
together using the choice operator “[]” in the SCP. A new instance of the SCP is generated when

the processing of the feature finishes.

Fig 4.10 illustrates the LOTOS specification of the SCP.
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process SCP [sw_scp, scp_db] : noexit :=

(* INTL Feature *)
sw_scp ! Trigger ? Trig:TriggerName ? Ad_S:Address ? Ad_A:Address ? T:Time;
( [Trig eq ORIGINATION_ATTEMPT]->
scp_db ! getStatusReq !Ad_S;
scp_db ! getStatusRes ? S:Status;
sw_scp ! Response ! SEND_TO_RESOURCE !'Ad_S ! AskForPIN;
sw_scp ! Resource ? Ad_S:Address ? P:Nat;
( [P eq GetTeenPIN(S)]->
sw_scp ! Response ! CONTINUE !Ad_S;
SCR\_scp, scp_db]
I
[P ne GetTeenPIN(S)lsw_scp ! Response ! SEND_TO_RESOURCE !Ad_S !lInvalidPIN;
sw_scp ! Resource ? Ad_S:Address;
sw_scp ! Response ! RES DISCONNECT !Ad_S;
SCPgwv_scp, scp_db]

)

(* INFB & INFR Feature *)
sw_scp !Trigger ?Trig:TriggerName ?Ad_S:Address ?Ad_A:Address ?Ad_B:Address ?T:Time;

[Trig eq INFO_ANALYZED]->
sw_scp ! Response ! ANALYZED_ROUTE !Ad_S 'Ad_A !Ad_ B 'Ad_B;
SCP pw_scp, scp_db]

endproc (* SCP *)

Fig 4.10 LOTOS Process of SCP (partial)

4.3.7 Process DBAPI

Process DBAPI is an interface of the user status database (TheUser) and the billing database

(TheBill), which are represented using ADTSs.

Its main functions are: 1) processing the queries of “GetStatus”, “GetSubscribedFeatures”

from the switch and the query of “GetTeenPIN” from the SCP and outputing the corresponding
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replies using query operations of the ADTs and 2) following the setting instructions of “SetBusy”,
“Setldle”, “SetThreeWay”, “LogBegin” and “LogEnd” to set or construct records (“LogBegin”)

using setting or constructor operations of the ADTSs.

process DBAPI [sw_db,scp_db](TheStatus: UserStatusSet, TheBill:Bill Set) : noexit :=
((sw_db! GetStatus ? Ad_A:Address! GetStatus(GetUserStatus(Ad_A, TheStatus));
DBAPI [sw_db,scp_db] (TheStatus, TheBill) )
(]
(sw_db!Setldle ? Ad_A:Address;
DBAPI [sw_db,scp_db]
(SetUserStatus(Ad_A,ldle(GetStatus(GetUserStatus(Ad_A, TheStatus))), TheStatus), TheBill) )
(1l
(sw_db! SetBusy ? Ad_A:Address;
DBAPI [sw_db,scp_db]
(SetUserStatus(Ad_A ,Busy(GetStatus(GetUserStatus(Ad_A, TheStatus))), TheStatus), TheBill) )
(1l
(sw_db! SetThreeWay ? Ad_A:Address ?b:Boadl;
DBAPI [sw_db,scp_db]
(SetUserStatus(Ad_A,SetThreeWay(b,GetStatus(GetUser Status(Ad_A, TheStatus))), TheStatus), TheBill) )
[l
(sw_db! LogBegin ?Ad_A:Address 7Ad_B:Address ?Ad_C:Address ?T:Time;
DBAPI [sw_db,scp_db]
(TheStatus,LoglL ogbegin(Ad_C,Ad_A,Ad B,T,TheBill)))
[l
(sw_db! LogEnd ?Ad_A:Address ?Ad_B:Address ?T:Time;
DBAPI [sw_db,scp_db]
(TheStatus,LogLogend(Ad_A,Ad B,T,TheBill)))
[l
(sw_db !'GetSubscribedFeatures ? Ad_A:Address | GetFeatures(GetUser Status(Ad_A, TheStatus));
DBAPI [sw_db,scp_db]
(TheStatus, TheBill) )
[
(scp_db !GetTeenPIN ? Ad_A:Address | GetTeenPIN(GetUserStatus(Ad_A,TheStatus));
DBAPI [sw_db,scp_db]
(TheStatus, TheBill) ) )
[l
(sw_db!GetTeenTime ? Ad_A:Address |GetTeenTime(GetUserStatus(Ad_A, TheStatus));
DBAPI [sw_db,scp_db]
(TheStatus, TheBill) ) )
(1l

endproc (*DBAPI*)

Fig4.11 LOTOS Process of DBAPI (partial)

Page 88




Chapter 5. Feature I nteraction Detection System

Chapter 5. Feature Interaction Detection System

In Chapter 1, the FI problem is explained in a general way. In this chapter, we
give Fl a precise and formal definition and explain how a FI Detection System (FIDS) is
developed according to this formal definition. Since it would be very long to cover all 12
features, we will use four representative features, INTL, CFBL, INFB, TWC as examples
to show how feature properties are derived and how FlIs are detected by FIDS. The full

results of our Fl analysison all contest features are reported in [FHLS98].

5.1 Classification of Fl

During the feature development process, a feature is defined at severa different
levels of abstraction, from a high level view to implementation code. Therefore, FIs can
occur at all these levels. In [BDCG89], Fls occurring at the level of abstract specification
are called logical feature interactions, those occurring when the feature specification is
mapped onto a network architecture are called network feature interactions and those
occurring when the feature software is mapped onto an execution environment are called

implementation feature interactions.

Clearly, FI detection must be done as early as possible, otherwise Fis will
propagate through the whole feature development process. Since we are dealing with
formal specification of features, which abstracts from design and implementation details,

the FIs that we detect here are logical feature interactions.
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5.2 Formal definition of FI

Many definitions of Feature Interaction are either too inclusive or too exclusive.
For example, Cameron et al. [CGDN93] understood feature interacttonbe“all
interactions that interfere with the desired operation of the feature’. Here, the tesired
operation” of a feature is an imprecise notion, which might have different meanings to

subscribers, to designers, and to people who made the specifications.

P. Combes et. al [CoPi94] and W. Bouma [BoZu92] formalize the above “desired
operation” to be properties of features, and address the Fl problem as violations of these
properties when a new feature is introduced into the network. However, they concentrate
only on the violation of features’ properties and miss the FI cases where the system

properties are violated, while the features’ properties hold.

We improve the definition of FI by adding system properties to the set of
properties that must be checked after the introduction of a new feature. The definition

then becomes the following one.

Let S be an executable specification of a basic telephony system (POTS), and let

Fi, R, ..., R, be specifications of n features.

We use S0 F, 0 R, O ... 00 K to denote the system obtained by integrating i

features, £ i< n, to the basic telephony system (POTS).

Let SP (System Property) be logical formulae expressing the properties of the

basic telephony system (POTS), FFPR, ..., FR, (Feature Property) be n formulas
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expressing respectively the feature propertiesof F1, F, ..., K, and let N |= P denote that a

system specification N satisfies formula P, i.e. N is a model of P.

We say that there is interaction between featurebF..., F, if :

Oi, 1< i < n,SOF |= SPOFP, but

-~ (SOFRORO..OF |=SRIFPOFRO...OFR,)

Examples of SP and FP will be given in 85.4.2 and 85.4.3 respectively.

5.3 Two Phases of Fl Detection Process

According to the FI definition of the previous section, our FI detection process is

divided into two phases:

1) Validation phase to validate that every feature works well individually after
having been integrated into BCP, that is, both the feature property and system
properties hold. Thus, the first part of the FI definitiori] & |= SPOFR is

checked.

2) Detection phase to detect any undesirable effect caused when two or more
features work together, that is, to detect if any feature property or system
property is violated. Thus, the latter part of the FI definittor{, SO F, 0 F,

O..0F |=SPOFROFRO... OFR,), is checked.

5.3.1 Validation Phase

The validation phase has two stages:
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- First, using a LOTOS tool caled CAESARSmulator to validate the
consistency between the LTS specification and the LOTOS executable
specification in a step-by-step fashion. That is, it is checked that our LOTOS
specification has all and only those traces specified in its LTS tree (described

in Chapter 3.)

- Then, the FI Detection System (FIDS) is used to verify that both the system
properties and the feature properties hold when there is only one feature
activated during a call process. FIDS, given the name of a feature, activates
the feature during a call process and checks the presence of the feature’s

properties. We will explain how FIDS works&®5.5 FI Detection System

5.3.2 Detection Phase

In the detection phase, we use FIDS to detect FI pair-wise, that is, two features
will be activated during a call process. Then, the feature properties, together with the
system properties, will be checked by analyzing the billing data and monitoring

conflicting signals.

Although FIDS is used in both the detection phase and the validation phase, the

differences between them are listed below.

1) Only one feature is activated in the validation phase while two features are

activated in the detection phase.
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2) The goal of the validation phase is to find defects in the specification, and
then to fix them. Therefore, the faults found in the validation phase are not

Fls.

3) The goal of the detection phase is to find interactions between features when
they are activated and to report them. So, any abnormality found in this phase

isasymptom of Fl.

5.4 Deriving the Properties of Features

How to derive the properties of features and how to represent them are the biggest
challenges of FI detection since a feature’s property is usually defined informally using
natural language and people may have different understandings of a given feature. For
example, the informal description of feature INFB e IN Freephone Billing(INFB)
feature allows the subscriber to pay for incoming call&hen deriving the properties of
afeature from such definitions, divergences could occur in understanding the exact scope
of “incoming calls”. Is a forwarded call an “incoming” call? If it is, should the subscriber
of INFB pay for the whole call or only for the forwarded part of the call? We experienced
the same interpretation problems during the property derivation process. Since some
features such as INFB are so new that little research has been done on them, we could not
compare our work with any reference concerning a “standard” explanation of them.
Therefore, the derived feature’s properties listed here are based on the best of our

knowledge and on our practical experience with FI detection.

Beside the problem of interpretation, how to establish the necessity and the

completeness of the derived feature property set is another big challenge. If the derived
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feature property set is not a minimum set of al necessary properties, then much extra
work may have to be done to validate those unnecessary properties, or even “false” Fl
might be detected. We call these “false” FIs because in such cases, only the unnecessary

properties are violated while other necessary properties are all well preserved.

On the other hand, a derived property set should be complete. Otherwise, some FlI

may not be found due to the incompleteness of the set.

However, given the fact that feature properties normally are provided in a semi-
formal notation, completeness and necessity cannot be checked formally and depend on

judgement.

Furthermore, the completeness and the necessity of a property set are system-
dependent. That is to say, we cannot derive a feature’s property set without considering

the system and the specific activation mechanism of the integrated features.

Thus, before discussing derived feature properties, let us briefly describe the

feature integration and activation mechanism in our system model.

5.4.1 Feature Composition

In our system model, features are represented using LOTOS processes. All new
features are integrated into the BCP, a basic call control feature, via FAPs at
corresponding PICs. One feature’s activation will not affect the activation of other
features. Therefore, if two features are integrated into the same PIC, their FAPs are
mutually independent of each other. We use the interleaving LOTOS operator “|||” to

describe the mutual independence between FAPs.
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Inappropriate feature composition may “solve” or “invent” some “FIs”. For
example, feature activation might result in some unintended priorities if the features are
not properly composed. If the priorities are given correctly, we will miss the FI because it
has already been solved. If the priorities are not given correctly, we may get FIs with
misleading symptoms, e.g. one feature’s activation “disables” another feature’s
activation. So, we use the interleaving operator “|||” to preserve the mutual independence

of the feature activations.

5.4.2 System Properties

In our system model, the system properties are derived as follows:

= Absence of deadlock.

That is, at any time, the telephony system has at least one event to occur next.

= Valid billing records.

A billing record, (c, a, b, t1, t2) ialid if

1) a, b, c are in the registered network address set. (ealiealleeb and

payerc are all valid registered network addresses)

2) a# b (the callea and the calleb should not be the same address)

3) t1,t2# 00t1< t2 ( the call starting timi and the call ending tim2 are

set andl is earlier than2)

= Correctness of the billing database.
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The billing database is correct if all calls occuring in the system have one and

only one corresponding billing record stored in the billing database.

= Compatiblity of successive signals given to the user.

In our system model, three types of audible signals are given to the user

during the call establishment process:

- AudibleRinging

AudibleRinging is a positive signal to the caller because it means that the call

Is connected to the callee and the calleeis being rung.

- LineBusyTone

- Announcement of ScreenedMessage (INTL)

- Disconnect

LineBusyTone, announcement of ScreenedMessage and Disconnect are
negative signals to the caler because the call connection is blocked
/terminated in such cases. A LineBusyTone is generated because the callee is
busy and it has no CFBL feature or it has the CFBL feature but the forwarded
address is aso busy. The SceenedMessage is played to the caler when the
caller attemptsto originate a call during the TeenTime period but fails to input
the correct TeenPIN, thus the call is blocked. A disconnect signal is given to

the user when the other party hangs up, thus the call is terminated.

We say that two signals aredhpatible” if they have the same meaning to the

user. So, negative signals are compatible with each other because they have the same
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meaning to the user. Negative signals are incompatible with positive signals because they
have conflicting meanings to the user. Positive signals are compatible with each other if
they correspond to the same destination that is being rung and incompatible if different

destinations are being rung.

Table 5.1 depicts the compatible relations among LineBusyTone,

AudibleRinging, Disconnect and the announcement of ScreenedM essage.

Table 5.1 Compatible Relations of Signals Given to User

LineBusy Screened : AudibleRining  AudibleRining
Disconnect
Tone M essage from A FromB
LineBusy Compatible
Tone
Screened Compatible ~ Compatible
M essage
Disconnect Compatible  Compatible Compatible
Audible

Ringing  Incompatible Incompatible  Incompatible Compatible
from A

Audible
Ringing  Incompatible Incompatible  Incompatible Incompatible Compatible

from B

5.4.3 Feature Property

The telephony features that we discuss here are marketable services [FalLS97].
The subscribers who buy the services know nothing about the implementation details of
either the system or the feature. To them, the telephony network is like a black box. They
interact with it through the telephones (through gate “user_sw” in our model) and
periodically pay the bill for the services (in our model, all billing records are created by

the billing actions occurring at gate “sw_db”). Therefore, the feature properties can be

Page 97



Chapter 5. Feature I nteraction Detection System

described from the user’s point of view. That is, the feature properties can be mapped
into specific restrictions on billing actions and/or user’s behavior traces. For example,
INFB can be mapped as follows: “for all billing records where the subscriber is the
callee, the payer should be the subscriber too.” It is important to note that all features that

were considered in this study could be characterized by one property only.

The feature property validation process is effectively simplified by adopting such
feature property representation. Instead of checking the entire trace of a call process to
validate the feature properties, we only need to examine the billing records and user

behavior traces to detect FI.

Before specifying the properties of features, let us define some basic concepts.

For the description of billing records, referg§4.3.1 Abstract Data Types.

=  Forwarded Call

If there exist two billing records, (p1, a, b, t1, t2), (p2, c, d, t3, {4which
have the same LogBegin time and LogEnd time, t1=t3, t2=t4, and the caller of
one record is the callee of the other record, b=c, we say that there is a forwarded
call from a to d through b(c). a is the originating partyof the forwarded call. d is

the terminating partyof the call.

= Next Forwarded Address

In the above example, d isthe next forwarded addresster b.

= Direct call
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We say the call is a direct call if 1) it is not a forwarded call, 2) the
originating party of a direct call is the caller and 3) the terminating party of a

direct cal isthe callee.

5.4.3.1 Derived Property of INTL

The informal requirement description of INTL i$NTL restricts outgoing calls
based on the time of day. This can be overridden on a per-call basis by anyone with the

proper identity code.”

The property of INTL derived from the above informal specification is:

If user X subscribes to INTL and defines that the TeenTime period is ftond,T
and the TeenPIN is P, then if X originates any call (direct or forwarded), during the

TeenTime period, a valid TeenPIN P must have been input by X.

In FIDS, the property of INTL isvalidated in the following way:

1) Checking al billing records whose LogBegin time is within the TeenTime
period of X to see whether X is the originating party or not. If X does originate a call

during the TeenTime period, turn to step 2).

2) Checking the user’s behavior traces to see if signal “user_sw !Dial !X 'P” (P
is equal to the TeenPIN) occurs before. If it does, the property of INTL holds. Otherwise,

the property is violated.

5.4.3.2 Derived Property of INFB

The informal requirement description of INFB iNFB allows the subscriber to

pay for all incoming calls.”
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The property of INFB derived from the above informal specification is:

If user X subscribesto INFB, then X pays for all incoming calls.

In FIDS, the property of INFB isvalidated as follows:

Checking all billing records where X is the callee to see whether the payer is also

Xor not. If it is, the property of INFB holds, otherwise, the property is violated.

5.4.3.3 Derived Property of CFBL

The informal requirement description of CFBL is “with the CFBL feature, all
calls to the subscribing line are redirected to a predetermined number when the line is
busy. The subscriber pays any charges for the forwarded call from his station to the new

destination.”

The property of CFBL is derived asfollows:

If user X subscribes to CFBL, then all incoming calls made to X when X is busy

must be forwarded to a third party predefined by X.

In FIDS, the property of CFBL isvalidated in two steps:

1) Checkingif X isinitially set to be busy in the testing scenario. If it is, turn to
step 2).
2) Checking al billing records where X is the callee to see if the cal is a

forwarded call and the next forwarded address is the predefined party. If it is,

the property of CFBL holds and otherwise it is violated.
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5.4.3.4 Derived Property of TWC

The informal requirement description of TWC BWC allows the connection of

three parties in a single conversation.”

Every successful connection has a corresponding billing record in TheBill
database, which consists of five parts: Payer, Caler, Callee, LogBeginTime, and
LogEndtime. Thus, if a three-way connection is established, there must be two billing
records such that 1) the TWC subscriber is either the caller or callee in one call (the TWC
subscriber must first be engaged in one call before it can initiate a second one) 2) the
TWC subscriber is caller in the other call (the second call must be initiated by the TWC
subscriber) 3) their logging time periods are overlapped (the second call must be

established during the first call’'s connection.).

The property of TWC derived from the above informal specification is:

If user X subscribes to TWC and TWC is activated, then there are two billing
records that 1) in one call X is the originating party and in the other call X is either the
originating party or the terminating party 2) the LogBegin time of the first call is within

the log time of the second call.

Unlike the previous three policy features whose activation condition is predefined
(e.g., IN Teen Time for INTL, the subscriber’s busy time for CFBL or no extra activation
condition for INFB except the registration to the feature), in the case of TWC, it is the
subscriber who decides whether the feature is to be activated or not during a call process.

In FIDS, we assure the activation of TWC by making the system synchronized with a
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specific test scenario where the TWC subscriber A flashhooks and dials the third party C
when talking to B (see detailed description in 85.6.1 Scenario Designer: Test Scenario

Generation).

In FIDS, the property of TWC is validated as follows:

1) Checking the whole billing history, find all the billing records where X is the

originating party.

2) For each above billing record, check all the billing records whose log time is
overlapped and seeif X is either the originating party or the terminating party.
If it is, the TWC property is preserved. Otherwise, the TWC property is

violated.

5.5 Feature Interaction Detection System

In the previous sections, we have discussed the definition of FI and the derived
system properties and feature properties. In this section, we introduce an Fl Detection

System (FIDS) using the above method to detect FI.

The input of FIDS is a collection of feature names whose properties are going to
be validated. The output are traces that violate either the system properties or the feature
properties or both, reported using the Message Sequence Charts (MSC) format with a

brief description of the symptoms.

In the validation phase, only one feature isinput into FIDS, where it gets activated

and validated. Property violations found in this phase are not FI but design defects of the
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feature. In the detection phase, the input of FIDS is a collection of two or more features

to be considered.

All of the input features are activated during one call process via synchronization
between the system and a pre-designed test scenario. Their activations are interleaved.
The system property checking is done during execution by a global monitoring process,
WatchDog, which raises an error flag when system property violations are detected, e.g
conflicting signals given to user or incorrect billing actions. The feature property is
validated by the “Property Checker”, a component of FIDS which checks the feature
property by analyzing a snapshot of the billing database, taken at the end of the scenario

by the WatchDog process, together with user’s behavior trace if necessary.

As llustrated in Fig 5.1, FIDS consists of five parScenario Designer,
Integrator, FI Hunter, Property Checker and MSC trandlator. Below, we give a brief
description of each part and in the next sec80B.6 FI detection between INTL and
CFBL, INFB, TWCwe illustrate in detail how FIDS works, using four features INTL,

CFBL, INFB, and TWC as examples.
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Fig 5.1 Feature Interaction Detection System
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= Scenario Designer

Scenario Designer is the first step of FIDS. It takes the names of features to be

tested and designs specific test scenarios for them. A test scenario consists of two

parts. 1) the initial data that indicates the subscribing data and status of A, B and

C 2) the user behavior description that describes events that must occur at the

user side to activate the input features during a call process. For each pair of
features to be considered, the Scenario Designer will design 4 test scenarios

where the user behavior descriptions are the same and the initial data cover al 4
possible combinations of B and C'’s initial busy/idle status, (A should be always
idle at the beginning since A is the caller). By synchronizing the system with such
test scenarios, we could reduce the size of the expanded specification without
losing any possible FlIs, since the user behavior description only restricts the
system behavior until all features are activated. Only one FI type could possibly
occur during this period, that is, one feature’s activation is inhibited due to other
activated features. If such FI happens, the system will deadlock since it cannot
synchronize with the test scenario any more, since the latter is designed in a way
to assure that all features are activated. This deadlock can be detected-by the

Hunter later while searching for FI traces.
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= |ntegrator

Integrator of FIDS takes the test scenario generated by Scenario Designer,
initializes the user status and billing database as specified in the initial data and

lets the system synchronize with the users behavior description at gate “usr_sw”
and with a global monitoring process “WatchDog” at gate “usr_sw” and “sw_db”.
“WatchDog” is general to the system and monitors the same events for all pairs of

features:
1) Incorrect billing actions
2) Conflicting signals
3) End of scenario reached

In addition to this run-time analysis, each time the end of a scenario is reached,
WatchDog also saves data records to be analyzed in a post-test analysis performed

by Property Checker.
= F| Hunter

The third step of FIDS is “FI Hunter”. In “FI Hunter”, 1) the new integrated
system is translated to a C program which can be further executed or simulated
using Caesar and Caesar.ADT 2) the trace-matching tooGaesar.exhibitor, will
execute the generated C program and filter out all traces leading to either “error”
flags or a “finish” flags raised by “WatchDog”. Traces where WatchDog raises
the “error” flags are FI traces violating the system properties. Traces where

WatchDog raises the “finish” flag apwtential FI traces that need to be further
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analyzed by the “Property Checker.” We call these “potential Fl traces” because
they might become real FlI traces if the feature properties are found to be violated

in the subsequent analysis of the billing data.

» Property Checker

For each potential FI trace generated from FI Hunter, Property Checker examines
the final billing data saved by WatchDog, and checks if there is any violation of
the properties of the activated features. If there is, the trace becomes a FI trace

and will be output by the “Translator”, along with a brief diagnostic.

= MSC Translator

The last step, the “Translator” takes all detected FI traces generated from either
the “FI Hunter” or the “Property Checker”, translates them into the format of

Message Sequence Charts (MSC) and generates a final validation report.

5.6 Fl detection between INTL and CFBL, INFB, TWC

In our model, FI are detected pair-wise. Thus, to detect the FI between INTL and

CFBL, INFB, TWC, the input of FIDS is {INTL, CFBL}, {INTL, INFB}, {INTL,

TWC}, respectively.

5.6.1 Scenario Designer: Test Scenario Generation

The Test scenario process describes the testing environment, which interacts with

the telephony network system so that all input features can be activated during a single

call process from callek to calleeB.
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The Test Scenario process consists of two parts: initial data part and user behavior

description part.

- Initial data part

The initial data part specifies the initial data stored in the billing database
“TheBill” and user status database “TheUser”. The billing database is initially an empty
database and grows along with the execution of the system. Unlike the billing database,
the size of the user status database will not change once it is initialized. The user status
database consists of three user status records, cabysygdle status and subscription
information for each user. The initialisy/idle status of A is set to bielle to originate a
call. B and C can be eithedle or busy at the beginning. Therefore, FI needs to be
analyzed with four initial scenarios: 1) both B and C are busy; 2) both B and C are idle;

3) B is busy while C is idle; 4) B is idle while C is busy.

- User behavior description part

In our model, we define 1A to be the caller of the call process and to subscribe to
features affecting outgoing calls, e.g. INTL; B)to be the callee and to subscribe to
features affecting incoming calls, such as INFB and CFBC 8) be the third party of
features involving three users, e.g. CFBL or TWC. TWC can be subscribed by either the

caller or the callee but in our model, we let the callesubscribe to TWC.

The user behavior description part specifies a call origination proces#froiB

Different features are activated by different scenarios.

The basic scenario iA“offhooks;A gets DialToneA dialsB”. INFB, CFBL can

be triggered in this scenario. Some features such as INTL and TWC need more specific
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actions occurring on part of the user’s behavior: The scenario for INTA.affHiooks;A
gets an announcement of AskForPIdials the valid PINP; A dialsB”. The scenario
needed by TWC is A offhooks; A gets DialTone;A dials B; Ringing tone at B,
audibleRinging tone at A offhooks; AudibleRinging tone & stops; Ringing tone &

stops;A flashhooksA dialsC".

If input features have different scenarios to be activated, the “Scenario Designer”
will combine corresponding scenarios into a comprehensive one so that all features can
be triggered within it. For example, if input features are INTL and CFBL, the combined
scenario is A offhooks;A gets an announcement of AskForPANgials the valid PINP;

A dialsB".

Fig 5.2 illustrates one of four LOTOS test scenarios for INTL and CFBL when B
is busy and C is idle. The initial data part consists of five sentences “let”. The first three
assignment sentences define the status of users A B C. User A is initially idle and
subscribes to INTL. B is initially busy and subscribes to CFBL. The forwarded address (a
parameter of CFBL that indicates the next forwarded address while the subscriber is
busy) of B is C. C is initially idle and subscribes to CFBL. The fourth “let” sentence

defines the user status database “TheUser” which is composed of above three user status
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(* Initial Data Part *)

let Status A: Status = Status ( false, 9, Time(0), Time(20), Undefined, insert(5, {}) ) in

let Status B: Status = Status ( true, 0, Time(0), Time(0), C, insert (1, {})) in

let Status_C: Status = Status ( false, 7, Time(0), Time(20), {}, false, Undefined, insert (1,{} )) in

let InitSet: UserStatusSet = insertStatus ( CreateUserStatus ( A, Status A ),
insertStatus ( CreateUserStatus ( B, Status B ),
insertStatus ( CreateUserStatus (C, Status C),
{} of UserStatusSet ) ) ) in

let InitBill:BillSet ={} in

(* User Scenario Part *)

process TestScenario [user_sw, ot] : noexit:=
user sw ! OffHook !A;
user sw ! Announce! A |AskForPIN;
user sw !Did 'A !'P;
user sw ! DidTone !A;
user sw !Did 'A IB;
(
Userguser_sw]
[ >
ot !Finish;
)
stop

endproc (* Test_Scenario *)

Fig 5.2 Test Scenario for INTL and CFBL

records. The fifth “let” sentence states that the initial billing database is empty. The user
scenario part describes the combined user scenario of INTL and CFBL. Since the

“TestScenario” process specifies the signal occurring at the user side, it synchronizes
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with the telephony system through “user_sw” gate. When all activated features finish, the
“WatchDog” process will send a signal “finish” on gate “ot” to terminate the execution of

the “TestScenario”.

5.6.2 Watch Dog

Unlike the “TestScenario” which needs to be tailored for different features, the
global monitoring process, the “WatchDog”, does not need to change for different
features. Besides the system property violation monitoring, it is also responsible for
monitoring the end of scenario reached (all activated features finish execution) and for
taking a snapshot of the billing database when the call process finishes. The snapshot of
the billing database will be further analyzed by the “Property Checker” to see if the

activated feature properties are violated or not.

The “WatchDog” monitors every billing action and signal given to users by
synchronizing with the telephony network system at gate “user_sw” and “sw_db”. When
conflicting signals going to the user are detected, the “WatchDog” reports an error
message “ConflictingSignals” at “err” gate; when an invalid billing action is detected, the

error message reported is “InvalidBilling”.

Fig 5.3 lists part of the WatchDog process.
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process WatchDog[user_sw, sw_db,err,ot]: noexit:=

(*When it detects a StartAudibleRinging, WatchDog monitorsthe next signals given
to that user, and raises an “error” message if it is LineBusyTone,
ScreenedMessage, Disconnect or AudibleRing from another user?*)

(user_sw !StartAudibleRinging ?Ad ?Dest1l:Address;
(user_sw !LineBusyTone !Ad,;
err |ConfictingSignals;
WatchDog [user_sw, sw_db,err,ot]
(]
user_sw !ScreenedMessage | Ad;
err |ConfictingSignals;
WatchDog [user_sw, sw_db,err,ot]
(]
user_sw !Disconnect !Ad,;
err IConfictingSignals;
WatchDog [user_sw, sw_db,err,ot]
(]
user_sw !StartAudibleRining 'Ad ?Dest2: Address
([Destl ne Dest2]->
err |ConfictingSignals,
WatchDog [user_sw, sw_db,err,ot]
(]
[Destl eq Dest2]->
WatchDog [user_sw, sw_db,err,ot]
)
(]
user_sw !StopAudibleRinging !Ad !Dest;
WatchDog [user_sw, sw_db,err,ot]

)

(*When it detects LineBusyTone, WatchDog monitorsthe next signals given
to that user, and raises an “error” message if it is StartAudibleRinging*)

(]
(‘user_sw !LineBusyTone ?Ad ?Dest:Address;

(user_sw !StartAudibleRinging ! Ad;
err |ConflictingSignals;
WatchDog [user_sw, sw_db,err,ot]
(]
user_sw !Onhook !Ad;
WatchDog [user_sw, sw_db,err,ot]

N =

endproc (* Watch_Dog *)
Fig 5.3 The WatchDog Process (partial)
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5.6.4 Integrator

The Integrator composes the “Test Scenario” and the “WatchDog” into the
telephony system in the following way: the initial data part of the “Test Scenario”
replaces the initialization part of the telephony system. The “TestScenario” process of
“Test Scenario” is selectively synchronized with the system at gate “user_sw’.
“WatchDog” monitors billing actions and signals going to users and the end of scenario
reached. It is partially synchronized with the system at gate “sw_db”, “user_sw”. Fig 5.4

illustrates the new system integrated with TestScenario and WatchDog.

5.6.5 FI Hunter

FI hunter uses 1) Caesar and Caesar.ADT to compile the new system integrated
with TestScenario and WatchDog process into a C program, and 2) the trace-searching
tool Caesar.Exhibitor to filter out all FI traces where WatchDog raises a “error” or

“finish” message by executing the generated C program.

Four types of traces are detected by FI hunter:

1) Fltraces leading to deadlock before the call process is completed.

The pattern specified for this type of traces 4Spt !Finish”<until>
<deadlock> The goal events <deadlock> which is a Caesar.Exhibitokeyword
representing the deadlock state of the system. The condition of this goal is ~“ot
IFinish”, which means “no ‘ot !Finish’ event occurs before reaching the goal

event”. <until> is a keyword separating the condition and the goal.
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specification SystemModel [user_sw, sw_scp]: noexit
(;‘. Data Part *)

behaviour
SYSTEM Juser_sw, sw_scp]
[[user_sw]|

WatchDog [user_sw, sw_db, err]

where
process SYSTEM Juser_sw, sw_scp]: hoexit :=

(* Initialization Part *)

hide, scp_db, sw_clk, sw_dbin

(
(
( ( TestScenario[user_sw]
|[[user_sw]|
USERS {iser_sw]
)
|user_sw]|
( SWITCH [user_sw, sw_scp, sw_db, sw_clK]
|isw_clK]|
CLOCK [sw_clK] (Initial Time)
)
[[user_sw, sw_db]|
WatchDog [user_sw, sw_db, err, ot]
)
|bw_scp]|
SCP$w_scp, scp_db]
)
|bw_db,scp_db]|
DBAPI [sw_db, scp_db] (Initial Data)
)

endproc (* SYSTEM¥)

endspec (* SystemModel *)

Fig 5.4 System Integrated with TestScenario and WatchDog
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2) FI traces leading to conflicting signals to user.

Since the “WatchDog” process will report an error message
“ConflictingSignals” at gate “err” when catching conflicting signals give to users,
the searching goal for this type of FI traces<igntil> “err !ConflictingSignals”.

The goal events“err !ConflictingSignals”. No conditionis required in this goal.

3) Fl tracesleading to invalid billing actions.

Since the “WatchDog” process will report an error message “InvalidBilling”
at gate “err” when the invalid billing actions are detected, the searching goal for
this type of FI traces iscuntil> “err !InvalidBilling”. The goal eventis “err

lInvalidBilling”. No conditionis required in this goal.

4) Potentia Fl traces.

Potential Fl traces are those traces reflecting the entire scenario. When all
activated features finish at the end of the scenario, the “WatchDog” process will
take a snapshot of the billing database and raise the “Finish” signal at gate ‘ot”.
Therefore, the searching goal for potential FI traces should be: ~ “eruoiitil >
“ot IFinish” . The goal events “ot !'Finish” . A condition for this goal is that no

“err” flag has been raised before.

The following is the example of the FI hunter output:

Test features: CFBL and INFB

Test Scenario: B subscribes to CFBL and INFB; The forwarded address of CFBL

is C; B is initiallyBUSY. C subscribes to INFB; C is initially idle.
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Output of FlI hunter:

= [l tracesleading to deadlock: None

= Fl tracesleading to conflicting signals:

<initial state>

"USER_SW'! OFFHOOK ! A"

“i" (SWDB [971])

"USER _SW'! DI ALTO\NE ! A"

"USER SW!D AL 'A !B"

“i" (SWDB [971])

"i" (SWDB [971])

“i" (SWDB [971])

“i" (SWDB [971])

/* INFB givescaller A alinebusytone since B isbusy */
"USER _SW'! LI NEBUSYTONE ! A"

"i" (SWDB [971])

“i" (SWDB [971])

“i" (SWDB [971])

"i" (SWDB [971])

/* CFBL forwards the call to C and gives back to caller A an audibleringing tone
when rings C */

"USER _SW'! STARTAUDI BLERING NG ' A I C"

/* Error flag raised because linebusytone and audibleringing are conflicting
successive signalsgiven touser A */

"ERR ! CONFLI CTI NGSI GNALS"
<goal state>

» Fl tracesleading to invalid billings: NONE
= Potential Fl traces: None

Another example of FI hunter output for the same pair of features but with

different initial states of the calleeis asfollows:
Test features: CFBL and INFB

Test Scenario: B subscribes to CFBL and INFB; The forwarded address of CFBL

isC; Bisinitialy IDLE.
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Output of FlI hunter:

FI traces leading to deadlock: None
» FI traces |leading to conflicting signals: NONE
» Fl tracesleading to invalid billings: None

=  Potentia FI traces:

<initial state>
"USER SW'! OFFHOOK ! A"
“i" (SWDB [971])
"USER SW!DI ALTONE ! A"
”USER SWID AL 'A!B"
(SWDB [971])
" (SWDB [971])
" (SWCLK [971])
" (SWCLK [971])
" (SWDB [971])
" (SWDB [971])
" (SWDB [971])
"SWSCP ! TRIGGER ! | NFO ANALYZED 'B 'A !B I'TIME (2)"
i" (SWDB [971])
i" (SWDB [971])
i" (SWDB [971])
”SVMSCP ! RESPONSE ! ANALYZE ROUTE !B 'A !B I B"
" (SWDB [971])

/*Since B isidle, CFBL processesthe call normally */

"USER _SW'! STARTAUDI BLERI NG NG ! A ! B"
"USER SW! STARTRING NG ! B ! A"

"USER SW! STARTRING NG ! B ! A"

"i" (SWDB [971])

"I (exit)

"USER_SW'! OFFHOOK ! B"

"USER SW! STOPRING NG ! B ! A"
"USER_SW'! STOPAUDI BLERI NG NG ' A ! B"
"USER_SW'! STARTAUDI BLERI NG NG A ! B"
i" (SWDB [971])

i" (SWCLK [971])

/* CFBL chargesthe call to caller A*/

"SWDB I LOGBEGN'!A!B!B!TIME (3)"
i" (exit)

/* INFB connectsthe call to B*/

i" (SWDB [971])
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"i"o(exit)

"USER_SW'! OFFHOOK ! B"

"USER_SW'! STOPAUDI BLERI NG NG ' A ! B"
"USER SW!STOPRING NG ! B ! A"

"i" (SWDB [971])

"i" (SWCLK [971])

/* INFB chargesthecall toB */

"SWDB ! LOGBEGN!'A!B!AI!TIME (4)"
"i"(exit)

"USER_SW'! ONHOOK ! B"

"i" (SWDB [971])

“i" (SWCLK [971])

"USER_SW'! DI SCONNECT A ! B"

"SWDB ! LOGEND 'A !B !'TIME (5)"
"I (exit)
"USER_SW'! DI SCONNECT ! A I B"
"SWDB ! LOGEND 'A !B !'TIME (6)"

"USER_SW ! ONHOOK ! A"
"i" (SWDB [971])
"USER_SW! ONHOOK ! A"
"i" (SWDB [971])
"i" (exit)

"ji" (SWDB [971])
"i" (SWDB [971])

i" (SWDB [971])

/* When the WatchDog detects that the call process is completed, it takes a
shapshot of the billing database at that moment and sends a “finish” signal at gate
“ot” to stop the whole system. Note that two billing records are generated here,
since CFBL and INFB were executed in parallel. One of them billed B from
time(4) to time(5). The other billed A from time(3) to time(6). Only the first record
is correct. The WatchDog process is unable to detect this FI, however further
analysis done by the Property Checker will detect it. Two records have different
start and ending times because two features read the clock separately. */

"OI ! COWPLETED !INSERT (ITEM (B, A B TIME (3),
TIME(5)), INSERT (ITEM (A A B, TIME (4), TIME (6)),

{1)) "

"Or ! FI Nl SH"

<goal state>

5.6.6 Property Checker

“Property Checker” consists of two parts, thmin checking routine and the

property checking routines.
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The main checking routine anayzes the test scenario and invokes the
corresponding property checking routines to validate the property presence in the final
status of the billing database (the snapshot taken by the “WatchDog”), which is stored at
the second -to-last event in the potential traces. The property of the feature in the detected
pair is not always checked by the “Property Checker”. For example, if the test scenario is
CFBL&INFB (Busy B) (the detected pair is CFBL and INFB and B is initially busy), the
“Property Checker” will check both the properties of CFBL and INFB. However, for the
same pair, if the initial state of B is idle, only the property of INFB is checked because

CFBL processes the call as a normal call if subscriber B is idle when the call comes.

Every derived feature property described in 8§ 5.4.3 has a corresponding property
checking routine in the “Property Checker”. The property validating routine takes one
parameter passed from the checking routine,subscriber’'s addresand validates the

presence of the property by examining every record in the billing database.

5.6.6.1INTL

If the user subscribes to INTL, the main checking routine will call the INTL

property checking routine.

The INTL property checking routine examines the billing records generated
during agiven TeenTime period and counts the billing records where the subscriber is the
originating party (See 85.4.3 for the definition of the originating party). Note that since
features are executed in parallel, one call may have been charged more than once. INTL
property checking routine only counts those billing records reflecting different calls. If

the number of such billing records is O, it returns to the main checking routine.
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Otherwise, the INTL property will check how many times the TeenPIN has been input. If
the number of input TeenPINs is no less than the number of billing records where the
subscriber is the originating part, then the property holds. Otherwise the INTL property is

violated and this Fl is written into the analysis report.

The following is a snapshot taken when INTL and TWC feature finish execution:

"OI' !COWLETED !INSERT (ITEM (A A B TIME (5),
TII\/E(?)), I NSERT (I TEM (AL A C TIME (6), TIME (7)), {}))
Since A subscribes to INTL and there are two billing records where A are the
originating parties, INTL checking routine will check the traces backwards seeing if at
least two TeenPINs have been input. However, since the call from A to C is a second call
of the three-way calling among A, B and C, INTL feature is bypassed and no TeenPIN is
required for the second call, INTL can find only one TeenPIN. Thus, the INTL property

isviolated and this FI trace is written into the analysis report.
5.6.6.2 INFB

If the user subscribes to INFB, the main checking routine will cal the INFB

property checking routine.

The INFB property checking routine examines the billing records where the
subscriber is the callee and sees if the payer is also the subscriber. If it is, then it returns
to the main checking routine. Otherwise, the INFB property is violated and the FI is

recorded into the analysis report.

The following is a snapshot taken when INFB and CFBL finish execution:
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"OI' !COWLETED !INSERT (ITEM (B, A B, TIME (4),
TIME(5)), INSERT (ITEM (A A B TIME (3), TIME (6)), {}))
The second record from time(3) to time (6) is not correct since B is the callee but

not the payer. Thus, INFB property is violated and this Fl is written into the analysis

report.
5.6.6.3 CFBL

If the user subscribes to the CFBL, the main checking routine will further check if
the subscriber is initially set to busy when the call comes. If it is, the CFBL property
checking routine is called. Otherwise, the main checking rountine continues to check the

next subscribed feature.

The CFBL property checking routine examines all billing records where the
subscriber is the callee and searches for the corresponding forwarded part, which is
another record with the same starting and ending time and where the subscriber is the
caler. If found, then it continues with the next subscribed feature. Otherwise, the CFBL

property is violated and the Fl is recorded into the analysis report.

The following is a snapshot taken when INFB and CFBL finish execution:

"OT | COMPLETED !INSERT (ITEM (A A B TIME (2),
TIME(3)), INSERT (ITEM (B, B, C TIME (2), TIME (3)), {}))

Since the subscriber B is initialy set to busy in the test scenario, the CFBL
property checking routine is called. The CFBL checking routine finds that there is an
incoming call to B from A from time(2) to time(3), so it searches for the corresponding

forwarded part. The latter is another record which has the same time period and is for a
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cal from B to the predefined forwarding address C. The search is successful, so the

CFBL property holds.
5.6.6.4TWC

If the user subscribes to TWC in test scenario, the main checking routine will call

the TWC property checking routine.

The TWC property checking routine examines every billing record where the
subscriber is the originating party and searches for records whose starting time fits into
any other records where the subscriber is either the originating party or terminating party.
(See § 5.4.3 for the definition of the originating party and the terminating party) If found,
the TWC property checking routine returns to the main checking routine. Otherwise, the

TWC property is violated and the Fl is recorded into the analysis report.

Consider the following example given in 85.6.6.1.

"OT | COWPLETED !INSERT (ITEM (A A B TIME (5), TIMK7)),
INSERT (ITEM (A A C TIME (6), TIME (7)), {})) "

Since A subscribes to TWC, TWC property checking routine will search an
occurrence of a three-way connection by examine the billing records. First, it finds the
second record where A is the originating party from time(6) to time(7), then it searches
for another record where A is either the originating part or the terminating party and the

talking time period covers time(6). The search is successful. Thus, TWC property holds.

5.6.7 MSC Translator

Message Sequence Charts are a well-known technique for the description and

specification of scenarios in distributed systems with asynchronous communication,
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especialy telecommunication systems. They are also a standard language recommended
by the International Telecommunication Union (ITU) [ITU-T96]. The MSC language
consists of both a graphical and a textual syntax. It describes both system structure (i.e.
components) and behavior (i.e. messages exchanged). Message Sequence Charts can be
used as an overview language of services offered by distributed entities, as a requirement
statements for SDL specifications, for simulation and validation, for the selection and
specification of test cases, for formal specification of communication, and for interface

specification.

To enhance the readability of our FI detection report, in the last step of FIDS, we

transform the FI traces from LOTOS traces to amore easily understood M SC format.

Note that 53 MSCs were generated by FIDS to illustrate 150 FlI that are found
during the contest [FHLS98]. Fig 5.5 shows an example of MSC generated from
CFBL&INFB (idle B) FI traces. (See 85.6.5 for the corresponding LOTOS FI traces).
The network entities are represented using boxes on the top and extending lines under
them. The signals (messages) sent between these entities are described using labeled
arrowhead lines. The direction of the arrow indicates the sending direction of the
message. The label above the arrowhead line is the name of the message and the bracket
characters under the arrowhead line are the parameters passed in the message. For clarity,
user A B C are listed as independent network entities in the MSC and parameters
indicating the signals is from /to which user is omitted. For example, “user_sw !Dial !A
IB” is mapped into an “Dial” message with parameter “B” passing from user A to the
switch. “user_sw !StartRinging !B 'A” is mapped into a “StartRinging” message with

parameter “A” passing from the switch to user B. “sw_scp !Trigger INFO_ANALYZED
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B IA !B ITime (2)” is mapped into a “Trigger” message sent from the switch to the SCP

with parameters “INFO_ANALYZED”, “B” “A” “B” “Time(2)”
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Fig 5.5 An Example of MSC (to be continued)

Page 124



Chapter 5. Feature I nteraction Detection System

A ] | B ] | [ ] [ swiicH ] | [ ] | SCP ]

I_.l‘-\ B A TIRIE :"‘:J

CIMHCOE

DISCOMNNEQT

i

L
CEMD

Gl

Gl
[.-’- B TIME .'5:-]
CINHCOE

Ol
DISCOMNMEQT

i

L
DML

Gl

A B TIME (8)
ONHCOK [ I I]

ORHOOK

LG REPOAT

____ﬁ_

Fig 5.5 An Example of M SC (continued)

Page 125



Chapter 5. Feature I nteraction Detection System

5.7 FIDS evaluation - Comparing our result with the benchmark Fl

The number and type of Fls detected and the efficiency of the tool are two basic
factors when evaluating an FI detection tool. For this reason, the organizing committee of
the Feature Interaction Contest (see 81.3 Feature Interaction Cont@stpublished a
benchmark document [BGGO99], listing the Fls that they believed to exist among the
feature to be studied in the contest. In this section, we evaluate our tool by comparing the

set of interactions detected by FIDS with the one provided in the benchmark.

Before presenting a detailed comparison, we should note two architectural issues
that determine what and how many Fls would be generated. As mentioned in 85.4.1
Feature Compositionsthe contest specifications were not specific concerning the
composition of the features. We decided to use an interleaving composition method, i.e.
features can execute in parallel (LOTOS operator “|||”) and do not define any specific
behavior patterns on the user and the billing database side, so that they can synchronize
on signals in any order and the call process will not be affected if conflicting signals
occur. The advantage of designing such a robust system is that since FIs occurring under
the same testing scenario are more or less related, a series of FIs can give us more clues

than a single FI when analyzing and fixing FIs.

As to the benchmark, its authors did not mention assumptions on the system
architecture, it is possible to infer from the FI scenario descriptions in [BGG099] that 1)
the features are executed in parallel, 2) the call process terminates when any conflict

Occurs.
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The number and types of Fl detected are easy to compare. However, the
measurement of efficiency is more complicated. Due to the fact that different FI tools use
different FI detecting methodologies and different implementation languages and the
processing time highly depends on the hardware and software used, we choose the
number of testing scenarios used per Fl to calculate the efficiency. In this way, we can

concentrate more on the methodology itself by excluding the implementation details.

Concerning the execution time, we limit ourselves to saying that this varied from
few seconds to 24 hours, on a low-end Sparc machines, depending on the complexity of

the feature involved.

5.7.1 Comparison Based on FI Types

As mentioned in 85.4.2 and 85.4.3, we clarify FIs according to the feature and
system properties that they violate: 12 feature properties and 3 system properties. Thus,
we have 12 feature property violation FI types and 3 system property violation Fl types,
Deadlock, Incorrect billing, and incompatible successive signals given to user. The
benchmark instead tries a more general classification: Fls are categorized into
corresponding conflict/failure types such Bisling conflict, Call termination conflict,
Forwarding conflict, Disconnect conflict, Feature inhibition (Feature fails to activate),

Number delivery failure (Number not displayed), PIN conflicts (over-ride PIN), Flash

conflict. In our view, they don’t quite succeed, as pointed out below.

Table 5.2 lists the mapping relationship from the benchmark FI types to the FIDS

FI types.
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Table 5.2 The Mapping Table of FI Types
Benchmark FI Type  FIDSFI Type

Billing conflict Incorrect billing

Call termination conflict  Incompatible successive signalsto user

Flash conflict. TWC/CW feature property violation
Disconnect conflict Incompatible successive signalsto user
Forwarding conflict Incompatible successive signals to user

(Audibleringing from different resource)

PIN conflicts INTL/CC feature property violation
(over-ride PIN)

Number delivery failure CND feature property violation
(Number not displayed)

Feature inhibition Feature property violation
(Feature fails to activate)

From the above comparison, we find that all benchmark Fl types can be mapped
to a corresponding FIDS FI type. Thus, theoretically speaking, FIDS can detect all
benchmark FI. However, on the other hand, not all FIDS FI types can find a suitable
benchmark FI mapping. For example, in FIDS, the feature property violation check is
done to all features, but in benchmark FlI detection, only some features properties, i.e.
only the feature properties of CND, INTL, CC, TWC, CW are partially checked. The
well-known FI between CFBL and TCS (Calls forwarded by CFBL bypass the incoming
call screening of TCS) is not mentioned in the benchmark paper and can not be mapped
to any of their types because no failure or conflict occursin this case and only the feature

property of TCSisviolated (numbersin the screened list reach the subscriber anyway).
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5.7.2 Comparison Based on the Number of FI Detected

Since FIDS can detect more types of Fl than the benchmark FI, there is no
surprise that FIDS detects more Fls, 150, than the benchmark FI, which detects only 99.
Detailed comparisons of FlI detected for each pair of features are listed in Appendix.
However, there are two kinds of benchmark Flsthat are not detected by FIDS:

- FI between feature and itself

According to our FI definition, Fls occur only among 2 or more than 2 integrated

features. Any undesirable effects (interaction) between the feature and itself,

which maybe due to recursive execution or multi-user simultaneously execution,

are not considered as Fls but as design defects of the feature itself. Note this is

another issue for discrepancy between our findings and those of the benchmark,

because the latter lists such undesirable effects as Fis.

- Flsinvolving four users

Dueto limited resource, the test scenario of FIDS isrestricted to have only 3 users

or less. Thus, Fls involving 4 users, i.e. FIs between CW and TWC features,

cannot be detected by FIDS. Thisis because currently FIDS uses Caesar.Exhibitor

asits trace searching tool, which does the trace searching on a fully pre-expanded

behavior tree. Since the users’ behaviors in the system are interleaved with each

other, the size of the expanded tree is growing exponentially when incrementing
the number of users: if the number of users is more than 3, the expanded behavior
tree will exceed the maximum size that Caesar.exhibitor can handle. This problem

can be solved by using other techniques, however this is left for further research.
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In total, the benchmark includes 23 FlIs that are not detected by FIDS. Among
those, 12 Fls are between a feature and itself and 11 FIs involve feature TWC or feature

CW or both, and use at least four users.

5.7.3 Comparison Based on Testing Scenario Used Per FI

According to Fl traces described in the benchmark paper, the call process will be
terminated when it encounters the first FI. Thus, only one FI can be detected per scenario.
However, since no specific behavior patterns are defined on the user or the billing
database side, FIDS can tolerate any conflicting signals and the call process continues
until all activated features finish. Thus, there is no wonder that FIDS can detect more

than one FIs per scenario.

Chart 5.1 summarizes the comparison between FIDS and the benchmark FI.

Ch. 5.1 Comparison between FIDS Result and the Benchmark FI
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The white columns represent the benchmark Fl results and the black column
represents the FIDS results. Each benchmark FI corresponds to one testing scenario, thus,
99 testing scenarios generate 99 benchmark FI of 8 types (see Table 5.1). FIDS uses 76
testing scenarios and detects 150 FI of 15 types (3 system property violation types + 12

feature property violation types).
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Chapter 6. Conclusions and Future Work

Although much progress has been made on accelerating the development and
introduction of new telephony features (for example, the Intelligent Network concept)
[Viss95], the feature interaction problem [BDCG89] remains one major obstacle for the
rapid development and introduction of new features into modern telecommunications
systems. This thesis describes a model, based on a formal approach, for specifying a
telephony system integrated with both switch-based features and IN features, together
with an implemented feature interaction detection systems. Our system rated among the
best world wide in a recently held international context (see 81.3 Feature Interaction

Contest

6.1 Summary

The background and motivation for our work is given in Chapter 1. This chapter

aso includes alist of contributions.

Chapter 2 presents a survey of related work on the formalisms that are used to

specify telephony systems and of FI detection methodologies using FDTs.

Chapter 3 gives an overview of the Basic Call Process, a classification of features,
and presents the concepts of feature integration and activation. It describes the design of a
telephony system model integrated with both switch-based features and IN features, finite
or infinite. Four features, INTL, CFBL, INFB and TWC, are used as examples to

illustrate the feature integration and activation mechanism.
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Chapter 4 shows the use of LOTOS as a Formal Description Technique (FDT) in
specifying the telephony system model and features. First, it gives a brief overview of the
LOTOS language by describing its main operators and some examples in the context of
telephony network systems. Then, it discusses four main styles of writing LOTOS
specifications of telecommunication systems. They are the monolithic style, the state-
oriented style, the constraint-oriented style and the resource-oriented style. Each style
has its own uses in telephony system specifications and styles can be mixed in one
specification to meet different requirements. In our system model, since the observable
behavior of the system is described as a composition of separate resources whose
functionality is well defined, we chose a mixture of resource-oriented style and state-
oriented style: the resource-oriented style is used to reflect the architectural model of the
system at the specification level, and the state-oriented style is used to specify features

(BCP, INTL, INFB, CFBL, TWC) that are defined by LTSs.

In Chapter 5, a formal definition of Feature Interaction is provided and an Fl
Detection System (FIDS) is developed based upon the definition. FIDS deals with the
detection of logical interactions which occur when some of the requirements or
assumptions (the properties of the system and the features), that must be satisfied when a
feature is introduced separately in the network, are violated. Our FlI definition improves
on the traditional one given by P. Combes et. a [CoPi94] and W. Bouma [BoZu92] by
adding system properties into the set of properties that must be checked. This includes the

correctness of billing and the consistency of successive signals given to user.

FIDS consists of five parts: Scenario Designer, which takes the names of features

to be considered and designs specific test scenario for them; Integrator, which integrates
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the test scenarios generated by the Scenario Designer, and the WatchDog process, that
monitors the system property violation, into the system specification; FI Hunter, which
can find FI sequences violating the system properties and potential FI sequences that will
be further analyzed; Property Checker, which examines the potentia FlI sequences
generated from the FI hunter to check the property of the activated features and filters out
the FI sequences violating the feature property; and Translator which transates the Fl
sequences generated from the FI Hunter and the Property Checker into the format of
Message Sequence Charts (M SC) and compilesthe final Fl report. An evaluation of FIDS
with respect to the Feature Interaction contest benchmark is given at the end of Chapter 5
in terms of detected Fl type, FI number and test scenarios used. The discussion shows
that FIDS can detect 7 more FI types and 51 more FIs than the benchmark by using 23
fewer testing scenarios. On the negative side, 23 benchmark Fls were not detected by

FIDS and the reasons for this are also discussed in Chapter 5.

The methodology presented in this thesis does not give a general solution to the
feature interaction problem but a partia solution limited to the detection of logical
interactions at the specification level. Detecting feature interactions at the specification
level contributes significantly to speed up the design phase and to the correctness of the
design. We have shown that telecommunication system designers can give precise
descriptions and validate their designs with respect to potential feature interaction

problems before the implementation stage.
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6.2 Future Work

The results of this thesis provide a basis for several future research directions. As
new telecommunication features emerge, the need to provide a sound and flexible
architecture becomes even greater. We believe that the model we present here for
specifying telecommunications features and for the formalization of the notion of
interactions provides a good starting point for defining such architecture. Still, there are

many ways by which other contributions can improve and complement our model.

6.2.1 Goal-Oriented Exploration

As mentioned before, the trace-searching tool of FIDS, Caesar.Exhibitor, needs a
fully pre-expanded specification to do the trace-searching. Because of the very large
global state space generated, this greatly limits the size of the telephony network, the
number of the end-users it can have and the number of features that can be introduced.
Therefore, FIDS cannot detect those Fls that involve more than 3 users or complicated

features such as CW, TWC, although theoretically they could be handled, see 85.7 FIDS

evaluation.One solution to this problem could be using “on-the-fly” state exploration

techniques [Pele96], which do not require saving the whole state space. Unfortunately,

however, these techniques require more complicated algorithms.

Another solution to this problem could use Goal-Oriented Exploration

methodology. Haj-Hussein et al. [HaLS93] define a new type of inference rules which are

capable of generating traces of actions leading to pre-selected actions in the specification.

Unlike Caesar.Exhibitor, which needs a full expansion for searching, the goal-oriented
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exploration tool expands asmall part of the behavior tree at atime. However, appropriate

tools for this techniques are not available yet.

6.2.2 Enrichment of the system property set

As mentioned above, to establish the completeness and necessity of the derived
property set is a big challenge of FI detection. No reference so far provides a systematic

way for deriving the property set nor for proving its completeness and necessity.

Deriving system properties is even more difficult than deriving feature properties.
Unlike feature properties, which express expectations of marketable services well known
by both sellers and buyers, the system properties are an iceberg of various assumptions
made about the network, where the underwater part is noticed only when violated. Work

needs to be donein this area.

In our simplified telephony network model, only the basic signals, i.e. signals
given to user and hilling signals, are considered and investigated. However, in a rea
system, there are more advanced signals, i.e. signals used for routing and roaming, which

need to be analyzed and added into the system property set.
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Appendix. Comparison between FIDS Result and the Benchmark
FI

CFBL Related Fls

Feature Pair Scenairos Feature Interactions Fl Types
CFBL-CFBL 1 * 0 * 0 *
CFBL-CND 1 2 1 3 1 3
CFBL-INFB 2 2 2 5 2 3
CFBL-INFR 3 4 3 11 1 3
CFBL-INTL 0 0 0 0 0 0
CFBL-TCS 2 2 2 4 1 2
CFBL-TWC 2 * 2 * 2 *
CFBL-INCF 3 3 3 8 1 3
CFBL-CW 1 1 1 1 1 1
CFBL-INCC 1 1 1 1 1 1
CFBL-RC 0 1 0 1 0 1
CFBL-CELL 2 1 2 3 1 1
Total 18 17 17 37 11 18
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CND Rdated Fls

Feature Pair Scenairos Feature Interactions Fl Types
CND-CND 0 * 0 * 0 *
CND-INFB 1 1 1 1 1 1
CND-INFR 2 3 2 9 1 4
CND-INTL 0 0 0 0 0 0
CND-TCS 1 1 1 2 1 2
CND-TWC 1 1 1 1 1 1
CND-INCF 2 3 2 9 1 3
CND-CW 1 1 1 1 1 1
CND-INCC 1 1 1 1 1 1
CND-RC 1 1 1 1 1 1
CND-CELL 0 0 0 0 0 0

Total 10 12 10 25 8 14
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INFB Related Fls

Feature Pair Scenairos Feature Interactions Fl Types
INFB-INFB 0 * 0 * 0 *
INFB-INFR 2 4 2 12 2 5
INFB-INTL 0 0 0 0 0 0
INFB-TCS 1 2 1 4 1 4
INFB-TWC 2 1 2 1 1 1
INFB-INCF 2 3 2 10 2 4
INFB-CW 1 1 1 1 1 1
INFB-INCC 1 1 1 1 1 1
INFB-RC 1 1 1 1 1 1
INFB-CELL 2 1 2 2 1 1

Total 12 14 12 32 10 18
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INFR Related Fls

Feature Pair Scenairos Feature Interactions Fl Types
INFR-INFR 2 * 2 * 1 *
INFR-INTL 0 0 0 0 0 0
INFR-TCS 2 3 2 8 1 4
INFR-TWC 3 1 3 1 2 1
INFR-INCF 3 2 3 8 1 4
INFR-CW 1 1 1 1 1 1
INFR-INCC 2 1 2 1 1 1
INFR-RC 1 2 1 2 1 1
INFR-CELL 2 1 2 3 1 1

Total 16 11 16 24 9 13
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INTL Related Fls

Feature Pair Scenairos Feature Interactions Fl Types
INTL-INTL 0 * 0 * 0 *
INTL-TCS 0 0 0 0 0 0
INTL-TWC 1 1 1 1 1 1
INTL-INCF 0 0 0 0 0 0
INTL-CW 0 0 0 0 0 0
INTL-INCC 1 0 1 0 1 0

INTL-RC 1 2 1 2 1 1

INTL-CELL 0 0 0 0 0 0

Total 3 3 3 3 3 2
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TCSRelated Fls

Feature Pair Scenairos Feature Interactions Fl Types
TCS-TCS 0 * 0 * 0 *
TCS-TWC 1 1 1 1 1 1
TCS-INCF 2 2 2 5 1 4
TCS-CW 1 1 1 1 1 1
TCS-INCC 2 1 2 1 1 1

TCS-RC 1 2 1 2 1 1

TCS-CELL 0 0 0 0 0 0

Total 7 7 7 10 5 8

TWC Related Fls

Feature Pair Scenairos Feature Interactions Fl Types
TWC-TWC 1 * 1 * 1 *
TWC-INCF 3 1 3 1 2 1
TWC-CW 9 * 9 * 3 *
TWC-INCC 4 0 4 0 1 0
TWC-RC 1 1 1 1 1 1
TWC-CELL 4 1 4 3 2 2
Total 22 3 22 5 10 4
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INCF Related Fls

Feature Pair Scenairos Feature Interactions Fl Types
INCF-INCF 1 * 1 * 1
INCF-CW 1 1 1 1 1
INCF-INCC 2 2 2 2 1
INCF-RC 1 2 1 2 1
INCF-CELL 2 1 2 4 1

Total 7 6 7 9 5
CW Related FIs

Feature Pair Scenairos Feature Interactions Fl Types
CW-CW 0 * 0 * 0
CW-INCC 1 0 1 0 1

CW-RC 1 1 1 1 1

CW-CELL 2 1 2 2 1

Total 4 2 4 3 3
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INCC Related Fls

Feature Pair Scenairos Feature Interactions Fl Types
INCC-INCC 0 * 0 * 0 *
INCC-RC 0 0 0 0 0 0
INCC-CELL 0 1 0 2 0 1
Total 0 1 0 2 0 1

RC Related Fls

Feature Pair Scenairos Feature Interactions Fl Types
RC-RC 0 * 0 * 0 *
RC-CELL 0 0 0 0 0 0
Total 0 0 0 0 0 0

CELL Related FIs

Feature Pair Scenairos Feature Interactions Fl Types
CELL-CELL 0 * 0 * 0 *
Total 0 0 0 0 0 0
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