
Guided Search Technique for LOTOS

By

Mazen Haj-Hussein

Thesis submitted to the

School of Graduate Studies and Research

in partial fulfillment of

the requirements for the degree of

Ph.D. in Computer Science

under the auspices of the

Ottawa-Carleton Institute for Computer Science

University of Ottawa

Ottawa, Ontario, Canada

December, 1995

© Mazen Haj-Hussein, Ottawa, Canada, 1995

ACKNOWLEDGEMENTS

Completing my Ph.D. is the greatest achievement that I have ever accomplished. However, this
would not have been possible without the help of many people that I am so grateful to.

First, I would like express my deepest thanks to my supervisor, Dr. Luigi Logrippo, for his
patience and for all the guidance and the advice that he has given me throughout my Masters and
Ph.D. studies.

Second, I would like to acknowledge the LOTOS group at the University of Ottawa for their
dedication that helped me to develop my ideas in a very knowledgable and friendly environment.
In particular, I would like to thank Jacques Sincennes and Antoine Bonavita for their assistance in
the implementation and the validation of the techniques discussed in this thesis. Their comments
and advice are much appreciated. I am also grateful to Hans van der Schoot for the input that he
has given me in the early stages of the thesis.

I would like to express my gratitude to the Natural Sciences and Engineering Research Council
and the University of Ottawa for their financial support during my graduate studies.

I would also like to thank my parents for their support. A special thanks to my father, Dr.
Mohammed Haj-Hussein, who has dedicated his life to science and creativity. He believed that
computer science is the science of the future. I thank him for his advice.

Last, but far from least, I would like to thank my family, my loving wife Allyson and my two
children Leyla and Malek. Without Allyson’s patience and support during my long years of study,
this would not have been possible.

REMERCIEMENTS

Compléter mon doctorat est le plus grand défi que j’ai relevé. Toutefois, cela aurait été impossi-
ble sans l’aide de plusieurs personnes envers lesquelles je suis très reconnaissant.

Je voudrais d’abord spécialement remercier mon directeur de thèse, Professeur Luigi Logrippo,
pour sa patience, l’aide et les conseils qu’il m’a prodigués tout au long de ma maîtrise et mes étu-
des au doctorat.

Je suis aussi très reconnaissant du dévouement manifesté par le groupe LOTOS de l’Université
d’Ottawa quant au développement de mes idées, et cela dans un environnement toujours bien
documenté et amical. J’aimerais remercier en particulier Jacques Sincennes et Antoine Bonavita
pour leur aide quant à la réalisation et à la validation des techniques discutées dans cette thèse.
Leurs commentaires et leurs conseils ont été très appréciés. Les discussions avec Hans van der
Schoot au tout début ont aussi contribué à l’élaboration de ma thèse.

J’aimerais exprimer mes sincères remerciements au Conseil de recherches en sciences naturel-
les et en génie du Canada et à l’Université d’Ottawa pour leur support financier tout au long de
mes études du 2e et 3e cycle.

J’aimerais aussi remercier mes parents pour leur appui. Tout spécialement mon père, le docteur
Mohammed Haj-Hussein, qui a consacré sa vie à la science et à la créativité et pour qui l’avenir se
trouve dans les sciences de l’informatique. Je le remercie pour ses conseils.

Enfin, j’aimerais remercier ma famille, mon épouse Allyson et mes enfants Leyla et Malek.
Sans la patience et l’appui d’Allyson durant mes années d’études, ce projet n’aurait pu se réaliser.

 iv

Contents

Abstract vi
Chapter 1 Introduction 1

1.1 Background and Motivation 1
1.2 Structure of the Thesis 4

Chapter 2 Literature Review 5
2.1 Layered Network Architecture Model 5
2.2 Protocol Verification 6
2.3 Transition-Based Models 7

2.3.1 Relief Strategies for the State Space Explosion 8
2.4 The Formal Description Technique LOTOS 12

2.4.1 Data Type Component 13
2.4.2 Control Component 16
2.4.3 Inference Rules 21
2.4.4 An Example 26
2.4.5 Relief Strategies for the State Space Explosion 29
2.4.6 Existing Validation and Verification tools for LOTOS 32

Chapter 3 Overview Of Goal-Oriented Execution 43
3.1 Introduction 43
3.2 General Definitions 45

3.2.1 Conventions 45
3.2.2 Variable Actions and Matching 46
3.2.3 Variable Traces and Operations 47

3.3 Inference System for Relation→ 50
3.4 Trace Properties 55
3.5 Static Derivation Paths 60
3.6 Guided-Inference System 64
3.7 Rewriting and Narrowing ADT expressions of LOTOS 65

3.7.1 Introduction 65
3.7.2 Term Rewriting Systems 66
3.7.3 Narrowing: Equation Solving using Term Rewriting Systems 69

3.8 Goal-Oriented Execution Algorithm 73
Chapter 4 Goal-Oriented Execution 78

4.1 Static Derivation Paths 78
4.1.1 Formal Definitionof Σ 79
4.1.2 Observations 84
4.1.3 Limitations 85

4.2 Guided-Inference Rules 88
4.2.1 Formal Definition 89
4.2.2 Observations 100
4.2.3 Limitations 103

 v

Chapter 5 Narrowing Technique 106
5.1 Introduction 106
5.2 Transformation Phases 108

5.2.1 Reordering Phase 109
5.2.2 One-to-One Mapping Phase 112
5.2.3 Merging Phase 115

5.3 Comparison 119
5.4 Limitation 121

Chapter 6 Application and Evaluation 125
6.1 Verification Guidelines 125
6.2 Verification of the Alternating Bit Protocol 127
6.3 Scope of Application 136

Chapter 7 Conclusion 140
7.1 Contributions 140
7.2 Future Work 142

Appendix A - Alternating Bit Protocol 144
References 152

 vi

Abstract

The dynamic behaviour of a LOTOS specification can be described as a tree, called behaviour

tree, where the nodes represent the states of the behaviour, and the branches represent the possible

next actions. Unfortunately, the behaviour tree for a realistic size LOTOS specification can be very

large and often has no finite representation.This is the major limitation for the existing LOTOS

verification techniques.

The main goal of this thesis is to provide a new behaviour tree exploration technique, called

Goal-Oriented Execution, that can be used to check properties of LOTOS specifications by

narrowing exploration to a meaningfully selected subset of the tree. In this execution technique,

the system derives traces (i.e paths in the behaviour tree) satisfying certain assertions that express

temporal ordering of actions and data values properties.

Goal-Oriented Execution is a combination of three techniques. The first technique is an

automatically generated ADTevaluator/narrower engine. It is capable of evaluating an expression

based on a rewriting rule approach, borrowed from functional programming, and deriving solutions

to a set of constraints using a narrowing technique, borrowed from logic programming. The second

technique is astatic analyzer that determines where the given assertions are likely to hold,

producing static information calledstatic derivation paths. The third technique, calledguided-

inference system, involves a new type of inference rules that derive traces using static derivation

paths to resolve most non-determinism.

Implementation issues of this technique are also discussed, and examples of its usage are

provided. The technique is now included in ELUDO, the University of Ottawa LOTOS interpreter.

Chapter 1 Introduction

 1

Chapter 1 Introduction

1.1 Background and Motivation

A Communication protocol is defined as a set of syntactic and semantic rules that govern the

exchange of information between entities in a communication system [95]. In today’s

communication systems, protocols are quite complex. Experience shows that many protocol design

errors are detected late in the development cycle and may cause disastrous outcomes [91].

Therefore, protocol specification models must be suitable for adequate validation in the early

phases of the development cycle. This generated the need to define and standardize formal methods

for describing protocols. A formal method, with precisely defined semantics, provides an excellent

basis for avoiding ambiguity in the interpretation of the protocols’s characteristics, as well as a

mathematical framework for formal proof methods and automated analysis methods.

The International Standardization Organization (ISO) has developed a model, called the Open

System Interconnection Reference Model (OSI/RM) [33], that deals with connectingopen systems

(systems that are open for communication with other systems). ISO has adopted Formal

Description Techniques (FDTs) to define protocols and services for OSI/RM. The following,

mainly taken from [24], are the main objectives for these FDTs:

• Expressiveness: an FDT should be capable of describing both the protocols and the services of

the OSI model.

• Formalism: in order to perform formal analysis, an FDT should be founded on a strong

mathematical model that makes it possible to extract the meaning of a specification

unambiguously.

• Modularity: an FDT should offer the ability to decompose large and complex protocols into

readable and maintainable components.

• Abstraction: an FDT should also offer the ability to suppress irrelevant implementation details

Chapter 1 Introduction

 2

from the specification. For example, OSI concepts (e.g. service access points, connection

endpoints, service primitives, protocol data units and constraints) should be expressible in a

completely implementation-independent manner.

• Executability: to allow validation to start at an early stage of the protocol development life

cycle, it should be possible to construct a running prototype model on the basis of a formal

description.

FDTs should be effectively integrated with design methods. They should have the ability to

support not only the specification phase, but the complete protocol development process:

• Specification of requirements as a formal abstract model.

• Verification of the model against the requirements.

• Derivation of implementations from the model using stepwise refinement transformations.

• Generation of test cases from the model.

• Testing an implementation against the model.

The model can also serve as documentation for the system. Vissers in [143] provides an

excellent perspective of FDTs.

The application of an FDT to the development of large and complex protocols depends heavily

on the availability of supporting computer tools. More and better tools will popularize the use of

FDTs. Several classifications of FDT tools have been proposed [15][99][131][132]. Our

classification is as follow:

1- Specification tools: such as editors and syntax/static semantic checkers.

2- Validation and Verification tools: assist in checking the syntactic and semantic protocol

properties. These include: theorem provers, model checkers, reachability analysers, simulators,

and symbolic executors.

3- Reduction tools: such as algebraic simplifiers that reduce expressions into a simpler form.

4- Transformation tools: these tools are conceived for translating the specification into a more

concrete (refined) one, or into a different equivalent representation such as graphs, Petri-nets,

etc.. .

5- Comparison tools: compare two specifications with respect to given relations such as

equivalence and congruence relations.

6- Testing tools: such as test cases generators.

Extensive research is being done worldwide in the area of automated protocol validation and

verification tools based on FDTs. A survey on such tools can be found in [99].

Chapter 1 Introduction

 3

The FDTs standardized within ISO are ESTELLE (Extended Finite State Machine Language,

[83]) and LOTOS (Language Of Temporal Ordering Specification, [84]). In addition, CCITT (the

International Telegraph and Telephone Consultive Committee) has adopted SDL (Specification

and Description Language, [7][126]) as standard FDT. A comparative evaluation of these

specification languages can be found in [16][131]. Agraphical version of LOTOS is in advanced

stage of standardization within ISO and CCITT.

LOTOS is one of the most precisely defined languages in use today. Its static semantics are

defined by an attributed grammar, while its dynamic semantics are based on algebraic concepts.

LOTOS is made up of two components: a data type component, which is based on the algebraic

specification language ACT ONE [40][41], and a control component, which is based on concepts

from Milner's CCS [103] and Hoare's CSP [71]. LOTOS was conceived for the specification of the

services and protocols of the Open Systems Interconnection [81][82][128][129]. Soon after its

introduction, other uses were found for LOTOS: among others, the specification of telephone

systems [43] and the specification of distributed algorithms [67].

The dynamic semantics of LOTOS are defined in terms of axioms and inference rules [84]. The

actions (transitions) that a given behaviour expression may perform, and the dynamic behaviour of

the resulting states, can be derived systematically by applying the inference rules. Therefore, the

dynamic behaviour of a LOTOS specification can be seen as a tree, called behaviour tree, where

the nodes of the tree represent the states of the behaviour, and the branches represent the possible

next actions. Unfortunately, the behaviour tree for a realistic size LOTOS specification can be very

large and is often has no finite representation.This is the major limitation for the existing LOTOS

verification techniques.

To deal with this limitation, LOTOS interpreters in existence today make it possible to execute

specifications (i.e. exploring behaviour trees) using different techniques such as step-by-step

execution [63][66][98][138], random-walk execution [67], weighted execution [108], fair

execution [154], and symbolic execution [1][115]. These techniques lay restrictions such as: (1)

user intervention is needed, (2) only a subset of LOTOS constructs can be handled, (3) LOTOS

specification must be written in specific style, (4) counters and limits are needed, or (5) information

must be included as special comments in the LOTOS specification. These techniques and other

techniques that require changing the syntax and semantics of LOTOS are described in more detail

in the next chapter.

The main goal of this research is to provide a new behaviour tree exploration technique, called

Goal-Oriented Execution, that can be used to verify LOTOS specifications by narrowing

exploration to a meaningfully selected subset of the tree. In this execution technique, the system

Chapter 1 Introduction

 4

derives traces (i.e paths in the behaviour tree) satisfying certain assertions. First, the LOTOS

specification is analyzedstatically determining where these assertions are likely to hold, producing

static information calledstatic derivation paths. Second, these static derivation paths are fed to the

inference rules helping directing the dynamic derivation. To comply with LOTOS semantics, the

dynamic trace derivation may require sub-traces with new assertions. Therefore static derivation

paths are obtainedon demand by the inference rules, as we shall see.

For this technique to be applied on full LOTOS, where data part is involved, the assistance of

anarrower tool is needed. Narrowing [118] is a technique for finding solutions to a set of

constraints in abstract data types. We present an algorithm for transforming abstract data type

equations into a rewriting rules evaluator and a narrower engine with considerable performance

efficiency. We also show that other existing tools can be improved using the narrower.

1.2 Structure of the Thesis

This paper is organized as follows. In chapter 2, we give an overview of the Communicating

Finite State Machines model and of the relief strategies for state explosion problems. We also

provide a brief introduction to LOTOS, to the existing verification tools for LOTOS, and to the

existing relief strategies that have been devised to cope with dynamic state space explosion for

LOTOS. Chapter 3 provides an overview of our method. This includes the functionality and the

strategy of each component of our system and the algorithm of the overall system. In Chapter 4,

the definition of the static analyser and of the guided-inference system is presented. The narrower

technique is explained in detail in chapter 5. In chapter 6, the application of our method to verify

an alternating bit protocol specification is shown. Also, the scope of application of the method is

described in this chapter. Finally, the thesis conclusion is given in Chapter 7, along with remarks

on possible future work. Appendix A includes the LOTOS specification of the alternating bit

protocol used as an example in chapter 6.

Chapter 2 Literature Review

 5

Chapter 2 Literature Review

In the first part of this chapter, we give a brief introduction to a layered network architecture

model, an overview of protocol verification techniques, and we illustrate some relief strategies that

have been devised to cope with the state explosion problems of communicating finite state

machines models. In the second part, we present an introduction to LOTOS and we list some of its

existing verification tools.

2.1 Layered Network Architecture Model

A layered network architecture model (e.g. OSI/RM, [33]) is defined as a composition ofn

layers, each built upon its predecessor. The purpose of each layer is to offer certain services to the

higher layer. Layer N on one system and layer N on another system are calledpeer processes. Peer

processes, at layer N, communicate using so calledlayer N protocols.

In reality, the communication between peer processes is not done directly. Instead, each layer

passes data and control information to the layer immediately below it, until the physical layer is

reached where the actual communication occurs. The receiving physical layer, then, passes the

information to the layer above it until the desired layer is reached. In summary, layer N defines

services to layer N+1, using the services provided by layer N-1. In this case, layer N is called the

service provider for layer N+1.

Services are provided at service access points (SAPs), which are identified by unique

addresses. The SAPs of layer N are the places where layer N+1 can have access to the services

provided. Figure 2-1 shows the composition of layer N with layers N-1 and N+1.

Chapter 2 Literature Review

 6

Figure 2-1 A composition of three layers in a Layered model

The user of services is concerned withwhat services are being provided andwhere they are

provided, and nothow they are provided. For this reason, a protocol that defines some specific

services can be viewed as a black box whose services are fully described by sequences of messages

from and to the users. Such a description constitutes theservice specification of the protocol, while

the description of the exchange of messages among peer processes constitutes theprotocol

specification. The latter specification at a given layer, is the one that should be hidden from the

other layers.

2.2 Protocol Verification

In a layered network architecture model, the protocol verification process involves checking

Underlying Service Provider

Host A Host B

Layer N+1

Layer N

N SAPs

Layer N-1

N-1 SAPs

N+1 Protocol

N Protocol

Chapter 2 Literature Review

 7

for the following properties:

o syntactic properties: These are general design properties of a given protocol such as the

absence of the following errors [156]:state deadlock, unspecified receptions, non-executable

interactions, state ambiguity, channel overflow, tempo blocking,and unfairness. The

verification of syntactic properties, often calledprotocol validation, does not require

knowledge of the provided services.

o semantic properties: These are the intended sets of services that a given protocol needs to

provide to the protocol of the layer above. The verification of such properties requires the

service specification to be provided, and it is necessary to assume the correctness of the service

provided by the layer below. Such properties cannot be classified or generalized since they

depend on specific protocol or service specifications. Such verification has proved difficult to

automate.

The correctness of syntactic properties does not imply that the semantic properties hold, but the

failure of these may prevent the protocol from providing its specified service.Therefore, it is logical

to validate a protocol before verifying it.

2.3 Transition-Based Models

The transition-based models are mainly used to describe the control aspects of protocols. For

example, the message exchange between entities to establish connection and termination can be

best specified by these models. On the other hand, the specification of the data transfer aspects of

the protocol can be very complex and often impossible to describe by transition-based models.

These models can be classified into Communicating Finite State Machines models, and Petri-

Net models. The latter are not of concern in this paper.

The Communicating Finite-State Machines Model is one of the earliest and simplest methods

used for formal verification. Still now, it is the most widely used.

In this model, each communicating process is represented by a FSM. A CFSM can be formally

represented by a quadruple , where

• S is a finite set of states

• E is a finite set of events

• T is a function representing the set of transitionsT:

• is the initial state

S E T S0, , ,〈 〉

S E S→×

S0 S∈

Chapter 2 Literature Review

 8

The coupling between a pair of processes is done by using two implicit FIFO queues

connecting the inputs of one process to the outputs of the other process and vice versa.

A transition is either a message transmission (identified by a minus sign (-)) or a reception of

a message (identified by a plus sign (+)). Figure 2-2 illustrates a protocol with two processes P1

and P2. In the figure, initially, both processes are in their initial states, namely state 0.

Figure 2-2 A Protocol Specification in CFSMs

 The Extended Finite State Machines model [13] was introduced to simplify the representation

of the data flow. In this model, the number of states in an FSM can be reduced by the use of

variables. (e.g. a message sequence number can be represented by a single variable).

2.3.1 Relief Strategies for the State Space Explosion

Reachability analysis was first introduced by Sunshine in his Ph.D. thesis in 1975 [133] and

then developed further by Bochmann [13] and automated by West [125].

The idea behind this approach is to analyse all global states of the protocol which are reachable

from the initial state.The global states generated construct what is called areachability tree with

the initial global state as the root. The tree is guaranteed to be finite if all channels are bounded.

Reachability analysis has been proven to be one of the most effective methods for the

-4

-1

+2 +3

-3

+1

-2

+4

0

1

2

0

1

2

Process P1 Process P2

...

...

Channel C12

Channel C21

Chapter 2 Literature Review

 9

verification of communication protocols based on transition-based models. Both syntactic

properties and semantics properties can be verified using reachability analysis. However, the

applicability of this method is severely restricted by the so-calledstate space explosion problem.

That is, the reachability tree grows very rapidly with the complexity of the protocol, and in many

cases it can be unbounded. Therefore, it is often impractical to generate and analyse all reachable

global states.

Many researchers have proposed various strategies to overcome this problem. A survey of

some existing relief strategies can be found in [96]. In the following we give a brief description of

such strategies. It must be observed that none of these strategies resolves completely the problem.

Imposing Limitations and Restrictions

This relief strategy was proposed by West [148] and includes the following techniques:

• Limiting the capacity of the communicating channels.

• Limiting the classes of design errors under consideration.

• Restricting the use of many-valued parameters in the specification such as sequence numbers.

Decomposition/Partition the Protocols

The idea behind such techniques is to decompose/partition protocols into components, which

then can be validated separately [30][31][144]. This decreases the complexity of the protocol under

validation since the number of states in a protocol component is always smaller than the number

of states in the original protocol.

Projections

This strategy was proposed by Lam [92]. Instead of partitioning a protocols into components,

it constructs from the given protocol an image protocol for each of the functions that is intended to

be verified. The resulting protocol therefore is smaller than the original protocol, implying that the

complexity of the problem is reduced.

Transition Choice Rule

The aim of this technique is to control state exploration [12]. This is done by associating a

choice rule to each transition. Such a rule is a boolean condition whose value decides whether or

not the transition is to be executed during reachability analysis. For example, a rule may specify

that no transition can be executed more that once. For instance, appropriate choice rules can

eliminate infinite loops that may occur in the analysis.

Simulation

Chapter 2 Literature Review

 10

The simulation technique is used to control state exploration by selecting only one transition to

fire out of a global state[3]. The transition selection can be done by random choice or by assigning

priorities to each of the transitions, where the transition with the highest priority is always the one

chosen.

Fair Progress State Exploration

 Many strategies have been founded on the fair progress state exploration. This technique was

first proposed by Rubin and West [124], then extended by other researchers [59][157]. The idea is

to explore only those global state that are reachable when the two protocol entities proceed at the

same speed. The limitation of this technique is that it can only be applied on two-process protocols.

Maximal Progress State Exploration

This technique [62] is similar to the fair progress state exploration and is also limited to two-

process protocols. The analysis in this case is done in two phases, during each of which a different

process is forced to proceed at its maximal speed whenever possible. The advantage of this

technique with respect to the previous technique is that channel overflows can be detected.

Simultaneous Execution

This relief strategy is proposed by Itoh and Ichikawa [85]. It is limited to protocols defined by

FSMs where all cycles pass through the initial state. In each global state, all admissible transitions

of different processes are executed simultaneously to derive the next global state. Moreover, if

there are any potentially admissible transitions in the current state of a process P, then the technique

forces process P to wait in order that any of its admissible transitions may become executable later.

This technique explores a part of the global space. The interaction sequences explored in this

technique are calledreduced implementation sequences and are used to verify the protocol against

the given requirement specification.

Tree Protocol Validation

The tree (or acyclic form) protocol validation strategy [23][86] does not explore the global

states of a protocol, instead, it grows each process of the protocol into a tree or an acyclic form.

During the growing process, protocol design errors such as deadlocks, unspecified receptions, and

channel overflows can be detected.

Scatter Search

Holzmann designed a tool called Trace [73][72] that uses a search strategy called scatter search

to explore the global space. The search, which is basically a depth first search, is guided by

Chapter 2 Literature Review

 11

heuristics and is restricted by the depth limit. Examples of the heuristics used are:

• Restrict non-determinism to what is due to local behaviours and remove non-determinism due

to concurrency.

• Assign priorities among concurrent events. For example, internal events may have higher

priority than observable events.

• Limit the capacity of the communication channels.

• Minimize the FSM models of the protocol processes before verification.

An improved tool, called Supertrace, that uses a better memory management, is described in

[75].

Random Walk

West observed from his experience in validating the OSI session layer protocol, that exhaustive

validation is redundant, in the sense that the majority of errors detected are found many times in

different global states. He concluded that an analysis of a subset of the reachable global state may

be sufficient to identify a significant fraction of errors. West then proposed the random walk

validation strategy [149] to partially explore the global space.

This strategy can thus be viewed as a modified form of reachability analysis, in which only one

transition from the current global state (chosen at random) is executed instead of systematically

executing all the transitions in turn. The state exploration is stretched out continuously along a

single path without backtracking. As a result, a random walk through a global space does not

require a database to prevent multiple traversals of the same state. That is to say that an already

explored global state may be explored again. The major disadvantage of such a technique is that it

can be used to find errors and not to demonstrate freedom from errors. A systematic reachability

analysis is therefore preferable when it is possible.

Generation of Finite Graphs

Vuong et al. [145] have demonstrated how the global states of all non-FIFO protocols and of a

certain class of FIFO protocols can be represented as finite graphs, even if these protocols may

produce an unbounded number of messages in the transmission media. This approach solves a class

of problems which the conventional reachability analysis fails to deal with, due to the infinity of

the reachable global states induced by unbounded accumulation of messages in the media.

PROVAT Strategy

The PROVAT strategy [96] uses a heuristic search technique callederror first search similar

to thebest first search developed in the AI field. Heuristics can be applied at the three points in a

Chapter 2 Literature Review

 12

search process, namely, the points to decide which global states to expand next, to decide which

transition to fire next, and to decide which global states to discard. Heuristics depend on the

syntactic design error that needs to be detected.

Symbolic Execution

Symbolic execution techniques [22] are another form of state exploration. The objective of

such techniques is to compress the reachability tree, when variables are involved, by constructing

a so calledproof tree. A node in the proof tree represents a large number of nodes in the

reachability tree (i.e. a class of global states). The root of the tree represents the initial global state

and the leaves of the tree represent all possible final states.

Each state is analyzed to determine whether or not some syntactic properties hold. In addition,

the specifier can add his own assertions to express other desired properties such as liveness and

timing.

2.4 The Formal Description Technique LOTOS

We recall that LOTOS has two components: the data type component based on algebraic

Abstract Data Types (ADT) specification, as in ACT ONE [40][41], and the control component

based on Milner’s CCS [103] and Hoare’s CSP [71].

According to [97], the main characteristics of LOTOS are:

1- Formal definition: Formally defined syntax, static semantics, and dynamic semantics. In

particular, the static semantics are defined by an attributed grammar [84], and the dynamic

semantics are described operationally in terms of inference rules [18].

2- Process algebra: Following Milner’s ideas, the operational semantics are defined in such a way

that it is possible to prove a rich set of algebraic equivalence properties, based on several types

of equivalence relations. These properties can be used in order to prove equivalence or

correctness of specifications, as well as to transform the structure of a specification.

3- Interleave concurrency: Events are considered to be atomic, and thus the parallel execution of

two eventsa andb is defined as a situation of choice, wherea can occur beforeb, or vice versa.

Therefore, any LOTOS behaviour expression can be rewritten as an expression consisting of a

choice between behaviour expressions, each prefixed by a single action (i.e. expansion theorem

[103]).

4- Multiway synchronization: This concept is borrowed from Hoare’s CSP [71]. Interprocess

Chapter 2 Literature Review

 13

communication occurs by means of arendez-vous mechanism, called synchronization or

interaction. A synchronization will occur on a synchronization point, calledgate, only if all

processes that are committed to synchronize on that gate participate with a matching event.

5- Nondeterministic synchronization: Often more than one synchronization is possible. One only

will be executed according to a nondeterministic choice.

6- Executability: Because LOTOS semantics are defined operationally, it is possible to implement

these semantics in an interpreter. Although not every LOTOS specification if finitely

executable, those which are provide afast prototype of the entity specified.

7- Modularity and hiding: These concepts allow modular system descriptions with different levels

of abstraction suitable for stepwise decomposition of processes. By using parameterization,

these processes becomes reusable.

Different types of relations among LOTOS specifications are available and provide a

framework for determining semantic equivalences between different levels of refinement. Among

others, observational equivalence [103], testing equivalence [107], and the implementation relation

[25] are of most interest. The testing equivalence represents the black box approach. Two systems

are said to betesting equivalent if they present the same behaviour to the observer. The

implementation relation defines how implementations can be derived from a given specification.

Observational equivalence is a stronger relation than the other two.

We do not intend to provide a complete tutorial on the language LOTOS in this thesis. At least

two tutorials have been published in journals [18][97], and several other tutorials have enjoyed

some degree of distribution. A tutorial is also included in [84].

2.4.1 Data Type Component

Abstract Data Types (ADTs) are used to specify the intended effect of concrete data types by

defining their properties as a set of data objects with their manipulating operations. Because of their

formal base, the ADT specifications can serve as abstract, correct, and unambiguous references for

the implementation.

LOTOS, as an abstract specification language, uses an ADT based on ACT ONE formalism to

define its data types [40].

An ADT in ACT ONE consists of asignature and a set ofequations. The signature gives all

the syntactic knowledge of a type. It consists of:

Chapter 2 Literature Review

 14

a- Sorts: names of data carriers. A sort corresponds to the concept of

type in most programming languages (e.g. Pascal).

b- Operations: functions where each has a domain and a range

op: s1,s2,...,sn→ sr

whereop is the operator name, s1,s2,...,sn are the sorts of the operation's arguments, and sr is the

sort of its result. An infix operation can be declared as

op : s1,s2→ sr

The equations define the semantics of the operators. They have one of the following forms:

a- li = r i. An unconditional equation.

b- c => l = r. A conditional equation, wherec has the forml1 = r1,...,ln = rn

In Figure 2-3 we provide a definition for typenat_bool that contains two sorts,nat andbool for

natural numbers and booleans respectively and the declaration of some operators and their

equations. The natural numbers are represented by using the successor operatorssucc and0, where

the natural numbern is represented bysuccn(0), a short-hand for succ repeatedn times followed

by the argument0.

Chapter 2 Literature Review

 15

Figure 2-3 An Abstract Data Type

ACT ONE has the following features:

1- Modularization of specifications: This allows the reference to already existing specifications in

a library.

sortsnat, bool
opns

true
false
0
succ
or
<
==

:
:
:
:
:
:
:
:

-> bool
-> bool
-> nat
nat -> nat
bool, bool -> bool
nat, nat -> bool
nat, nat -> bool

type nat_boolis

eqns

false or C

forall C:bool, M,N:nat

ofsort bool

true or C

succ(M)
0
M

0

< succ(N)
< succ(M)
< 0

== 0

= C;
= true;

= M < N;
= true;
= false;

= true;

>= nat, nat -> bool
nat, nat -> nat;_mod_ :

0

succ(M)

== succ(M)

== succ(N)

= false;

= M == N;

M >= N = (N < M) or (M==N);

ofsort nat

(M >= N) => M mod N = (M - N) mod N;
(M < N) => M mod N = M;

endtype;

Chapter 2 Literature Review

 16

2- Combination of Specifications: Related operators and equations can be combined. This

concept is based on the fact that complex specifications can be split into smaller parts or vice

versa, while simple specifications may be combined (stepwise) to produce a large one.

3- Renaming of Specifications: Sorts and operations can be renamed without changing their

semantics.

4- Parameterization and Actualization of specifications: This is the concept of genericity. For

example, a general definition of aQueue can be specified using the element’s sort as a

parameter. A specificQueue definition (e.g. queue of integers, characters, etc.) can be obtained

by suitable actualization of the parameter.

Since ACT ONE allows nonconstructive specifications, the execution may end up into infinite

loops or deadlocks. Detecting and/or repairing such specifications may be impossible [44].

2.4.2 Control Component

A Specification in LOTOS can be seen as a process that possibly consists of interacting

subprocesses. Each subprocess may in turn consist of other subprocesses. Each process can be

imagined as a black box that is capable of synchronizing with other processes (its environment) via

common synchronization points calledgates, or it can perform internal, unobservable actions

denoted byi. The environment of a process is the other processes, plus an unspecified process

which is always ready to interact at any gate. Figure 2-4 shows two LOTOS processesP andQ

synchronizing with each other and the environment at gatec.

Figure 2-4 Two Synchronizing processes

The basic element of a process behaviour is theaction which represents asynchronization

between processes. An action consists of a gate name (interaction point), a list of events, and an

optional predicate that restricts the event values to those satisfying the predicate. An event can be

either!E, denoting the offering of the valueE, or?x:s, denoting that the action is ready to accept

a b

c

d

Process P Process Q

Chapter 2 Literature Review

 17

any value of sorts. For example:

g ?x:int !1 [x > 2]

is an observable LOTOS action which occurs at gateg and expects from the environment a value

for x of sortint restricted to be greater than two, while at the same time offering the value one.

As mentioned above, there is another type of action in LOTOS, the internal unobservable

actioni. This action does not interact with the environment.

Interprocess communication in LOTOS occurs when two or more processes, having arendez-

vous on a gate, agree on a value (or values) to be established. This is the case ofmatching actions.

Table 2.1 shows all possible types of interactions between two processes. When more than two

processes are involved, similar rules apply.eval(E) indicates the evaluation of the expressionE.

For example, if ProcessA is prepared to accept a natural number 4,5,6,7,8, or 9 at gateg, as

denoted by the following action:

g?X:Nat [(X >= 4) and (X <= 9)]

and at the same time ProcessB is ready to accept a natural number multiple of 3 at the same gate

g, as denoted by the action

g?X:Nat [(X mod 3) = 0]

then an interaction can occur at gateg, if the environment cooperates by offering a natural number

Process A Process B
Synchronization

Condition
Interaction

sort
Effect

g!E1 g!E2 eval(E1) =
eval(E2)

value matching Synchronization

g!E g?x:t eval(E)∈
domain(t)

value passing after
Synchronization:
x = eval(E)

g?x:t1 g?y:t2 t1 = t2 value generation after
Synchronization:
x = y = v where
v ∈ domain(t1)

Table 2.1: Types of Interactions

Chapter 2 Literature Review

 18

satisfying the above conditions, namely 6 or 9.

There exists a simplified version of the language LOTOS, called Basic LOTOS. It employs a

finite alphabet of observable actions identified by only the name of the gate where they are offered.

Synchronization of actions can be described without value communication. Basic LOTOS is

mainly used in the theoretical discussion of the language.

 Table 2.4 lists the most fundamental constructs, also called behaviour expressions, for Basic

and Full LOTOS. All these constructs are part of LOTOS syntax except the relabelling which

appears only in the dynamic semantics of LOTOS..

Table 2.2: LOTOS Behaviour Expressions

Description Basic LOTOS Full LOTOS

Inaction:B cannot interact
with the environment nor
execute internal actions

B = stop B = stop

Observable Action Prefix:
B interacts with the envi-
ronment on gateg then
behaves likeB1

B = g; B1 B = g d1..dn[P]; B1
where
di = !ti or ?xi:si

Internal Action Prefix:B
executes internally actioni
then behaves likeB1

B = i; B1 B = i; B1

Successful Termination:B
interacts with the environ-
ment on gateδ, with possi-
ble data offering, then
behaves likestop

B = exit B = exit(E1,..,En)
where
Ei is a term or
Ei = any si

Choice:B can either
behave likeB1 or B2

B = B1 [] B2 B= B1 [] B2

Disable:B behaves likeB1
until successful termination
unless disabled byB2

B = B1 [> B2 B= B1 [> B2

Enable:B behaves likeB1
unless it terminate success-
fully then it behaves like
B2. Data can be accepted
from B1.

B = B1>> B2 B= B1>>
 accept x1:s1,.., xn:sn in
 B2

Chapter 2 Literature Review

 19

Nested: B behaves like B1.
Used to resolve operator
priorities.

B = (B1) B = (B1)

Hide: B behaves likeB1 by
replacing any gate in
{ g1,..,gn} offered byB1 by
an internal actioni.

B = hide g1,..,gn in B1 B = hide g1,..,gn in B1

Parallel-Selected Synchro-
nization: B behave likeB1
andB2 simultaneously (in
parallel) with synchroniza-
tion on gatesg1,..,gn.

B = B1 |[g1,..,gn]| B2 B = B1 |[g1,..,gn]| B2

Parallel-Pure Interleaving:
B behaves likeB1 andB2
simultaneously (in parallel)
with no synchronization.

B = B1 |||B2 B = B1 |||B2

Parallel-Full Synchroniza-
tion: B behaves likeB1 and
B2 simultaneously (in par-
allel) with synchronization
on any observable action
that can be offered byB1 or
B2.

B = B1 || B2 B = B1 || B2

Relabelling:B behaves as
B’ by relabelling every
actionhi thatB’ may per-
form bygi. This construct
is not in the syntax of
LOTOS. It is constructed
dynamically during the
execution of inference
rules.

B =(B’)[g1/h1,..., gn/hn] (B)[g1/h1,..., gn/hn]

Table 2.2: LOTOS Behaviour Expressions

Description Basic LOTOS Full LOTOS

Chapter 2 Literature Review

 20

In Appendix A, a simplified LOTOS version of the Alternating Bit Protocol specification is

given [9]. This protocol provides a reliable, uni-directional data transfer service between two users,

User1 the source and User2 the sink. It uses an unreliable full duplex one place channel to transfer

protocol data units (PDUs) and acknowledgements. To ensure that the messages sent by User1 are

received in the correct order by User2, the protocol associates a sequence number, alternating

between 0 and 1, with the delivered (PDUs) and acknowledgements. Figure 2-5 illustrates the

overall composition of the Sender and the Receiver entities, associated with User1 and User2

respectively, and the unreliable channel. The gates used by the protocol to communicate with the

channel are hidden from the environment, i.e. the users.

Process Instantiation and
Recursion: B behaves like
the behaviour definition of
process P by replacing
(relabelling) any offered
formal gate with its corre-
spondent actual gate. In
Full LOTOS actual param-
eters can also be passed.

B = P[g1,..,gn] B = P[g1,..,gn](t1,..,tn)

Generalized Choice:B
behaves likeB1(x = t1) [] ..
B1(x = tn) whereti ∈ s

N/A B = choicex:s [] B1

Guard:B behaves likeB1 if
P is evaluated to true other-
wise it will behave like
stop

N/A B = [P] -> B1

Local Definition:B
behaves like B by substi-
tuting all occurrences ofxi
by ti.

N/A B = let x1=t1,..,xn=tn in B

Table 2.2: LOTOS Behaviour Expressions

Description Basic LOTOS Full LOTOS

Chapter 2 Literature Review

 21

Figure 2-5 Alternating Bit Protocol Structure

2.4.3 Inference Rules

The operational semantics of LOTOS behaviour expressions defines the labelled transition

relationBa→B', which means that the behaviour expressionB can perform the actiona then

behaves asB'.

Channel

send1

send2

recv2

recv1

User1 User2

Protocol

Sender Receiver

process sender[User1, send1, recv1, LOST](s_seq:Bit) :noexit := ...endproc
process receiver[r_user, send, recv](r_seq:Bit) :noexit := ...endproc
process channel [send1, recv1, send2, recv2, LOST] :noexit := ...endproc

endspec

where
process abp[User1,User2,send1,recv1,send2,recv2,LOST](s_seq:Bit):noexit:=

 (sender [User1, send1, recv1, LOST] (s_seq)
 |||
 receiver[User2, send2, recv2] (s_seq))

 |[send1, recv1, send2, recv2, LOST]|
 channel [send1, recv1, send2, recv2, LOST]

where

specification abp_service[User1,User2] :noexit
behavior

endproc

hide send1, recv1, send2, recv2, LOSTin
abp[User1, User2, send1, recv1, send2, recv2, LOST](0of Bit)

Chapter 2 Literature Review

 22

The relation→ is defined by means of axioms and inference rules [84], where axioms are

statements that are assumed to be valid, and inference rules derive new valid statements depending

on the validity of other statements. An inference rule has the form:

S1, S2, ...,Sn


S

which means ifS1 andS2 ... andSn are valid thenS is valid.

In order to define the inference rules for full LOTOS behaviour expressions, let:

• ti is a term (ADT value expression)

• eval(ti) denote the value of the termti.

• G denotes the set of the behaviour’s formal gates;

• g, gi ∈ G;

• i denotes an internal action;

• di is either

!Ei, denoting the offering of the valueeval(Ei)

 or

?xi:si, denoting that a value for the variablexi of sort si is expected;

• δ denotes the successful termination's action name;

• a, ai denotes any action;

• name(a) denotes the gate identifier of actiona.

• card(a) denotes the number of events offered by actiona.

• eventi(a) denotes the ith event of actiona.

• sort(E) denotes the sort of eventE.

• pred(a) denotes the associated predicate of actiona.

• a1 ≡ a2 denotesa1 matches a2, defined in Table 2.1.

• a1↑ a2 denotes the resulting action obtained from matchinga1 anda2, also defined in Table 2.1.

• [t1/x1,...,tn/xn] B denotes the result of the replacement of all occurrences ofx1,..,xn in B by

t1,...,tn respectively.

• (B)[gi/g] denote thatg is relabelled bygi for every action that may be performed byB on the

gateg.

Chapter 2 Literature Review

 23

.

Axioms and inference rules that define the labelled transition relationBa→B’ for full

LOTOS behaviour expressions are given in Table 2.4

Action a1 Action a2 a1 ≡ a2 a1↑ a2 Effect

g1!E1 P1 g2!E2 P2 g1= g2
sort(E1)=sort(E2)
eval(E1)=eval(E2)
eval(P1)=true
eval(P2)=true

g1!eval(E1) Synchronization

g1!E P1 g2?X:t P2 g1= g2
sort(E) = t
eval([v/X]P1)=true
eval(P2)=true

g1!eval(E) X=eval(E)

g1?X:t1 P1 g2?Y:t2 P2 g1= g2
t1=t2
eval([v/X]P1)=true
eval([v/Y]P2)=true

g1!v X=Y=v
v ∈ domain(t1)

Table 2.3: Matching Actions

Description Axioms/Inference Rules

Inaction:B cannot interact with the
environment nor execute internal
actions

No rules forstop

Observable Action Prefix:B inter-
acts with the environment on gate
g then behaves likeB1

gd1...dn[P] ; B1g!v1...!vn→[t1/y1,...,tm/ym]B1
if eval([t1/y1,...,tm/ym] P) = true, where

{ (t1,y1), ...,(tm,ym)} = { (t,x) | di = ?x:s, t ∈do-
main(s)}

vi = eval(t) if di = !t,
vi = eval(t) if di = ?x:s andt ∈domain(s)

Internal Action Prefix:B execute
internally actioni then behaves
like B1

i; B1i→B1

Successful Termination:B inter-
acts with the environment on gate
δ then behaves likestop

exitδ→stop
exit(E1,...,En)δ!v1...!vn→stop, where

vi=eval(Ei), if Ei is a term
vi∈domain(s), if Ei = any s

Table 2.4: LOTOS Axioms and Inference Rules

Chapter 2 Literature Review

 24

Choice:B can either behave like
B1 or B2

B1a→B1’


B1 [] B2a→B1’

B2a→B2’


B1 [] B2a→B2’

Guard:B behaves likeB1 only if
eval(P) =true

B1a→B1’, eval(P)=true


[P] ->B1 a→B1’

Local definition:B behaves likeB1
by replacing all occurrences of
x1,...,xn by t1,...,tn respectively

[t1/x1, ...,tn/xn]B1a→B1’

let x1:s1=t1, .. xn:sn=tn in B1 a→B1’

Summation on values:B behaves
like B1 for any valuet ∈do-
main(s)

[t/x]B1a→B1’, t ∈domain(s)


choicex:s [] B1 a→B1’

Disable:B behaves likeB1 unless
disabled byB2

B1a→B1’, name(a)≠ δ


B1 [> B2a→B1’ [> B2

B1δ!v1...!vn→B1’


B1 [> B2δ→B1’

B2a→B2’


B1 [> B2a→B2’

Enable:B behaves likeB1 unless it
terminate successfully then it
behaves likeB2

B1a→B1’, name(a)≠ δ

B1>> accept x1:s1..xn:sn in B2a→

B1’ >> accept x1:s1..xn:sn in B2

B1δ!v1...!vn→B1’


B1>> accept x1:s1..xn:sn in B2i→
[v1/x1,...,vn/xn]B2

Nested:B behaves likeB1. Used to
resolve priorities.

Ba→B’


(B)a→B’

Description Axioms/Inference Rules

Table 2.4: LOTOS Axioms and Inference Rules

Chapter 2 Literature Review

 25

Hide:B behaves likeB1 by replac-
ing any action with a gate in
{ g1,..,gn} offered byB1 by an
internal actioni.

B1a→B1’, name(a)∉{g1,..,gn}


hide g1,..,gn in B1a→hide g1,..,gn in B1’

B1a→B1’, name(a)∈{g1,..,gn}


hide g1,..,gn in B1i→hide g1,..,gn in B1’

Parallel-Selected Synchroniza-
tion: B behave likeB1 andB2
simultaneously (in parallel) with
synchronization on gatesg1,..,gn.

B1a→B1’, name(a)∉{g1,..,gn, δ}


B1 |[g1,..,gn]| B2a→B1’ |[g1,..,gn]| B2

B2a→B2’, name(a)∉{g1,..,gn, δ}


B1 |[g1,..,gn]| B2a→B1 |[g1,..,gn]| B2’

B1a1→B1’, B2a2→B2’,
name(a1)= name(a2) ∈{g1,..,gn, δ} anda1≡a2


B1 |[g1,..,gn]| B2a1↑a2→B1’ |[g1,..,gn]| B2’

Parallel-Pure Interleaving:B
behaves likeB1 andB2 simulta-
neously (in parallel) with no syn-
chronization.

B1 |[]| B2a→B’


B1 ||| B2a→B’

Parallel-Full Synchronization:B
behaves likeB1 andB2 simulta-
neously (in parallel) with synchro-
nization on any observable action
that can be offered byB1 or B2.

B1 |[g1,..,gn]| B2a→B’


B1 || B2a→B’

where{g1,..,gn} is the set of all possible gates of
B1 and B2.

Relabelling:B behaves asB’ by
relabelling every actionhi thatB’
may perform bygi. This construct
is not in the syntax of LOTOS. It is
constructed dynamically.

Ba→B’, name(a)∉{h1,..,hn}

(B)[g1/h1,..., gn/hn]a→B’[g1/h1,..., gn/hn]

Bgd1...dn→B’, g =hi ∈{h1,..,hn}


(B)[g1/h1,..., gn/hn]gid1...dn→
B’[g1/h1,..., gn/hn]

Description Axioms/Inference Rules

Table 2.4: LOTOS Axioms and Inference Rules

Chapter 2 Literature Review

 26

2.4.4 An Example

Here, we demonstrate how the inference rules can be applied to obtain the possible transitions

of a given behaviour expression.

Suppose the following process definition exists:

process P[a,b]:noexit:=
a;b;P[a,b]
[]
b;a;P[a,b]

endproc
and Let B=

P[g1,g2] |[g2]| P[g2,g3]

1−> Find alltrans and B’ such that
P[g1,g2] |[g2]| P[g2,g3] -trans→B’

By applying the inference rules of selected synchronization we obtain:
P[g1,g2] -trans-> B1, P[g2,g3] -trans→ B2 , if name(trans) ∈ {g2, δ }


P[g1,g2] |[g2]| P[g2,g3] -trans→ B1 |[g2]| B2

P[g1,g2] -trans-> B1, if name(trans) ∉ {g2, δ }


P[g1,g2] |[g2]| P[g2,g3] -trans→ B1 |[g2]| P[g2,g3]

and
P[g2,g3] -trans-> B2, if name(trans) ∉ {g2, δ }


P[g1,g2] |[g2]| P[g2,g3] -trans→ P[g1,g2] |[g2]| B2

2-> To satisfy 1, we have to find all
P[g1,g2] -trans1→ B1

and P[g2,g3] -trans2→ B2
We have: (a)

Process Instantiation and Recur-
sion:B behaves like the behaviour
definition of process P by replac-
ing (relabelling) any offered for-
mal gate with its correspondent
actual gate. In Full LOTOS actual
parameters can also be passed.

([t1/x1,...,tm/xm]B)[g1/h1,..., gn/hn]a→B’


P[g1,..,gn](t1,...,tm)a→B’

iff there exists a process definition:
PP[h1,..,hn](x1:s1..xm:sm) := B

Description Axioms/Inference Rules

Table 2.4: LOTOS Axioms and Inference Rules

Chapter 2 Literature Review

 27

(a;b;P[a,b] [] b;a;P[a,b]) [g1/a,g2/b] -trans→ B1


P[g1,g2] -trans→ B1
and (b)

(a;b;P[a,b] [] b;a;P[a,b]) [g2/a,g3/b] -trans→ B2


P[g2,g3] -trans→ B2
3-> To satisfy 2(a) we have to find all

(a;b;P[a,b] [] b;a;P[a,b]) [g1/a,g2/b] -trans→ B1
We have:

 a;b;P[a,b] [] b;a;P[a,b] -g-> B1’


(a;b;P[a,b] [] b;a;P[a,b])[g1/a,g2/b] -g’-> (B1’)[g1/a,g2/b]

g’ = g if g ∉ {g1,g2}

g’ = g1 if g = a

g’ = g2 if g = b

4-> Find all
a;b;P[a,b][] b;a;P[a,b] -trans→ B1’

We have:
 a;b;P[a,b] -trans→ B1’


 a;b;P[a,b][] b;a;P[a,b] -trans→ B1’

and
 b;a;P[a,b] -trans→ B1’


 a;b;P[a,b][] b;a;P[a,b] -trans→ B1’

5-> By the axiom of prefix behaviour we can obtain directly the following transitions:
b;a;P[a,b] -b→ a;P[a,b]
a;b;P[a,b] -a→ b;P[a,b]

4<- Back to step 4, we now can obtain the following transitions:
a;b;P[a,b][] b;a;P[a,b] -a→ b;P[a,b]
a;b;P[a,b][] b;a;P[a,b] -b→ a;P[a,b]

3<- Back to step 3, the following transitions can then be obtained:
(a;b;P[a,b][] b;a;P[a,b]) [g1/a,g2/b] -g1→ (b;P[a,b])[g1/a,g2/b]

(a;b;P[a,b] [] b;a;P[a,b]) [g1/a,g2/b] -g2→ (a;P[a,b])[g1/a,g2/b]

2<- In step 2(a) above we have:
P[g1,g2] -g1→ (b;P[a,b])[g1/a,g2/b]

P[g1,g2] -g2→ (a;P[a,b])[g1/a,g2/b]

are valid transitions.

Chapter 2 Literature Review

 28

Similarly for step 2(b) we can obtain:
P[g2,g3] -g2→ (b;P[a,b])[g2/a,g3/b]

P[g2,g3] -g3→ (a;P[a,b])[g2/a,g3/b]

1<- Then from the initial behaviour expression we can obtain the following transitions:
P[g1,g2] |[g2]| P[g2,g3] -g2→

(a;P[a,b])[g1/a,g2/b]

|[g2]|
(b;P[a,b])[g2/a,g3/b]

P[g1,g2] |[g2]| P[g2,g3] -g1→
(b;P[a,b])[g1/a,g2/b]

|[g2]|

P[g2,g3]

and
P[g1,g2] |[g2]| P[g2,g3] -g3→

P[g1,g2]
|[g2]|

(a;P[a,b])[g2/a,g3/b]

The behaviour tree of B= P[g1,g2] |[g2]| P[g2,g3] is infinite. See Figure 2-6 .

Chapter 2 Literature Review

 29

Figure 2-6 An Infinite Behaviour Tree

2.4.5 Relief Strategies for the State Space Explosion

As mentioned earlier, the state space of a LOTOS specification is defined as a behaviour tree

that can be very large and often infinite, e.g. the tree in Figure 2-6 . The existing LOTOS

verification methodologies use different techniques to cope with LOTOS state space explosion.

Unfortunately, there is no survey on such techniques in the literature. The following is a brief

description of these techniques.

Step-by-Step Execution

In step-by-step execution [63][66][98][138], the user can explore the behaviour tree by

choosing, from the current behaviour, one of the possible next actions and provide values if

B = P[g1,g2] |[g2]| P[g2,g3]

g1 g2

g2 g1

g1

g2

g2

g1

g1 g2

g2
g1

P[g1,g2]

g2 g3

g3 g2

g2

g3

g3

g2

g2 g3

g3
g2

P[g2,g3]

g2

g2

g1

g1g2
g1

g1 g1

g3

g3
g3

g3

Chapter 2 Literature Review

 30

required by the action. This operation can be repeated under user guidance. Doing so, the user can

determine whether or not the exercised branches (sequences of actions) conform to the intended

behaviour. Obviously, this technique is tedious if one wishes to execute the specification for more

than few dozen steps.

Weighted/Probabilistic Execution

The idea behind this technique is to assign weights to the operators in the given LOTOS

specification. The system then traverses the behaviour tree by automatically selecting an action at

each level. The selection depends on the weight, accumulated during the derivation, of each offered

action, for example, the weight can be interpreted as priority or probability. Ohmaki et al. have

adopted this technique in their LOTOS tool environment LIpS [108].

The drawback of this technique is the selection and the representation of these weights. In

LIpS, the weights are stated as special comments in the specification.

Fair Execution

In this technique, similar to the previous technique, the system traverses the behaviour tree by

automatically selecting an action at each level. The selection, on the other hand, is based on the

underlying fairness assumptions. Wu and Bochmann have shown in [154] how fair execution

model for Basic LOTOS can be constructed based on three fairness concepts defined for CSP [89],

namely process fairness, guard fairness, and channel fairness.

Random Walk Execution

The state exploration is done by randomly selecting an action at each level. This technique can

also be considered as a fair execution technique. This technique was used in [67] to obtain

execution paths for distributed algorithms specified in LOTOS.

Interleave Expansion

The interleave expansion technique, proposed by Quemada in [116], generates a representation

of the transition system of LOTOS where interleaved behaviours are represented in a compressed

form. This representation provides a size reduction with respect to the representation of the plain

state space. The reduction may be of many orders of magnitude for specifications which make

extensive use of interleaving.

The major drawback of this technique is that an extension of LOTOS is necessary in order for

the interleaved expansion to be possible, since the compressed form is represented in term of new

parallel composition constructs.

Chapter 2 Literature Review

 31

Symbolic Execution

The idea behind symbolic execution techniques [1][115] is to produce a compact behaviour

tree for a given LOTOS specification by using symbolic behaviour states which represent a large

number of explicit behaviour states. In particular, parameters and variables are used instead of

actual values. Loops can be found by detecting if a current behaviour state was previously

encountered. Symbolic behaviour trees can be used as a base for verification techniques such as

model checking [60]. The problems with symbolic execution techniques is that in particular cases

the growth of the behaviour tree is still too quick, and the memory consumption is very high, since

all encountered behaviour states must be stored in order to detect loops.

ADT Narrowing Techniques

The purpose of ADT narrowing is to find solutions for a given condition (goal) or to determine

that there is no solution.This technique is useful to prune branches in the symbolic behaviour trees

associated with unsatisfiable predicates [39]. More discussion on this approach is given in the next

chapter.

Behaviour Transformation

Since LOTOS is based on rigorous mathematical foundations, behaviour expressions may be

transformed into other equivalent expressions using equivalence laws, based on the concept of

bisimulation equivalence [84]. Such laws can be used to simplify LOTOS expressions and

therefore reduce the state space, or to demonstrate that two behaviour expressions are equivalent.

Such proofs can be useful for finding loops during the construction of symbolic behaviour trees[1],

i.e. two behaviour expressions are equivalent if both can be transformed, using the same set of

laws, into an identical behaviour.

A number of equivalence laws are known. A short list follows:

• B1 [] B2 = B2 [] B1

• B1 [] (B2[] B3) = (B1 [] B2) [] B3

• B [] stop = B

• B1 | B2 = B2 | B1 where ’|’ denotes any parallel operator using the

same instance throughout the law

• B1 | (B2| B3) = (B1 | B2) | B3 where ’|’ denotes any parallel operator using the

same instance throughout the law

Chapter 2 Literature Review

 32

• exit(...) |stop = stop where ’|’ denote any parallel operator

• stop >> B = stop

• B [> stop = stop [> B = B

 Other algebraic laws for weak bisimulation congruence and for testing congruence can be

found in [84].

Compilation/Translation Techniques

These techniques translate LOTOS specifications into well other known models, such as Petri

nets or Finite State Machines [57][100]. The existing verification tools for the latter can then be

applied.

Unfortunately, such techniques may not apply to LOTOS specifications with infinite behaviour

trees, due to the fact that all behaviour states need to be captured in order to have a complete

translation.

2.4.6 Existing Validation and Verification tools for LOTOS

Many tools exist for LOTOS that assist in specification, simulation, validation, verification,

implementation, and testing.

AUTO

AUTO [100] is a verification system for distributed programs. Its functionalities are the

following:

• LOTOS to Automaton Translation: Translates Basic LOTOS specifications (or other

specifications written in an algebraic process algebra such as CCS and SCCS) into an

automaton representing the behaviour of the specification.

• Behaviour Transformation: An Automaton can be reduced and compared with another

automaton with respect tostrong andweak equivalence relations.

• Step-by-Step Execution: An Automaton can be explored manually.

• Graphical representation: The results are displayed using a tool called AutoGraph.

To guarantee that the produced automaton is finite, AUTO applies certain constraints on the

generation of the automaton. For example, the rules avoid dynamic generation of processes inside

recursive definitions.

 In [21], the authors describe a verification of a point-to-point sliding window protocol with

non-acknowledged messages using AUTO.

Chapter 2 Literature Review

 33

CÆSAR.ADT

CÆSAR.ADT [56] is a compiler that translates the ADT definitions of LOTOS into a C

program. The output of CÆSAR.ADT is a C library containing a C type (resp. function) for each

sort (resp. operation) defined in a LOTOS program.

CÆSAR.ADT allows sorts and operations to be declared “external”, which means that the

implementation in C of those sorts and operations is provided by the user, instead of being

generated automatically by the tool.

CÆSAR.ADT, however, does not accept all ADT constructs, for example parameterized types

are not considered. It also imposes restrictions on the subset of accepted ADT constructs. In

addition, special comments must be used in the ADT definitions to identifyconstructors (primitive

operations) and to provide correspondence between the names of LOTOS objects and the names

of C objects implementing them.

CÆSAR

CÆSAR [55][57] is a tool that uses acompilation technique to verify LOTOS specifications.

CÆSAR translates the source specification, accompanied by a C implementation of the abstract

data types, either written manually or generated by CÆSAR.ADT, into an extended Petri net and

a graph. Existing validation and verification tools for Petri nets can then be applied. The graph, on

the other hand, describes all possible state transitions. The translation of a LOTOS program into a

graph is summarized by the following four steps:

• Theexpansion phase translates the LOTOS program into an equivalent SUBLOTOS program

in a bottom-up way. SUBLOTOS is a process algebra which can be viewed as a simplified

subset of LOTOS.

• Thegeneration phase translates SUBLOTOS behaviour expressions into an intermediate form,

callednetwork. The network is defined by: acontrol part, represented as a Petri net, and adata

part, consisting of global and typed variables. These variables are accessed and modified by

actions attached to the transitions.

• Theoptimization phase applies transformations to the network to reduce the number of places

and transitions. The transformation is applied on the control part using Petri net structural

analysis methods, and on the data part using data-flow analysis.

• Thesimulation phase performs reachability analysis and generates a graph corresponding to

the given network. The edges of the graph are labelled byactions, possibly accompanied by a

list of values sent or received during the rendez-vous communication. The states of the graph

are labelled by the values of the program (specification) variables.

Chapter 2 Literature Review

 34

The drawbacks of CÆSAR is that it disallows recursive process calls in some cases, in order

to prevent the generation of infinite graphs. Also, SUBLOTOS dynamic semantics is free from

dynamic gate relabelling. This implies that CÆSAR accepts only LOTOS specifications where

static relabelling (i.e. substitution of formal gates by actual gates) does not change the dynamic

semantics of the specification.

CÆSAR was used for the verification of an atomic multicast protocol [5], a subset of the FIP

protocol [4], and an overtaking protocol for cars [42].

ALDÉBARAN

ALDÉBARAN [45][46] is a tool for performing comparison and reduction of graphs according

to various bisimulation equivalence relations and preorders, such as observational equivalence

[103] and safety equivalence [120].

Graph comparison allows to compare two graphs with respect to one of various equivalences

and preorder relations. The result of the comparison (true or false) is obtained as output. In case of

failure, ALDÉBARAN provides diagnostic sequences.

Graph reduction, on the other hand, allows to generate the smallest graph which is equivalent

to the original graph with respect to a given equivalence relation.

The tool uses two approaches for determining whether two graphs are strongly bisimilar. The

first approach computes successive refinements on an initial partition of the states of the graph,

until stabilization is reached. The resulting partition coincides exactly with the equivalence classes

of strong bisimulation. Two graphs are strongly bisimilar if and only if their stabilized partitions

are identical. This approach can be applied to weaker bisimulation-based relations by modifying

each graph, taking into account abstraction criteria, and then computing the stabilized partitions

with respect to strong bisimulation. The major drawback of this approach is that the application of

abstraction criteria is done by adding new transitions to the graph. Therefore, the number of

transitions may become very large for the available memory space.

The second approach consists in comparing two graphs “on the fly”. It was used for the

verification of Milner’s scheduler, Datalink protocol, and rel/RELfifo protocol[47]. However, this

approach only performs comparisons and not reductions.

CLÉOPÂTRE

CLÉOPÂTRE verifies a graph, representing a LOTOS behaviour tree generated by CÆSAR,

against a set of formulas expressed in the branching-time temporal logic LTAC[114]. It includes a

Chapter 2 Literature Review

 35

model checking module [120] and an explanation module [117], which provides diagnostics-based

sequences extracted from a graph, generated from the source specification, when a formula is not

valid. The subset of LTAC formulas used for the verification of LOTOS programs is described by

the following grammar:

T | init | enable(a)| after(a)| sink| f ∧ g | ¬f | inev[f]g | pot[f]g

wheref andg are formulas anda is a label attached to a transition of the graph. The following is

the definition of these formulas:

• any state satisfiesT;

• the initial state of the program satisfiesinit;

• a states satisfiesenable(a) if it is possible to execute action a from states;

• a state satisfiesafter(a) if it can only be reached immediately after the execution of actiona;

• a state satisfiessink if it has no outgoing transitions;

• a state satisfiesf ∧ g if it satisfiesf andg;

• a state satisfies¬f if does not satisfyf;

• a states satisfiesinev[f]g if, for every execution of the program froms, f is true untilg becomes

true;

• a states satisfies pot[f]g if there exist an execution froms such thatf is true untilg becomes true.

This tool produces extremely large models, although they are generated and stored efficiently

For example the alternating bit protocol results in several thousands of states, depending on the

number of messages one wants to consider.

CÆSAR, ALDÉBARAN, and CLÉOPÂTRE were combined in one toolbox [48]. Figure 2-7

illustrates the toolbox architecture: a protocol is checked against its expected service, expressed in

LTAC, using the CLÉOPÂTRE tool after the translation of the LOTOS expressions into graphs

using CÆSAR tool. ALDÉBARAN is applied on specifications in LOTOS (translated into

graphs). In [48], this technique is applied to verify therel/RELfifo protocol [130] that supports

atomic communication between a transmitter and several receivers.

Chapter 2 Literature Review

 36

Figure 2-7 Architecture of CÆSAR, ALDÉBARAN, and CLÉOPÂTRE toolbox

LOLA

 LOLA (LOtos LAboratory) [115] is a transformation tool used in validation and in design by

stepwise refinement. It uses asymbolic execution technique to generate a recursive behaviour tree

of a given LOTOS specification (i.e. it detects behaviour already encountered) by using the so-

calledparameterized expansion. LOLA also provides the means to translate the symbolic tree into

LOTOS

CÆSAR

protocol graph

LOTOS

service graph

ALDÉBARAN

result diagnosis

CLÉOPÂTRE

LTAC

PROTOCOL SERVICE

CÆSAR.ADT
CÆSAR

CÆSAR.ADT

Chapter 2 Literature Review

 37

a monolithic style LOTOS specification.

A recent version of the tool also implements theinterleave expansion discussed in section

2.4.5.

The transformation of an alternating bit protocol specified in LOTOS is given in [115]. [110]

describes the testing functionalities of LOLA based on the definition of testing equivalence in

[107].

SMILE

SMILE (SyMbolic InteractiveLotosExecution) [140][39] is a full LOTOS symbolic

simulation tool. It includes an implementation of an Abstract Data Typesnarrower algorithm

based on alazy evaluation strategy. Using the narrower, the state space (behaviour tree)

exploration can be done symbolically, which means that behaviours are studied without

instantiating the variables. The advantage of this symbolic technique with respect to previous

existing ones, such as SELA technique described below or LOLA above, is that branches in the

tree associated with unsatisfiable predicates can be detected and pruned. Details about the

implementation of the narrower are given in [153].

To avoid infinite execution, the implementation of SMILE restricts the number of values for

goal variables and the number of axioms applications. Also recently, they added an extra

functionality to their system, similar to ours, that uses inference rules directed by static information

[39]. A comparison of their technique to ours is given in Chapter 7.

SQUIGGLES

SQUIGGLES [19] is a tool that verifies strong, weak and testing equivalences between Basic

LOTOS specifications. [20] describes some applications and the performance of SQUIGGLES.

LIpS

LIpS (LOTOSInterpretationServer) [108], is a LOTOS interpretation server that treats

applications as clients. It provides an automatic simulation of a LOTOS specification with non-

determinism.

The simulation is done by implementing the standard LOTOS inference rules includingweight

information. This information is specified by the user in the specification as special comments.

Depending on different interpretations of the weights, non-determinism is resolved and the

simulation proceeds.

Chapter 2 Literature Review

 38

To deal withfairness, the weights described in a process definition may change dynamically.

For example, if the number of selected events offered by a process, say A, is greater than the

number offered by another process, say B, the weights of events offered by A are decreased by

10%. Therefore, the probability to select events from B is increased.

During simulation, LIpS can also assign values to variables specified by the user using, again,

special comments.

Lite

Lite (Lotosphere IntegratedTool Environment) [141], is an integrated tool environment that

contains the following functions:

• Syntax/Static Semantics analysis.

• Simulation: Lite has adopted SMILE as a simulation tool, see above. It allows step-by-step and

automatic symbolic exploration of the specification’s behaviour tree. The simulation includes

a narrowing technique to resolve conflicting predicates.

• Compilation: this tool translates a subset of LOTOS processes and abstract data types into C

language. Certain design decisions that cannot be represented in LOTOS can be added in the

specification as special comments called annotations.

• Transformation: it supports a number of correctness preserving transformations, such as:

- Regrouping of parallel processes: is a transformation that takes an expression consisting of

a number of processes composed with parallel operators and transforms these into an

expression, with strong bisimulation equivalent behaviour, in which the processes are

grouped differently.

- Bipartition of functionality: is a transformation that splits a single process into two

processes communicating in a prescribed configuration. The original and the resulting

processes are weak bisimulation equivalent.

• Verification: Lite is able to reduce Basic LOTOS expressions according to a number of

equivalences.

• Testing: Lite contains a tool to derive canonical testers for Basic LOTOS specifications based

on the CO-OP method.

• Graphical Interface: based on the X-window system.

ELUDO

The university of Ottawa has developed an analysis environment, called ELUDO

(EnvironmentLOTOS de l’UniversitéD’Ottawa) [61], for LOTOS specifications. ELUDO is

Chapter 2 Literature Review

 39

made up of the following tools:

• Syntax and Static Semantics Analyzer [98], checks the LOTOS specification source for its

syntax and static semantics according to [84], and, if it is found to be correct, an equivalent

internal Prolog form is generated. The latter form is used by the following tools.

• ISLA [66], an interactive interpreter that simulates the behaviour of a LOTOS specification.

This allows the designer to monitor and trace some execution sequences. ISLA provides a wide

range of services [63], such as step-by-step execution, symbolic execution, defining constants

for repeated values, resuming execution at any check point, and saving the state of the

simulation for later execution. Figure 2-8 illustrates a step-by-step execution trace from the

Alternating Bit Protocol specification given in Appendix A. Each action is associated with its

sequential order in the action menu, and with a list of line numbers in the original specification

from which the action was formed. The hidden actions are shown for analysis reason. In this

example, three different user data messages are defined as constants, namely, $M1, $M2 and

$M3.

Chapter 2 Literature Review

 40

Figure 2-8 Step-by-Step Execution sample

• SELA [1], a tool that generates symbolically the behaviour tree of a given LOTOS

specification and detects recursion (i.e. if a behaviour is already encountered). SELA also

provides the means to translate the symbolic tree into a monolithic style LOTOS specification.

• LMC[60], a model checker for LOTOS that is capable of verifying branching temporal logic

properties on the graph model generated by SELA. The properties are expressed in branching

temporal logic CTL [32]. The set of CTL formulas used by LMC for the verification of LOTOS

specifications is described by the following grammar:

¬f | f ∧ g | AX(f)| EX(f) | A[f υ g] | E[f υ g]

wheref andg are formulas anda is a label attached to a transition of the graph. The following

is the definition of these formulas:

abp_servive[User1,User2]

(* First Message with sequence 0. Normal delivery *)
1 User1 ?$M1:Data [50]
1 i (hiding: send1 !makepdu($M1,0):Mess) [57,91]
2 i (hiding: recv2 !makepdu($M1,0):Mess [is_pdu(makepdu($M1,0))]) [75,92]
1 i (hiding: send2 !makeack(0):Mess) [77,91]
1 User2 !$M1:Data [78]
2 i (hiding: recv1 !makeack(0):Mess [is_ack(makeack(0))]) [65,92]

(* Second Message with sequence 1. Two timeouts occurred due to the lost of PDU *)
(* and ACK.The proper ACK received after sending the same PDU three times. *)
1 User1 ?$M2:Data [50]
1 i (hiding: send1 !makepdu($M2,1):Mess) [57,91]
1 i (specified explicitly) [94]
1 i (hiding: TIMEOUT !makepdu($M2,1):Mess) [67,94]
1 i (hiding: send1 !makepdu($M2,1):Mess) [57,91]
2 i (hiding: recv2 !makepdu($M2,1):Mess [is_pdu(makepdu($M2,1))]) [75,92]
1 i (hiding: send2 !makeack(1):Mess) [77,91]
1 User2 !$M2:Data [78]
1 i (specified explicitly) [94]
1 i (hiding: TIMEOUT !makeack(1):Mess) [67,94]
1 i (hiding: send1 !makepdu($M2,1):Mess) [57,91]
2 i (hiding: recv2 !makepdu($M2,1):Mess [is_pdu(makepdu($M2,1))]) [75,92]
1 i (hiding: send2 !makeack(1):Mess) [81,91]
2 i (hiding: recv1 !makeack(1):Mess

(* Ready to deliver the Third Message *)
1 User1 ?$M3:Data [50]

Chapter 2 Literature Review

 41

- AX(f) means thatf holds in every immediate successor of the current state.

- EX(f) means thatf holds in some immediate successor of the current state.

- A[f υ g] means that for every computation path, starting at the current state, there exists a

sequence of transitions satisfyingg at last, andf for all the other transitions.

 - E[f υ g] means that for some computation path, starting at the current state, there exists a

sequence of transitions satisfyingg at last, andf for all the other transitions.

ELUDO’s tools enable a design methodology involving several phases, see Figure 2-9 :

1- Initial phase: The designer collects the informal requirements.

2- Specification phase: The requirements are specified in LOTOS and by means of temporal logic

properties.

3- Checking phase: Once the LOTOS specification is written, the syntax and static semantics

analysis is performed. The dynamic semantics are then checked by using the interpreter ISLA.

4- Expansion phase: This phase deals with the generation of the symbolic behaviour tree.

5- Verification phase: At this point the model checker LMC is used to determine if the set of

temporal logic properties, provided in the specification phase, is valid for the system specified

by exploring the tree generated in the previous phase.

Chapter 2 Literature Review

 42

Figure 2-9 ELUDO: A Validation Environment

The environment also provide X-Window graphical interface, called XELUDO.

Requirements

Syntax and
Static Semantics
Analyser

ISLA

Internal Form

SELA

Internal Form

LMC
Symbolic Tree

Evaluation

LOTOS Specification

Chapter 3 Overview of Goal-Oriented Execution

43

Chapter 3 Overview Of Goal-Ori-
ented Execution

3.1 Introduction

Verification of protocols and other distributed systems specified in LOTOS requires the

analysis of their behaviour trees. As we have discussed in chapter 2, the construction of such trees

is restricted by the state space explosion problem. We have also discussed the various techniques

used to overcome this problem.

In this chapter, we propose a formal search technique used to explore LOTOS behaviour trees,

calledGoal-Oriented Execution. In this technique, LOTOS specifications can be verified by means

of derivingtraces, i.e paths in the behaviour tree, satisfying certain properties. This is shown in

Figure 3-1, whereB represents the specification under verification,P is the trace property to be

satisfied, andt is a trace derived fromB and leading toB’, i.e. B=t⇒B’, such thatP(t) holds.

Figure 3-1 A Black Box View of Goal-Oriented Execution

Goal-Oriented Execution

B: LOTOS Behaviour
P: Property {(t,B’) | B=t⇒B’, P(t)}

Chapter 3 Overview of Goal-Oriented Execution

44

To avoid the derivation of unwanted traces, and therefore to cope with the state explosion

problem, the inference system is guided by static information, calledstatic derivation paths

(SDPs). An SDP locates where, in the abstract syntactic tree of the current behaviour, the given

trace property can possibly hold. As a result, this inference system, calledguided-inference system,

executes only parts of the specification to generate the desired traces.

The derived traces are calledvariable traces because they may be associated with free variables

and predicates. To assign values to these variables satisfying all predicates, or to determine that

some predicates have no solution for any given values, the assistance of anarrower tool is needed.

Narrowing [118] is a technique for finding solutions to a goal in abstract data types.

Goal-oriented execution is, therefore, composed of:

1- A static analyzer: determines the possible static derivation paths.

2- A guided-inference system: derives traces guided by SDPs.

3- A narrower: a tool to find solutions to a goal expressed as an abstract data type expression.

The overall structure of the goal-oriented execution is illustrated in Figure 3-2.

Figure 3-2 A Structural View of Goal-Oriented Execution

The remaining of this chapter is organized as follows. In the next section, we provide general

definitions such as conventions and trace operations that will be used throughout the thesis. An

inference system that define trace derivation is presented in section 3.2. In the following section,

Goal-Oriented Execution

Static Analyser Guided-Inference Narrower
System

Chapter 3 Overview of Goal-Oriented Execution

45

section 3.4, the definition of the trace properties is given. The components of goal-oriented

execution, namely static analyser, guided-inference system and the narrower, are explained in

more details in section 3.5, 3.6 and 3.7 respectively. Finally, in section 3.8, we present the goal-

oriented execution algorithm.

3.2 General Definitions

3.2.1 Conventions

The following conventions are used in this paper:

• A is the collection of all possible observable LOTOS action denotations.

• B is the collection of all possible LOTOS behaviour expressions.

• G is the collection of all possible LOTOS gates including the gate name of an action performed

by anexit construct (δ).

• B, B’, Bi ∈ B, stand for LOTOS behaviour expressions.

• g, gi, h, hi ∈ G, stand for gates or basic actions (actions with no events and no predicate).

• Lower case lettersa, b, c, excepti, stand for observable or unobservable actions, unless

otherwise specified.

• i stands for an unobservable action.

• i/a stands for actiona whena is hidden from (unobservable by) the environment.

• α(B) is the set of gates of all observable actions that appear in behaviourB.

• name(a) denotes the gate name of actiona. name(a) = i, if a is an unobservable action.

• card(a) denotes the number of events offered by actiona.

• eventi(a) denotes the ith event of actiona.

• sort(E) denotes the sort of eventE.

• pred(a) denotes the associated predicate of actiona.

• rel(g, a) stands for relabelling the gate name of actiona by g.

• (B)[g1/h1, ..., gn/hn] stands for a relabeled behaviour expressionB, where the gate of each

action with gate namehi thatB can perform is relabelled asgi.

• [t1/x1,...,tn/xn] B denotes the result of the replacement of all occurrences of variablesx1,..,xn in

B by termst1,...,tn respectively.

• V = V1,..,Vn, is a list of free variables.

• T = T1,..,Tn, is a list of non-variable terms.

• eval(T) denotes the evaluation of the ADT expression T.

• t(V) andB(V) denote a trace and a behaviour with a list of free variablesV respectively.

• t1 Λ t2 denotes the condition of matching termt1 with termt2, defined below.

Chapter 3 Overview of Goal-Oriented Execution

46

• t1/t2 denotes the result of matching termt1 with termt2
• a1 ≡ a2 denotesa1 matches a2, defined in Table 2.1 of the previous chapter.

• a1↑ a2 denotes the resulting action obtained from matchinga1 anda2, also defined in Table 2.1.

• a1 ≡s a2 denotesa1 statically matches a2, defined below.

• a1↑s a2 denotes the resulting action obtained fromstatically matchinga1 anda2, also defined

below.

3.2.2 Variable Actions and Matching

A variable action is an observable or an unobservable LOTOS action possibly prefixed by a

guard. The following are some examples:

• a!0

• a?X:nat[X>3]

• [Y>4]a!Y?X:nat[X>Y and X < 7]

• i/(a?X:nat[X>3])

Here are some definitions related to matching variable actions:

• t1 Λ t2 denotes the condition of matching termt1 with termt2, defined as:

t1 Λ t2 = true if t2 is a free variable andt1/t2

t1 Λ t2 = true if t1 is a free variable andt2/t1

t1 Λ t2 = t1 >><< t2 if t1 and t2 are not free variables. ‘>><<‘ is the narrowing operator

that returns true only if there exist values for all free variables int1
andt2 such thateval(t1)=eval(t2). This operator is defined in more

detail in section 3.7.3.

• a1 ≡s a2 denotesa1 statically matches a2, defined as follows:

a1 ≡s a2 if name(a1) = name(a2) ≠ i and

card(a1) = card(a2) and

sort(eventi(a1)) = sort(eventi(a2)) for 1≤i≤card(a1).

• a1↑s a2 denotes the resulting action obtained from statically matchinga1 anda2, defined in

Table 3-1. For simplicity, the definition considers the case where actionsa1 anda2 have one

event. Gi represents a prefixed list of guards, Pi represents a postfixed list of predicates, and ^

Chapter 3 Overview of Goal-Oriented Execution

47

stands forand.

Note that a variable X in ?X:t or !X may or may not be free when static matching is applied, as

we shall see in the next chapter.

This example demonstrates the above definitions where Xi denote free variables, Yi denote

non-free variables and Ti denote non-variable terms:

[Y1>4]a!Y1 ?X1:nat !T1 ↑s a!T2 ?Y2:nat !T2 [Y2 < T2] =

[Y1>4]a!Y1 !X1 !T1 [(Y1 >><< T2) and (true) and (T1 >><< T 2) and (Y2 < T2)]

According to the third case in Table 3-1, the variable X1 represents the effect ofX1/Y2 in the

result of the above example.

3.2.3 Variable Traces and Operations

A variable trace consists of a finite sequence of variable actions. Unlike a normal trace, a

variable trace may contain, in addition to variables, unobservable actions. A variable trace is

denoted as follows:

• 〈〉 An empty trace.

• 〈a〉 A trace containing only one variable actiona.

• 〈a1, a2〉 A trace containing two variable actionsa1 followed by a2.

• 〈a.t〉 A trace containing the variable actiona followed by the tracet.

For example〈a?X:nat,i/c, [X>3]b?Y:bool!X[Y<X]〉 is a variable trace.

The behaviour from which a tracet is derived, is denoted byB(t). The definitions of some

variable trace operators are given below. A subset of these trace operators for basic LOTOS can be

found in [52][71].

Table 3-1 Statically Matching Variable Actions

Action a1 Action a2
Condition
a1 ≡s a2

a1↑s a2 Effect

G1 g1!E1 P1 G2 g2!E2 P2 g1= g2
sort(E1)=sort(E2)

G3 g1!E1 P3 G3 = G1 ^ G2
P3 = (E1 Λ E2) ^ P1 ^ P2

G1 g1!E P1 G2 g2?X:t P2 g1= g2
sort(E) = t

G3 g1!E P3 G3 = G1 ^ G2
P3 = (X Λ E) ^ P1 ^ P2

G1 g1?X:t1 P1 G2 g2?Y:t2 P2 g1= g2
t1=t2

G3 g1!X P3 G3 = G1 ^ G2
P3 = (X Λ Y) ^ P1 ^ P2

Chapter 3 Overview of Goal-Oriented Execution

48

o Alphabet: Denoted byα(t), is the set of all gates of the observable actions int, defined as:

1. α(〈〉) = ∅
2. α(〈a.t〉) = α(t) if name(a) = i

3. α(〈a.t〉) = {name(a)} ∪ α(t) if name(a)≠ i

o Projection: The projection of a tracet on an alphabetA ⊆ α(B(t)) ∪ {δ, i}, denoted bytA, is

the tracet excluding all actions with gate namesnot included in A. It is defined as follows:

1. 〈〉A= 〈〉
2. 〈a.t〉A = tA if name(a)∉A

3. 〈a.t〉A = 〈a.tA〉 if name(a)∈A

o Inverse Projection: The inverse projection of a tracet on an alphabetA ⊆ α(B(t)) ∪ {δ, i},

denoted bytA, is the tracet excluding all actionsincluded in A. This operator is defined as

follows:

1. 〈〉A= 〈〉
2. 〈a.t〉A = 〈a.tA〉 if name(a)∉A

3. 〈a.t〉A = tA if name(a)∈A

o Concatenation: The concatenation of two tracest1 andt2, denoted byt1•t2, is the trace

containing the action sequence oft1 followed by the action sequence oft2. The concatenation

definition is:

1. 〈〉•t = t

2. 〈a.t1〉•t2 = 〈a.(t1•t2)〉

o Containment: Denoted byg in t, is used to express the fact that the tracet contains an action

with gate nameg, and is defined as follows:

1. g in 〈a.t〉 if g = name(a)

2. g in 〈a.t〉= g in t if g ≠ name(a)

o Hiding: Denoted byt↓[g1, ...,gn] , where each observable actiona in t with name(a)∈ {g1, ...,

gn} is hidden by replacing it withi/a. This operator is defined as follows:

1. 〈〉↓[g1, ..., gn] = 〈〉
2. 〈a.t〉↓[g1, ..., gn] = 〈i/a.t↓[g1, ..., gn]〉 if name(a)∈ {g1, ..., gn}

3. 〈a.t〉↓[g1, ..., gn] = 〈a.t↓[g1, ..., gn]〉 if name(a)∉ {g1, ..., gn}

Chapter 3 Overview of Goal-Oriented Execution

49

o Relabeling: Denoted byt[g1/h1, ..., gn/hn] , where each observable actiona in t with

name(a)=hi, for (1≤i≤n), is replaced byrel(gi, a). This operator is defined as follows:

1. 〈〉[g1/h1, ..., gn/hn] = 〈〉
2. 〈a.t〉[g1/h1, ..., gn/hn] = 〈rel(gi,a).t[g1/h1, ..., gn/hn]〉 if name(a)=hi ∈ {h1, ..., hn}

3. 〈a.t〉[g1/h1, ..., gn/hn] = 〈a.t[g1/h1, ..., gn/hn]〉 if name(a)∉ {h1, ..., hn}

o Last: Denoted byt^, is the last action in a nonempty tracet. Is is defined as follows:

1. 〈a〉^ = a

2. 〈a.t〉^ = t^ if t ≠ 〈〉

o Matching: Denoted byt1 match t2. Is used to express the fact that t1 statically matches t2 with

respect to the definitions given in Table 3-1. This operator is defined as:

1. 〈〉 match 〈〉
2. 〈a1.t1〉 match 〈a2.t2〉 = t1 match 〈a2.t2〉 if name(a1) = i

3. 〈a1.t1〉 match 〈a2.t2〉 = 〈a1.t1〉 match t2 if name(a2) = i

4. 〈a1.t1〉 match 〈a2.t2〉 = a1≡s a2 and t1 match t2

o Merging: Denoted byt1 |{ A} | t2, whereA ⊆ α(B(t1)) ∪ α(B(t2)) ∪{ δ} . This describes the set

of variable traces resulting from composing two LOTOS processes, sayP andQ, by means of

the parallel composition operator, wheret1 andt2 are variable traces generated by processesP

andQ respectively. For example:

〈i/a?X:nat, [X>3]b?Y:nat[Y<X], c!Y, d〉

 |{ b,c} |

〈b?Z:nat[Z>1], e?X:nat[X<Z], c!X〉 =

{ 〈i/a?X:nat, [X>3]b?Y:nat[Y<X, Y>1], e?X:nat.[X<Y], [Y=X]c!Y, d〉 }

 Note that in the resulting trace, variableZ is represented by variableX. The formal definition

of this operator is as follows:

1. 〈a1.t1〉 |{ A} | t2 = 〈 a1 . (t1 |{ A} | t2) 〉 if name(a1) = i or name(a1) ∉A

2. t1 |{ A} | 〈a2.t2〉 = 〈 a2 . (t1 |{ A} | t2) 〉 if name(a2) = i or name(a2) ∉A

3. 〈a1.t1〉 |{ A} | 〈a2.t2〉 = 〈 a1↑s a2 . (t1 |{ A} | t2) 〉 if name(a1) = name(a2) ∈A and

a1 ≡s a2

4. t1 |{ A} | t2 = <> otherwise

Chapter 3 Overview of Goal-Oriented Execution

50

Note that non-determinism occurs when rule 1 and rule 2 can both be applied. For example,

〈a〉 |{c} |〈b〉 = { 〈a, b〉, 〈b, a〉}.

o Selecting: Two selection operators are defined,ρ(t) andτ(t). ρ(t) describes the ordered set of

all guards and predicates in tracet, andτ(t) describes the tracet excluding all guards, predicates

and sorts, also replacing all ‘?’ with ‘!’. For example:

ρ(〈a?X:nat, [X>3]b?Y:nat[Y<X, Y>1], e?X:nat[X<Y], [Y=X]c!Y, d〉) =

{ X1>3, Y<X1, Y>1, X2<Y, Y=X2}

and

τ(〈a?X:nat, [X>3]b?Y:nat[Y<X, Y>1], e?X:nat[X<Y], [Y=X]c!Y, d〉) =

〈a!X1, b!Y, e!X2, c!Y, d〉

Variable renaming conventions are used to guarantee uniqueness.

These operations can also be applied on non-variable trace, i.e. normal traces, by replacing≡s

by ≡ and↑s by ↑. The defnitions of≡ and↑ are given in chapter 2, Table 2.1.

3.3 Inference System for Relation→

Since we are mainly dealing with trace generation, two basic trace relations are of our concern:

relation→ and relation⇒. They are defined as follows:

Let ai ∈ A ∪ { i} for all 1≤ i ≤ n, then relation→ is defined as:

B 〈a1,…,an〉→ B’ iff ∃ B1, ...,Bn ∈ B with B = B1, B’=Bn, and

Biai→ Bi+1 for all 1≤ i ≤ n-1.

Let ai ∈ A for all 1≤ i ≤ n, then relation⇒ is defined as:

B =〈a1,…,an〉⇒ B’ iff ∃ natural numbersk0,...,kn with

B 〈ik0, a1, ik1,…, an, ikn〉→ B’.

Chapter 3 Overview of Goal-Oriented Execution

51

B =〈〉⇒ B’ iff B = B’ or ∃ natural numbern with

B 〈in〉→ B’.

Therefore, using the trace operations defined above, relation⇒ can be defined as:

B =t{ i} ⇒ B’ iff B t→ B’.

The inference system for relationBa→ B’ is given in chapter 2, Table 2.4. Here we provide

an inference system that defines the relationB 〈a1,…,an〉→ B’.

o Internal Action Prefix

i; B〈i〉→B (1)

B1 t→ B11

 (2)
i; B1〈i . t〉→B11

o Observable Action Prefix

gd1...dn[P] ; B 〈g!v1...!vn〉→[r1/y1,...,rm/ym]B (3)

[r1/y1,...,rm/ym]B t→ B’

 (4)
gd1...dn[P] ; B 〈g!v1...!vn . t〉→B’

if eval([r1/y1,...,rm/ym] P) = true, where

{(r1,y1), ..., (rm,ym)} =

{(r,x) | ∃ di ∈ {d1 .. dm} with di = ?x:s, r∈domain(s)}

vi = eval(r) if di = !r,

vi = eval(r) if di = ?x:s and r∈domain(s)

o Successful Termination

exit(E1,..,En) 〈δ!v1...!vn〉→ stop (5)

vi=eval(Ei), if Ei is a term

vi∈domain(s), if Ei = any s

Chapter 3 Overview of Goal-Oriented Execution

52

o Choice

B1 t→ B11

 (6)
B1 [] B2 t→ B11

B2 t→ B21

 (7)
B1 [] B2 t→ B21

o Nested

B t→ B’

 (8)
(B) t→ B’

o Guard

B  t → B’, eval(P)=true

 (9)
[P]->B  t → B’

o Local Definition

[r 1/x1, .., rn/xn]B t→ B’

 (10)
let x1:s1=r 1, .. xn:sn=r n in B t→ B’

o Summation on Values

[r/x]Bt→B’, r ∈domain(s)

 (11)
choice x:s [] B t→ B’

Chapter 3 Overview of Goal-Oriented Execution

53

o Hiding

B t→ B’

 (12)
hide GL in B t�↓{GL} → hide GL in B’

All actions in the trace generated by the hide operator with gate names in the list GL, are

hidden.

o Enabling

B1t→B11, name(t^)≠ δ
 (13)

B1 >> accept x1:s1..xn:sn in B2 t →
B11 >> accept x1:s1..xn:sn in B2

B1t→B11, t^ = δ!v1...!vn

 (14)
B1 >> accept x1:s1..xn:sn in B2t�↓{ δ} →

[v1/x1,...,vn/xn]B2

B1t1→B11, [v1/x1,...,vn/xn]B2t2→B21, t1^ = δ!v1...!vn

 (15)
B1 >> accept x1:s1..xn:sn in B2(t�1↓{ δ}) • t2→ B21

o Disabling

B1 t1→ B11, name(t1^) = δ
 (16)

B1 [> B2 t1→ B11

B1 t1→ B11, name(t1^) ≠ δ
 (17)

B1 [> B2 t1→ B11 [> B2

B1t1→B11, B2t2→B21, name(t1^) ≠ δ
 (18)

B1 [> B2 t1 • t2→ B21

Chapter 3 Overview of Goal-Oriented Execution

54

o Selected Synchronization

B1 t1→ B11, t1({ S} ∪{ δ}) = 〈〉
 (19)

B1 |[S]| B2 t1→ B11 |[S]| B2

B2 t2→ B21, t2({ S} ∪{ δ}) = 〈〉
 (20)

B1 |[S]| B2 t2→ B1 |[S]| B21

B1 t1→ B11, B2 t2→ B21, t1({ S} ∪{ δ}) ≠ 〈〉, t2({ S} ∪{ δ}) ≠ 〈〉, and

t1({ S} ∪{ δ}) match t2({ S} ∪{ δ})
 (21)

B1 |[S]| B2 t1 |{ S} | t2→ B11 |[S]| B21

o Interleave Parallelism

B1 |[]| B2 t→ B'

 (22)
B1 ||| B2 t→ B'

The interleave operator is treated as the selected synchronization operator with an empty list of

synchronization gates.

o Full Synchronization

B1 |[α(B1) ∪ α(B2)]| B2 t→ B'

 (23)
B1 || B2 t→ B'

The full synchronization operator is treated as the selected synchronization operator with the

list of synchronization gates composed with the alphabet of behavioursB1 andB2.

Chapter 3 Overview of Goal-Oriented Execution

55

o Relabeling

B t→ B'

 (24)
(B)[g1/h1, ..., gn/hn] t[g1/h1, ..., gn/hn]→ (B’)[g1/h1, ..., gn/hn]

o Process Instantiation

∃p[h1,…,hn] (x1:s1..xm:sm) := B, ([r1/x1,...,rm/xm]B)[g1/h1,..., gn/hn] t→ B’

 (25)
p[g1,…,gn] (r 1,...,rm)t→ B’

3.4 Trace Properties

The trace properties allowed by our method are defined by atargeted action or anordered set

of actions, and arestricted gate set. Properties on values can also be expressed by associating

constraints to the targeted actions. We have modeled these properties using relations ⇒+ and ⇒×

defined below. In the following,a’ identifies an action that matches actiona, i.e.a’ ≡ a:

1- (a,B)/G =t⇒+ B’, wherename(a)∈ α(B) and G ⊆ α(B) ∪ {δ}, defines the derivation of

behaviourB on a tracet leading to a targeted actiona’ without passing through any other action

with gate name inG. Note that, ifname(a)∉G, then tracet may contain any number of actions

with gate namename(a).

2- (〈a1,…,an〉, B)/G =t⇒× B’, name(ai) ∈ α(B) and whereG ⊆ α(B) ∪ {δ}, defines the derivation

of behaviourB on a tracet, such thatt contains a predetermined series of actions{a1’,…,an’},

not necessarily contiguously, without passing by any other action with gate name inG ∪
α(〈a1,…,an〉). This implies that tracet cannot have any other appearances of actions with gate

names inα(〈a1,…,an〉), and does not necessarily terminate with actionan’ .

For example, letB be the behaviour given in Figure 3-3, then

(d?U:nat, B)/{c,d} =t⇒+ B’ holds with

t = 〈e!2, b!2 !1, d!1〉 B' = (c!2 !1 ; stop |[b]| f!2 !1; stop)

t = 〈e!3, b!3 !1, d!1〉 B' = (c!3 !1 ; stop |[b]| f!3 !1; stop)

t = 〈e!3, b!3 !2, d!2〉 B' = (c!3 !2 ; stop |[b]| f!3 !2; stop)

and

Chapter 3 Overview of Goal-Oriented Execution

56

(〈e?U1:nat[U1<3], d?U:nat〉, B)/{c} =t⇒× B’ holds with

t = 〈e!2, b!2 !1, d!1〉 B' = (c!2 !1 ; stop |[b]| f!2 !1; stop)

t = 〈e!2, b!2 !1, d!1, f!2 !1〉 B' = (c!2 !1 ; stop |[b]| stop)

while

(d!3:nat, B)/{c,d} =t⇒+ B’ does not hold because the only action that matchesd!3:nat in

the specification without going through an action with gate namec isd!Z with Z=3. For this to hold,

actionb!Y?Z:nat[Z>=1] must matchb!W?X:nat[X<W] with X=Z=3, W=Yand [3 < W]. This

forces a contradiction with the predicate in the (hidden) actiong?Y:nat[Y<4], i.e. predicate[3 <

W] and predicate[Y<4] cannot be both true whenW=Y. Therefore, there is no feasible tracet that

satisfies the initial relation. And

(d?Y:nat, B)/{b} =t⇒+ B’ does not hold because there exists no tracet from B that lead to

an action that matchesd?Y:nat without passing by an action with gate nameb.

The following abbreviations for action denotations and restricted sets used by relations⇒+ and

⇒× are also be supported:

• ‘*’ represents any action, any number of events, or a restriction gate set of all possible gates,

depending on the context.

• ‘-’ any action gate name or any event sort, also depending on the context.

• a restriction gate set of all possible gates can also be represented as{*} .

The following are some examples:

• ‘a*’ represents an action on gatea with zero or more events

• ‘- ?X:- ?Y:-’ represents any action with exactly two events of any sort.

• ‘- ?X:Nat ?Y:- *’ represents any action with at least two events where the first event must be

of sortNat.

These abbreviations are only an implementation extension and therefore are not considered in

the theory.

Note that internal actions are not expressible by the user since they are not part of execution

traces. Internal actions involved in derived traces can be viewed before they are removed. See

section 3.8.

Chapter 3 Overview of Goal-Oriented Execution

57

Figure 3-3 A behaviour and its Abstract Syntactic Tree

B

stopstop stop

|[b]|

[]

a

c?V:nat

 b!V!0;

d!(V+1)

e?W:nat

[W>1] ->

b!W?X:nat[X<W]

c!W!X

b!Y?Z:nat[Z>=1]

d!Z

f!Y!Z

(a; c?V:nat; b!V!0; d!(V+1);stop
[]
 e?W:nat; ([W>1] -> b!W?X:nat[X<W]; c!W!X;stop))
|[b]|
hide g in (g?Y:nat[Y<4]; b!Y?Z:nat[Z>=1]; d!Z; f!Y!Z;stop)

B=

hide g

g?Y:nat[Y<4]

Chapter 3 Overview of Goal-Oriented Execution

58

The formal definition of relations⇒+ and⇒× is as follows:

1- (a, B)/G =〈b1,…,bn〉⇒+ B’, iff B =〈b1,…,bn〉⇒ B’ such thatname(bi) ∉G for 1≤i≤n-1, andbn

≡ a. This implies that ifname(a)∈ G, then only actionbn in trace〈b1,…,bn〉 has gate name

name(a).

2- (〈a1,…,an〉, B)/A =〈b1,…,bm〉⇒× B’, iff B =〈b1,…,bm〉⇒ B’ such that〈b1,…,bm〉α(〈a1,…,an〉)
match〈a1,…,an〉, and∀d ∈α(〈b1,…,bm〉α(〈a1,…,an〉), d ∉G.

An alternative recursive definition of relation⇒× is:

(〈a.t1〉, B)/G =t2⇒× B’ iff (a, B)/(G∪ α(〈a.t1〉))=t11⇒+ B1, (t1, B1)/(G ∪ name(a)) =t12⇒× B’,

andt2 = t11•t12.

(〈〉, B)/G =t⇒× B’ iff B =t⇒ B’ such that∀d ∈α(t), d ∉G. Note thatt can be〈〉.

Since relation⇒× can be defined recursively using relation⇒+, the main functionality of goal-

oriented execution is then to provide an efficient implementation for relation⇒+. Following the

notation of Figure 3-1,B=t⇒B’, wheret leads toa’ without passing through actions with gates in

G, is written(a,B)/G =t⇒+ B’. See Figure 3-4.

Figure 3-4 Goal-Oriented Execution with relation⇒+

One way of implementing relation⇒+ is to derive all possible traces using the inference system

defined in section 3.3, and to keep only those satisfying the given property. Computationally, this

is usually infeasible. Our aim in this thesis is to provide an efficient implementation for relation

⇒+.

Goal-Oriented Execution

B: LOTOS Behaviour
a: Targeted Action {(t,B’) | (a,B)/G=t⇒+B’}
G: Restricted Set

Chapter 3 Overview of Goal-Oriented Execution

59

To accomplish our goal, two other relations are defined, namely→+ and →×. These relations,

unlike relations⇒+ and ⇒×, are applied on variable traces that may contain unobservable actions.

Their informal definition is given below wherea’ identifies an action that matches actiona using

variable matching relationa’ ≡s a:

1- (a,B)/Gt(V)→+ B’(V), wherename(a)∈ α(B) and G ⊆ α(B) ∪ {δ}, defines the derivation

of behaviourB on a variable tracet(V) leading to a targeted actiona’↑s a without passing

through any other action with gate name inG. Note that synchronization between actions is also

done using static matching↑s.

2- (〈a1,…,an〉, B)/Gt(V)→× B’(V), name(ai) ∈ α(B) and whereG ⊆ α(B) ∪ {δ}, defines the

derivation of behaviourB on a variable tracet, such thatt contains a predetermined series of

actions {a1’↑s a2,…,an’↑s an}, not necessarily contiguously, without passing by any other

action with gate name inG ∪ α(〈a1,…,an〉).

For example, let B be the behaviour given in Figure 3-3, then

(d?U:nat, B)/{c,d}t→+ B’ holds with

t = 〈 e?W/Y:nat,

i/g?W/Y:nat[W/Y < 4],

[W/Y >1]b!W/Y ?X/Z/U:nat[X/Z/U <W/Y, X/Z/U>=1],

d!X/Z/U〉

B' = (c!W/Y !X/Z/U ;stop |[b]| f!W/Y !X/Z/U; stop)

and

(〈e!4, d?U:nat〉, B)/{c,f} t→× B’ holds with

t = 〈 e!W/Y/4,

i/g?W/Y/4:nat[W/Y/4 < 4],

[W/Y/4>1]b!W/Y/4 ?X/Z/U:nat[X/Z/U < W/Y/4, X/Z/U>=1],

d!X/Z/U〉

B' = (c!W/Y/4 !X/Z/U ;stop |[b]| f!W/Y/4 !X/Z/U;stop)

while

Chapter 3 Overview of Goal-Oriented Execution

60

(d?Y:nat, B)/{b}t→+ B’ does not hold because there exists no variable tracet fromB that

leads to an action that statically matchesd?Y:nat without passing by an action with gate nameb.

In sections 3.5 and 3.6, we present the derivation methodology for the variable traces under

relations→+ and→×. Section 3.8 demonstrates an implementation strategy that uses the narrowing

technique, described in section 3.7, to map relations→+ and→× into relations⇒+ and ⇒×

respectively.

3.5 Static Derivation Paths

A static derivation path (SDP) of an actiona in a given behaviourB is a sequence identifying

a path in the abstract syntactic tree ofB leading to an actiona’ wherea’ ≡s a. This path reflects the

directed traversal of the operators composing the behaviour. As mentioned earlier, SDPs guide the

inference system towards executing a part of the specification where the desired sequence of

actions can be found. They provide a static analysis of the specification, which is necessary to

prevent the inference engine from attempting to derive the full behaviour tree of the specification,

often leading to the state space explosion problem. Consider for example the following very simple

behaviour expression:

B = (a; b; c; stop ||| d; c; f; stop) [] g; h; stop

Obviously, if we are looking for an execution trace leading to actionh, the left sub-expression

of the operator[] does not need to be explored. An SDP for such a goal would instruct the inference

engine to direct itself immediately to the right-hand-side of the operator[] . Thus an SDP encodes

structural information of the specification, which yields information on the direction where

evaluation must proceed (left or right) for binary operators.

A static derivation path has the following form:

• [] An empty path.

• [e] A path containing only one elemente.

• [e1,e2] A path containing two elements,e1 followed bye2.

• [e.s] A path containing the elemente followed by the paths.

An element of an SDP is a symbol identifying the type of the current behaviour construct in the

abstract syntactic tree. The symbols are names chosen after the LOTOS operators they represent

(e.g.choice, guard, nested). If the behaviour is involved in a binary operator, i.e.|||, |[G]|, ||, [], [>
or >>, then branches for the left and right behaviour of the operator are identified by the symbol

left andright respectively, preceded by the symbol ^. The following is the BNF for an element of

Chapter 3 Overview of Goal-Oriented Execution

61

an SDP identified by <sdp_element>:

<sdp_element> ::= <unary_element> | <binary_element>

<unary_element> ::= <unary_operator>

<binary_element> ::= <binary_operator> ^ <direction>

<unary_operator> ::= prefix | exit | guard | let | chval | nested | hide | relabel | instance

<binary_operator> ::= choice | parallel | disable | enable

<direction> ::= left | right

The elements corresponding to therelabel and theinstance operators will contain other

information related to gate relabeling that is discussed in section 4.1.1 of the next chapter.

Consider the LOTOS specification and its abstract syntactic tree given in Figure 3-5 and Figure

3-6 respectively. A static derivation path for the actionoutput in the behaviour

producer_consumer[input, output] would be [instance, relabel, hide, parallel^left, nested,

parallel^right, instance, relabel, prefix, prefix]. It identifies the actionoutput to be the actiona in

the processconsumer[c,a] following the above path. It is indicated by a thick line in Figure 3-6.

Process instantiations are done by usingstatic relabeling. Although relabeling must be done

dynamically from the operational semantics point of view, at this point, the only concern iswhere

in a behaviour expression a given action may be found, and nothow it is derived. More on static

and dynamic relabeling is said in the next chapter.

Chapter 3 Overview of Goal-Oriented Execution

62

Figure 3-5 A LOTOS Specification

specification producer_consumer[g1,g2]: noexit:=
behaviour

hide g11,g22 in
 (producer[g1,g11] ||| consumer[g22,g2])
 |[g11,g22]|
 channel[g11,g22]

where
process producer[g,p] : noexit
 g;p;producer[g,p]
endproc
process consumer[c,a] : noexit
c; a; consumer[c,a]
endproc
process channel[r,s] : noexit
 r;s;channel[r,s]
endproc
endspec

Chapter 3 Overview of Goal-Oriented Execution

63

Figure 3-6 An SDP in the Abstract Syntactic Tree of Figure 3-5

Static derivation paths are generated using the functionΣ : A × B × G* → X where

• A is the collection of all possible observable LOTOS action denotations

• B is the collection of all possible LOTOS behaviour expressions

• G is the collection of all possible LOTOS gates includingδ
• X is the collection of all possible static derivation path structures

Σ(a,B,G), wherename(a)∈ α(B) and G ⊆ α(B) ∪ {δ}, derives the set of SDPs in behaviourB

leading to all actionsai, suchai ≡s a, without passing through any other action with gate name in

G. For example, considering the behaviour B given in Figure 3-3:

Σ(d?U:nat, B, {c}) = { [parallel^right, hide, nested, prefix, prefix, prefix] }

B0

B1

B2 B6

B3

B4 B5

B7

B8

B9

B10

B11

B12

B13

B14

B15

producer_consumer[g1,g2] producer[g,p] consumer[c,a] channel[r,s]

producer[g,p] consumer[c,a] channel[r,s]

hide

nested

producer[g1,g11] consumer[g22,g2]

|[g11,g22]|

channel[g11,g22]

g

p

c

a

r

s

|||

Chapter 3 Overview of Goal-Oriented Execution

64

which leads to action d!Z. Note that the SDP, [parallel^left, nested, choice^left, prefix, prefix,

prefix], which leads to actiond!(V+1), withd!(V+1) ≡sd?U:nat, is excluded since it passes through

actionc?V:nat that has gate name in {c}.

3.6 Guided-Inference System

The next step in goal-oriented execution is to provide an efficiently computable definition for

the relation(a, B)/Gt(V)→+ B’(V). This was accomplished by means ofguided-inference

system, where the variable trace generation is directed by the static derivation paths.

To do so, the relation(a, B)/Gt(V)→+ B’(V) is redefined as:

(a, sdp, B)/Gt’(V)→+ B’(V), where sdp ∈ Σ(a,B,G).

The SDPs are generated when needed by the inference system, see Figure 3-11. Consider the

following situations:

• If the targeted action was found statically on the right of an enable operator B1 >> B2, namely

in B2, then the inference system will be directed to the right, giving a trace from B2. To comply

with the semantics of LOTOS, another trace from B1 leading toδ needs to prefix the original

trace. In this case another application of→+ is needed, and yet another SDP.

• A more complicated situation occurs in parallel constructs. Suppose the inference rule were

directed to generate a tracet1 fromB1 in B1 |[S]| B2. Again, to comply with LOTOS semantics,

another tracet2 from B2 is needed having the following property: “all actions int1 with gate

names inS must match actions int2 and with identical order.” More formallyt1({ S} ∪{ δ}

match t2({ S} ∪{ δ}). We also have to keep in mind the original characteristics of the resulting

trace.

There are other situations where the inference system needs a different application of→+.

These situations are explained more in detail in the chapter 5, where the formal definition of

guided-inference system is given. Note also that the SDPs may not be executable by the inference

system. For instance, althoughΣ(a, b;exit || a;exit, {}) = {[parallel^right.prefix]}, this cannot be

executed due to lack of synchronization.

Chapter 3 Overview of Goal-Oriented Execution

65

Figure 3-7 Guided-Inference System

The guided-inference system is consistent with the usual inference system, but differs from it

in the following respects:

1- defines the derivation of a behaviourB not only on single actions, but also on traces

2- does not describe all possible derivations of a behaviourB in general, but only those satisfying

a given property

3- SDPs are generatedon demand by the inference system

4- derived traces may contain free variables and unobservable actions, i.e. variable traces.

3.7 Rewriting and Narrowing ADT expressions of LOTOS

3.7.1 Introduction

We have developed an algorithm for transforming abstract data type equations into a rewriting

rules evaluator and narrower engine with considerable performance efficiency.

A term rewriting rule system is a set of directed equations used as a non-deterministic pattern-

a: Target Action
sdp: Static Derivation Path

G: Restricted Set

Static
Analyser

Guided-Inference
System

{(t(V),B’ (V)) | (a,B)/Gt(V)→+B’(V)}

a’, B’, G’ sdp’

B: LOTOS Behaviour

(Σ)

Chapter 3 Overview of Goal-Oriented Execution

66

directed program that returns as output a simplified term equal to a given input term [77]. For

suitably written LOTOS abstract data type equations, an equivalent term rewriting system can be

found by simply orienting the equations. Earlier LOTOS interpreters [44] used an inner-most left

to right rewriting rule strategy to execute the equations of LOTOS data types. In this section we

discuss a new rewriting technique that (1) provides greater performance efficiency and, more

importantly, (2) can be used to generate solutions to a goal.

3.7.2 Term Rewriting Systems

In this section we briefly review the basic notations and terminology for term rewriting

systems. Surveys of this topic can be found in [34][77].

LetF be a set of operators with fixed arity,V a finite set of variables, Aterm is defined as either

a variable fromV, which is considered to be auniversal quantifier, or f(t1,...,tk), wheref ∈F has

arity k andti aresubterms. We defineτ(F,V) to be the set of all terms overF andV, andν(t) to be

the set of variables in termt. A termt with ν(t) = ∅ is calledground.

A substitutionσ is a function fromV to τ(F,V). The domain ofσ, denoted byD(σ), is {X| σ(X)

≠ X}. The termtσ represents the term obtained by replacing the variables oft by their image under

σ. A substitutionσ is as general as a substitutionρ if there exists a substitutionω such thatσω = ρ.

A termt matches (or is aninstance of) a terms if t = sσ for some substitutionσ. A termt unifies

a terms if tσ = sσ for some substitutionσ.

A term rewriting rule (TRR), l → r, is an oriented equation between terms. Aterm rewriting

system (TRS) is a finite set of TRRs. For a given TRS R, the rewrite relation→R replaces any

subterm that is an instancelσ of the left-hand sidel by the corresponding instancerσ of the right-

hand sider of a TRRl → r in R. The relations →R t holds ifs rewrites tot in one step under R,

and the relations→* Rt holds ifs rewrites tot in zero or more steps under R. We also say thatt is

derivable froms. The relations↓Rt holds ifs andt join; i.e if s→*R w andt →* Rw for some term

w. A terms is irreducible, or innormal form, if there is no termt such thats →R t.

A term rewriting relation→R is terminating or noetherian if there is no infinite chain of

rewrites:t1 →R t2 →R..., and it isconfluent if whenever two terms,s andt, are derivable from term

u, then a termv is derivable from boths andt, i.e. if u →*R s andu →* Rt thens→*R v andt →*

Rv for some termv. If a TRS is both terminating and confluent it is said to beconvergent.

Unfortunately, it is undecidable whether an arbitrary TRS terminates [76]. However, a number of

methods have been proposed that prove termination in particular cases [87].

Chapter 3 Overview of Goal-Oriented Execution

67

A set of equations E can be transformed into a term rewriting system R using the following

technique suggested in [77][87]: for every equations = t in E, choose non-deterministically one of

the following:

1- If ν(s) ⊆ν(t), putt → s in R.

2- If ν(t) ⊆ν(s), puts → t in R.

As mentioned above, there is no guarantee that R is convergent.

For example, in Figure 3-8 we provide a definition for typeNaturalPlus that contains one sort

nat for natural numbers and the declaration of some operators and their equations. A term rewriting

system for such equations is given in Figure 3-8.

Chapter 3 Overview of Goal-Oriented Execution

68

Figure 3-8 An Abstract Data Type

library Boolean endlib

type NaturalPlus is Boolean
sorts nat
opns

 0 : -> nat
 succ : nat -> nat
 ++ : Bool, Bool -> Bool
 < : nat, nat -> Bool
 == : nat, nat -> Bool
 >= : nat, nat -> Bool
 - : nat, nat -> nat
 mod : nat, nat -> nat

eqns
forall C:Bool, M,N:nat
ofsort Bool

 false ++ C = C;
 true = true ++ C;

 succ(M) < succ(N) = M < N;
 true = 0 < succ(N);
 false = M < 0;

 succ(M) == succ(N) = M == N;
 0 == 0 = true;
 false = 0 == succ(M);
 succ(M) == 0 = false;

 M >= N = (N<M) ++ (M==N);

ofsort nat

 M - 0 = M;
 succ(M) - succ(N) = M - N;
 0 = 0 - M;

 (M >= N) =>
 M mod N = (M-N) mod N;
 (M < N) =>
 M = M mod N;
endtype

Chapter 3 Overview of Goal-Oriented Execution

69

Figure 3-9 A Term Rewriting System

3.7.3 Narrowing: Equation Solving using Term Rewriting Systems

As mentioned earlier, goal-oriented execution resolves predicates in the derived variable traces

by finding proper values to all free variables. The narrowing techniques provide such a facility. In

general, a narrower attempts to:

1- find values for the variables in a goal s = t for which equality holds. More formally, finding a

substitutionσ such thatsσ →* u andtσ → * u for some termu.

2- detect when equality is unsatisfiable.

Narrowing can be best implemented using a combination oflogic programming andfunctional

programming [34][35][36][153]. For example, in the case of the ADT of Figure 3-8, a goal of the

form:

X = (succ(succ(0)) >= succ(0))

false ++ C
true ++ C

succ(M)
0
M

succ(M)

< succ(N)
< succ(M)
< 0

- succ(N)

→ C;
→ true;

→ M < N;
→ true;
→ false;

→ M - N;

0

M

- M

- 0

→ 0;

→ M;

M >= N → (N < M) ++ (M==N);

(M >= N) => M mod N

(M < N) => M mod N

→ (M - N) mod N;

→ M;

0 == 0 → true;

0

succ(M)

== succ(M)

== succ(N)

→ false;

→ M == N;

succ(M) == 0 → false;

Chapter 3 Overview of Goal-Oriented Execution

70

can be solved byrewriting the right-hand side of the goal producing a solution:

X = true.

while a goal of the form:

true = (X >= succ(0))

requiresequation solving to produce values for X that satisfy the equation. Rewriting

corresponds to the functional programming capability, while equation solving corresponds to the

logic programming capability.

Narrowing Approach

Our current ADT interpreter, called SVELDA [44], evaluates (or rewrites) a given term using

the internal form representation of the abstract data type equations. These equations are oriented

as rewriting rules where renaming and parametrization are resolved. The new interpreter, which

we call ERNAL (AnEngine toRewrite andNarrow theADTs ofLOTOS), transforms the internal

representation of the term rewriting rules into an evaluator/narrower engine. See Figure 3-10.

Chapter 3 Overview of Goal-Oriented Execution

71

Figure 3-10 ERNAL’s Structure

ERNAL, the automatically generated engine, is a set of Prolog clauses. Since overloading is

allowed in ACT ONE, all arguments are represented in internal form where overloading is resolved

by assuring that all operators and sorts have unique internal names. The user interface of ERNAL

consists of an infix operator '>><<' of the form:

EXP1:S >><< RES

whereRES is the resulting evaluation of the ADT expressionEXP of sortS.

The main characteristics of ERNAL are the following:

1- It can be used as a rewriting system. For example:

((succ7(0) mod succ5(0)):nat >><< X) ⇒ X = succ2(0)

This expresses the fact that 7 modulo 5 is 2.

LOTOS Abstract Data Types

Syntax and
Static/Semantics

Analyzer
(LOTOS Compiler)

Internal Form Rewriting Rules

Transformation

Function

ERNAL

Chapter 3 Overview of Goal-Oriented Execution

72

2- It can be used as a narrower. For example:

((succ7(0) - X):nat >><< succ2(0)) ⇒ X = succ5(0)

deriving a value of X=5 that satisfies the query 7 minus X is equal 2.

3- In many cases, it produces the most general solution. For example:

((X >= succ2(0)):bool >><< true) ⇒ X= succ2(Y)

i.e. ‘Y+2’ for any natural number Y which is greater than or equal to 2 .

4- It detectsshort-circuit. That is to say that ERNAL does not evaluate some operands if they do

not need to be evaluated in order to obtain the result. For example, among the rewriting rules

of the++ operator in Figure 3-8, the second rule says that if the evaluation of the left operand

is true then the result istrue, disregarding the right operand. ERNAL detects such situations

and reorders the rewriting rules accordingly

5- Operands are not evaluated more than once. For example, if the rewriting rules are selected

sequentially using the order specified, then the left operand of the operator++ in Figure 3-8 is

evaluated twice if it happens to be evaluated totrue. ERNAL avoids this, see section 5.2.3.

6- ERNAL also provides evaluation traces, enabling the user to step through the execution.

To achieve the above characteristics, the transformation should provide:

1- Outer-most evaluation strategy. This allows the detection of short-circuit situations.

2- Reordering of equations. Equations must be reordered with respect to special criteria in order

to achieve a more efficient implementation. As an example, the equations containing short-

circuit situations should, whenever possible, be identified and evaluated first.

3- Equations-dependent implementation. For example to achieve point 5 above, evaluated

operands of an operator in one rewriting rule should not be re-evaluated in the successor

rewriting rules of the same operator.

4- No predefined order of evaluation.The translator determines which operand is to be evaluated

first.

Additional details on ERNAL are given in chapter 5.

Chapter 3 Overview of Goal-Oriented Execution

73

3.8 Goal-Oriented Execution Algorithm

What has been described so far, were the components of goal-oriented execution, namely the

static analyzer, the guided-inference system, and the narrower. The following algorithm uses these

components and the trace operators to define relation⇒+.

Giving a behaviourB, a targeted actiona, and a restricted setG, find all tracest such that(a,

B)/G =t⇒+ B’ holds. This is done by the following steps:

1. Obtain all static derivation paths satisfyingΣ(a, B, G).

2. Obtain all variable traces satisfying the relation

(a, sdp, B)/Gt’(V)→+ B”(V), where sdp ∈ Σ(a, B, G).

3. For each tracet’ (V), extract the list of all guards and predicates int’. i.e. ρ(t’(V)).

4. For each tracet’ (V), clean the trace from guards, predicates and sorts. i.e.τ(t’(V)).

5. For each traceτ(t’(V)) obtained in step 4, clean the trace from unobservable actions. i.e.

τ(t’(V)){ i}.

6. For each traceτ(t’(V)){ i}obtained in step 5, find substitutionsσi for all free variablesV

using the narrower, such that all conditions inρ(t’(V)) are satisfied.

7. For each traceτ(t’(V)){ i}obtained in step 5, apply (τ(t’(V)){ i}) σi andB”(V)σi to obtain

the desired tracet and its resulting behaviour expressionB’ respectively.

The overall mechanism is shown in Figure 3-11.

Chapter 3 Overview of Goal-Oriented Execution

74

Figure 3-11 Goal-Oriented Execution

Note that, a derived variable tracet’ obtained in step 2 is considered to beunfeasible, if no

substitutions are found in step 6 satisfying all conditions inρ(t’(V)) . This can be avoided by

detecting unsatisfiable conditions during the derivation of the variable traces by using the narrower

in the inference system of relation→+. This method is also implemented in our tool and is left as

an option to the user.

Here we demonstrate the algorithm using an example. LetB be the behaviour given in Figure

3-3, then

(d?U:nat, B)/{c,d} =t⇒+ B’ can be satisfied by the following steps:

1. Obtain all static derivation paths, satisfyingΣ(d?U:nat, B, {c,d}). There is only one such

path which is:

{ [parallel^right, hide, nested, prefix, prefix, prefix] }

Goal-Oriented
Execution

a: Target Action
B: LOTOS Behaviour
G: Restricted Set

Static
Analyser

Guided-Inference
System

Narrower

{(t,B’) | (a,B)/G=t⇒+B’}

a, B, G

sdp

a, sdp, B, G

t’(V), B”(V)

ρ(t’(V))
σi

a’, B’, G’

sdp’

t=(τ(t’(V)){ i}) σi

B’=B”(V)σi

(1) (2) (3)
(Σ)

Chapter 3 Overview of Goal-Oriented Execution

75

2. Obtain all variable traces satisfying the relation

(d?U:nat,[parallel^right, hide, nested, prefix, prefix, prefix] ,B)/{c,d} t→+ B’

The following are the only traces (with their resulting behaviour expressions) that can

satisfy the above relation:

t1 = 〈 e?W/Y:nat,

i/g?W/Y:nat[W/Y < 4],

[W/Y >1]b!W/Y ?X/Z/U:nat[X/Z/U <W/Y, X/Z/U>=1],

d!X/Z/U〉

B1' = (c!W/Y !X/Z/U ;stop |[b]| f!W/Y !X/Z/U; stop)

t2 = 〈 i/g?W/Y:nat[W/Y < 4],

e?W/Y:nat,

[W/Y >1]b!W/Y ?X/Z/U:nat[X/Z/U <W/Y, X/Z/U>=1],

d!X/Z/U〉

B2' = (c!W/Y !X/Z/U ;stop |[b]| f!W/Y !X/Z/U; stop)

3. Extract the list of all guards and predicates int1 andt2:

ρ(t1) = ρ(t2) = { W/Y < 4, W/Y >1, X/Z/U <W/Y, X/Z/U>=1}

4. Clean the traces from guards, predicates and sorts using the operatorτ:

τ(t1) = 〈e!W/Y,i/g!W/Y, b!W/Y!X/Z/U, d!X/Z/U〉

τ(t2) = 〈i/g!W/Y, e!W/Y, b!W/Y!X/Z/U, d!X/Z/U〉

5. Clean the traces from unobservable actions:

τ(t1){ i} = 〈e!W/Y,i/g!W/Y, b!W/Y!X/Z/U, d!X/Z/U〉{ i}= 〈e!W/Y, b!W/Y!X/Z/U, d!X/Z/U〉

τ(t2){ i} = τ(t1){ i} = 〈e!W/Y, b!W/Y!X/Z/U, d!X/Z/U〉

6. Using the narrower, find substitutions forU, W, X, Y andZ, such that all conditions in the

set { W/Y < 4, W/Y >1, X/Z/U <W/Y, X/Z/U>=1}are satisfied:

Chapter 3 Overview of Goal-Oriented Execution

76

((W/Y < 4)^ (W/Y >1) ^ (X/Z/U <W/Y) ^ (X/Z/U>=1)):bool >><< true

=>

σ1 = U ← 1, W← 2, X ← 1,Y ← 2,Z ← 1

σ2 = U ← 1, W← 3, X ← 1,Y ← 3,Z ← 1

σ3 = U ← 2, W← 3, X ← 2,Y ← 3,Z ← 2

7. Apply the substitutionsσ1, σ2, andσ3 to the traces obtained in step 5 and to their resulting

behaviour expressions:

Solution 1

(τ(t1){ i}) σ1 = (τ(t2){ i}) σ1 = 〈e!2, b!2 !1, d!1〉

B1' σ1= B2'σ1 = (c!2 !1 ; stop |[b]| f!2 !1; stop)

Solution 2

(τ(t1){ i}) σ2 = (τ(t2){ i}) σ2 = 〈e!3, b!3 !1, d!1〉

B1' σ2= B2'σ2 = (c!3 !1 ; stop |[b]| f!3 !1; stop)

Solution 3

(τ(t1){ i}) σ3 = (τ(t2){ i}) σ3 = 〈e!3, b!3 !2, d!2〉

B1' σ3= B2'σ3 = (c!3 !2 ; stop |[b]| f!3 !2; stop)

giving all the traces satisfying(d?U:nat, B)/{c,d} =t⇒+ B’.

The following is an example where the relation does not hold:

(d!3:nat, B)/{c,d} =t⇒+ B’ is resolved as follows:

1. Obtain all static derivation paths, satisfyingΣ(d!3:nat, B, {c,d}). There is only one such

path which is:

{ [parallel^right, hide, nested, prefix, prefix, prefix] }

2. Obtain all variable traces satisfying the relation

(d!3:nat, [parallel^right, hide, nested, prefix, prefix, prefix] ,B)/{c,d} t→+ B’

Chapter 3 Overview of Goal-Oriented Execution

77

The following are the only traces (with their resulting behaviour expressions) that can

satisfy the above relation:

t1 = 〈 e?W/Y:nat,

i/g?W/Y:nat[W/Y < 4],

[W/Y >1]b!W/Y ?X/Z/3:nat[X/Z/3 <W/Y, X/Z/3>=1],

d!X/Z/3〉

B1' = (c!W/Y !X/Z/3 ;stop |[b]| f!W/Y !X/Z/3;stop)

t2 = 〈 i/g?W/Y:nat[W/Y < 4],

e?W/Y:nat,

[W/Y >1]b!W/Y ?X/Z/3:nat[X/Z/3 <W/Y, X/Z/3>=1],

d!X/Z/3〉

B2' = (c!W/Y !X/Z/3 ;stop |[b]| f!W/Y !X/Z/3;stop)

3. Extract the list of all guards and predicates int1 andt2:

ρ(t1) = ρ(t2) = { W/Y < 4, W/Y >1, X/Z/3 <W/Y, X/Z/3>=1}

4. Clean the traces from guards, predicates and sorts using the operatorτ:

τ(t1) = 〈e!W/Y,i/g!W/Y, b!W/Y!X/Z/3, d!X/Z/3〉

τ(t2) = 〈i/g!W/Y, e!W/Y, b!W/Y!X/Z/3, d!X/Z/3〉

5. Clean the traces from unobservable actions:

τ(t1){ i} = 〈e!W/Y,i/g!W/Y, b!W/Y!X/Z/3, d!X/Z/3〉{ i}= 〈e!W/Y, b!W/Y!X/Z/3, d!X/Z/3〉

τ(t2){ i} = τ(t1){ i} = 〈e!W/Y, b!W/Y!X/Z/3, d!X/Z/3〉

6. Using the narrower, find substitutions forW, X, Y andZ, such that all conditions in the set

{ W/Y < 4, W/Y >1, X/Z/3 <W/Y, X/Z/3>=1}are all satisfied:

No substitutions can be found since predicate (X/Z/3 <W/Y) and predicate (W/Y < 4) cannot be

both true. Therefore, there is no feasible tracet that satisfies the initial relation.

Chapter 4 Variable Traces Derivation

78

Chapter 4 Variable Traces Deriva-
tion

In the previous chapter, we have discussed the goal-oriented execution technique to derive

characterized traces from LOTOS specifications, expressed by relations⇒+ and⇒×. The

components used in this technique are (1)static analyser: explores the given LOTOS specification

to determine where possibly, and not how, a desired trace can be found, (2)guided-inference

system: uses static information, generated by the static analyser, to derive variable traces defined

by relations→+ and→×, and (3)ADT narrower: used to resolve all guards and predicates in the

variable traces by assigning values to all free variables.

In this chapter, the formal definitions of the static analyser and the guided-inference system are

presented. Their limitations and the heuristics used to overcome these limitations are also

discussed.

4.1 Static Derivation Paths

As described in the previous chapter, static derivation paths are generated by the functionΣ :

A × B × G* → X. Σ(a,B,G) derives the set of all possible static derivation paths from behaviourB

leading to each actionai that statically matches actiona, i.e. byai ≡s a, and not passing through

any prefixed action with gate name inG. This implies that if the gate name of the target action is

in G, then the SDPs cannot go through any prefixed action with target action’s gate name other than

the terminating actions. The formal definition of the functionΣ : A × B × G* → X is provided in

the following section.

Chapter 4 Variable Traces Derivation

79

4.1.1 Formal Definition ofΣ

Successful Termination ofΣ

The following describes the successful ending of the traversal of the static behaviour, namely

when a target action is found:

Σ(a1, a2;B, G) ={[prefix]}, if a1 ≡s a2

Σ(a, exit(E1,..,En), G) ={[exit]}, if a ≡s δd1..dn, where

di = !Ei if Ei is a term or

di = ?xi:si if Ei = any si

Unsuccessful Termination ofΣ

Unsuccessful termination may result from:

1- reaching a stop;

2- the action encountered does not statically match the target action and its gate belongs toG;

3- encountering an exit construct that does not statically match the target action;

4- encountering a relabeled behaviour whose actual gate list does not contain the gate name of the

target action;

5- encountering an instantiation of a process whose actual gate list does not contain the gate name

of the target action; or

6- encountering a list of hidden gates including the gate name of the target action.

More formally:

Σ(a, stop, G) = ∅

Σ(a1, a2;B, G) = ∅ if not(a1 ≡s a2) and

name(a2) ∈G

Σ(a, exit(E1,..,En), G) =∅ if not(a ≡s δd1..dn), where

di = !Ei if Ei is a term or

di = ?xi:si if Ei = any si

Σ(a, (B)[g1/h1, ..., gn/hn], G) =∅ if name(a)∉ {g1, …,gn}

Chapter 4 Variable Traces Derivation

80

Σ(a, p[g1,..,gn], G) =∅ if name(a)∉ {g1, …,gn}

Σ(a, hide GL in B, G) =∅ if name(a) ∈ GL

Recursion

In all other situations, the behaviour has to be analyzed further. This is done by carrying the

evaluation ofΣ to the sub-behaviour(s), according to the specific rules for each type of construct,

as described below. Informally, the recursive generation of the set of SDPs from the current

behaviour has one of the 2 forms:

1- unary operators: Σ(a, op B, G) is a composition of the elements ofΣ(a, B, G), prefixing each

element with the symbol representingop with the exception ofinstance andrelabel operators

where a new target action gate name and a new restricted gate set are carried out. IfΣ(a, B, G)

= ∅, thenΣ(a, op B, G) =∅.

2- binary operators: Σ(a, B1 op B2, G) is a composition of the elements ofΣ(a, B1, G) andΣ(a,

B2, G), prefixing each element with the symbol representingop followed by d̂irection, with

direction beingleft for elements fromΣ(a, B1, G) andright for elements fromΣ(a, B2, G).

o Prefix

Σ(a, i;B, G) = {[prefix.s] | s ∈Σ(a, B, G)}

Σ(a1, a2;B, G) = {[prefix.s] | s ∈Σ(a1, B, G)}

if name(a2) ∉ G

Note that even ifa1 ≡s a2 in the second rule, recursion is carried out to find another path as long

as the gate name of the encountered actiona2 is not restricted, i.e.name(a2) ∉G.

o Choice

Σ(a, B1[]B2, G) = {[choice^left.s] | s ∈Σ(a, B1, G)} ∪

{[choice^right.s] | s ∈Σ(a, B2, G)}

o Guard

Σ(a, [P] -> B, G) = {[guard.s] | s ∈Σ(a, B, G)}

Chapter 4 Variable Traces Derivation

81

o Local Definition

Σ(a, let x1:s1=t1, .. xn:sn=tn in B, G) =

{[let.s] | s ∈Σ(a, B, G)}

o Summation on Values

Σ(a, choice x:s [] B, G) =

{[chval.s] | s ∈Σ(a, B, G)}

o Nested

Σ(a, (B), G) = {[nested.s] | s ∈Σ(a, B, G)}

o Hiding

Σ(a, hide GL in B, G) = {[hide.s] | s ∈Σ(a, B, G)}

if name(a)∉ GL

o Enabling

Σ(a, B1>>B2, G) = {[enable^left.s] | s ∈Σ(a, B1, G)} ∪

{[enable^right.s] | s ∈Σ(a, B2, G)}

if name(a)≠ δ

Σ(a, B1>>B2, G) = {[enable^right.s] | s ∈Σ(a, B2, G)}

if name(a)= δ

In this case, ifδ action exists in some trace, it will be found at the end of the execution ofB2.

All other δ actions inB1 are transformed into internal actions by the enable operator.

Chapter 4 Variable Traces Derivation

82

o Disabling

Σ(a, B1[>B2, G) = {[disable^left.s] | s ∈Σ(a, B1, G)} ∪

{[disable^right.s] | s ∈Σ(a, B2, G)}

o Selected Synchronization

Σ(a, B1 |[GL]| B2, G) = {[parallel^left.s] | s ∈Σ(a, B1, G)} ∪

{[parallel^right.s] | s ∈Σ(a, B2, G)},

if name(a)∉({GL} ∪ {δ})

Σ(a, B1 |[GL]| B2, G) = {[parallel^left.s] | s ∈Σ(a, B1, G)}

if name(a)∈({GL} ∪ {δ})

The second rule states the fact that if the target actiona is a synchronization action, denoted by

name(a)∈({GL} ∪ {δ}), then only one side is explored. As we shall see in section 4.2, the other

side will be explored while generating the desired trace.

o Interleave Parallelism

Σ(a, B1 |||B2, G) = {[parallel^left.s] | s ∈Σ(a, B1, G)} ∪

{[parallel^right.s] | s ∈Σ(a, B2, G)},

if name(a)≠ δ

Σ(a, B1 |||B2, G) = {[parallel^left.s] | s ∈Σ(a, B1, G)}

if name(a)= δ

An alternative definition ofΣ(a, B1 |||B2, G) is:

Σ(a, B1 |||B2, G) = Σ(a, B1 |[]| B2, G)

o Full Synchronization

Σ(a, B1 ||B2, G) = {[parallel^left.s] | s ∈Σ(a, B1, G)}

Chapter 4 Variable Traces Derivation

83

In this case, only one side is explored since the target actiona must be a synchronization action.

o Relabeling

Σ(g d1...dn[P], (B)[g1/h1, ..., gn/hn], G) =

{[relabel(h, G’).s] | s ∈Σ(h d1...dn[P] , B, G’)}

if g ∈ {g1,…,gn}

where

h ∈ TargetSet = {hk | gk = g} and G’ = {hk | gk ∈ G}

Σ(δ d1...dn[P], (B)[g1/h1, ..., gn/hn], G) =

{[relabel(δ, G’).s] | s ∈Σ(δ d1...dn[P] , B, G’)}

whereG’ = {hk | gk ∈ G}

In these rules, the gate nameg of the actual target action (when g≠ δ) and the actual restricted

gate setG are replaced by the corresponding formal gates of behaviourB, namelyh andG’

respectively.h andG’ may need to be referenced by the guided-inference system, defined in

section 4.2. For that reason, they are saved in the static derivation paths with therelabel element.

The following is an example that demonstrates the above rule:

Σ(a?X:Nat,p[h1,h2,h3,h4][a/h1, b/h2, a/h3, c/h4] , {a,b}) =

{[relabel(h1, {h1,h2,h3}).s] | s ∈(Σ(h1?X:Nat, p[h1,h2,h3,h4] , {h1,h2,h3}) } ∪

{[relabel(h3, {h1,h2,h3}).s] | s ∈(Σ(h3?X:Nat, p[h1,h2,h3,h4] , {h1,h2,h3}) }

i.e. the static derivation paths of actiona?X:Nat with restricted set {a,b}are those ofh1?X:Nat and

h3?X:Nat with restricted set {h1,h2,h3}, sinceh1 andh3 are to be relabeled bya, andh2 is to be

relabeled byb.

Chapter 4 Variable Traces Derivation

84

o Process Instantiation

Σ(g d1...dn[P], p[g1,..,gn](t1,...,tm), G) ={[instance(h, G’).s] | s ∈Σ(h d1...dn[P] , B, G)’}

if g ∈ {g1,…,gn} and ∃P[h1,..,hn](x1:s1..xm:sm) := B,

where

h ∈ TargetSet = {hk | gk = g} and G’ = {hk | gk ∈ G}

Σ(δ d1...dn, p[g1,..,gn](t1,...,tm), G) ={[instance(δ, G’).s] | s ∈Σ(δ d1...dn[P] , B, G)’}

if ∃P[h1,..,hn](x1:s1, ..., xm:sm):exit(S1,...,Sn) := B and

sort(di) = Si for 1 ≤ i ≤ n,

where G’ = {hk | gk ∈ G}

Similar to the relabeling rules, the gate nameg (when g≠ δ) of the actual target action and the

actual restricted gate setG are replaced by the corresponding formal gates. The target gate name

and restriction set replacements are also saved in the static derivation paths with theinstance

element.

4.1.2 Observations

Lemma 4-1: The number of possible distinct process instantiations encountered during the

derivation of static derivation paths is finite.

Proof: Two process instantiations are said to be distinct if (1) they have different process

names, or (2) they have same process name but different actual gates. Since the

number of processes in any LOTOS specification is finite then the number of process

instantiations with different process names is also finite. The number of possible

distinct instantiations for processes having the same process name is also finite, since

the number of gates of any LOTOS behaviourB, α(B), is finite.

o

Lemma 4-2: If the number of occurrences of identical process instantiations encountered during

the derivation of static derivation paths is finite, thenΣ(a, B, G) is a finite set.

Proof: If the number of possible distinct process instantiations encountered during the

Chapter 4 Variable Traces Derivation

85

derivation of static derivation paths is finite (lemma 4-1), and the number of possible

occurrences of each of the distinct process instantiations is also finite, then the

number of all process instantiation occurrences in deriving the static derivation paths

is finite. This implies that the search space for deriving the setΣ(a, B, G) is finite.

o

Lemma 4-3: If Σ(a, B, G) = ∅ then there exists no trace〈a1, ..., an〉 such that(a, B)/G =〈a1, ...,

an〉⇒+ Br holds.

Proof: Σ(a, B, G) = ∅ only if one the following is true:

1-no actiona’ is found that statically matches actiona using static relabeling. In this

case, there will be no action that can be derived from B that matches action a, and

therefore(B, a)/G =〈a1, ..., an〉⇒+ Br does not hold;

2-an actiona’ is found that matches actiona using static relabeling, but there is an

intermediate actionb on the same static derivation path that has a gate inG. In this

case, actionb must also appear as an intermediate action in the trace〈a1, ..., an〉, and

therefore contradict the definition of(a, B)/G =〈a1, ..., an〉⇒+ Br.

o

Lemma 4-4: Σ(a,B, G)≠ ∅ does not imply that (a, B)/G =〈a1, ..., an〉⇒+ Br holds.

Proof: This can be proven by a counterexample. For example,Σ(a, (a;stop || b; stop), {})

= {[nested, parallel^left, prefix]}, but (a, (b;stop || a; stop))/{} =t ⇒+ Br does not

hold for anyt, because of lack of synchronization.

o

4.1.3 Limitations

The limitations of static derivation paths definition are:

1. The derivation of an SDP may not terminate. For example, consider the definition ofp1

given in Figure 4-4 , the derivation of the first SDP∈ Σ(b?X:Nat, p1[a,b](0), {b}) will cycle

indefinitely searching for an action that statically matchesb?X:Nat as follows:

[instance, choice^left, nested, choice^right, instance, choice^left, nested, choice^right,

instance, choice^left, nested, choice^right, ...],

2. The setΣ(a, B, G) can be infinite. Again, considering the specification in Figure 4-4 , we

have:

Chapter 4 Variable Traces Derivation

86

Σ(a, p1[a,b](0), {a, b}) =

{[instance, choice^left, nested, choice^left, prefix],

[instance, choice^left, nested, choice^right, instance, choice^left, nested, choice^left,

prefix],

[instance, choice^left, nested, choice^right, instance, choice^left, nested, choice^right,

instance, choice^left,nested, choice^left, prefix],

...},

that can be represented as

{[instance, (choice^left, nested, choice^right, instance)n, choice^left, nested, choice^left,

prefix]},

for n ≥ 0

specification testing[a,b]: noexit

library NaturalNumber, Boolean endlib

behavior

 p1[a,b](0)
 |[a,b]|
 b?X1:Nat;
 b?X2:Nat;
 a?X3:Nat;

stop
where

process p1[a,b](X:Nat):noexit :=
 (a!X[X ge Succ(Succ(0))]; stop
 []
 p1[a,b](Succ(X)))
 []
 b!X; p1[a,b](Succ(X))

endproc
endspec

Chapter 4 Variable Traces Derivation

87

Figure 4-4 Recursive Process Definition

Both problems can be solved by adding appropriate heuristics to the implementation. The first

problem occurs when a process instantiation is re-encountered before the target action is found.

The second problem occurs when a process instantiation is re-encountered in an alternative, after

the target action has been found. Therefore, these limitations are due to recursive process

definitions. To avoid such problems, the search space for deriving the static derivation paths can

be made finite by limiting the number of identical process instantiations occurrences, see lemma

4-2. We recall that identical process instantiations are those having the same process name and

actual gates, i.e. actual value parameters are not considered. Now returning to the previous

example, if the number of identical process instantiations is constrained to be at most 3, then:

1. the derivation of the first SDP∈ Σ(b, p1[a,b](0), {b}) will terminate with the following

path:

[instance, choice^left, nested, choice^right, instance, choice^left, nested, choice^right,

instance, choice^left, nested, choice^left, prefix], and

2. Σ(a, p1[a,b](0), {a, b}) =

{[instance, choice^left, nested, choice^left, prefix],

[instance, choice^left, nested, choice^right, instance, choice^left, nested, choice^left,

prefix],

[instance, choice^left, nested, choice^right, instance, choice^left, nested, choice^right,

instance, choice^left, nested, choice^left, prefix]}

To reflect the above heuristic, the definition ofΣ(a, B, G) will carry a listPI_LIST of process

instantiations (not including actual value parameters) with their number of occurrences. Therefore,

Σ(a, B, G) is defined asΣ(a, B, G, PI_LIST), wherePI_LIST is initially empty.

The following is the definition ofΣ(a, B, G, PI_LIST) whenB is a process instantiation.

Σ(g d1...dn[P], p[g1,..,gn](t1,...,tm), G, PI_LIST) ={[instance.s] | s ∈Σ(h d1...dn[P] , B, G’,

PI_LIST2)}

<same conditions as in the definition ofΣ(a, B, G) whenB is a process

 instantiation> and

PI_LIST2 = PI_LIST ∪ (p[g1,..,gn],1), if (p[g1,..,gn],N) ∉PI_LIST,i.e. first

Chapter 4 Variable Traces Derivation

88

occurrence ofp[g1,..,gn]

PI_LIST2 = PI_LIST−(p[g1,..,gn],N) ∪ (p[g1,..,gn],N+1),

if (p[g1,..,gn],N) ∈PI_LIST,i.e. N+1 occurrences ofp[g1,..,gn], and

N ≤ PI_Limit

PI_LIST is not affected in the definition ofΣ(a, B, G, PI_LIST) whenB is not a process

instantiation.

4.2 Guided-Inference System

As described in section 3.5 of the previous chapter, the algorithm to implement the relation(a,

B)/G =t⇒+ B’ is defined by first generating variable traces satisfying the relation:

(a, sdp, B)/Gt(V)→+ B’(V), where sdp ∈ Σ(a, B, G).

Relation→+ is defined using guided-inference system where the derivation is guided by static

derivation paths.

To demonstrate some key points in our definition of guided-inference system, the references to

behaviourBi used in our examples refer to the behaviour tree in Figure 4-6 . For example,B3

identifies the behavioura;b;stop [] b;c; stop.

specification testing[a,b,c,d,e]: noexit:=
behaviour
 (a;b; stop
 []
 b;c; stop
 [>
 a;b; stop
 []
 d;c; stop)
|[a,c]|
 b;c; stop
 []
 a;e;c; stop
endspec

Chapter 4 Variable Traces Derivation

89

Figure 4-5 A LOTOS Specification

.

Figure 4-6 Abstract Syntactic Tree of Figure 4-5

4.2.1 Formal Definition

The formal definition of(a, sdp, B)/Gt(V)→+ B’(V), where sdp ∈ Σ(a, B, G), is given below.

Target action is reached

A target action is reached when the current behaviour expression is anexit or anaction prefix,

and the static derivation path has only one element identifying the behaviour. In this case, the

accumulated action will be the result of statically matching the current derived actiona2 and the

actual target actiona1, preciselya1↑s a2 defined in Table 3-1 of the previous chapter.

B0

B3

B4

B5

B6

B7

B8

B9

B24

B1

B2

B17

B18

B19

B20

B21

B22

B23

B10

B11

B12

B13

B14

B15

B16

testing[a,b,c,d,e]

|[a,c]|

[]

[>

[]

a

e

c

b

c

d

c

a

b

b

c

a

b

nested

Chapter 4 Variable Traces Derivation

90

o Successful Termination

(a, [exit], exit(E1,..,En))/G 〈a ↑s δd1..dn〉→+ stop (1)

di = !Ei if Ei is a term or

di = ?xi:si if Ei = any si

The actiona ↑ δd1..dn is accumulated.

Example

The relation(δ !0, [exit], exit(any Nat))/{} t→+ B’ will be satisfied witht = 〈δ !0〉 andB’ =

stop.

o Action Prefix

(a1, [prefix], a2;B)/G 〈a1↑s a2〉→+ B (2)

When the end of the SDP is reached, the prefixed action is matched with the target action

producing the desired action. If the matching causes variables ina2 to be substituted by terms

in a1, then this substitution is carried to the resulting behaviourB.

Example

Let B = c?Y:Nat ?Z:Nat[Y<Succ(0)]; d ! Y;stop,

then(c!0 ?X:Nat[X>0], [prefix], B)/{} t→+ B’ will be satisfied with

t = 〈c!0 ?Z:Nat[0<Succ(0) ^ [Z>0]]〉 andB’ = d ! 0; stop.

Target action is not reached

This is the case where the static derivation path has more than one element.

o Action Prefix (Target action is not reached)

s ≠ [], (a, s, B)/Gt→+ B’

 (3)
(a, [prefix.s], a’;B)/G 〈a’.t〉→+ B’

These rules adds the internal and external prefixed actions to the derived trace.

Chapter 4 Variable Traces Derivation

91

Example

The relation(c, [prefix, prefix], i; c; stop)/{} t→+ B’ will be satisfied witht = 〈i, c〉 andB’

= stop.

o Choice

(a, s, B1)/G t→+ B'

 (4)
(a, [choice^left.s], B1 [] B2)/G t→+ B'

(a, s, B2)/G t→+ B'

 (5)
(a, [choice^right.s], B1 [] B2)/G t→+ B'

The trace generated for the choice operator is either the trace ofB1 (in the case ofchoice^left)

or B2 (in the case ofchoice^right).

o Nested

(a, s, B)/Gt→+ B’

 (6)
(a, [nested.s], (B))/G t→+ B’

Nesting has no effect on the derived trace.

o Guard

(a, s, B)/G〈b1.t〉→+ B’

 (7)
(a, [guard.s], ([P]->B))/G 〈b2.t〉→+ B’

whereb2 = [P]b1, if b1 has no associated guard,

b2 = [P^P1]b11, if b1 has the form: [P1]b11

The guardP in [P]-> B is associated with the first action of every trace generated fromB.

Example

Let B = [X>Succ(0)]-> (c!X; stop [] [Y<Succ(0)] -> d!X!Y; a?Z:Bool;stop),

Chapter 4 Variable Traces Derivation

92

then (a?Z:Bool, [guard, nested, choice^right, guard, prefix,prefix],B)/{} t→+ B’, will be

satisfied with

t = 〈[(X>Succ(0)) ^ (Y<Succ(0))]d!X!Y, a?Z:Bool〉�andB’ = stop.

o Local Definition

(a, s, [t1/x1, .., tn/xn]B)/G t→+ B’

 (8)
(a, [let.s], let x1:s1=t1, .. xn:sn=tn in B)/Gt→+ B’

The trace generated from the behaviourlet x1:s1=t1, .. xn:sn=tn in B is the same trace generated

from B after replacing all occurrences ofx1 .. xn in B by t1 .. tn respectively.

Example

Let B = let X:Nat=Succ(0)in c?Y:Bool; a!X; d!X, stop,

then (a?Z:Nat,[let, prefix, prefix],B)/{} t→+ B’, will be satisfied with

t = 〈c?Y:Bool, a!Succ(0)〉�andB’ = d!Succ(0); stop.

o Summation on Values

(a, s, B)/G〈b1.t〉→+ B’

 (9)
(a, [chval.s], choice x:s [] B)/G〈b2.t〉→+ B’

whereb2 = [x=x]a1, if b1 has no associated guard,

b2 = [(x=x)^P1]a11, if b1 has the form: [P1]b11

For behaviourchoice x:s [] B, The guardx=x is associated with the first action of every trace

generated fromB. The narrower will generate values forx when applied on the predicatex=x.

Example

Let B = choice X:Nat [] (c!X; stop [] [Y<Succ(0)] -> d!X!Y; a!X?Z:Bool;stop),

then (d?Z1:Nat?Z2:Nat, [chval, nested, choice^right, guard, prefix],B)/{}= t→+ B’, will be

satisfied with

t = 〈[(X=X) ^ (Y<Succ(0))]d!X!Y〉�andB’ = a!X?Z:Bool; stop.

Chapter 4 Variable Traces Derivation

93

o Hiding

(a, s, B)/Gt→+ B’

 (10)
(a, [hide.s], hide GL in B)/G t�↓{GL} →+ hide GL in B’

All actions in the trace generated by the hide operator with gate names in the list GL, are

hidden.

Example

Let B = hide a,b in c;a;d;stop,

then (c, [hide, prefix, prefix],B)/{} t→+ B’, will be satisfied with

t = 〈c, a〉�↓{ a,b} = 〈c, i/a〉� andB’ = hide a,b in d;stop.

o Enabling

(a, s, B1)/G t1→+ B11

 (11)
(a, [enable^left.s], B1 >> accept x1:s1,.., xn:sn in B2)/G t1→+

B11 >> accept x1:s1,.., xn:sn in B2

∃ r ∈Σ(δ ?X1:s1 ...?Xn:sn, B1),

(δ ?X1:s1 ...?Xn:sn, r, B1)/G t1→+ B11

(a, s, [v1/x1, .., vn/xn]B2)/G t2→+ B21
 (12)

(a, [enable^right.s], B1 >> accept x1:s1,.., xn:sn in B2)/G t1↓{ δ} • t2→+ B21

wheret1^ = δ d1,..,dn,

vi = E if di= !E or vi = x if di = ?x:s

The first rule (11) states that if the goal action is inB1 then the resulting trace will be a tracet1
generated fromB1 guided by the remainder SDPs, and the resulting behaviour will beB11 >>

accept x1:s1,.., xn:sn in B2 whereB11 is the behaviourB1 after tracet1.

The second rule (12) states that if the goal action is inB2 then the resulting trace will be the

concatenation of two traces:

1. Tracet1↓{ δ}: where t1 is a trace fromB1 leading to an action on gateδ with events

matching the variable definition list in theaccept clause, i.e.δ ?X1:s1 ...?Xn:sn, and not

Chapter 4 Variable Traces Derivation

94

including any action with the gate name inG.

2. Tracet2: is a trace fromB2 guided by the remainder SDPs, where all variables defined in

theaccept clause are substituted inB2 by the terms offered by action δ above.

The resulting behaviourB21 in the second rule will simply be behaviourB2 after tracet2.

Example

Let behaviourB = a?Z:Nat; exit(Succ(Z))>>accept X:Nat in c!X;exit(Succ(X)),

then the set of static derivation pathsΣ(c?Y:Nat, B)/{} = {[enable^right, prefix]}. Therefore

the relation(c?Y:Nat, B)/{} t→+ B’ is defined as(c?Y:Nat,[enable^right, prefix], B)/{}

t→+ B’ which will match rule (12) where the following relations must hold:

1. (δ?X1:Nat, a?Z:Nat; exit(Succ(Z)))/{} t1→+ B11

2. (c?Y:Nat, [prefix], c!X;exit(Succ(X)))/{} t2→+ B21

The first relation (δ?X1:Nat, a?Z:Nat; exit(Succ(Z)))/{} t1→+ B11 will be defined as

(δ?X1:Nat, [prefix, exit],a?Z:Nat; exit(Succ(Z)))/{} t1→+ B11,where [prefix, exit]∈
Σ(δ?X1:Nat, a?Z:Nat; exit(Succ(Z)))/{}, and will be satisfied witht1 = 〈a?Z:Nat,δ!Succ(Z)〉
and B11 = stop.

Substituting the variable X bySucc(Z) in B2, the second relation will become:

2’. (c?Y:Nat, [prefix], c!Succ(Z);exit(Succ(Succ(Z))))/{} = t2→+ B21

and will be satisfied witht2 = 〈c!Succ(Z)〉 andB21= exit(Succ(Succ(Z))). Therefore the original

relation (c?Y:Nat,[enable^right, prefix], B)/{} t→+ B’ will be satisfied with

t = t1�↓{ δ} • t2 = 〈a?Z:Nat,δ!Succ(Z)〉↓{ δ} • 〈c!Succ(Z)〉 = 〈a?Z:Nat,i/δ!Succ(Z), c!Succ(Z)〉
and

B’ = B21 = exit(Succ(Succ(Z))).

o Disabling

(a, s, B1)/G t1→+ B11, name(a) = δ
 (13)

(a, [disable^left.s], B1 [> B2)/G t1→+ B11

Chapter 4 Variable Traces Derivation

95

(a, s, B1)/G t1→+ B11, name(a)≠ δ
 (14)

(a, [disable^left.s], B1 [> B2)/G t1→+ B11 [> B2

(a, s, B2)/G t2→+ B21,

(〈〉, B1)/(G∪{ δ}) t1→× B11
 (15)

(a, [disable^right.s], B1 [> B2)/G t1 • t2→+ B21

Rule (13) and (14) handle the case where the goal action is inB1. In this case, the resulting

behaviour expression will be constructed depending if the gate name of the target action isδ or

not.

Rule (15) states that if the search is guided to the right behaviourB2, then the resulting trace

will be the concatenation of two traces:

1. Tracet1�: is any trace derived fromB1 with length≥ 0 and not including actions with gate

names in G∪{ δ},

2. Tracet2: is a trace fromB2 guided by the remainder SDPs.

The resulting behaviour in the third rule will beB2 after tracet2, namelyB21.

Example

Considering behaviourB2 in Figure 4-6 where(c, B2)/{ b, c} = {[disable^right, choice^right,

prefix, prefix]} then the relation (c, B2)/{ b, c} t→+ B’, is defined as (c, [disable^right,

choice^right, prefix, prefix], B2)/{ b, c} t→+ B’. This matches rule (15) where the following

relations must be satisfied:

1. (c, [choice^right, prefix, prefix], B10)/{ b} t2→+ Br2

2. (〈〉, B3)/{ b, c, δ} t1→× Br1

The first relation will be satisfied witht2 = 〈d, c〉 andBr2 = stop; the second relation then

becomes(〈〉, B3)/{ b, c, δ} t1→× Br1, and will be satisfied with two results:

1. t1 = 〈〉, Br1 = B3 = a; b; stop [] b; c; stop,

2. t1 = 〈a〉, Br1 = B5 = b; stop.

Therefore the original relation (c, [disable^right, choice^right, prefix, prefix], B2)/{ b, c} t→+

B’ will be satisfied witht = t1 • t2, wheret1 ∈ { 〈〉, 〈a〉}, t2 = 〈d, c〉 andB’ = Br2 = stop.

Chapter 4 Variable Traces Derivation

96

o Selected Synchronization

name(a)∈ ({ S} ∪{ δ})

(a, s, B1)/G t1→+ B11,

(t1({ S} ∪{ δ}) , B2)/(G∪{ S} ∪{ δ}) t2→× B21,
 (16)

(a, [parallel^left.s], B1 |[S]| B2)/G t1|{ S} | t2→+ B11 |[S]| B21

name(a)∉ ({ S} ∪{ δ})

(a, s, B1)/G t1→+ B11,

(t1({ S} ∪{ δ}) , B2)/(G∪{ S} ∪{ δ}) t2→× B21,
 (17)

(a, [parallel^left.s], B1 |[S]| B2)/G (t1{ name(a)} |{ S} | t2) • 〈t1^〉→+ B11 |[S]| B21

name(a)∈ ({ S} ∪{ δ})

(a, s, B2)/G t2→+ B21,

(t2({ S} ∪{ δ}) , B1)/(G∪{ S} ∪{ δ}) t1→× B11,
 (18)

(a, [parallel^right.s], B1 |[S]| B2)/G t1|{ S} | t2→+ B11 |[S]| B21

name(a)∉ ({ S} ∪{ δ})

(a, s, B2)/G t2→+ B21,

(t2({ S} ∪{ δ}) , B1)/(G∪{ S} ∪{ δ}) t1→× B11,
 (19)

(a, [parallel^right.s], B1 |[S]| B2)/G (t1|{ S} | t2({ name(a)})•〈t2^〉→+ B11 |[S]| B21

Inference rules (16) and (17) state the fact that the desired action is inB1 (i.e. parallel^left),

where the remainder of the SDP, namelys, will guide the inference rules to generate a tracet1
such that(a, s, B1)/G t1→+ B11. Depending whether the gate name of the target action is a

member of the synchronization list gate or not, the resulting tracet will be t1|{ S} | t2 or

(t1{ name(a)} |{ S} | t2) • 〈t1^〉 respectively. This fact guarantees that the target actiona (or t1^)

will be at the end of the resulting trace. For either case, the resulting trace will be valid only if

we can generate a tracet2 fromB2 such thatt2({ S} ∪{ δ}) match t1({ S} ∪{ δ}) and t2 does not

contain any elements in the restricted setG. This can be done efficiently using the relation:

(t1({ S} ∪{ δ}) , B2)/G t2→× B21,

where({ S} ∪{ δ}) is added to the restricted set to prevent the generation of unwanted

Chapter 4 Variable Traces Derivation

97

synchronization actions.

Inference rules (18) and (19) are similar to rules (16) and (17) where the inference rules are

guided to the right, namelyB2.

Example

Consider behaviourB0 in Figure 4-6 . We have

Σ(c, B0)/{ b, c} = {[parallel^left, nested, disable^right, choice^right, prefix, prefix]}

Then the relation (c, B0)/{ b, c} t→+ B’ is defined as:

(c, [parallel^left, nested, disable^right, choice^right, prefix, prefix],B0)/{ b, c})t→+ B’.

This matches rule (16) where the following relations must hold:

1. (c, [nested, disable^right, choice^right, prefix, prefix], B1)/{ b, c} t1→+ Br1

2. (t1{ a, c, δ} , B17)/({ b, c} ∪ { a, c, δ}) t2→× Br2

The first relation will be satisfied with two results from the previous example:

1. t1 = 〈d,c〉, Br1 = stop,

2. t1 = 〈a, d, c〉, Br1 = stop.

The second relation then becomes

(〈d,c〉{ a, c, δ} , B17)/{ a, b, c, δ} t2→× Br2, or

(〈a, d, c〉{ a, c, δ} , B17)/{ a, b, c, δ} t2→× Br2

The first relation will not hold sinceΣ(c, B17)/{ a, b, c, δ} =∅, and the second rule will succeed

with t2 = 〈a, e, c〉, Br2 = stop. And as a conclusion, the original relation

(c, [parallel^left, nested, disable^right, choice^right, prefix, prefix],B0)/{ b, c})t→+ B’

will hold with:

t = t1|{ a, c} | t2 = 〈a, d, c〉|{ a, c} | 〈a, e, c〉, B’ = Br1|[a, c]|Br2 = stop|[a, c]|stop. Therefore:

t ∈ { 〈a, d, e, c〉, 〈a, e, d, c〉}.

Chapter 4 Variable Traces Derivation

98

o Interleave Parallelism

(a, s, B1 |[]| B2)/G t→+ B'

 (20)
(a, s, B1 ||| B2)/G t→+ B'

The interleave operator is treated as the selected synchronization operator with an empty list of

synchronization gates.

o Full Synchronization

(a, s, B1 |[α(B1) ∪ α(B2)]| B2)/G t→+ B'

 (21)
(a, s, B1 || B2)/G t→+ B'

The full synchronization operator is treated as the selected synchronization operator with the

list of synchronization gates composed with the alphabet of behavioursB1 andB2.

o Relabeling

(h d1...dn[P], s, B)/G’ t→+ B'

 (22)
(g d1...dn[P], [relabel(h, G’).s], (B)[RL])/G t[RL]→+ (B’)[RL]

where RL =g1/h1, ..., gn/hn

In this rule, the gate nameg of the actual target action and the actual restricted gate setG are

replaced byh and G’ respectively which are the corresponding formal gates of behaviourB. These

new elements are found by the static analysis. See section 4.1.

Example

Consider behaviourB0 of Figure 4-6 . Let

s = [parallel^left, nested, disable^right, choice^right, prefix, prefix]

the relation (g3, [relabel(c, {b}) .s, B0[g1/a, g2/b, g3/c, g4/d, g5/e])/{ g2})t→+ B’ matches

rule (22) where the relation(c, s, B0)/{ b} t1→+ Br1 must hold, as in the previous example,

Chapter 4 Variable Traces Derivation

99

with:

1. t1 = 〈a, d, e, c〉, B’ = stop|[a, c]|stop,

2. t1 = 〈a, e, d, c〉, B’ = stop|[a, c]|stop.

Therefore the original relation

(g3, [relabel.s], B0[g1/a, g2/b, g3/c, g4/d, g5/e])/{ g2})t→+ B’

 will be satisfied with

t = t1[g1/a, g2/b, g3/c, g4/d, g5/e], B’ = (stop|[a, c]|stop)[g1/a, g2/b, g3/c, g4/d, g5/e]

This implies

t ∈ { 〈g1, g4, g5, g3〉, 〈g1, g5, g4, g3〉}.

o Process Instantiation

∃p[h1,…,hn] := B, (a, [relabel(h, G’).s], (B)[RL])/G t→+ B’

 (23)
(a, [instance(h, G’).s], p[g1,…,gn])/G t→+ B’

where RL =g1/h1, ..., gn/hn

In this rule the elementinstance(h, G’) in replaced byrelabel(h, G’), since a process

instantiation relabels the behaviour of the process and the elementsh andG’ are the new gate

name of the target action and the new restricted gate set found during static analysis.

Example

Given the specification in Figure 4-6 , suppose we want to reach actiong3 without passing by

g2 from the behaviourtesting[g1, g2, g3, g4, g5]. This can be specified by the relation

(g3, testing[g1, g2, g3, g4, g5])/{ g2} t→+ B’

which is defined as

(g3, sdp, testing[g1, g2, g3, g4, g5])/{ g2} t→+ B’, where

Chapter 4 Variable Traces Derivation

100

sdp∈ Σ(g3, testing[g1, g2, g3, g4, g5])/{ g2, g3}

Forsdp = [instance(c, {b}), parallel^left, nested, disable^right, choice^right, prefix, prefix] we

have the relation([instance(c, {b}).s], testing[g1, g2, g3, g4, g5])/{ g2} t→+ B’ that matches

rule (23) and yields to

(c, relabel(c, {b}).s, (B0)[g1/a, g2/b, g3/c, g4/d, g5/e])/{ g2})t→+ B’, where

s = [parallel^left, nested, disable^right, choice^right, prefix, prefix]

This is the same relation we had in the previous section that resulted in:

t = t1[g1/a, g2/b, g3/c, g4/d, g5/e], B’ = (stop|[a, c]|stop)[g1/a, g2/b, g3/c, g4/d, g5/e]

This implies

t ∈ { 〈g1, g4, g5, g3〉, 〈g1, g5, g4, g3〉}.

The following lemmas sketch the correctness of the guided-inference system definition given

above and the goal-oriented execution algorithm presented in section 3.8.

4.2.2 Observations

In the following proofs, we refer to the inference rules of relation→+ defined in the previous

section.

Lemma 4-5: If (a, sdp, B)/Gt’→+ B” , where sdp ∈ Σ(a, B, G), holds, thent’^ ≡s a.This lemma

identifies the fact that the derived traces by the inference rules of relation →+, do in

fact terminate with an action that matches the goal action.

Proof: Static derivation pathsdp ∈ Σ(a, B, G) always leads to an actiona’ that statically

matches actiona, denoted by a’ ≡s a, using static relabeling. Looking at the guided-

inference rules definition, a givensdp∈ Σ(a, B, G) will direct the execution to derive

a sub-tracet” wheret”^≡s a, see termination rules (1) and (2). For the other rules, we

have the following:

Rule (10):sdp = [hide.s] - states that the desired tracet’ = t” ↓{GL}. But since static

derivation paths definition guarantees the fact thatname(a)∉ {GL}, and sincet”^≡s

Chapter 4 Variable Traces Derivation

101

a, thereforet’^≡s a.

Rule (12):sdp = [enable^right.s] - in this rule the desired tracet’ = t1↓{ δ} • t” , and

therefore,t’^ = t”^ ≡s a.

Rule (15):sdp = [disable^right.s] - similarly, in this rule the desired tracet’ = t1� •t” ,

and therefore,t’^ = t”^ ≡s a.

Rule (16):sdp = [parallel^left.s] andname(a)∈ ({ S} ∪{ δ}), whereS is the list of

synchronization gates - the desired tracet’ = t” |{ S} | t2, where(t” ({ S} ∪{ δ}) , B2)/G

t2→× B21. Sincet”^ ≡s a andname(a)∈ ({ S} ∪{ δ}), then (t” ({ S} ∪{ δ}))^ ≡s a,

and therefore from the definition of→×, we will havet2^ ≡s a andt2({ S} ∪{ δ}

match t”({ S} ∪{ δ}. This impliest’^ ≡s (t” |{ S} | t2)^ ≡s a.

Rule (17):sdp = [parallel^left.s] andname(a)∉ ({ S} ∪{ δ}), whereS is the list of

synchronization gates - the desired trace in this rule ist’ = (t” { name(a)} |{ S} | t2) •
〈t”^ 〉. Sincet”^≡s a, thereforet’^≡s a.

Rule (18) and rule (19) are similar to rule (16) and rule (17) respectively wheresdp

= [parallel^right.s].

All the other rules state the fact that the desired tracet’ = t” , and thereforet’^≡s a.

o

Lemma 4-6: If (a, sdp, B)/Gt’ • 〈a’〉→+ B” , where sdp ∈ Σ(a, B, G), holds, then ∀b ∈ G, not(b

in t’) . This lemma identifies the fact that the derived traces by the inference rules of

relation →+, do not contain any action, other than the last actiont’^, having a gate

name inG.

Proof: A givensdp∈ Σ(a, B, G) will direct the execution of the guided-inference system

definition to derive a sub-tracet1 • 〈a1〉. Static derivation paths definition guarantees

the fact that∀b ∈ G, not(b in t1). When other sub-trace t2 is needed to derive the

desired tracet’ • 〈a’〉, the restricted set is carried out to guarantee the fact that∀b ∈
G, not(b in t2), except for rule (16) and rule (18) wherename(a) is a member of the

synchronization set. In these rules the sub-trace t2 will have the formt2’ • 〈a2’ 〉 where

∀b ∈ G, not(b in t2’) . Therefore, the desired tracet’ • 〈a’〉 will be equal to

t1• 〈a1〉|{ S} |t2’•〈a2’ 〉, with name(a) = name(a’) = name(a2’) ∈ { S}and

Chapter 4 Variable Traces Derivation

102

which is equivalent to:

t’ • 〈a’〉 = (t1|{ S} |t2’)•〈a1↑sa2’ 〉.

Since∀b ∈ G, not(b in t1) and not(b in t2’) , then∀b ∈ G, not(b in t1|{ S} |t2’) . Which

implies∀b ∈ G, not(b in t’)

o

Lemma 4-7: If (a, sdp, B)/G〈a1’ ,…,an’ 〉→+ B” holds, where sdp ∈ Σ(a, B, G), and there exists

a substitutionσ such thateval(ρ(〈a1’ ,…,an’ 〉)σ) = true, then there exists a trace

〈a1,…,an〉 such thatB 〈a1,…,an〉 → B’ holds withname(ai) ∉G for 1≤i≤n-1 and

an ≡ a, 〈a1,…,an〉 = τ(〈a1’ ,…,an’ 〉)σ, andB’= B” σ.

Proof: Here we only give a sketch of the proof. When(a, sdp, B)/G〈a1’ ,…,an’ 〉→+ B”

holds using the definition in section 4.2.1, and a substitutionσ is found by the

narrower such thateval(ρ(〈a1’ ,…,an’ 〉)σ) = true, then all encountered guards and

predicates that are accumulated in the variable trace〈a1’ ,…,an’ 〉, plus the action

synchronization conditions, see the definition ofΛ in section 3.2.2, are satisfied.

Now, if the definition of→, defined in section 3.3, follows the same derivation path

of the variable trace〈a1’ ,…,an’ 〉 and uses the values in the substitutionσ when

needed, then a trace〈a1,…,an〉 will be generated and, obviously,ai ≡s ai’ for 1≤i≤n.

This implies from lemma 4-5 and lemma 4-6 thatname(ai) ∉G for 1≤i≤n-1 andan ≡
a.

Therefore, a detailed proof of this lemma would imply a comparison between the

inference rules of relation→+ and those of relation→. We leave to the reader.

o

Lemma 4-8: If (a, sdp, B)/Gt’→+ B” holds, where sdp ∈ Σ(a, B, G), and there exists a

substitutionσ such thateval(ρ(t’)σ) = true, then there exist a trace t such that(a, B)/

G =t⇒+ B’ holds witht = (τ(t’)σ){ i} and B’= B” σ.

Proof: If (a, sdp, B)/Gt’→+ B” holds, where sdp ∈ Σ(a, B, G), and there exists a

substitutionσ such thateval(ρ(〈a1’ ,…,am’ 〉)σ) = true, then there exist a tracet2 such

thatB t2 → B’ holds with t2= τ(t’)σ andB’= B” σ, see lemma 4-7. As defined in

section 3.4,(a, B)/G =t⇒+ B’, iff B =t⇒ B’ such thatname(b)∉G for allb in t. And

we haveB =t⇒ B’ iff B t2→ B’ such thatt = t2{ i} = (τ(t’)σ){ i}. Therefore this

lemma holds.

Chapter 4 Variable Traces Derivation

103

o

4.2.3 Limitations

Guided-inference system execution may not terminate for two reasons:

1- When static derivation paths cycle in an unfeasible path. This problem was resolved by limiting

the number of identical process instantiations involved in deriving the static derivation paths,

see section 4.1.3.

2- When relation(〈〉, B)/Gt→× B’ is involved in deriving the traces. This relation is defined as:

(〈〉, B)/G〈〉→× B (1)

(* , B)/Gt1→+ B2,

(〈〉, B2)/G t2→× B’

 (2)
(〈〉, B)/Gt1• t2→× B’

where ‘*’ stands for any action

The above definition of relation(〈〉, B)/Gt→× B’ may derive infinite number of undesirable

sub-traces. For example, let

A[a, b] := a; A[a, b] [] b; exit

D[a, b, c] := (A[a, b] [> c; exit)|[a,b,c]| a; b; c; exit

The relation(c, D[a,b,c])/{} t→+ B’ has an obvious solutiont = 〈a, b, c〉. But since the first

static derivation path inΣ(c, D[a,b,c])/{c} will guide the inference rules through parallel^left

then through disable^right, the following rules will be executed:

1. Rule (16), for parallel^left, states that the tracet1 derived from the left behaviour (leading

to actionc) must synchronize with a tracet2 derived from the right behaviour on gates

[a,b,c]. More formally, this rule tries to satisfyt= t1|{ a,b,c} |t2, such thatt1{ a,b,c,δ} =

t2{ a,b,c,δ}, and t1^ = c. This can succeed only ift1= 〈a, b, c〉.
2. Rule (16), for disable^right, is responsible of deriving the sub-tracet1 needed by rule (16)

above. Rule (15) states thatt1= t11•t12, wheret12 = 〈c〉 derived from the right behaviour,

andt11 is derived from the relation(〈〉, A[a,b])/{δ} t→× B’. This relation produces an

infinite number of traces, namely,

t11 ∈ {〈〉, 〈a〉, 〈a, a〉, 〈a, a, a〉, 〈a, a, a, a〉, 〈a, a, a, a, a〉,...},

Chapter 4 Variable Traces Derivation

104

this implies

t1 ∈ {〈c〉, 〈a, c〉, 〈a, a, c〉, 〈a, a, a, c〉, 〈a, a, a, a, c〉, 〈a, a, a, a, a, c〉,...},

and therefore the desired sub-tracet1= 〈a, b, c〉 cannot be derived, since the(〈〉, A[a,b])/{δ}

t→× B’, failed to produce the sub-trace〈a, b〉.

We have limited the number of solutions for relation(〈〉, B)/Gt→× B’ by removing the

recursion in its definition as follows:

(〈〉, B)/G〈〉→× B (1)

(* , B)/Gt→+ B’
 (2)

(〈〉, B)/Gt→× B’

where ‘*’ stands for any action

Rule (1) simply states that(〈〉, B)/Gt→× B’ will always hold witht=〈〉, andB’=B. The second

rule states that(〈〉, B)/Gt→× B’ will hold if (* , B)/Gt→+ B’ holds, where ‘*’ stands for

any action. The number of solutions for(* , B)/Gt→+ B’ is finite due to the fact thatΣ(* , B,

G) is finite with the added heuristics defined in section 4.1.3.

Now consider the above relation(c, D[a,b,c])/{} t→+ B’ where the number of identical

process instantiations for static derivation paths is limited to 2. The first static derivation path

in Σ(c, D[a,b,c])/{c} will guide the inference rules through parallel^left then through

disable^right, so the following rules will be executed:

1. Rule (16), for parallel^left, states that the tracet1 derived from the left behaviour (leading

to action c) must synchronize with a tracet2 derived from the right behaviour on gates

[a,b,c]. More formally, this rule tries to satisfyt = t1|{ a,b,c} |t2, such thatt1{ a,b,c,δ} =

t2{ a,b,c,δ}, and t1^ = c.

2. Rule (15), for disable^right, is responsible of deriving the sub-tracet1 needed by rule (16)

above. Rule (15) states thatt1= t11•t12, wheret12 = 〈c〉 derived from the right behaviour,

andt11 is derived from the relation(〈〉, A[a,b])/{δ} t→× B’. This relation produces the

following traces:

t11 ∈ {〈〉, 〈a〉, 〈a, a〉, 〈a, b〉},

this implies

Chapter 4 Variable Traces Derivation

105

t1 ∈ {〈c〉, 〈a, c〉, 〈a, a, c〉, 〈a, b, c〉},

and therefore, back to step 1 above,t = t1|{ a,b,c} |t2, such thatt1{ a,b,c,δ} = t2{ a,b,c,δ}

andt1^ = c, can be satisfied witht1 = 〈a, b, c〉 producing the desired solution t = 〈a, b, c〉.

Note that any other bound on the number of identical process instantiations would have

given the same final result.

Chapter 5 Narrowing Technique

106

Chapter 5 Narrowing Technique

5.1 Introduction

This chapter is devoted to the implementation technique of ERNAL (AnEngine toRewrite and

Narrow theADTs of LOTOS). As mentioned in chapter 3, ERNAL is an automatically generated

Prolog implementation tool capable of efficiently evaluating and narrowing equations specified in

LOTOS data types. The implementation is obtained by applying transformation techniques to a

given term rewriting system.

Efficient narrowing techniques have been studied extensively in the literature

[34][35][36][153], and an analysis of this subject would be a doctoral thesis in itself. Here we

discuss a new approach, which we do not claim to be optimal, but which provides good results with

relatively simple transformations.

SVELDA, our current ADT interpreter, uses an inner-most left-to-right evaluation strategy and

it can only be used to rewrite terms and not to solve equations. ERNAL, on the other hand, will

adopt outer-mostbest-order evaluation strategy. We call the operands evaluation order “best-

order” since it is not specific and it depends on factors described later in this chapter.

Figure 5-1 shows the order in which the operators are evaluated using inner-most left-to-right

strategy and outer-most left-to-right strategy respectively for the expression

(succ(0) > succ(succ(0))) and (succ(0) < 0)

Chapter 5 Narrowing Technique

107

Figure 5-1 Orders of evaluation

We chose the outer-most evaluation for the following reasons (see section 3.7.3):

a- It detectsshort-circuit. That is to say that it does not evaluate some operands if they do not need

to be evaluated in order to obtain the result, i.e. best-order evaluation.

b- Unlike the inner-most evaluation, it does not require the use of de-structuring and re-structuring

Prolog operator '=..' to ungroup and re-group ADT expressions.

c- It is capable of producing the most general substitution, called the most general incomplete

structure in Prolog. Such a substitution is useful for narrowing. For example, the most general

solution of the goalX > succ(0) will be X = succ(succ(Y)), whereY is a variable representing

any natural number.

ERNAL is a set ofeval/2 Prolog clauses of the form:

eval(EXP:S, RES)

(succ (0) > succ (succ (0))) and (succ (0) < 0)

12 3456 78 91011

(succ (0) > succ (succ (0))) and (succ (0) < 0)

43 7652 109 1181

Inner-most left-to-right evaluation order

Outer-most left-to-right evaluation order

Chapter 5 Narrowing Technique

108

whereRES is the resulting evaluation of the ADT expression EXP of sortS. For readability, we use

external names in our examples.

The transformation techniques used to obtain the desired ERNAL implementation are given in

the next section. In section 5.3, an evaluation of these techniques is reported. Finally, section 5.4

lists the limitations of ERNAL’s implementation.

5.2 Transformation Phases

The transformation of a TRS into an evaluator/narrower implementation consists of the

following phases, see Figure 5-2 :

1- Reordering Phase: For a given TRSR ∈ RS, reorder the underlying TRRs of each operatorf

∈F, whereF is a set of defined operators inR, using a functionORD : RS→ RS discussed

below.

2- One-to-One Mapping Phase: Transform the reordered TRRs intoeval/2 Prolog clauses using

a functionTR : RS→ E.

3- Merging Phase: For each operatorf ∈F, merge all itseval/2 clauses into oneeval/2 clause using

a functionMRG : E→ E. Note that MRG is amany-to-one mapping function.

Note that, as explained in section 3.7.2 of chapter 3, we assume that the ADT equations have

already been properly oriented as rewriting rules.

Chapter 5 Narrowing Technique

109

Figure 5-2 Transformation Phases

5.2.1 Reordering Phase

The order of rewriting rules may affect the execution performance. For example, looking at the

TRRs of the++ operator in Figure 3-8 given in previous chapter, one sees that a short-circuit can

be detected by the second rule, therefore it’s more reasonable to evaluate this rule first. Non-

termination may also be caused by the order of rewriting rules. To take into consideration these

factors, we have devised a sorting criterion, defined by a function ORD : RS→RS, to sort the TRRs

for each operator using three numerical keys that will be assigned to each rule. These numerical

keys are defined by the following functions:

• SC : R→N, calledshort-circuitfunction, that returns the number of variable operands of the

defined operator occurring on the left hand side of the ruler ∈R but which do not occur on its

right hand side nor in its condition part (for conditional rewriting rules). These operands are

those that do not need to be evaluated to obtain the result. For example, the values of this

function on the two rules of the++ operator defined in Figure 3-8 , are 0 and 1 respectively.

Term Rewriting System

Reordering

Phase

ERNAL

One-to-one

Phase

Merging

Phase

Mapping

Chapter 5 Narrowing Technique

110

This because the first rule has the variable C which appears on both sides, while in the second

rule the variable C appears only on the left hand side. For readability, the values of a sorting

key function for a given operator withk rewriting rules is represented as (n1, n2, ...,nk), where

ni is the value assigned to theith rule. The values of short-circuit function applied on the rules

of the++ , <, ==, >=, -, and themod operators defined in Figure 3-8 are (0, 1), (0, 0, 1), (0, 0,

0, 0), (0), (0, 0, 1), and (0, 0) respectively. We believe that this is the most important sorting

key, since it forces to detect short-circuits early, and thus, evaluation will be more efficient.

• GT : R→N, called ground-terms function that returns the number of ground term operands of

the left hand part of the ruler ∈R. This is useful for narrowing when free variables can be

instantiated with ground terms. In Figure 3-8 , the values of ground-terms function applied on

the rules of the++ , <, ==, >=, -, and themod operators are (1,1), (0, 1, 1), (0, 2, 1, 1), (0), (1,

0, 1), and (0,0) respectively.

• XT : R→I, wherer ∈R, called complexity function, that returns the complexity of a rule with

respect to the number of operators and operands in its condition and right-hand part. By using

this function as a sorting key, we will evaluate the most complex rule last. In Figure 3-8 , the

values of complexity function applied on the rules of the++ , <, ==, >=, -, and themod

operators are (1,1), (3, 1, 1), (3, 1, 1, 1), (7), (1, 3, 1), and (8, 4) respectively.

Chapter 5 Narrowing Technique

111

Figure 5-3 A Term Rewriting System With Sorting Keys Assignment

ORD: RS→RS is defined as follows:

1- For each set of rules RS⊆ R of an operatorf, reorder them indescending order with respect to

key defined by the functionSC, giving a TRS R1.

2- For each set of rules RS2⊆ R1 of an operatorf with an identicalSC value, reorder them in

descending order with respect to key defined by the functionGT, giving a TRS R2.

3- For each set of rules RS3⊆ R2 of an operatorf with identical SC andGT values, reorder them

in ascending order with respect to key defined by the functionXT, giving a TRS R3.

R3 is the required ordering of TRS R. Figure 5-4 illustrates the reordering of rules in Figure 5-

3 .

false ++ C
true ++ C

succ(M)
0
M

succ(M)

< succ(N)
< succ(M)
< 0

- succ(N)

→ C;
→ true;

→ M < N;
→ true;
→ false;

→ M - N;
0

M

- M

- 0

→ 0;

→ M;

M >= N → (N < M) or (M==N);

(M >= N) => M mod N

(M < N) => M mod N

→ (M - N) mod N;

→ M;

0 == 0 → true;

0

succ(M)

== succ(M)

== succ(N)

→ false;

→ M == N;

succ(M) == 0 → false;

SC GT XT

0
1

0
0
1

0
0

0

0

0

0
0
1

0

0

1
1

0
1
1

0
2

1

1

1
0
1

0
0

1
1

3
1
1

3
1

1

1

1
3
1

8
4

0 7

Chapter 5 Narrowing Technique

112

Figure 5-4 Reordering of rewriting rules of Figure 5-3

5.2.2 One-to-One Mapping Phase

This phase translates each rule in the reordered TRS into a Prologeval/2 clause. We refer the

reader to section 3.7.2 for basic definitions to be used below.

We have chosen the logic programming language Prolog for the implementation of our

evaluator/narrower since it has the expressive power of combining conditional rewriting (or

evaluation), to perform functional simplification, and conditional narrowing, to generate solutions

to goals [35].

Let:

a- r be a rewriting rule of the formp => f(x1,...,xm) →g, wherep is a term of sortbool and, f(x)

andg are terms of the same sort,x = x1,...,xn

false ++ C
true ++ C

succ(M)
0

M

succ(M)

< succ(N)
< succ(M)
< 0

- succ(N)

→ C;

→ true;

→ M < N;

→ true;
→ false;

→ M - N;

0

M

- M

- 0

→ 0;

→ M;

M >= N → (N < M) ++ (M==N);

(M >= N) => M mod N

(M < N) => M mod N

→ (M - N) mod N;

→ M;

0 == 0 → true;

0

succ(M)

== succ(M)

== succ(N)

→ false;

→ M == N;

succ(M) == 0 → false;

SC GT XT

0

1

0

0
1

0

0

0

0

0

0
0

1

0

0

1

1

0
1
1

0

2

1

1

1
0

1

0

0

1

1

3
1
1

3

1

1

1

1
3

1

8

4

0 7

Chapter 5 Narrowing Technique

113

b- y1,...,yk for k ≤ n denote the non-variable arguments off in x1,...,xn, in their given order. We

call “non-variables” all terms that are not simple variables.

c- X= X1,...,Xn be a set of unique Prolog variables associated withx1,...,xn respectively.

d- RES denote a unique Prolog variable that will be used to hold the result of an evaluation.

e- ST:τ(F,V)→S be a function that maps terms into their associated sorts.

f- V:x→X be a function that maps an argumentxi into its associated Prolog variableXi as follows:

- if xi is a non-variable thenXi is a unique Prolog variable.

- if xi is a variable thenXi=xi.

The transformation functionTR: R→E, whereR is a TRS andE is a set ofeval/2 clauses, is

defined as follows:

TR(r), wherer ∈ R of the formp => f(x1,...,xm) →g, is equal to

eval(f(X1,...,Xm):ST(f), RES) :-

eval(p:bool, true), -- for the condition

eval(V(y1):ST(y1), y1), -- for non-variable arguments

...

eval(V(yk):ST(yk), yk),

eval(g:ST(f), RES). -- for the right hand side

The variable arguments are left as such. The transformation of the rewriting rules in Figure 5-

4 is given in Figure 5-5 .

Chapter 5 Narrowing Technique

114

Figure 5-5 eval/2 transformation of rewriting rules of Figure 5-4

eval(A ++ B : 'Bool',C) :-
 eval(A : 'Bool',true),
 eval(true : 'Bool',C).
eval(A ++ B : 'Bool',C) :-
 eval(A : 'Bool',false),
 eval(B : 'Bool',C).
%
eval(A < B : 'Bool',C) :-
 eval(B : nat,0),
 eval(false : 'Bool',C).
eval(A < B : 'Bool',C) :-
 eval(A : nat,0),
 eval(B : nat,succ(D)),
 eval(true : 'Bool',C).
eval(A < B : 'Bool',C) :-
 eval(A : nat,succ(D)),
 eval(B : nat,succ(E)),
 eval(D < E : 'Bool',C).
%

eval((A == B) : 'Bool',C) :-
 eval(A : nat,succ(D)),
 eval(B : nat,0),
 eval(false : 'Bool',C).
eval((A == B) : 'Bool',C) :-
 eval(A : nat,0),
 eval(B : nat,succ(D)),
 eval(false : 'Bool',C).

eval((A == B) : 'Bool',C) :-
 eval(A : nat,0),
 eval(B : nat,0),
 eval(true : 'Bool',C).

eval((A == B) : 'Bool',C) :-
 eval(A : nat,succ(D)),
 eval(B : nat,succ(E)),
 eval((D == E) : 'Bool',C).
%
eval(A >= B : 'Bool',C) :-
 eval((B < A) ++ (A == B) : 'Bool',C).
%
eval((A - B) : nat,C) :-
 eval(A : nat,0),
 eval(0 : nat,C).
eval((A - B) : nat,C) :-
 eval(B : nat,0),
 eval(A : nat,C).
eval((A - B) : nat,C) :-
 eval(A : nat,succ(D)),
 eval(B : nat,succ(E)),
 eval((D - E) : nat,C).
%
eval(A mod B : nat,C) :-

 eval(A < B : 'Bool',true),
 eval(A : nat,C).
eval(A mod B : nat,C) :-

 eval(A >= B : 'Bool',true),
 eval((A - B) mod B : nat,C).

Chapter 5 Narrowing Technique

115

5.2.3 Merging Phase

One-to-one mapping leads to poor performance since some operands may be evaluated many

times before the result is achieved. For example the left operandA of the operator++ in Figure 5-

5 is evaluated twice if it happens to be evaluated tofalse. For this reason, as well as for narrowing

purposes, this phase is needed. It resolves the problem of re-evaluation of operands by detecting

such operands and by evaluating them before applying the rules. The rules then use the evaluated

operands.

Let Eop⊆ E be the ordered set of alleval/2 clauses of an operator f ∈F, and letn denote the

number of such clauses.MRG(Eop) is defined as follows:

1- The head of the resultingeval/2 clause is the unification of the heads of all eval/2 clauses in

Eop. This provides association of variables between the bodies.

2- The body of the resultingeval/2 clause will have the following form:

Evaluated_Operands1,

(Sub_Results_Unification1, Resulting_Clause1

| Evaluated_Operands2,

(Sub_Results_Unification2, Resulting_Clause2

...

...

| Evaluated_Operandsn,

(Sub_Results_Unificationn, Resulting_Clausen

| RES = f(Y1,...,Ym)

)

...

...

)

).

Where, informally,Evaluated_Operandsi is the evaluation of the operands that are ineval/2i
∈Eop andnot ineval/2j for j < i. The evaluation results inEvaluated_Operandsi will be replaced

by unique Prolog variables and are checked (or instantiated in case of narrowing) in

Sub_Results_Unificationn using ‘=’ Prolog Operator.Resulting_Clausei is identical to the last

Chapter 5 Narrowing Technique

116

clause ineval/2i ∈Eop. RES = f(Y1,...,Ym) whereYk is equal to the evaluation of the operandXk if

done byEvaluated_Operandsi, and is equal toXk otherwise. This term is added in case of

incomplete definition of the operatorf.

Merged eval/2 clauses for the rewriting rules presented in Figure 5-5 , are given in Figure

5-6 .

Chapter 5 Narrowing Technique

117

Figure 5-6 Merged eval/2 defined in Figure 5-5

eval(A ++ B : 'Bool',C) :-
 eval(A : 'Bool',D),
 (D = true,
 eval(true : 'Bool',C)
 ; D = false,
 eval(B : 'Bool',C)
 ; C = D ++ B
).
eval(A < B : 'Bool',C) :-
 eval(B : nat,D),
 (D = 0,
 eval(false : 'Bool',C)
 ; eval(A : nat,E),
 (E = 0,
 D = succ(F),
 eval(true : 'Bool',C)
 ; E = succ(G),
 D = succ(H),
 eval(G < H : 'Bool',C)
 ; C = E < D
)
).
eval((A == B) : 'Bool',C) :-
 eval(A : nat,D),
 eval(B : nat,E),
 (D = 0,
 E = 0,
 eval(true : 'Bool',C)
 ; D = succ(F),
 E = 0,
 eval(false : 'Bool',C)
 ; D = 0,
 E = succ(G),
 eval(false : 'Bool',C)
 ; D = succ(H),
 E = succ(I),
 eval((H == I) : 'Bool',C)
 ; C = (D == E)
).
eval(A >= B : 'Bool',C) :-
 (eval((B < A) ++ (A == B) : 'Bool',C)
 ; C = A >= B
).
eval((A - B) : nat,C) :-
 eval(A : nat,D),
 (D = 0,
 eval(0 : nat,C)
 ; eval(B : nat,E),
 (E = 0,
 C = D
 ; D = succ(F),
 E = succ(G),
 eval((F - G) : nat,C)
 ; C = D - E
)
).
eval(A mod B : nat,C) :-
 (eval(A < B : 'Bool',true),
 eval(A : nat,C)
 ; eval(A >= B : 'Bool',true),
 eval((A - B) mod B : nat,C)
 ; C = A mod B
).

Chapter 5 Narrowing Technique

118

Clauses ofeval/2 are also created for the operators that do not have any rewriting rules (i.e.

constructors). These clauses are included prior to the previous clauses. They are created as follows:

1- For every sorts, reorder all its operators that are not yet translated (i.e. the ones that do not have

any TRRs) in increasing order with respect to their arity.

2- Create aneval/2 clause for each operator, and add such clauses in the given order before the

eval/2 clauses created for the operators with TRRs.

Figure 5-7 shows the eval/2 clauses for the constructors0 andsucc of sortnat, andtrue and

false of sortBool.

Figure 5-7 eval/2 clauses for Constructors

Figure 5-8 shows systematically the order in which eval/2 predicate will resolve the goal:

eval((succ(0) >= succ2(X) ++ (succ2(0) < X)):bool, true)

using the automatically derived implementation given in Figure 5-6 and Figure 5-7 .

eval(0:nat, 0).
eval(succ(X):nat, succ(Y)) :- eval(X, Y).

eval(true:’Bool’, true).
eval(false:’Bool’, false).

Chapter 5 Narrowing Technique

119

Figure 5-8 Instantiation of Free Variables

As a result, the free variableX in the above goal is instantiated to the general solution succ3(X”)

for any natural numberX” , i.e.X = Y for Y >= 3. ERNAL provides textual derivation traces

showing the execution steps leading to a conclusion (or a non-conclusion) for a given goal.

5.3 Comparison

Another observation about the transformation defined in the previous section, is that evaluated

sub-terms may be re-evaluated when carried out recursively to anothereval/2. For example,

eval(X-Y,Res) resolves the rule:

eval/2

eval/2

eval/2

eval/2

eval/2

eval/2

eval/2

eval/2

eval/2

eval/2

(succ(0) >= succ2(X) ++ (succ2(0) < X)):bool, true

(succ(0) >= succ2(X)):bool, A

(succ2(X) <succ(0) ++

 (succ(0) ==succ2(X))):bool, A

(succ2(X) <succ(0)):bool, A’

(succ(X) <0):bool, A’

A’=false

A’=false

 (succ(0) ==succ2(X))):bool, A

 (0 ==succ(X))):bool, A
A=false

A=false
A=false

A=false

(succ2(0) < X):bool, true

(succ(0) < succ(X’)):bool, true

(0 < X’):bool, true

X’=succ(X”)

X=succ2(X’)

X=succ3(X”)

X=succ3(X”)

Chapter 5 Narrowing Technique

120

by first evaluatingX andY and then matching them withsucc(M) andsucc(N) respectively. If the

matching succeeds thenM andN will be unified to already evaluated terms. So, to avoid re-

evaluation ofM andN in recursiveeval/2 call, i.e.eval(M-N, Res), M andN will be tagged to

identify that they are already evaluated.

Different transformation versions were evaluated by applying them on the same set of ADT

expressions. The evaluation is judged by the number ofeval/2 invocations. The transformation

versions are:

version 1: is One-to-One mapping without reordering.

version 2: is N-to-One mapping without reordering. i.e. Applying the merging phase on

version 1.

version 3: is N-to-One mapping with reordering. i.e. eval/2 clauses in Figure 5-6 .

version 4: N-to-One mapping with tagging the evaluated sub-terms.

The following table summarizes such comparison.

The above table demonstrates that Merging phase, Reordering phase and tagging do indeed

increase the overall evaluation efficiency.

Version 4 is the one used for ERNAL.

Table 3: Transformation Comparison

Expression Version 1 Version 2 Version 3 Version 4

(succ2(0) >= succ(0)):Bool 30 14 14 13

((succ(0) >= succ2(0))++

(succ3(0) < succ4(0))):Bool

60 54 52 42

((succ3(0) < succ4(0)) ++

(succ(0) >= succ2(0))):Bool

69 31 31 22

((succ7(0) mod succ3(0)) -
succ(0)):nat

1576 456 365 219

(((succ10(0) mod succ6(0)) -

succ(0)) == succ3(0):Bool

1505 677 444 199

succ(M) - succ(N) → M - N;

Chapter 5 Narrowing Technique

121

5.4 Limitations

For our purposes of automatic LOTOS behaviour validation, we are mainly concerned about

validating guards and selection predicates accumulated during trace derivations. They are usually

conjunctions of conditions resulting from matching a number of actions together. So, the general

form of the narrower that will be used in our validation is:

C1 ^ C2 ^ ... Cn >><<true

which may lead us to one of the following cases:

a- instantiating free variables in C1, C2, .., and Cn such that their evaluation istrue

b- determining that there is no solution

c- or, unfortunately, inability to find a solution.

The third case is when the evaluation does not terminate. This is due to the infinite search space

that can be caused by one of two reasons:

1- Encountering an infinite branch in the search tree when looking for a solution.

2- Encountering a sub-term that generates an infinite number of non-desirable solutions.

An example of non-terminating evaluation causes by reason 2 is

(X > succ(0)) and (X < succ(succ(0))):bool >><< true,

assuming that the evaluation order of theand operator happened to be left-to-right. This is because

the left condition has an infinite number of solutions, represented initially by the most general

solution X=succ(succ(Y)). The right condition cannot be satisfied with any natural number value

of Y.

To deal with this limitation, ERNAL’s transformation includes controls to limit the

backtracking, i.e. limiting the number of solutions, and to limit the number of invocation, i.e.

limiting the length of search paths.

We expect that experienced tool users will understand these limitations of the tool, and will use

Chapter 5 Narrowing Technique

122

an appropriate specification style. For example, the problem discussed above will not occur if the

two arguments of theand operator are reversed.

Chapter 6 Goal-Oriented Execution Applications

 123

Chapter 6 Goal-Oriented Execution
Applications

An arbitrary LOTOS specification cannot be fully verified by using formal methods due to the

fact that the dynamic behaviour of a given specification is often infinite. For this reason, many

semi-automated tools were developed to verify LOTOS specifications using a variety of different

methods, see 2.4.6 of chapter 2.

The goal-oriented execution technique is capable of constructing execution traces satisfying

certain assertions. Using this technique, the specification under verification (SUV) is seen as a

black box. The verifier needs only the knowledge of the interaction point structures (or action

denotations) that include the formal gate names and the possible associated event sorts. Queries are

then constructed, using relations⇒+ and⇒×, and then submitted for execution. See Figure 6-1.

Chapter 6 Goal-Oriented Execution Applications

 124

Figure 6-1 Black Box Verification

Two types of properties can be expressed as queries:

1. The existence of execution traces satisfying valid assertions. The user can construct queries

on traces that should be possible by the specification. If such queries hold by goal-oriented

execution, the possible execution traces are returned.

2. The absence of execution traces satisfying invalid assertions. The user may verify that the

specification does not accept traces with invalid assertions. In this case, the related queries

should not hold by goal-oriented execution.

Properties such as absence of deadlocks or livelocks are not handled by our method. The

absence of a deadlock at a given point of execution can, on the other hand, be determined. For

example, from a given behaviourB1, we can determine by the following queries that deadlock does

not occur immediately after actiona is executed:

if (a, B1)/{} =t1⇒+ B2 holds then(*, B2)/{} =t2⇒+ B3 should also hold,

where ‘*’ identifies any action. See the next section for other action denotation abbreviations.

In this chapter, we demonstrate how goal-oriented execution can be applied for verification,

and how it can be used to enhance existing verification methods.

Goal-Oriented SUV
Execution

IP1

IP2

IPn

IPi: Interaction Pointi
SUV: Specification Under Verification

Query

Answer

User

Chapter 6 Goal-Oriented Execution Applications

 125

This chapter is divided as follows: in section 6.1, we provide guidelines for the use of goal-

oriented execution to verify LOTOS specifications describing a protocol and the provided services.

The application of goal-oriented execution to verify an Alternating Bit Protocol specification is

demonstrated in section 6.2. Section 6.3 lists some existing verification techniques that can be

improved using our method.

6.1 Verification Guidelines

This section provides guidelines for the application of goal-oriented execution to verify a

LOTOS protocol specification for a layered network model. (See section 2.1).

The protocol verification process involves checking for the following properties:

o syntactic properties: These are general design properties of a given protocol such as the

absence of the following errors [155]:state deadlock, unspecified receptions, non-executable

interactions, state ambiguity, channel overflow, tempo blocking,and unfairness. The

verification of syntactic properties, often calledprotocol validation, does not require

knowledge of the provided services.

o semantic properties: These are the intended sets of services that a given protocol needs to

provide to the protocol of the layer above. The verification of such properties requires the

service specification to be provided, and it is necessary to assume the correctness of the service

provided by the layer below. Such properties cannot be classified or generalized since they

depend on a specific protocol or service specifications. Such verification has proved difficult

to automate.

o protocol behaviour properties: These properties describe the intended protocol behaviour,

i.e. the exchange of messages among peer processes, that provides the intended services. As

mentioned above, these properties are hidden from the user of the services. We believe that the

verification of such properties is very important, since the verification of semantic properties

may not necessarily exercise all protocol behaviour properties. An example of a protocol

behaviour property is error recovery when a message is lost in an unreliable channel.

Here, we are only concerned about the verification of semantic and protocol behaviour

properties. Note that the correctness of protocol behaviour properties does not imply that the

semantic properties hold, but the failure of these may prevent the protocol from providing its

specified services.Therefore, it is logical to verify protocol behaviour properties first.

Chapter 6 Goal-Oriented Execution Applications

 126

The following rules enable an efficient verification of semantic properties and protocol

behaviour properties using goal-oriented execution:

Rule 1: Specification Style - In order to verify protocol behaviour properties, it is important to

specify the protocol behaviour in a process definition that can be tested separately. The

overall specification will then have the form:

specification<service_provider>[SAP1,...,SAPn] :noexit

behaviour

hide g1,..,gnin

<protocol>[SAP1,..., SAPn, g1,.., gn](<actual parameters>)

whereSAP1,...,SAPn are the logical service access points provided to the user of the

services, andg1,.., gn are the logical peer-to-peer protocol communication channels.g1,..,

gn are obviously hidden from the user of the services. In this form, the service is provided

by the specification<service_provider>[SAP1,...,SAPn] and the protocol behaviour is

expressed by the process<protocol>[SAP1,..., SAPn, g1,.., gn](<actual parameters>).

Note that the latter will show the interactions between the protocol entities, but not their

internal behaviour.

Rule 2: Properties Definition - Define the protocol behaviour and the semantic properties using

relations⇒+ and⇒×.

Rule 3: Protocol Behaviour Properties Application - Apply the protocol behaviour properties

on the protocol behaviour, i.e. the behaviour of process <protocol>. Hidden actions will

be visible at this stage.

Rule 4: Protocol Behaviour Properties Analysis - Analyse the results of the protocol behaviour

properties resulting from application of Rule 3. If errors are detected in the specification,

then modify it and return to Rule 3.

Rule 5: Semantic Properties Application - Apply the semantic properties on the overall

behaviour, i.e. the behaviour of specification <service_provider>. Actions involved in

protocol communication will be hidden at this stage.

Rule 6: Semantic Properties Analysis - Analyse the results of the semantic properties resulting

from application of Rule 5. If errors are detected in the specification, then modify it and

Chapter 6 Goal-Oriented Execution Applications

 127

return to Rule 3.

6.2 Verification of the Alternating Bit Protocol

The objective of this section is to apply the rules stated in the previous section for the

verification of an Alternating Bit Protocol LOTOS specification. The following are the informal

service and protocol specifications.

Informal Service Specification

This protocol provides a reliable, uni-directional data transfer service between two users, User1

the source and User2 the sink.

Informal Protocol Behaviour Specification

The protocol uses an unreliable full duplex one place channel to transfer protocol data units

(PDUs) and acknowledgments. To ensure that the messages sent by User1 are received in the

correct order by User2, the protocol associates a sequence number, alternating between 0 and 1,

with the delivered PDUs and acknowledgments. Figure 6-2 illustrates the overall composition of

the Sender and the Receiver entities, associated with User1 and User2 respectively, and the

unreliable channel. The gates used by the protocol to communicate with the channel are hidden

from the environment, i.e. the users.

LOTOS Specification

The following is the top level structure of the Alternating Bit Protocol LOTOS specification to

be verified. The complete specification is given in Appendix A.

specificationabp_service[User1,User2]:noexit

behavior

hide send1, recv1, send2, recv2, LOSTin

abp[User1, User2, send1, recv1, send2, recv2, LOST](0of Bit)

where

process abp[User1, User2, send1, recv1, send2, recv2, LOST]

(s_seq:Bit):noexit:=

Chapter 6 Goal-Oriented Execution Applications

 128

Figure 6-2 Alternating Bit Protocol Structure

The serviceabp_service has two interaction points through gatesUser1 the source and

User2 the sink. They both allow one event of sortData. A value of sortData is simply any natural

number.

The protocol, specified in processabp, is a composition of three entities, the sender, the

receiver and the unreliable channel. The sender entity sends PDUs and receives acknowledgments

by communicating with the channel through gatessend1and recv1 respectively. The receiver

entity receives PDUs and sends acknowledgments by communicating with the channel through

gatessend2and recv2 respectively. The PDUs and the acknowledgments are both of sortMess.

GateLOST is added to the channel process to identify the loss of a message.

Verification

We give now the definition of the protocol behaviour properties and of the semantic properties.

The protocol behaviour properties are applied onB1(X) = abp[User1, User2, send1, recv1, send2,

recv2, LOST](X), where X is the current sequence number, and the semantics properties are applied

onB2 = abp_service[User1, User2]. For better understanding of the message exchange between

the protocol entities, the resulting traces are also shown using message sequence diagrams (MSDs).

Each vertical line in an MSD identifies the entity from which a message is sent or received. The

gates used in the communications are identified at the top of the vertical lines. Some gates are

associated with an arrow to indicate the direction of the messages which will occur on this gate.

Channel

send1

send2

recv2

recv1

User1 User2

Protocol

Sender Receiver

LOST

LOST

Chapter 6 Goal-Oriented Execution Applications

 129

Protocol Behaviour Properties

P1 “Provide examples of traces that lead to the loss of a message”. This can be described as:

(LOST*, B1(0))/{}=t⇒+B’

This will be satisfied with many execution traces, among others (see Figure 6-3 and Figure 6-

4 respectively):

t = 〈 User1 !D:Data,

send1 !makepdu(D, 0):Mess,

LOST !makepdu(D, 0):Mess〉

Figure 6-3 MSD 1 for Protocol Property P1

and

t = 〈 User1 !D:Data,

send1 !makepdu(D,0):Mess,

recv2 !makepdu(D,0):Mess,

send2 !makeack(0):Mess,

User1 User2

Channel

recv2
send2

send1
recv1

LOST

Sender Receiver

Protocol

D
D,0

Source Sink

User1
send1
recv1

recv2
send2

D,0

User1

Chapter 6 Goal-Oriented Execution Applications

 130

LOST !makeack(0):Mess 〉

Figure 6-4 MSD 2 Protocol Property P1

From the above two traces, we see thatM:Mess can have a value ofmakepdu(D,0) or a value

of makeack(0) indicating that the types of messages that can be lost are PDUs and

Acknowledgments. Note that in reality, the above query has an infinite number of solutions,

but due to the fact that heuristics are added to static derivation paths and the guided-inference

rules definition, only a finite number of solutions is provided. See sections 4.1.3 and 4.2.3. Note

also that the variableD:Data in the above traces is left free since its value does not affect the

execution trace in any way, i.e. it is not involved in any condition encountered during

derivation.

P2 “Is it possible for the protocol sink entity to receive the expected PDU after the medium loses

the PDU once?”. This can be described using relation⇒× by first reaching the loss of a PDU

M, indicated by the associated selection predicateis_pdu(M), and then receiving at gaterecv2

the expected message, expressed by the associated selection predicateseq(M) eq 0, where 0 is

the expected sequence number:

User1 User2

Channel

recv2
send2

send1
recv1

Sender Receiver

Protocol

D
D,0

Source Sink

User1
send1
recv1

D,0

Ack 0

LOST

Ack 0

recv2
send2

User1

Chapter 6 Goal-Oriented Execution Applications

 131

(〈LOST?M:Mess[is_pdu(M)], recv2!M[seq(M) eq 0]〉, B1(0))/{}=t⇒×B’

This succeeds with the following trace, where the actions identified in the query match the third

and the fifth action (see Figure 6-5):

t = 〈 User1 !D:Data,

send1 !makepdu(D, 0):Mess,

LOST !makepdu(D, 0):Mess,

send1 !makepdu(D, 0):Mess,

recv2 !makepdu(D, 0):Mess〉

Figure 6-5 MSD 1 Protocol Property P2

P3 “Is it possible that when an acknowledgment is lost by the medium, the protocol source entity

will re-send the same PDU with the same sequence?”. This can also be described by associating

selection predicates to the desired ordered actions as:

(〈 send1?M1:Mess,

LOST?M2:Mess[is_ack(M2) and (seq(M1) eq seq(M2))],

send1!M1 〉, B1(0))/{}=t⇒×B’

User1 User2

Channel

recv2
send2

send1
recv1

LOST

Sender Receiver

Protocol

D
D,0

Source Sink

User1
send1
recv1

D,0

D,0

recv2
send2

User1

Chapter 6 Goal-Oriented Execution Applications

 132

This succeeds with (see Figure 6-6):

t = 〈 User1 !D:Data,

send1 !makepdu(D, 0):Mess,

recv2 !makepdu(D, 0):Mess,

send2 !makeack(0):Mess,

LOST !makeack(0):Mess,

send1 !makepdu(D, 0):Mess〉

Figure 6-6 MSD 1 Protocol Property P3

P4 “Provide examples of traces where the source entity sends a PDU with sequence numberX,

after receiving an acknowledgment with sequence numbercomplement(X)”. This can described

as:

(〈 recv1?M1:Mess[is_ack(M1)],

send1?M2:Mess[is_pdu(M2) and (seq(M2) eq compl(seq(M1)))]〉, B1(0))/{}=t⇒×B’

The following is one possible trace (see Figure 6-7):

User1 User2

Channel

recv2
send2

send1
recv1

Sender Receiver

Protocol

D
D,0

Source Sink

User1
send1
recv1

D,0

Ack 0

LOST

Ack 0

D,0

recv2
send2

User1

Chapter 6 Goal-Oriented Execution Applications

 133

t = 〈 User1 !D1:Data,

send1 !makepdu(D1, 0):Mess,

recv2 !makepdu(D1, 0):Mess,

send2 !makeack(0):Mess,

User2 !D1:Data,

recv1!makeack(0):Mess,

User1 !D2:Data,

send1 !makepdu(D2, Succ(0)):Mess〉

Figure 6-7 MSD 1 Protocol Property P4

P5 “Verify that it is not possible for the source entity to send a PDU with sequence numberX,

immediately after receiving an acknowledgment with the same sequence numberX”. This can

described as:

(〈 recv1?M1:Mess[is_ack(M1)],

send1?M2:Mess[is_pdu(M2) and (seq(M2) eq seq(M1))]〉, B1(0))/{}=t⇒×B’

This goal is evaluated to false, so the query is satisfied.

Note that satisfying queries P4 and P5 implies that the following property is satisfied:

User1 User2

Channel

recv2
send2

send1
recv1

Sender Receiver

Protocol

D1
D1,0

Source Sink

User1
send1
recv1

D1,0

Ack 0

D2, Succ(0)

Ack 0

D1

D2

recv2
send2

User1

Chapter 6 Goal-Oriented Execution Applications

 134

“When the source entity sends a PDU after receiving an acknowledgment with sequence

numberX, the sequence number of that PDU iscomplement(X)”

Semantic Properties and Queries

S1 “Provide an example of a trace that leads User2 to receive a message?”. This can be described

as:

(User2?D:Data, B2)/{}=t⇒+ B’

This will be satisfied with

t = 〈User1!D:Data, User2!D:Data〉

for any data messageD supplied byUser1. Note that here the underlying protocol that

guarantees the delivery of a message fromUser1 toUser2 is hidden from the environment and,

therefore, its actions, i.e. sequences ofi’s, are not part of the desired traces.

S2 “Is it possible forUser2 to receive a message ifUser1 does not send a message?”. This query

can be described by reachingUser2 without passing throughUser1 as follows:

(User2?D:Data, B2)/{User1} =t⇒+ B’

This relation will not hold, indicating that it is not possible forUser2 to receive a message

withoutUser1 sending a message. Note that the failure of this relation is caused by the fact that

no static derivation paths that lead toUser2 without passing throughUser1 were found, i.e.

Σ(User2?D:Data, B2, {User1}) = ∅. See lemma 4-3.

S3 “Check that ifUser2 receives a message then this message is first sent byUser1”. This property

is stronger than the previous one in the sense thatUser2 will receive a message only if it is sent

by User1. This can be accomplished by first defining the property as a logical expression on

traces where⇒, ∨, ∧, and¬ are theimplication, or, and, andnegation symbols respectively.

The operators defined in section 3.2.3, are also used in the expressions.

∀t ((t^ = User2?D2:Data)⇒ ((User1?D1:Data∈ t) ∧ (D1=D2)))

which is equivalent to

∀t (¬(t^ = User2?D2:Data)∨ ((User1?D1:Data∈ t) ∧ (D1=D2)))

Chapter 6 Goal-Oriented Execution Applications

 135

and transform∀ to ∃.

¬∃t (¬(¬(t ^ = User2?D2:Data)∨ ((User1?D1:Data∈ t) ∧ (D1=D2))))

which is equivalent to

¬∃t ((t^ = User2?D2:Data)∧ (¬(User1?D1:Data∈ t) ∨ ¬(D1=D2))

which can be divided into:

¬∃t ((t^ = User2?D2:Data)∧ ¬(User1?D1:Data∈ t)), and

¬∃t ((t^ = User2?D2:Data)∧ ((User1?D1:Data∈ t) ∧ ¬(D1=D2)))

These can be described using the following queries respectively:

(User2?D1:Data, B2)/{User1} =t⇒+ B’ should not hold, and

(〈User1?D1:Data, User2!D2:Data[D1 ne D2]〉, B)/{} =t⇒× B’ should not hold, and

we add another query to determine the existence of a trace that leadsUser2 to receive the same

message sent byUser1 as:

(〈User1?D:Data, User2!D:Data〉, B)/{} =t⇒× B’ should hold.

The first two queries are evaluated to false while the third query yields to

t = 〈User1!D:Data, User2!D:Data〉

S4 “If a message is sent byUser1 thenUser2 will definitely receive the same message”. This

property is not expressible by relations⇒+ and⇒×, since we have to guarantee that all possible

traces afterUser1 sends a message lead toUser2 receiving the same message, i.e. absence of

livelocks or deadlocks betweenUser1 andUser2. For example, the fact that relation

(〈User1?D:Data, User2!D:Data〉, B)/{} =t⇒× B’ holds simply implies that a trace satisfying

the property can be found and does not imply thatUser2 will definitely receive the message

sent by User1. Modification of relations⇒+ and⇒× to express deadlocks and livelocks is an

item for future work, see section 7.2.

Chapter 6 Goal-Oriented Execution Applications

 136

6.3 Scope of Application

Other than being a relief strategy for state space explosion, we foresee several applications for

the techniques discussed in this thesis. These applications are described in the following sections.

6.3.1 Step-by-step execution

Narrowing Technique

In step-by-step Execution, the narrower can help in: (a) eliminating actions associated with

unsatisfiable predicates, (b) supplying the user with possible values for variables in an action

satisfying its corresponding predicate. For example, consider the following LOTOS process:

process dummy[a,b,c] (X:nat) :=

a?Y:Nat[Y<X]; c!Y!X;stop

[]

b?Y[Y>=X]; dummy[a, b, c](succ(X))

[]

a; b; p[a,b]

endproc.

The possible initial actions for the process calldummy[g1,g2,g3](0) are:g1?Y:Nat[Y<0],

g2?Y[Y>=0] and g1.

The predicate[Y<0] of the first action cannot be satisfied for any value ofY, and therefore the

action can be eliminated. On the contrary in the second action, the narrower can provide a value

succ(0) for Y.

Static Analyser

During step-by-step execution, the user can determine if the execution of an offered action may

lead to his/her intended targeted action. This is possible by applying the static analyser on the

resulting behaviour expression of the action. If no static derivation paths were found by the

analysis, then the action is not suitable for execution, see lemma 4-3. For example, using the

Chapter 6 Goal-Oriented Execution Applications

 137

process definition above, the possible initial actions for the process calldummy[g1,g2,g3](0) are:

g1?Y:Nat[Y<0], g2?Y[Y>=0] and g1. If the user’s intent is to reach an action with gateg3, the

static analyser can determine that selecting actiong1 is undesirable.

The user may also choose one of the generated static derivation paths to be followed by step-

by-step execution. In this case, the possible next actions that do not comply with the chosen SDP

will be eliminated.

Goal-Oriented Execution

The user may request reaching the targeted action directly by applying goal-oriented execution,

or reaching a desired intermediate action then continue the normal step-by-step execution.

6.3.2 Symbolic execution

Narrowing Technique

The narrowing technique can help in pruning branches from the symbolic graph with

unsatisfiable guards or predicates. This will reduce the graph considerably. Also, the narrower can

help in transforming paths from the symbolic graph into execution traces by providing values for

the free variables, which will satisfy all guards and predicates.

Guided-Inference System

A symbolic graph is constructed by first generating all possible next actions and their resulting

behaviour expressions using an unguided inference system. The same process is then repeated on

all the resulting behaviours that have not been already encountered. Using the guided-inference

system, the construction of a symbolic graph can be restricted by a given property. This is very

useful in the sense that the graph will only include the possible symbolic paths that satisfy the

property.

6.3.3 Random Walk

Narrowing Technique

Narrowing can also assist in exercising randomly the dynamic behaviour of a given process, by

providing valid values for variables encountered during the walk. For example, random values can

be generated by applying a random function on a set of values generated by the narrower.

Chapter 6 Goal-Oriented Execution Applications

 138

Static Analyser

Similar to step-by-step execution, by applying the static analyser on the resulting behaviour

expressions of all offered actions, random walk can select (randomly) one of the next actions that

may lead to an intended targeted action. Actions with no static derivation paths found by the

analysis on their resulting behaviours are excluded from the selection set.

Goal-Oriented Execution

Random walk can also be applied by the goal-oriented execution algorithm where static

derivation paths and values offered by the narrower can be selected randomly, see step 2 and step

6 of the algorithm in section 3.8.

6.3.4 Data-Flow Analysis

Static Analyser/Guided-Inference System

van der Schoot and Ural [136] have demonstrated the use of our techniques to perform data

flow analysis and to generate data flow oriented test sequences. First, a flow graph is constructed

modeling both control and data flow aspects expressed in the specification. In this flow graph,

definitions and uses of each variable occurrence employed in the specification are identified. Static

derivation paths for a specific node in the graph are then obtained and fed to a guided-inference

system to obtain test sequences satisfying a specific data flow criterion. Unfortunately, further

explanation of their technique would require the introduction of many definitions.

6.3.5 Temporal Logic Properties

Goal-Oriented Execution

Some temporal logic properties can be checked using the relations⇒+ and⇒× described in

chapter 3. The following are some examples.

“ from the current behaviour B, if action a!true can be reached then action b!false!0 can be

reached after”

can be expressed as:

if (a!true,B)/{} =t1⇒+ B’ holds then (b!false!0,B’)/{} =t2⇒+ B” also holds,

Chapter 6 Goal-Oriented Execution Applications

 139

and the property

“ from the current behaviour B, it is not possible to reach action a!true without reaching an

action with gate name b”

can be expressed as:

(a!true ,B)/{b} =t⇒+ B’ should not hold,

and the property

“ from the current behaviour B, it is not possible to reach action a!true after reaching action

b!false!0”

can be expressed as:

(〈b!false!0, a!true〉,B)/{} =t⇒× B’ should not hold,

6.3.6 Test Cases generation

Goal-Oriented Execution

A large part of testing theory relates to the problem of selecting test sequences satisfying

certain requirements, called test intents. Our technique can help finding such sequences by

representing the test intents using relations⇒+ and⇒×. For example, the results of the queries

applied in section 6.2 on the specification of the Alternating Bit Protocol can be mapped into test

cases for the implementation of such a design.

Chapter 7 Conclusion

140

Chapter 7 Conclusion

7.1 Contributions

In chapter 2, we have summarized existing work in the area of protocol validation and

verification, and we have presented some existing intrinsic problems, mainly the state space

explosion problem. We have surveyed many attempts to overcome these problems in various ways,

especially those using Communicating Finite State Machines models and the formal description

technique LOTOS. In the following chapters, we have presented our approach to these problems

for protocols specified in LOTOS using a search technique calledgoal-oriented execution. In this

technique, traces satisfying a given property are derived. These traces are modeled using relations

⇒+ and ⇒×. (a,B)/G =t⇒+ B’ defines the derivation of behaviourB on a tracet leading to a

matching targeted actiona’ without passing through any other action with gate name inG.

(〈a1,…,an〉, B)/G =t⇒× B’, on the other hand, defines the derivation of behaviourB on a tracet,

such thatt contains a predetermined series of matching actions{a1’,…,an’}, not necessarily

contiguously, without passing by any other action with gate name inG ∪ α(〈a1,…,an〉). The goal-

oriented execution technique results from the combination of:

1- astatic analyser- establishes the scope of the search by determining where, in the LOTOS

specification, a given property can possibly hold,

2- guided-inference system - a new type of inference system which uses the scope information

generated by the static analyser to generate variable traces satisfying the temporal ordering

restriction specified in the given property, and

3- narrower engine - is an automatically generated tool, called ERNAL, which is capable of

evaluating and solving LOTOS ADTs expressions.

In chapter 4, we have presented the formal definition of the static analyser and of the guided-

Chapter 7 Conclusion

141

inference system and we have illustrated a sketch for the correctness of such techniques. Also in

that chapter, we have exposed the limitations of the applicability of the static analyser and of the

guided-inference system techniques, along the added heuristics. The method of automatically

generating the narrower engine from a given Abstract Data Type definition was explained in detail

in chapter 5. Finally, in chapter 6, we have demonstrated how the goal-oriented execution

technique can be applied for verification, and how it can be used, along with other techniques

discussed in this thesis, to enhance existing verification methods.

The goal-oriented execution technique was first to be reported for basic LOTOS in [68]. In

parallel with this thesis’ work, a similar technique applying full LOTOS was developed at

University of Twente [38]. Their approach differs from ours in the following ways:

• The goal used in their technique is a selected sub-behaviour expression in the overall

specification. They claim that it is more logical to have a state of the specification as a goal than

an action denotation. However, since there may exist sub-behaviour expressions that do not

correspond to reachable states. For example, the sub-behaviour expressiona;stop in the

expressionb;a;c;stop |[a,b]| b;a;stop is not a reachable state, althougha;c;stop |[a,b]| a;stop

is a state.

• Their algorithm is not recursive in nature. For example, to reach a sub-behaviour that occurs

on the right hand side of an enable operator, an execution trace that leads to an action with gate

δ is needed from the left hand side of the enable operator. To do so, they are obliged to use a

method that reaches an action denotation, like ours, rather than reaching a behaviour

expression.

• To select a sub-behaviour expression as a goal, the verifier must be familiar with the code of

the specification, i.e. the specification must be seen as a white box. Our technique is suitable

for a black box verification strategy, where the verifier needs only the knowledge of the

interaction structures. See the introduction of chapter 6.

• The initial derivation of their static information is re-visited to remove all unsatisfied paths.

This is not needed in our approach, since unsatisfied paths are not even constructed.

• Their inference system is less powerful than ours in handling synchronizations caused by

parallel operators. For example, when their system is directed into one side of a parallel

operator towards an action, saya, that must synchronize, asynch-failure exception is raised if

no transition is found on the other side of the parallel operator that can synchronize with action

a. The exception must then be handled by the user. This situation is completely handled by our

inference system. See section section 4.2.1.

Chapter 7 Conclusion

142

• Their narrower technique is borrowed from [152], while the technique used by our narrower is

new. We believe that our approach can lead to a more efficient execution.

7.2 Future Work

We believe that our technique is a powerful verification tool for LOTOS specifications. It

provides an attractive and simple representation for the user objectives and is supported by an

efficient implementation. In order to make the technique even more valuable, the following items

are considered for future work:

1- Applying the technique to verify real-size protocols. Additional heuristics will probably be

needed to cut search time.

2- Maximizing the functionalities of the static analyser. Doing so, the execution complexity can

be reduced. One functionality that can be added is the static construction of complete derivation

paths. For example,

Σ(d, a;d |[a]| b;a;stop, {}) = { [parallel([prefix, prefix], [prefix, prefix])] }

where the left behaviour and the right behaviour of the parallel operator need to be evaluated,

while

Σ(d, a;d |[a]| b;a;stop, {b}) = ∅.

3- Modifying the relation⇒× to represent contiguous actions. For example, one could write

“a 1,^a2” to express the fact that actiona2 must immediately follow actiona1 in the desired

trace.

4- Other than the restricted gate set that applies globally on all actions in relations⇒+ and⇒×,

restricted gate sets for specific actions can also be applied. For example “a1, a2/G” can identify

a restricted gate setG specifically for actiona2, i.e. all actions between actiona1 and actiona2

should not have a gate name inG.

With these new notations, we claim the following equivalences:

(〈a1, ^a2〉, B)/G =t⇒× B’ = (〈a1, a2/{*} 〉, B)/G =t⇒× B’

In other words, saying that actiona2 must follow immediately actiona1 (expressed by

“a 1,^a2”), is the same as saying that the set of all actions between actiona1 and actiona2 are

restricted (expressed by“a 1, a2/{*} ”).

(〈a1,…,an〉, B)/G =t⇒× B’ = (〈a1/G,…,an/G〉, B)/{} =t⇒× B’

Chapter 7 Conclusion

143

This identifies the fact that the application of the global restricted setG is equivalent to its

application on each identified action.

5- Modifying the restricted gate set to represent the absence of livelocks and deadlocks identified

by∞ and⊥ respectively. This is obviously undecidable especially when dealing with an infinite

execution space, but we believe that tackling these problems with appropriate limitations is

definitely important. For example, the following property of the alternating bit protocol, stated

in section 6.2,

“If a message is sent byUser1, thenUser2 will definitely receive the same message”,

 can be expressed as:

(〈User1?D:Data, User2!D:Data/{⊥, ∞}〉, B)/{} =t⇒× B’

assuming that fairness is applied. This implies that any execution path taken after action

User1?D:Data is executed will eventually lead to actionUser2!D:Data. In our technique,

fairness is handled by limiting recursion. See section 4.1.3 and section 4.2.3.

References

 152

References

[1] Ashkar, P. Symbolic Execution of LOTOS Specification,Master’s Thesis, University of
Ottawa, 1992.

[2] Afek, Y., and Gafni, E. Election and traversal in unidirectional networks, Proc. 3rd ACM
Symp. on Principles of Distributed Computing, Vancouver, Aug. 1984, 190-198.

[3] Ansart, J.P. Issues and Tools for Protocol Specification. InThe Advanced Course on Distrib-
uted Systems - Methods and Tools for Specification.

[4] Azema, P., Drira, K., and Vernadat, F. A Bus Instrumentation Protocol Specified in LOTOS,
in Juan Quemada., José Mañas, and Enrique Vázquez, editors,Proceedings of 3rd Interna-
tional Conference on Formal Description Techniques FORTE ‘90, Nov. 1990, Madrid,
Spain.

[5] Bainbridge, S. and Mounier, L. Specification and Verification of a Reliable Multicast Proto-
col, Technical Report HPL-91-163, Hewlett-Packard Laboratories, Bristol, U.K. Oct. 1991.

[6] Barbeau, M. and Bochmann, G.V. Extension of the Karp and Miller Procedure to Lotos
Specifications,DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
1991, vol. 3,103-119.

[7] Belina, F., and Hogrefe, D., The CCITT Specification and Description Language SDL,Com-
puter Networks and ISDN Systems, 1989, vol.16, 311-341.

[8] Belnes, D., Moller-Pedersen, B., and Dahle, H.P. Rational and Tutorial on OSDL: an Object
Oriented Extension of SDL, SDL ‘87: State of the Art and Future Trends,Proceedings of the
Third SDL Forum, in R. Saracco and Tilanus, eds., Leidschendam, The Netherlands, Apr.
1987, 413-426.

[9] Berlinguette, P. and Gueraichi, D. The Alternating Bit Protocol in LOTOS:”Textual” and
“Graphical” Representation, Technical Report TR-88-25, Department of Computer Science,
University of Ottawa, 1988.

[10] Berthelot G., and Terrat, R. Modelisation et validation des protocoles de transport pour
reseaux de Petri a predicats,Congres de Conception des Systemes Telematiques, Nice,
France, June 1981.

[11] Berthelot G., and Terrat, R. Petri nets theory for the correctness of protocols,IEEE Transac-
tions on Communications, Dec. 1982, 30(12):2497-2505.

References

 153

[12] Blumer, T.P., and Sidhu, D.P. Mechanical Verification and Automatic Implementation of
Communication Protocols. IEEE Transactions on Software Engineering, Aug. 1986, SE-
12(8):827-843.

[13] Bochmann, G.V. Finite State Description of Communication Protocols. InComputer Net-
works Symposium, University of Liege, Belgium, Feb 1978.

[14] Bochmann, G.V., and Sunshine, C. Use of formal methods in communication protocol
design.IEEE Transactions on Communications, 1980, 28(4):624-631.

[15] Bochmann, G.V. Usage of protocol development tools: The results of a survey, in H. Rudin
and C.H. West, editors,Protocol Specification, Testing, and Verification VII. North-Holland,
1987, 139-161.

[16] Bochmann, G.V. Specification of a simplified transport protocol using different formal
description techniques,Computer Networks and ISDN Systems, June 1990, 18(5):335-377.

[17] Bogaards, K. LOTOS-Supported System Development, in K.J. Turner, editor,Proceedings
of 1st International Conference on Formal Description Techniques FORTE ‘88, North-Hol-
land, 1988, 279-294.

[18] Bolognesi, T., and Brinksma, E. Introduction to the ISO Specification Language LOTOS.
Computer Networks and ISDN Systems, 1987, vol.14, 25-59.

[19] Bolognesi, T., and Caneve, M. Squiggles: A tool for the analysis of LOTOS specifications,
in K.J. Turner, editor,Proceedings of 1st International Conference on Formal Description
Techniques FORTE ‘88, North-Holland, 1988, 201-216.

[20] Bolognesi, T., and Caneve, M. Equivalence Verification: Theory, Algorithms, and a Tool, in
P.H.J. van Eijk et al., editors, The Formal Description Technique LOTOS-Results of the
ESPRIT/SEDOS Project, North-Holland, 1989, 303-326.

[21] Boudol, G., Simon, R., and Vergamini, D. Experiment with AUTO and AutoGraph on a sin-
gle case of sliding window protocol.Rapport RR870, INRIA, 1988.

[22] Brand, D., and Joyner jr., W.H. Verification of Protocols Using Symbolc Execution.Com-
puter Networks, Oct 1978, 2:351-360.

[23] Brand, D., and Zafiropulo, P. On Communicating Finite-State Machines.J. ACM, Apr. 1983,
30(2):323-342.

[24] Brinksma, E. The Specification Language LOTOS, in Proceedings NGI-SION symposium
3, NGI, Amsterdam, 1985.

References

 154

[25] Brinksma, E., Scollo, G., and Steenbergen, C. LOTOS specifications, Their Implementation
and Thier Tests, in 6th Internation Workshop on Protocol Specification, Testing, and Verifi-
cation, Montreal, June 1986.

[26] Cavalli, A.R. A method for automatic proofs for the specification and validation of protocols,
ACM SIGCOMM, Symp. on Communications Architectures and Protocols, Montreal, 1986,
9-1 to 9-18.

[27] CCITT, Recommendation Z.100, Specificaion and Description Language SDL, Study Group
X, 1992.

[28] Chang, E., and Roberts, R. An Improved Algorithm for Decentralized Extrema-Finding in
Circular Configuration of Processes.Comm. ACM 22, 5 (May 79), 281-283.

[29] Cheng, K.E., and Jackson, L.N. A Definition and Description Techinique for Translating
SDL Specifications to Implementation, SDL ‘89, The Language at Work,Proceedings of the
Fourth SDL Forum, in O. Faergemand and M. M. Marques, eds., Lisbon, Portugal, Oct.
1989, 293-302.

[30] Choi, T.Y., and Miller, R.E. A Decomposition Method for the Analysis and Design of Finite
State Protocols. InData Communication Symposium, ACM SIGCOMM, 1983, 167-176.

[31] Chow, C., Gouda, M.G., and Lam, S.S. A Discipline for Constructing Multiphase Commu-
nication Protocols.ACM Transactions on Computer Systems, Nov. 1985, Vol. 3(4):315-342.

[32] Clarke, E.M., and Emerson, E.A. Design and Synthesis of Synchronization Skeletons using
Branching Time Temporal Logic, inProc. Workshop on Logics of Programs, Lecture Notes
in Computer Science, (Springer, Berlin) 131:52-71.

[33] Day, J.D., and Zimmermann, H. The OSI Reference Model.IEEE Transactions on Commu-
nications, 71, Dec 1983, 1334-1340.

[34] Dershowitz, N., and Jouannaud, J.P. Rewrite Systems, in J. van Leeuwen, editor,Handbook
of Theoretical Computer Science, chapter 66, North Holland, Amsterdam, 1990.

[35] Dershowitz, N., and Plaisted, D.A. Equational Programming, in J. E. Hayes, D. Michie, and
J. Richards, editors,Machine Intellengence 11: The logic and acquisition of knowledge,
Oxford Press, Oxford, 1988, chapter 2, 21-56.

[36] Dershowitz, N., and Sivakumar, G. Goal-directed equation solving, inproceedings of the
Seventh National Conference on Artificial Intelligence, St. Paul, MN, Aug. 1988, 166-170.

References

 155

[37] Diaz, M., and Vissers, C. SEDOS: Designing open distributed systems. IEEE Software, Nov.
1989, 6(6):24-33.

[38] Eertink, H., Simulation Techniques for the Validation of LOTOS Specification,Ph.d. Thesis,
The Netherlands, 1994.

[39] Eertink, H., and Wolz, D., Symbolic Execution of LOTOS Specifications,Fifth Interna-
tional Conference on Formal Description Techniques FORTE ‘92, France, Oct. 1992.

[40] Ehrig, H., Fey, W., and Hansen, H. ACT ONE: An Algebraic Specification Language Spec-
ification with Two Levels Semantics, Bericht-Nr., Mar. 1983.

[41] Ehrig, H., Mahr, B., Fundamentals of Algebraic Specification 1,SpringerVerlag, Ber-
lin,1985.

[42] Ernberg, P., Fredlung, L., and jonsson, B. Specification and Validation of a Simple Overtak-
ing Protocol using LOTOS. T 90006, Swedish Institute of Computer Science, Kista, Sweden,
Oct. 1990.

[43] Faci, M., Logrippo, L., and Stepien, B. Formal Specification of Telephone Systems in
LOTOS: The Constraint-Oriented Approach. To appear in Computer Networks and ISDN
Systems.

[44] Fehri, M.C. A System for Validating and Executing LOTOS Data Abstractions (SVELDA),
Master Thesis, University of Ottawa, 1987.

[45] Fernandez, J.C. ALDÉBARAN: un système de vérfication par réduction de processus com-
municants,Thèse de Doctorat, Université Joseph Fourier (Grenoble), May 1988.

[46] Fernandez, J.C., An implementation of an efficient Algorithm for Bisimulation Equivalence,
Science of Computer Programming, May 1990, 13(2-3):219-236.

[47] Fernandaz, J.C., and Mounier, L. Verifying Bisimulations “On the Fly”, in Juan Quemada.,
José Mañas, and Enrique Vázquez, editors,Proceedings of 3rd International Conference on
Formal Description Techniques FORTE ‘90, Nov. 1990, Madrid, Spain.

[48] Fernandez, J, Garavel, H., Mourier, J., Rasse, A., Rodriguez, C., Sifakis, J. Une boite a outils
pour la verification de programmes LOTOS, in O. Rafiq (ed.), CFTP’91, Ingenierie des pro-
tocoles, Renne, 1991, 479-500.

[49] Floyed, R.W. Assigning Meanings to Programs, InSymposia in Applied Mathematics, XIX,
1967, 19-32.

References

 156

[50] Gabbay, D., Pnuelli, A., Shelah, S., and Stavi, Y. On thr temporal analysis of fairness, in
Proc. 7th annu. ACM Symp. Principles of Programming Languages. Las Vegas, NV, Jan.
1980, 163-173.

[51] Gallager, R.G., Humblet, P.A. and Spira, P.M. A distributed algorithm for minimum-weight
spanning trees, ACM Transactions on Programming Languages and Systems 5, 1, Jan. 1983,
66-77.

[52] Gallouzi, S. Trace Analysis of LOTOS Behaviours,Master’s Thesis, University of Ottawa,
1989.

[53] Gallouzi, S., Logrippo, L., and Obaid, A. An Expressive Trace Theory for LOTOS, in B. Jon-
son, J. Parrow, and B. Pehrson. (eds.)Protocol Specification, Testing, and Verification, XI,
North-Holland, 1991.

[54] Gallouzi, S., Logrippo, L., and Obaid, A. A Hoare-Style Proof System for LOTOS, in Juan
Quemada., José Mañas, and Enrique Vázquez, editors,Proceedings of 3rd International
Conference on Formal Description Techniques FORTE ‘90, Nov. 1990, Madrid, Spain.

[55] Garavel, H. Compilation et vérification de programmes LOTOS,Thèse de Doctorat, Univer-
sité Joseph Fourier , Grenoble, Nov. 1989.

[56] Garavel, H. Compiation of LOTOS Abstract Data Types, in S.T. Vuong, editor,2nd Inter-
national Conference on Formal Description Techniques FORTE ‘89, Vancouver, B.C., Can-
ada, Dec. 1989, 147-162.

[57] Garavel, H. and Sifakis, J. Compilation and Verification of LOTOS Specifications, in L.
Logrippo, R.L. Probrt, and H. Ural, (eds.), Proceedings of the 10th International Symposium
on Protocol Specfication, Testing and Verification, Ottawa, June 1990, 359-376.

[58] Garcia-Molina, H. Elections in distributed computing systems,IEEE Transactions on Com-
puters C31, 1, Jan. 1982, 48-59.

[59] Gouda, M.G. and Han J.Y. Protocol Validation by Fair Progress State Exploration. Com-
puter Networks and ISDN Systems, 1985, (9):353-361.

[60] Gribi, B. A Model Cheker for LOTOS, Master’s Thesis, University of Ottawa, 1992.

[61] Gribi, B., and Logrippo, L. A Validation Environment for LOTOS, in13th IFIP Symposium
on Protocol Specification, Testing and Verification, May 1993.

[62] Gouda, M.G., and Yu, Y.T. Protocol Validation by Maximal Progress State Exploration.
IEEE Transactions on Communications, Jan. 1984, COM-32:94-97.

References

 157

[63] Guillemot, R., Haj-Hussein, M., and Logrippo, L. Executing Large LOTOS Specifications.
In: Aggarwal, S., and Sabnani, K. (eds.)Protocol Specification, Testing, and Verification
VIII . North-Holland, 1988, 399-410.

[64] Hailpern, B.T. Verifying Concurrent Processes using Temporal Logic,Ph.D. Thesis, Com-
puter Science Laboratory, Dept. of Electrical Engineering, Stanford University, Aug. 1980.

[65] Hailpern, B.T., and Owicki, S.S. Modular Verification of Computer Communication Proto-
cols.IEEE Transactions on Communications, Jan.1983, vol. COM-31(1):56-68.

[66] Haj-Hussein, M. ISLA: An Interactive System for LOTOS Applications,Master’s Thesis,
Unicersity of Ottawa, 1989.

[67] Haj-Hussein, M., and Logrippo, L. Specifying Distributed Algorithms in LOTOS, to appear
in Procedings of Computer Networks Conference, Wroclaw, 1991.

[68] Haj-Hussein, M. A LOTOS Data Type Definition for Integers,Technical Report, University
of Ottawa, 1991.

[69] Haj-Hussein, M., Logrippo, L., and Sincennes, J. Goal-Oriented Execution for LOTOS,Fifth
International Conference on Formal Description Techniques FORTE ‘92, France, Oct.
1992.

[70] Hallsteinsen, S.O., Venstad, A., Nyeng, A., and Martinsen, H. Transformational Program
Development- An Approach for Translating SDL to CHILL, SDL ‘89, The Language at
Work, Proceedings of the Fourth SDL Forum, in O. Faergemand and M. M. Marques, eds.,
Lisbon, Portugal, Oct. 1989, 283-292.

[71] Hoare, C.A.R.Communicating Sequential Processes. Prentice-Hall, 1985.

[72] Holzmann G.J. Automatic Protocol Validation in Argos: Assertion Proving and Scatter
Searching. IEEE Transactions on Software Engineering, Jun. 1983, SE13(6):683-696.

[73] Holzmann, G.J. Tracing Protocols.AT&T Technical Journal, Dec 1985, 64(10).

[74] Holzmann, G.J. Algorithms for automated Protocol Verification.AT&T Technical Journal,
Jan.-Feb. 1990, 69(1):32-44.

[75] Holzmann, G.J. Design and Validation of Computer Protocols, Prentice Hall, Englewood
Cliffs, NJ, 1991, ISBN 013-539925-4.

[76] Huet, G., and Lankford, D.S. On the Uniform Halting Problem for Term Rewriting Syatems,
Laboratory Report 283, INRIA, Le Chesnay, France, Mar. 1978.

References

 158

[77] Huet, G., and Oppen, D.C. Equations and Rewrite Rules: A Survey, in R. Book, editor, For-
mal Language Theory: Perspectives and Open Problems, Academic Press, New York, 1980,
349-405.

[78] Humblet, P.A. A distributed algorithm for minimum weight directed spanning trees, IEEE
Trans. on Communication Comm-31, 6, June 1983, 756-762.

[79] IBM Europe, Technical improvements to CCITT recommendation X.25,submission to study
group VII, Oct. 1978.

[80] International Organization for Standardization. Information Processing Systems. Open Sys-
tems Interconnection. Basic Reference Model for Open Systems Interconnection (ISO Inter-
national Standard 7498), 1984.

[81] International Organization for Standardization. Information Processing Systems. Open Sys-
tems Interconnection. Formal specification of IS 8072 (Transport Service) in LOTOS,ISO/
TC97/SC6/WG4/N13, Aug. 1986.

[82] International Organization for Standardization. Information Processing Systems. Open Sys-
tems Interconnection. Formal specification of IS 8073 (Transport Protocol) in LOTOS,ISO/
TC97/SC6/WG6/N233, Mar. 1987.

[83] International Organization for Standardization. Information Processing Systems. Open Sys-
tems Interconnection. ESTELLE - A Formal Description Technique Based on an Extended
State Transition Model, DIS 9074, 1987.

[84] International Organization for Standardization. Information Processing Systems. Open Sys-
tems Interconnection. LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour (ISO International Standard 8807), 1988.

[85] Itoh, M., and Ichikawa, H. Protocol Verification Algorithm using Rediced Reachability
Analysis. InThe Transactions on the IECE of Japan, Feb. 1983, vol. E66, 88-93.

[86] Kakuda, Y., Wakahara, Y., and Norigoe, M. A New Algorithm for Fast Protocol Validation.
In COMPASAC, IEEE, 1986, 228-236.

[87] Knuth, D.E., and Bendix, P.B. Simple Word Problems in Abstract Algebra, in J. Leech (ed.),
Computational Problems in Abstract Algebra, Pergamon Press, 1969, 263-297.

[88] Korach, E., Rotem, D., and Santoro, N. Distributed election in a circle without a global sense
of orientation, Int. J. of Computer Mathematics 16, 1984, 115-124.

References

 159

[89] Kuiper, R., and de Roever, W. Fairness assumptions for CSP in a temporal logic framework,
in D. Bjoner, editor, Proceedings of TC.2 Working Conference on Formal Description of
Programming Concepts, Garmisch Partenkirchen, North Holland, 1983.

[90] Kutten, S. A unified approach to the efficienr construction of distributed leader-finding algo-
rithms,Proc. IEEE COnf. on Communication and Energy, Montreal, Oct. 1984.

[91] Lai, W.S. Protocol Traps in Computer Networks. A Catalog.IEEE Transactions on Commu-
nications, vol. COMM-30, No. 16, 1434-1449.

[92] Lam, S.S., and Shanker, A.U. Protocol Verification via Projections.IEEE Transactions on
Software Engineering, Jul. 1984, SE-10(4):325-342.

[93] Lamport, L. ‘Sometime’ is sometime ‘not never’: On the temporal logic of programs, in
Proc. 7th annu. ACM Symp. Principles of Programming Languages. Las Vegas, NV, Jan.
1980, 174-185.

[94] Lamport, L. Specifying Concurrent Program Modules,ACM Transactions on Programming
Languages and Systems, Apr. 1983, 5(2):190-222.

[95] Le Moli, G. A theory of colloquies, inFirst European Workshop on Computer Networks,
Arles, France, 1973, 153-173.

[96] Lin, F.J., Chu, P.M., and Liu, M.T. Protocol Verification Using Reachability Analysis: The
State Space Explosion Problems and Relief Strategies. InACM SIGCOMM, Aug 1987.

[97] Logrippo, L., Faci, M., and Haj-Hussein, M. An Introduction to LOTOS: Learning by Exam-
ples. To appear in Computer Networks and ISDN Systems.

[98] Logrippo, L., Obaid, A., Briand, J.P., and Fehri, M.C. An Interpreter for LOTOS, a Specifi-
cation Language for Distributed Systems.Software-Practice and Experience, 18, 1988, 365-
385.

[99] Loureiro, A.A.F., Chanson, S.T. and Vuong, S.T. FDT Tools for Protocol Development,
Fifth International Conference on Formal Description Techniques FORTE ‘92, Tutorial
Paper, France, Oct. 1992, 38-78.

[100] Madelaine, E., and Vergamini, D. AUTO: A verfication tool for ditributed systems using
reduction of finite automata networks, in S.T. Vuong, editor,2nd International Conference
on Formal Description Techniques FORTE ‘89, Vancouver, B.C., Canada, Dec. 1989, 77-
84.

References

 160

[101] Merlin, P.M. A study of the recoverability of computing systems,Ph.D. Thesis, Dept. of
Information and Computing Sciences, Univ. of California, Irvine, 1974.

[102] Merlin, P.M. A methodology for the design and implementation of communications proto-
cols, IEEE Transactions on Communications, June 1976, 24(6).

[103] Milner, R. A Calculus of Communicating Systems. vol. 92 ofLecture Notes in Computer
Science, Sringer-Verlag, 1980.

[104] Manas, J.A., and de Miguel-More, T. From LOTOS to C. In: K.J.Turner (ed.)Formal
Description Techniques. North-Holland, 1989, 79-84.

[105] Musser, D.R. Abstract Data Type Specification in the AFFIRM System,IEEE Trans. Soft-
ware Engineering, vol. SE-6(1).

[106] Nguyen, H.T., Jackson, L.N., and Parker, K.R. Reachability Graph Generator for SDL, SDL
‘89, The Language at Work,Proceedings of the Fourth SDL Forum, in O. Faergemand and
M. M. Marques, eds., Lisbon, Portugal, Oct. 1989, 219-230.

[107] Nicola, R., and Hennessey, M. Testing equivalences for processes,Theoretical Computer
Science, Nov. 1984, 34(1,2):83-133.

[108] Ohmaki, K et al. Design and implementation of an Application Interface for LOTOS Iroces-
sors, in K. Parker and G. Rose, editors,4th International Conference on Formal Description
Techniques FORTE ‘91, 1991.

[109] Park, D. Concurrency and Automata on Infinite Sequences, Proc. 5th GI Conference,Lecture
Notes in Computer Science 104, 1981, 167-183.

[110] Pavón, S., and Llamas, M. The testing functionalities of LOLA, in Juan Quemada., José
Mañas, and Enrique Vázquez, editors,Proceedings of 3rd International Conference on For-
mal Description Techniques FORTE ‘90, Madrid, Spain, Nov. 1990.

[111] Petri, C.A.Communication with automata,Ph.D. Thesis, Darmstat Institute of Technology,
Bonn, Germany, 1962.

[112] Pnuelli, A. The Temporal Logic of Programs, InProc. of the 18th Symposium on Founda-
tions of Computer Science, Nov. 1977, 46-57.

[113] Pnuelli, A. A temporal semantics for concurrent programs, in Semantics of Concurrent Com-
putation. New York: Springer-Verlag, 1979, 1-20.

References

 161

[114] Queille, J.P., and Sifakis, J. Fairness and Related Properties in Transition Systems - A tem-
poral Logic to Deal with Fairness, Acta Informatice, 1983, 19:195-220.

[115] Quemada, J, Pavón, S., and Fernández, A. Transforming LOTOS Specifications with LOLA.
The Parameterised Expansion. In: K.J.Turner (ed.) Formal Description Techniques. North-
Holland, 1989, 45-54.

[116] Quemada, J. Compressed State Space Representation in LOTOS with the Interleave Expan-
sion. In B. Jonsson, J. Parrow, and B. Pehrson, editors,Proceedings of Eleventh Interna-
tional Conference on Protocol Specification, Testing, and Verification,North-Holland,
1991.

[117] Rasse, A. CLEO: Diagnostic des Erreurs en XESAR,Thèse de Doctorat, Institut National
Polytechnique de Grenoble, June 1990.

[118] Rety, P., Kirchner, C., Kirchner, H., and Lescanne, P. NARROWER: a new algorithm for
unificaton and its application to logic programming, in Dijon, editor, The First International
Conference on Rewriting Techniques and Applications.

[119] Richard, J., and Linn, Jr. The Features and Facilities of Estelle. InFifth IFIP Workshop on
Protocol Specification, Testing, and Verification,North-Holland, 1986, 271-296.

[120] Rodriquez, C. Spécification et validation de systèmes en XESAR.Thèse de Doctorat, Institut
National Polytechnique de Grenoble, May 1988.

[121] Rubin, J. Testing Communication Protocols Using Random Legal Inputs. In COMNET ‘85,
pages 645-662, Budapest, Hungary, North-Holland, Amesterdam, Oct 1985.

[122] Rudin, H. Automated Protocols Validation: One Chain of Development.Computer Net-
works, 1978, 2(4/5):373-380.

[123] Rudin, H., and West, C.H. Validation of Protocols Using State Enumeration: A Summary of
some experience. In INWG/NPL Workshop on Protocol Testing, Oct 1981, vol. 1, 371-375.

[124] Rudin, H., and West, C.H. An Improved Protocol Validation Technique.Computer Net-
works, 1982, 6:65-73.

[125] Rudin, H., West, C.H., and Zafiropulo, P. Automated Protocol Validation-One Chain of
Development. InComputer Networks Symposium, University of Liege, Belgium, Feb 1978.

[126] Saracco, R., and Tilanus, P.A.J.CCITT SDL: Overview of the LAnguage and its Applica-
tions, Computer Networks and ISDN Systems, 1987, vol. 13, 65-74.

References

 162

[127] Schultz, G.D, Rose, D.B., West, C.H, and Gray, J.P. Executable, description and validation
of SNA, IEEE Transactions on Communications, 1980, 28(4):661-677.

[128] Scollo, G. OSI TRASPORT SERVICE. A Constraint Oriented Specification in LOTOS,
Reference Number: SEDOS/119.6. PROYECT ST 410 SEDOS.PUBLIC REPORT, TASK
C1. Oct 1987.

[129] Scollo, G, and van Sinderen, M. Architecture Design of the Formal Specification of the Ses-
sion Standards in LOTOS, inProceedings of the 6th international workshop on protocol
specification, testing and verification, T. Kalin, editor, North Holland, Amsterdam, 1987,
475-488.

[130] Shrivastava, S.K., and Ezhilchelvan, P.D. rel/REL: A Family of Reliable Multicast Protocol
for High-Speed Networks. Technical Report, University of Newcastle, Dept. of Computer
Science, U.K., 1990.

[131] The SPECS Consortuim and Bruijning, J. Evaluation and Integration of Specification Lan-
guages, Computer Networks and ISDN Systems, 1987, vol. 13, 75-89.

[132] Turner K.J. A LOTOS-based develpment strategy, in S.T. Vuong, editor,2nd International
Conference on Formal Description Techniques FORTE ‘89, Vancouver, B.C., Canada, 157-
174.

[133] Sunshine, C. Interprocess communication protocols for computer networks,Ph.D. thesis,
Stanford University, Technical Report #105, Dec. 1975.

[134] Symons, F.J.W. Introduction to numerical Petri nets, a general graphical model of concurrent
processing systems,Australian Telecommunication Research, 1980, vol. 14, no. 1, 28-32.

[135] Turner, K., editor, Using Formal Description Techniques, Wiley, 1993.

[136] van der Schoot, H. Validation Activities for LOTOS based on Static Data Flow Analysis,
Master Thesis, University of Twente, 1993.

[137] van der Schoot, H., and Ural, H. Data Flow Oriented Test Selection for LOTOS, to appear
in Computer Networks and ISDN Systems.

[138] van Eijk, P. The Design of a simulator tool, in P. van Eijk et al. (eds),The Formal Descrip-
tion Technique LOTOS, 1989, North Holand, Amsterdam, 351-390.

[139] van Eijk, P., Vissers, C.A., and Diaz, M.The Formal Description Technique LOTOS. North-
Holland, 1989.

References

 163

[140] van Eijk, P., and Eertink, H., Design of the LOTOSPHERE symbolic LOTOS simulator, in
Juan Quemada., José Mañas, and Enrique Vázquez, editors,Proceedings of 3rd Interna-
tional Conference on Formal Description Techniques FORTE ‘90, Madrid, Spain,Nov.
1990, 709-712.

[141] van Eijk, P. Tool demonstraction: The Lotosphere integrated tool environmentlite, in K.
Parker and G. Rose, editors,4th International Conference on Formal Description Tech-
niques FORTE ‘91, 1991.

[142] Vissers, C.A., Scollo, G., and Van Sinderen, M. Architecture and Specification Style in For-
mal Descriptions of Distributed Systems. In Aggarwal, S., and Sabnani, K., (eds.)Protocol
Specification, Testing, and Verification, VIII, North-Holland, 1988, 189-204.

[143] Vissers, C.A. FDTs for open distributed systems: A restrospective and a prospective view,
in L. Logrippo, R.L. Probrt, and H. Ural, (eds.),The 10th International Symposium on Pro-
tocol Specfication, Testing and Verification, Ottawa, June 1990, Invited Paper.

[144] Vuong, S.T. and Cowan, D.D. Reachability Analysis of Protocols with FIFO Channels. In
Communication Architectures and Protocols, ACM SIGCOMM, University of Texas at Aus-
tin, Mar. 1983.

[145] Vuong, S.T. Hui, D.D., and Cowan, D.D. A Tool for Protocol Validation Via Reachability
Analysis, inProtocol Specification, Testing, and Verification VI,North-Holland, 1987, 35-
41.

[146] West, C.H. General Technique for Communication Protocol Validation,IBM J. Res.
Develop., 1978, 22(4):393-404.

[147] Wang, Y. and Larsen, K.G. Testing Probabilistic and Nondeterministic Processes, in R.J.
LINN, Jr. and M.U. Uyar, editors,.Protocol Specification, Testing, and Verification XII,
Florida, U.S.A, June 1992.

[148] West, C.H. Applications and Limitations of Automated Protocol Validation. InSecond IFIP
Workshop on Protocol Specification, Testing, and Verification,North-Holland, 1982, 361-
371.

[149] West, C. Protocol Validation by Random State Exploration.Protocol Specification, Testing,
and Verification, VI. North-Holland, Amsterdam, 1986, 233-242.

[150] West, C. Protocol Validation in Complex Systems.SIGCOMM’89 Computer Communica-
tions Review, Sept. 89, vol. 19, no. 4, 303-312.

References

 164

[151] West, C.H. Protocol Validation - Principles and Applications, In10th IFIP Symposium on
Protocol Specification, Testing and Verification, June 1991.

[152] West, C.H. and Zafiropulo, P. Automated Validation of a Communication Protocol: the
CCITT X.21 Recommendation,IBM J. Res. Develp., 1978, 22(1):60-71.

[153] Woltz, D. Design of a Compiler for Lazy Pattern Driven Narrowing,Proceedings of the 7th
international workshop on the specification of abstract data types, Springer LNCS 534,
1991.

[154] Wu, C., and Bochmann, G. Fairness in LOTOS, in K. Parker and G. Rose, editors,4th Inter-
national Conference on Formal Description Techniques FORTE ‘91, 1991.

[155] Zafiropulo, P. Protocol Validation by Duologue Matrix Analysis.IEEE Transactions on
Communications, 1978, COM-26:1187-1194.

[156] Zafiropulo, P., West, C.H., Rudin, H., Cowan, DD., and Brand, D. Towards Analysing and
Synthesizing Protocols.IEEE Transactions on Communications, 1980, 28(4):651-661.

[157] Zhao, J.R., and Bochmann, G.V. Reduced Reachability Analysis of Communication Proto-
cols. InProtocol Specification, Testing, and Verification, VI, North-Holland, 1987 , 243-254.

Appendix A - Alternating Bit Protocol

 144

 Appendix A - Alternating Bit Protocol

This protocol provides a reliable, uni-directional data transfer service between two users, User1

the source and User2 the sink.

The protocol uses an unreliable full duplex one place channel to transfer protocol data units

(PDUs) and acknowledgments. To ensure that the messages sent by User1 are received in the

correct order by User2, the protocol associates a sequence number, alternating between 0 and 1,

with the delivered (PDUs) and acknowledgments. Figure A-1 illustrates the overall composition of

the Sender and the Receiver entities, associated with User1 and User2 respectively, and the

unreliable channel. The gates used by the protocol to communicate with the channel are hidden

from the environment, i.e. the users. The overall structure can be seen as follows:

Figure A-1 Overall structure of alternating bit protocol and service

The serviceabp_service has two interaction points through gatesUser1 the source andUser2

the sink. They both allow one event of sortData. A value of sortData is simply any natural

number.

The protocol, specified in processabp, is a composition of three entities, the sender, the

receiver and the unreliable channel. The sender entity sends PDUs and receives acknowledgments

by communicating with the channel through gatessend1and recv1 respectively. The receiver

entity receives PDUs and sends acknowledgments by communicating with the channel through

Channel

send1

send2

recv2

recv1

User1 User2

Protocol

Sender Receiver

LOST

LOST

Appendix A - Alternating Bit Protocol

 145

gatessend2and recv2 respectively. The PDUs and the acknowledgments are both of sortMess.

GateLOST is added to the channel process to identify the loss of a message.

specificationabp_service[User1,User2] :noexit
library
 Boolean, NaturalNumber, Bit
endlib

(* messages sent by User1 or received by User2 are of type Data, which are simply
 natural numbers *)

type DataTypeis NaturalNumberrenamedby
sortnames Datafor Nat

endtype
(* Acknowledgments and PDUs are both of type Mess.An acknowledgment is constructed
 by the operator makeack(Bit) that carries the sequence bit of the message to be
 acknowledged.A PDU is constructed by the operator makepdu(Data, Bit) that carries the
 message to be sent and the associated sequence bit. is_ack(Mess) and is_pdu(Mess) are
 boolean operators that determine if the given Mess is an acknowledgment or a PDU
 respectively *)

type messageis DataType, Boolean, Bit
sortsMess
opns

makeack : Bit -> Mess
makepdu : Data,Bit-> Mess
compl: Bit -> Bit
is_ack: Mess -> Bool
is_pdu: Mess -> Bool
data : Mess -> Data
seq : Mess -> Bit

eqns forall D:Data, S1,S2:Bit
ofsort Bool

is_ack(makeack(S1)) = true;
is_ack(makepdu(D, S1)) = false;
is_pdu(makeack(S1)) = false;
is_pdu(makepdu(D, S1)) = true;

ofsort Data
data(makepdu(D,S1)) = D;

ofsort Bit
seq(makeack(S1)) = S1;
seq(makepdu(D, S1)) = S1;
compl(1) = 0;
compl(0) = 1;

endtype
behavior

hide send1, recv1, send2, recv2, LOSTin
abp[User1, User2, send1, recv1, send2, recv2, LOST](0of Bit)

where

Appendix A - Alternating Bit Protocol

 146

process abp[User1, User2, send1, recv1, send2, recv2, LOST]
(s_seq:Bit):noexit:=

(sender [User1, send1, recv1, LOST] (s_seq)
 |||
 receiver[User2, send2, recv2] (s_seq))
 |[send1, recv1, send2, recv2, LOST]|
 channel [send1, recv1, send2, recv2, LOST]

where
(* The protocol entity ‘sender’ receives a message from User1 and delivers it, then
repeats the same process *)
process sender[User1, send1, recv1, LOST](s_seq:Bit) :noexit :=

User1?D:Data;
(deliver[send1, recv1, LOST](D, s_seq) >>

sender[User1,send1, recv1, LOST](compl(s_seq)))
where
(* The delivery process sends a PDU containing the message sent by User1 along with
 the associated sequence bit. If it receive the proper acknowledgment for the PDU then
 the message is delivered. If not, it re-sends the same PDU once again until the proper
 acknowledgment is received*)

process deliver[send1, recv1, LOST](D:Data; s_seq:Bit) :exit :=
 send1!makepdu(D, s_seq) ;
(wait_ack[recv1, LOST](s_seq) >>accept ok : Boolin
 ([ok] -> exit
 []
 [not(ok)] ->deliver[send1,recv1,LOST](D, s_seq) (*re-deliver message *)
)
)
where

process wait_ack[recv1,LOST] (s_seq:Bit) :exit(Bool) :=
(recv1?M:Mess[is_ack(M)] ;exit(seq(M) eq s_seq))
[]
LOST?M:Mess;exit(false)(* LOST *)

endproc
endproc

endproc
(* The protocol entity ‘receiver’ waits until a PDU is ready to be received from the
 channel. When it receives a PDU it acknowledges it and then it delivers the associated
 message to User2 only if the associated sequence bit is the one expected. *)
process receiver[User2, send2, recv2](r_seq:Bit) :noexit :=

recv2?M:Mess [is_pdu(M)];
([seq(M) eq r_seq] -> send2!makeack(r_seq) ;

User2!data(M);
receiver[User2, send2, recv2](compl(r_seq))

[]
[seq(M) ne r_seq] -> send2!makeack(compl(r_seq));

Appendix A - Alternating Bit Protocol

 147

receiver[User2, send2, recv2](r_seq)
)

endproc
(* unreliable channel: when a message is sent through the channel on gate send1 or send2,
 at can be delivered on gate recv1 or recv2 respectively or the channel may lose it if
 the internal actioni is executed *)
process channel [send1, recv1, send2, recv2, LOST] :noexit :=

uni_channel[send1, recv2, LOST] ||| uni_channel[send2, recv1, LOST]
where
process uni_channel[send,recv,LOST]: noexit :=

send?Msg:Mess;
(recv!Msg; uni_channel[send,recv,LOST]
[]
i; LOST!Msg; uni_channel[send,recv,LOST])(* message lost *)

endproc
endproc

endproc
endspec

Appendix A - Alternating Bit Protocol

 148

Figure A-2 Top level view of alternating bit protocol and service

abp_service[User1,User2]

B0

hide send1, recv1, send2, recv2, LOST

B1

abp[User1, User2, send1, recv1, send2, recv2, LOST](0of Bit)

abp[User1, User2, send1, recv1, send2, recv2, LOST](s_seq:Bit)

B2

B3 B4

B5 B6

sender [User1, send1, recv1, LOST] (s_seq) receiver[User2, send2, recv2] (s_seq)

channel [send1, recv1, send2, recv2, LOST]

|[send1, recv1, send2, recv2, LOST] |

|||

Appendix A - Alternating Bit Protocol

 149

Figure A-3 Alternating Bit Protocol - Sender

B7

B8

sender[User1, send1, recv1, LOST](s_seq:Bit)

B9 B10
>>

User1?D:Data

deliver[send1, recv1, LOST](D, s_seq) sender[User1,send1, recv1, LOST](compl(s_seq))

B11

B12

B13 B14

>> accept ok

send1!makepdu(D,s_seq)

deliver[send1, recv1, LOST](D:Data,s_seq:Bit)

wait_ack[recv1, LOST](s_seq)

B15 B16

[]

[ok] -> [not(ok)] ->

exit deliver[send1,recv1,LOST](D,s_seq)

B17

B18 B19
[]

wait_ack[recv1,LOST] (s_seq:Bit)

recv1?M:Mess[is_ack(M)]

exit(seq(M) eq s_seq))

LOST?M:Mess

exit(false)

Appendix A - Alternating Bit Protocol

 150

Figure A-4 Alternating Bit Protocol - Receiver

B20

B21

receiver[User2, send2, recv2](r_seq:Bit)

B22 B23
[]

recv2?M:Mess [is_pdu(M)]

[seq(M) eq r_seq] ->
[seq(M) ne r_seq] ->

B24

B26

B25

send2!makeack(r_seq)

User2!data(M)

receiver[User2, send2, recv2](compl(r_seq))

send2!makeack(compl(r_seq))

receiver[User2, send2, recv2](r_seq)

Appendix A - Alternating Bit Protocol

 151

Figure A-5 Alternating Bit Protocol - Unreliable Channel

B27

B28 B29
>>

channel [send1, recv1, send2, recv2, LOST]

uni_channel[send1, recv2, LOST] uni_channel[send2, recv1, LOST]

B30

B31

B32 B33
[]

uni_channel[send,recv,LOST]

send?Msg:Mess

recv!Msg

uni_channel[send,recv,LOST]

B34 B35

B36

uni_channel[send,recv,LOST]

i

LOST!Msg

