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Abstract

The dynamic behaviour of a LOTOS specification can be described as a tredyelattedur
tree, where the nodes represent the states of the behaviour, and the branches represent the possible
next actions. Unfortunately, the behaviour tree for a realistic size LOTOS specification can be very
large and often has no finite representation.This is the major limitation for the existing LOTOS
verification techniques.

The main goal of this thesis is to provide a new behaviour tree exploration technique, called
Goal-Oriented Executigrthat can be used to check properties of LOTOS specifications by
narrowing exploration to a meaningfully selected subset of the tree. In this execution technique,
the system derivesaces(i.e paths in the behaviour tree) satisfying certain assertions that express
temporal ordering of actions and data values properties.

Goal-Oriented Execution is a combination of three techniques. The first technique is an
automatically generated ADdvaluator/narroweengine. It is capable of evaluating an expression
based on a rewriting rule approach, borrowed from functional programming, and deriving solutions
to a set of constraints using a narrowing technique, borrowed from logic programming. The second
technique is atatic analyzethat determines where the given assertions are likely to hold,
producing static information calledatic derivation pathsThe third technique, calleguided-
inference systepinvolves a new type of inference rules that derive traces using static derivation
paths to resolve most non-determinism.

Implementation issues of this technique are also discussed, and examples of its usage are
provided. The technique is now included in ELUDO, the University of Ottawa LOTOS interpreter.

Vi



Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background and Motivation

A Communication protocol is defined as a set of syntactic and semantic rules that govern the
exchange of information between entities in a communication system [95]. In today’s
communication systems, protocols are quite complex. Experience shows that many protocol design
errors are detected late in the development cycle and may cause disastrous outcomes [91].
Therefore, protocol specification models must be suitable for adequate validation in the early
phases of the development cycle. This generated the need to define and standardize formal methods
for describing protocols. A formal method, with precisely defined semantics, provides an excellent
basis for avoiding ambiguity in the interpretation of the protocols’s characteristics, as well as a
mathematical framework for formal proof methods and automated analysis methods.

The International Standardization Organization (ISO) has developed a model, called the Open
System Interconnection Reference Model (OSI/RM) [33], that deals with connegéngystems
(systems that are open for communication with other systems). ISO has adopted Formal
Description Techniques (FDTs) to define protocols and services for OSI/RM. The following,
mainly taken from [24], are the main objectives for these FDTs:

Expressivenesan FDT should be capable of describing both the protocols and the services of

the OSI model.

* Formalism:in order to perform formal analysis, an FDT should be founded on a strong
mathematical model that makes it possible to extract the meaning of a specification
unambiguously.

* Modularity. an FDT should offer the ability to decompose large and complex protocols into
readable and maintainable components.

» Abstraction an FDT should also offer the ability to suppress irrelevant implementation details
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from the specification. For example, OSI concepts (e.g. service access points, connection
endpoints, service primitives, protocol data units and constraints) should be expressible in a
completely implementation-independent manner.

Executability to allow validation to start at an early stage of the protocol development life
cycle, it should be possible to construct a running prototype model on the basis of a formal
description.

FDTs should be effectively integrated with design methods. They should have the ability to

support not only the specification phase, but the complete protocol development process:

Specification of requirements as a formal abstract model.

Verification of the model against the requirements.

Derivation of implementations from the model using stepwise refinement transformations.
Generation of test cases from the model.

Testing an implementation against the model.

The model can also serve as documentation for the system. Vissers in [143] provides an

excellent perspective of FDTSs.

The application of an FDT to the development of large and complex protocols depends heavily

on the availability of supporting computer tools. More and better tools will popularize the use of
FDTs. Several classifications of FDT tools have been proposed [15][99][131][132]. Our
classification is as follow:

1-
2-

Specification toolssuch as editors and syntax/static semantic checkers.

Validation and Verification toolsassist in checking the syntactic and semantic protocol
properties. These include: theorem provers, model checkers, reachability analysers, simulators,
and symbolic executors.

Reduction toolssuch as algebraic simplifiers that reduce expressions into a simpler form.
Transformation toolsthese tools are conceived for translating the specification into a more
concrete (refined) one, or into a different equivalent representation such as graphs, Petri-nets,
etc.. .

Comparison toolscompare two specifications with respect to given relations such as
equivalence and congruence relations.

Testing toolssuch as test cases generators.

Extensive research is being done worldwide in the area of automated protocol validation and

verification tools based on FDTs. A survey on such tools can be found in [99].
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The FDTs standardized within ISO are ESTELLE (Extended Finite State Machine Language,
[83]) and LOTOS (Language Of Temporal Ordering Specification, [84]). In addition, CCITT (the
International Telegraph and Telephone Consultive Committee) has adopted SDL (Specification
and Description Language, [7][126]) as standard FDT. A comparative evaluation of these
specification languages can be found in [16][131¢rAphicalversion of LOTOS is in advanced
stage of standardization within ISO and CCITT.

LOTOS is one of the most precisely defined languages in use today. Its static semantics are
defined by an attributed grammar, while its dynamic semantics are based on algebraic concepts.
LOTOS is made up of two components: a data type component, which is based on the algebraic
specification language ACT ONE [40][41], and a control component, which is based on concepts
from Milner's CCS [103] and Hoare's CSP [71]. LOTOS was conceived for the specification of the
services and protocols of the Open Systems Interconnection [81][82][128][129]. Soon after its
introduction, other uses were found for LOTOS: among others, the specification of telephone
systems [43] and the specification of distributed algorithms [67].

The dynamic semantics of LOTOS are defined in terms of axioms and inference rules [84]. The
actions (transitions) that a given behaviour expression may perform, and the dynamic behaviour of
the resulting states, can be derived systematically by applying the inference rules. Therefore, the
dynamic behaviour of a LOTOS specification can be seen as a tree bedibadour treewhere
the nodes of the tree represent the states of the behaviour, and the branches represent the possible
next actions. Unfortunately, the behaviour tree for a realistic size LOTOS specification can be very
large and is often has no finite representation.This is the major limitation for the existing LOTOS
verification techniques.

To deal with this limitation, LOTOS interpreters in existence today make it possible to execute
specifications (i.e. exploring behaviour trees) using different techniques such as step-by-step
execution [63][66][98][138], random-walk execution [67], weighted execution [108], fair
execution [154], and symbolic execution [1][115]. These techniques lay restrictions such as: (1)
user intervention is needed, (2) only a subset of LOTOS constructs can be handled, (3) LOTOS
specification must be written in specific style, (4) counters and limits are needed, or (5) information
must be included as special comments in the LOTOS specification. These techniques and other
techniques that require changing the syntax and semantics of LOTOS are described in more detail
in the next chapter.

The main goal of this research is to provide a new behaviour tree exploration technique, called
Goal-Oriented Executigrthat can be used to verify LOTOS specifications by narrowing
exploration to a meaningfully selected subset of the tree. In this execution technique, the system
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derivestraces(i.e paths in the behaviour tree) satisfying certain assertions. First, the LOTOS
specification is analyzestaticallydetermining where these assertions are likely to hold, producing
static information calledtatic derivation pathsSecond, these static derivation paths are fed to the
inference rules helping directing the dynamic derivation. To comply with LOTOS semantics, the
dynamic trace derivation may require sub-traces with new assertions. Therefore static derivation
paths are obtainemh demandy the inference rules, as we shall see.

For this technique to be applied on full LOTOS, where data part is involved, the assistance of
anarrowertool is needed. Narrowing [118] is a technique for finding solutions to a set of
constraints in abstract data types. We present an algorithm for transforming abstract data type
eqguations into a rewriting rules evaluator and a narrower engine with considerable performance
efficiency. We also show that other existing tools can be improved using the narrower.

1.2 Structure of the Thesis

This paper is organized as follows. In chapter 2, we give an overview of the Communicating
Finite State Machines model and of the relief strategies for state explosion problems. We also
provide a brief introduction to LOTOS, to the existing verification tools for LOTOS, and to the
existing relief strategies that have been devised to cope with dynamic state space explosion for
LOTOS. Chapter 3 provides an overview of our method. This includes the functionality and the
strategy of each component of our system and the algorithm of the overall system. In Chapter 4,
the definition of the static analyser and of the guided-inference system is presented. The narrower
technique is explained in detail in chapter 5. In chapter 6, the application of our method to verify
an alternating bit protocol specification is shown. Also, the scope of application of the method is
described in this chapter. Finally, the thesis conclusion is given in Chapter 7, along with remarks
on possible future work. Appendix A includes the LOTOS specification of the alternating bit
protocol used as an example in chapter 6.
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In the first part of this chapter, we give a brief introduction to a layered network architecture
model, an overview of protocol verification techniques, and we illustrate some relief strategies that
have been devised to cope with the state explosion problems of communicating finite state
machines models. In the second part, we present an introduction to LOTOS and we list some of its
existing verification tools.

2.1 Layered Network Architecture Model

A layered network architecture model (e.g. OSI/RM, [33]) is defined as a composition of
layers, each built upon its predecessor. The purpose of each layer is to offer certain services to the
higher layer. Layer N on one system and layer N on another system ar@eatipdocesse®eer
processes, at layer N, communicate using so ciajeat N protocols

In reality, the communication between peer processes is not done directly. Instead, each layer
passes data and control information to the layer immediately below it, until the physical layer is
reached where the actual communication occurs. The receiving physical layer, then, passes the
information to the layer above it until the desired layer is reached. In summary, layer N defines
services to layer N+1, using the services provided by layer N-1. In this case, layer N is called the
service providefor layer N+1.

Services are provided at service access points (SAPs), which are identified by unique
addresses. The SAPs of layer N are the places where layer N+1 can have access to the services
provided. Figure 2-1 shows the composition of layer N with layers N-1 and N+1.
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Host A Host B
N+1 Protocol
Layer N+1 < -
N SAPs
Layer N N Protocol
|t} -
N-1 SAPs

Layer N-1

Figure 2-1 A composition of three layers in a Layered model

The user of services is concerned withatservices are being provided anterethey are
provided, and ndtowthey are provided. For this reason, a protocol that defines some specific
services can be viewed as a black box whose services are fully described by sequences of messages
from and to the users. Such a description constituteethizze specificationf the protocol, while
the description of the exchange of messages among peer processes constrdgesctiie
specification The latter specification at a given layer, is the one that should be hidden from the
other layers.

2.2 Protocol Verification

In a layered network architecture model, the protocol verification process involves checking
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for the following properties:

0 syntactic properties These are general design properties of a given protocol such as the
absence of the following errors [156}ate deadlock, unspecified receptions, non-executable
interactions, state ambiguity, channel overflow, tempo blockimgyinfairness The
verification of syntactic properties, often callgtocol validation does not require
knowledge of the provided services.

0 semantic properties These are the intended sets of services that a given protocol needs to
provide to the protocol of the layer above. The verification of such properties requires the
service specification to be provided, and it is necessary to assume the correctness of the service
provided by the layer below. Such properties cannot be classified or generalized since they
depend on specific protocol or service specifications. Such verification has proved difficult to
automate.

The correctness of syntactic properties does not imply that the semantic properties hold, but the
failure of these may prevent the protocol from providing its specified service.Therefore, it is logical
to validate a protocol before verifying it.

2.3 Transition-Based Models

The transition-based models are mainly used to describe the control aspects of protocols. For
example, the message exchange between entities to establish connection and termination can be
best specified by these models. On the other hand, the specification of the data transfer aspects of
the protocol can be very complex and often impossible to describe by transition-based models.

These models can be classified into Communicating Finite State Machines models, and Petri-
Net models. The latter are not of concern in this paper.

The Communicating Finite-State Machines Model is one of the earliest and simplest methods
used for formal verification. Still now, it is the most widely used.

In this model, each communicating process is represented by a FSM. A CFSM can be formally
represented by a quadruple E T 9L , where

* Sis afinite set of states

» Eis afinite set of events

* Tis afunction representing the set of transitibnsx E - ¢
* S00Sis the initial state



Chapter 2 Literature Review

The coupling between a pair of processes is done by using two implicit FIFO queues
connecting the inputs of one process to the outputs of the other process and vice versa.

A transition is either a message transmission (identified by a minus sign (-)) or a reception of
a message (identified by a plus sign (+)). Figure 2-2 illustrates a protocol with two processes P1
and P2. In the figure, initially, both processes are in their initial states, namely state 0.

—>
— T
1 Channel C12 +1 +4
4 L3 é_)_
D
+2| 43 Channel C21 -2
Process P1 Process P2

Figure 2-2 A Protocol Specification in CFSMs

The Extended Finite State Machines model [13] was introduced to simplify the representation
of the data flow. In this model, the number of states in an FSM can be reduced by the use of
variables. (e.g. a message sequence number can be represented by a single variable).

2.3.1 Relief Strategies for the State Space Explosion

Reachability analysis was first introduced by Sunshine in his Ph.D. thesis in 1975 [133] and
then developed further by Bochmann [13] and automated by West [125].

The idea behind this approach is to analyse all global states of the protocol which are reachable
from the initial state.The global states generated construct what is cediechability treewith
the initial global state as the root. The tree is guaranteed to be finite if all channels are bounded.

Reachability analysis has been proven to be one of the most effective methods for the
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verification of communication protocols based on transition-based models. Both syntactic
properties and semantics properties can be verified using reachability analysis. However, the
applicability of this method is severely restricted by the so-catkseé space explosigroblem.

That is, the reachability tree grows very rapidly with the complexity of the protocol, and in many
cases it can be unbounded. Therefore, it is often impractical to generate and analyse all reachable
global states.

Many researchers have proposed various strategies to overcome this problem. A survey of
some existing relief strategies can be found in [96]. In the following we give a brief description of
such strategies. It must be observed that none of these strategies resolves completely the problem.

Imposing Limitations and Restrictions

This relief strategy was proposed by West [148] and includes the following techniques:

» Limiting the capacity of the communicating channels.
* Limiting the classes of design errors under consideration.
» Restricting the use of many-valued parameters in the specification such as sequence numbers.

Decomposition/Patrtition the Protocols

The idea behind such techniques is to decompose/partition protocols into components, which
then can be validated separately [30][31][144]. This decreases the complexity of the protocol under
validation since the number of states in a protocol component is always smaller than the number
of states in the original protocol.

Projections

This strategy was proposed by Lam [92]. Instead of partitioning a protocols into components,
it constructs from the given protocol an image protocol for each of the functions that is intended to
be verified. The resulting protocol therefore is smaller than the original protocol, implying that the
complexity of the problem is reduced.

Transition Choice Rule

The aim of this technique is to control state exploration [12]. This is done by associating a
choice rule to each transition. Such a rule is a boolean condition whose value decides whether or
not the transition is to be executed during reachability analysis. For example, a rule may specify
that no transition can be executed more that once. For instance, appropriate choice rules can
eliminate infinite loops that may occur in the analysis.

Simulation



Chapter 2 Literature Review

The simulation technique is used to control state exploration by selecting only one transition to
fire out of a global state[3]. The transition selection can be done by random choice or by assigning
priorities to each of the transitions, where the transition with the highest priority is always the one
chosen.

Fair Progress State Exploration

Many strategies have been founded on the fair progress state exploration. This technique was
first proposed by Rubin and West [124], then extended by other researchers [59][157]. The idea is
to explore only those global state that are reachable when the two protocol entities proceed at the
same speed. The limitation of this technique is that it can only be applied on two-process protocols.

Maximal Progress State Exploration

This technique [62] is similar to the fair progress state exploration and is also limited to two-
process protocols. The analysis in this case is done in two phases, during each of which a different
process is forced to proceed at its maximal speed whenever possible. The advantage of this
technique with respect to the previous technique is that channel overflows can be detected.

Simultaneous Execution

This relief strategy is proposed by Itoh and Ichikawa [85]. It is limited to protocols defined by
FSMs where all cycles pass through the initial state. In each global state, all admissible transitions
of different processes are executed simultaneously to derive the next global state. Moreover, if
there are any potentially admissible transitions in the current state of a process P, then the technique
forces process P to wait in order that any of its admissible transitions may become executable later.
This technique explores a part of the global space. The interaction sequences explored in this
technique are calleg@duced implementation sequenaes are used to verify the protocol against
the given requirement specification.

Tree Protocol Validation

The tree (or acyclic form) protocol validation strategy [23][86] does not explore the global
states of a protocol, instead, it grows each process of the protocol into a tree or an acyclic form.
During the growing process, protocol design errors such as deadlocks, unspecified receptions, and
channel overflows can be detected.

Scatter Search

Holzmann designed a tool called Trace [73][72] that uses a search strategy called scatter search
to explore the global space. The search, which is basically a depth first search, is guided by

10
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heuristics and is restricted by the depth limit. Examples of the heuristics used are:

* Restrict non-determinism to what is due to local behaviours and remove non-determinism due
to concurrency.

» Assign priorities among concurrent events. For example, internal events may have higher
priority than observable events.

» Limit the capacity of the communication channels.

* Minimize the FSM models of the protocol processes before verification.

An improved tool, called Supertrace, that uses a better memory management, is described in
[75].

Random Walk

West observed from his experience in validating the OSI session layer protocol, that exhaustive
validation is redundant, in the sense that the majority of errors detected are found many times in
different global states. He concluded that an analysis of a subset of the reachable global state may
be sufficient to identify a significant fraction of errors. West then proposed the random walk
validation strategy [149] to partially explore the global space.

This strategy can thus be viewed as a modified form of reachability analysis, in which only one
transition from the current global state (chosen at random) is executed instead of systematically
executing all the transitions in turn. The state exploration is stretched out continuously along a
single path without backtracking. As a result, a random walk through a global space does not
require a database to prevent multiple traversals of the same state. That is to say that an already
explored global state may be explored again. The major disadvantage of such a technique is that it
can be used to find errors and not to demonstrate freedom from errors. A systematic reachability
analysis is therefore preferable when it is possible.

Generation of Finite Graphs

Vuong et al. [145] have demonstrated how the global states of all non-FIFO protocols and of a
certain class of FIFO protocols can be represented as finite graphs, even if these protocols may
produce an unbounded number of messages in the transmission media. This approach solves a class
of problems which the conventional reachability analysis fails to deal with, due to the infinity of
the reachable global states induced by unbounded accumulation of messages in the media.

PROVAT Strateqgy

The PROVAT strategy [96] uses a heuristic search technique ealtedirst searchsimilar
to thebest first searcldeveloped in the Al field. Heuristics can be applied at the three points in a

11
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search process, namely, the points to decide which global states to expand next, to decide which
transition to fire next, and to decide which global states to discard. Heuristics depend on the
syntactic design error that needs to be detected.

Symbolic Execution

Symbolic execution techniques [22] are another form of state exploration. The objective of
such techniques is to compress the reachability tree, when variables are involved, by constructing
a so callegroof tree A node in the proof tree represents a large number of nodes in the
reachability tree (i.e. a class of global states). The root of the tree represents the initial global state
and the leaves of the tree represent all possible final states.

Each state is analyzed to determine whether or not some syntactic properties hold. In addition,
the specifier can add his own assertions to express other desired properties such as liveness and
timing.

2.4 The Formal Description Technique LOTOS

We recall that LOTOS has two components: the data type component based on algebraic
Abstract Data Types (ADT) specification, as in ACT ONE [40][41], and the control component
based on Milner's CCS [103] and Hoare’'s CSP [71].

According to [97], the main characteristics of LOTOS are:

1- Formal definition Formally defined syntax, static semantics, and dynamic semantics. In
particular, the static semantics are defined by an attributed grammar [84], and the dynamic
semantics are described operationally in terms of inference rules [18].

2- Process algebraFollowing Milner’s ideas, the operational semantics are defined in such a way
that it is possible to prove a rich set of algebraic equivalence properties, based on several types
of equivalence relations. These properties can be used in order to prove equivalence or
correctness of specifications, as well as to transform the structure of a specification.

3- Interleave concurrencyevents are considered to be atomic, and thus the parallel execution of
two events andb is defined as a situation of choice, wharan occur beforb, or vice versa.
Therefore, any LOTOS behaviour expression can be rewritten as an expression consisting of a
choice between behaviour expressions, each prefixed by a single action (i.e. expansion theorem
[103]).

4- Multiway synchronizationThis concept is borrowed from Hoare’s CSP [71]. Interprocess

12
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communication occurs by means akadez-vousnechanism, called synchronization or
interaction. A synchronization will occur on a synchronization point, cgbéel only if all
processes that are committed to synchronize on that gate participate with a matching event.

5- Nondeterministic synchronizatio@ften more than one synchronization is possible. One only
will be executed according to a nhondeterministic choice.

6- Executability Because LOTOS semantics are defined operationally, it is possible to implement
these semantics in an interpreter. Although not every LOTOS specification if finitely
executable, those which are providiast prototypeof the entity specified.

7- Modularity and hidingThese concepts allow modular system descriptions with different levels
of abstraction suitable for stepwise decomposition of processes. By using parameterization,
these processes becomes reusable.

Different types of relations among LOTOS specifications are available and provide a
framework for determining semantic equivalences between different levels of refinement. Among
others, observational equivalence [103], testing equivalence [107], and the implementation relation
[25] are of most interest. The testing equivalence represents the black box approach. Two systems
are said to beesting equivalenf they present the same behaviour to the observer. The
implementation relation defines how implementations can be derived from a given specification.
Observational equivalence is a stronger relation than the other two.

We do not intend to provide a complete tutorial on the language LOTOS in this thesis. At least
two tutorials have been published in journals [18][97], and several other tutorials have enjoyed
some degree of distribution. A tutorial is also included in [84].

2.4.1 Data Type Component

Abstract Data Types (ADTSs) are used to specify the intended effect of concrete data types by
defining their properties as a set of data objects with their manipulating operations. Because of their
formal base, the ADT specifications can serve as abstract, correct, and unambiguous references for
the implementation.

LOTOS, as an abstract specification language, uses an ADT based on ACT ONE formalism to
define its data types [40].

An ADT in ACT ONE consists of signatureand a set oéquations The signature gives all
the syntactic knowledge of a type. It consists of:

13
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a- Sorts names of data carriers. A sort corresponds to the concept of
type in most programming languages (e.g. Pascal).
b- Operations functions where each has a domain and a range

Op: S1,% S~ &

whereop is the operator name,,s,,...,$, are the sorts of the operation's arguments, aisdise
sort of its result. An infix operation can be declared as

0P 5.®- &

The equations define the semantics of the operators. They have one of the following forms:
a- lj =r;. An unconditional equation.
b- ¢ =>| =r. A conditional equation, wherehas the fornh; =rq,...}, =rp,

In Figure 2-3 we provide a definition for typat_boolthat contains two sortsatandbool for
natural numbers and booleans respectively and the declaration of some operators and their
equations. The natural numbers are represented by using the successor specatod®, where
the natural numban is represented bsucé'(0), a short-hand for succ repeatetimes followed
by the argumer.

14
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type nat_boolis
sorts nat, bool
opns
true -> bool
false -> bool
0 . ->nat
succ nat -> nat
_or_ bool, bool -> bool
< . nat, nat -> bool
_==_ : nat, nat->bool
_>= nat, nat -> bool
mod nat, nat -> nat;
egns
forall C:bool, M,N:nat
ofsort bool
false or C =G,
true or C = true;
succ(M) < succ(N) =M<N;
0 < succ(M) = true;
M <0 = false;
succ(M) == succ(N) =M==N;
0 == = true;
0 == succ(M) = false;
M >= N = (N < M) or (M==N);
ofsort nat
(M>=N)=>Mmod N = (M - N) mod N;
(M <N)=>MmodN = M;
endtype;

Figure 2-3 An Abstract Data Type
ACT ONE has the following features:

1- Modularization of specifications: This allows the reference to already existing specifications in
a library.
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2- Combination of Specifications: Related operators and equations can be combined. This
concept is based on the fact that complex specifications can be split into smaller parts or vice
versa, while simple specifications may be combined (stepwise) to produce a large one.

3- Renaming of Specifications: Sorts and operations can be renamed without changing their
semantics.

4- Parameterization and Actualization of specifications: This is the concept of genericity. For
example, a general definition ofaueuecan be specified using the element’s sort as a
parameter. A specifiQueuedefinition (e.g. queue of integers, characters, etc.) can be obtained
by suitable actualization of the parameter.

Since ACT ONE allows nonconstructive specifications, the execution may end up into infinite
loops or deadlocks. Detecting and/or repairing such specifications may be impossible [44].

2.4.2 Control Component

A Specification in LOTOS can be seen as a process that possibly consists of interacting
subprocesses. Each subprocess may in turn consist of other subprocesses. Each process can be
imagined as a black box that is capable of synchronizing with other processes (its environment) via
common synchronization points callgdtes or it can perform internal, unobservable actions
denoted by. The environment of a process is the other processes, plus an unspecified process
which is always ready to interact at any gate. Figure 2-4 shows two LOTOS prdR essi3
synchronizing with each other and the environment atgate

Process P Process Q

Figure 2-4 Two Synchronizing processes

The basic element of a process behaviour isthienwhich represents synchronization
between processes. An action consists of a gate name (interaction point), a list of events, and an
optional predicate that restricts the event values to those satisfying the predicate. An event can be
either!E, denoting the offering of the vallg or ?x:s denoting that the action is ready to accept
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any value of sors. For example:
g ?x:int 11 [x > 2]

is an observable LOTOS action which occurs at gated expects from the environment a value
for x of sortint restricted to be greater than two, while at the same time offering the value one.

As mentioned above, there is another type of action in LOTOS, the internal unobservable
actioni. This action does not interact with the environment.

Interprocess communication in LOTOS occurs when two or more processes, havidgza
vouson a gate, agree on a value (or values) to be established. This is thencasdhiolg actions
Table 2.1 shows all possible types of interactions between two processes. When more than two
processes are involved, similar rules apphal(E)indicates the evaluation of the expresdion

Process A | Process B Synchronl_zatmn Interaction Effect
Condition sort
9'Eq 9'Ey eval(g) = value matching Synchronization
eval(B)
g'E g?x:t eval(EYJ value passing after
domain(t) Synchronization:
x = eval(E)
g?xy g?yb th=t value generation | after
Synchronization:
X =y =V where
v [0 domain({)

For example, if Proceds is prepared to accept a natural number 4,5,6,7,8, or 9 a, gete

Table 2.1: Types of Interactions

denoted by the following action:

g?X:Nat [(X >=4) and (X <= 9)]

and at the same time Proc&s ready to accept a natural number multiple of 3 at the same gate

g, as denoted by the action

g?X:Nat [(X mod 3) = 0]

then an interaction can occur at ggitd the environment cooperates by offering a natural number

17
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satisfying the above conditions, namely 6 or 9.

There exists a simplified version of the language LOTOS, called Basic LOTOS. It employs a
finite alphabet of observable actions identified by only the name of the gate where they are offered.
Synchronization of actions can be described without value communication. Basic LOTOS is
mainly used in the theoretical discussion of the language.

Table 2.4 lists the most fundamental constructs, also called behaviour expressions, for Basic
and Full LOTOS. All these constructs are part of LOTOS syntax except the relabelling which
appears only in the dynamic semantics of LOTOS..

Table 2.2: LOTOS Behaviour Expressions

Description Basic LOTOS Full LOTOS

Inaction:B cannot interact| B = stop B = stop
with the environment nor
execute internal actions

Observable Action Prefix:| B=g; B1 B=gd;..d,[P]; B1
B interacts with the envi- where

ronment on gatg then d; = 'tj or 2x;s
behaves likd31

Internal Action Prefix8 B=i Bl B=i; B1

executes internally actian
then behaves likB1

Successful Terminatiof8 | B = exit B = exit(E;,...5)
interacts with the environ- where

ment on gaté®, with possi- E; is aterm or
ble data offering, then E =anys
behaves likestop

Choice:B can either B=B1[] B2 B=B1[] B2
behave likeB1 or B2

Disable:B behaves likd81 | B=B1[> B2 B=B1[> B2

until successful termination
unless disabled b2

Enable:B behaves liké&81 | B=B1>> B2 B=B1>>

unless it terminate success- accepiXq:Sy,.., %;:Sp IN
fully then it behaves like B2

B2 Data can be accepted

from B1L
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Table 2.2: LOTOS Behaviour Expressions

Description Basic LOTOS Full LOTOS
Nested: B behaves like B1.B = (B1) B=(Bl
Used to resolve operator
priorities.
Hide: B behaves likB1by | B =hide g;,..0, in B1 B=hide g;,..9,in B1

replacing any gate in
{91,..9n} offered byB1 by
an internal action

Parallel-Selected Synchro-B =B1|[g;,...0,]| B2 B=B1][91,.-9nl| B2
nization: B behave lik&1
andB2 simultaneously (in
parallel) with synchroniza
tion on gates),.. Op.

Parallel-Pure Interleaving] B=B1|||B2 B=B1|||B2
B behaves lik&81 andB2
simultaneously (in parallel
with no synchronization.

Parallel-Full Synchroniza-| B=B1|| B2 B=B1||B2
tion: B behaves likd&1 and
B2 simultaneously (in par-
allel) with synchronization
on any observable action
that can be offered B1 or
B2

Relabelling:B behaves as | B =(B’)[g1/hy,..., /] (B)[g1/hq,..., el
B’ by relabelling every
actionh; thatB’ may per-
form byg;. This construct
is not in the syntax of
LOTOS. Itis constructed
dynamically during the
execution of inference
rules.
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Table 2.2: LOTOS Behaviour Expressions

Description Basic LOTOS Full LOTOS

Process Instantiation and | B = P[gy,..9p] B =P[91,--9nl(t1,--tn)
RecursionB behaves like
the behaviour definition of
process P by replacing
(relabelling) any offered
formal gate with its corre-
spondent actual gate. In
Full LOTOS actual param
eters can also be passed.

Generalized Choicd3 N/A B=choicexs[] B1
behaves likdB1(x =ty) [] ..
B1(x =t,) wheret; U s

GuardB behaves lik&1if | N/A B=[P]-> B1
P is evaluated to true other-
wise it will behave like
stop

Local Definition:B N/A B=let x{=ty,.. X,=t,in B
behaves like B by substi-
tuting all occurrences of
by t;.

In Appendix A, a simplified LOTOS version of the Alternating Bit Protocol specification is
given [9]. This protocol provides a reliable, uni-directional data transfer service between two users,
Userl the source and User2 the sink. It uses an unreliable full duplex one place channel to transfer
protocol data units (PDUs) and acknowledgements. To ensure that the messages sent by Userl are
received in the correct order by User2, the protocol associates a sequence number, alternating
between 0 and 1, with the delivered (PDUs) and acknowledgements. Figure 2-5 illustrates the
overall composition of the Sender and the Receiver entities, associated with Userl and User2
respectively, and the unreliable channel. The gates used by the protocol to communicate with the
channel are hidden from the environment, i.e. the users.
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Userl User2

Sender Receiver
sendé | I recv&

Channel

-y
recvlyl

4send2

Protocol

specification abp_service[Userl,Userzhoexit
behavior
hide sendl, recvl, send2, recv2, LOBT
abp[Userl, User2, sendl, recvl, send2, recv2, LOST i)
where
processabp[Userl,User2,sendl,recvl,send2,recv2,LOST](s_seqd&iXit.=

(sender [Userl, sendl, recvl, LOST] (s_seq)
If

receiver[User2, send2, recv2] (s_seq) )

[[sendl, recvl, send2, recv2, LOST]|
channel [sendl, recvl, send2, recv2, LOST]

where
processsender[Userl, sendl, recvl, LOST](s_seq:Bitexit := ...endproc
processreceiver[r_user, send, recv](r_seq:Biboexit := ...endproc
processchannel [sendl, recvl, send2, recv2, LOSIdexit := ...endproc
endproc
endspec

Figure 2-5 Alternating Bit Protocol Structure

2.4.3 Inference Rules
The operational semantics of LOTOS behaviour expressions defines the labelled transition

relationBl a— B', which means that the behaviour expres8aan perform the acticmthen
behaves aB'.
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The relation- is defined by means of axioms and inference rules [84], where axioms are
statements that are assumed to be valid, and inference rules derive new valid statements depending
on the validity of other statements. An inference rule has the form:

S, S-Sy
0obod

S
which means i§; andS; ... and §, are valid thersis valid.

In order to define the inference rules for full LOTOS behaviour expressions, let:

* tjisaterm (ADT value expression)
» eval(t) denote the value of the tetm
* G denotes the set of the behaviour’s formal gates;
* 09 UG
* idenotes an internal action;
* d;is either
IE;, denoting the offering of the valewal(E)
or
?%:sj, denoting that a value for the varialgef sort 5 is expected;
* 0 denotes the successful termination's action name;
* @, g denotes any action;
* name(a)denotes the gate identifier of actian
» card(a)denotes the number of events offered by aaion
- eveni(a) denotes the'l event of actiora.
» sort(E)denotes the sort of eveat
» pred(a)denotes the associated predicate of action
* a = apdenotesy; matches g, defined in Table 2.1.
* ayt aydenotes the resulting action obtained from matcajranday, also defined in Table 2.1.
o [ty/Xq,...15/Xq] B denotes the result of the replacement of all occurrencgs of, in B by
tq,...t, respectively.
* (B)[gi/g] denote tha is relabelled by; for every action that may be performedign the
gateg.
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Action ag

Action ay

a1 =Ea

at a

Effect

01'E1 Py

O'Eo Py

01= 9

grlevaly)

Synchronization

sort(E,)=sort(Ey)

evalE;)=evalEy)
eval(P;)=true

eval(Py)=true

g'E P 0?X:t P, 01= O g,'evalE) X=eval(E)

sortE) =t
eval(v/X]Pq)=true
eval(Py)=true

X=Y=v
v [0 domain(})

GPX4 P, | G?YLPy | 9= g %'V
1=t
eval(v/X]Pq)=true

eval(v/Y]Py)=true

Table 2.3: Matching Actions

Axioms and inference rules that define the labelled transition reBiioan— B’ for full
LOTOS behaviour expressions are given in Table 2.4

Description Axioms/Inference Rules

Inaction:B cannot interact with the
environment nor execute interna
actions

No rules forstop

Observable Action PrefixB inter-
acts with the environment on gate
g then behaves likB1

gd;...d [P]; B1O glvy..! vy - [t1/y1,--- in/Yml B1
if eval[ti/yq,...tm/Yml P) = true, where
{(tpY): - (tmYm)} = { (tX) | d; = s, t Odo-
main(s}
v; =evalt) if d, = !t,
v; = evall) if d; = ?x:s and Jdomain(s)

Internal Action PrefixB execute
internally action then behaves
like B1

I; B1Oi-B1

Successful Terminatior inter-
acts with the environment on gat
0 then behaves likstop

exit[] & - stop
exit(Ey,...,5)0 dvy..lv,, - stop, where
vi=eval(E; ), if Ej is a term
vidomain(s) if E; =any s

(4%

Table 2.4: LOTOS Axioms and Inference Rules
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Description

Axioms/Inference Rules

Choice:B can either behave like
BlorB2

Bl a_ BY’
000000000
B1[] B20 a- B’

B2 a_ B2’
000000000
B1[] B20 a- B2’

Guard:B behaves likd1 only if
eval(P) =tue

Bl a- B1’, eval(P)=true
goooooooodo
[P] ->B10a-B1’

Local definition:B behaves lik&1
by replacing all occurrences of
X1,---%n DY tq,... I, respectively

[t1/Xq, ..., t/X]B10 a - B’
Ooouubooouoooobooono
let X1:S1=tq, .. ¥;'Sy=tyin B1O a-B1’

Summation on value& behaves
like B1 for any valuet (Jdo-
main(s)

[t/X]B10 a— B1’, t Odomain(s)
godoouoouoon
choicex:s[] B1U a-BY’

Disable:B behaves liké&31 unless
disabled byB2

B1 a-B1’, name(a} o
OO00O000ooooboo
B1[> B2Ja-B1'[> B2

B10 &lvy.. v, - B1’
0Dooooooo0o
B1[> B20 5 B1’

B2 a_ B2’
ooooo0o0o0oO
B1[> B20 a_ B2’

EnableB behaves lik&81 unless it
terminate successfully then it
behaves likd32

B10 a- B1’, name(a} o
Oo00o00oDoO0oooobobooOoo
B1>> acceptx;:S;..X,:Spy in B2O a—
B1' >> acceptxq:S1..%,:Sy in B2

B10 dlv;...lv, - BT’
Ooooooooogoooooboooo
B1>> acceptxq:Sy..X,:Sp in B2 i -
[V1/X1,... VX B2

NestedB behaves lik®&81. Used to
resolve priorities.

B a— B’
0Ooooo0ooog
(B)J a—-B’

Table 2.4: LOTOS Axioms and Inference Rules
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Description Axioms/Inference Rules
Hide: B behaves liké31 by replac- B1O a-B1’, name(a){dy,.-9n}
ing any action with a gate in boooooooooooonoooon
{91,..0,} offered byB1 by an hide g;,...9n in B10 a- hide gy,...gn in B1

internal action.

B10 a-B1’, name(a){gs,..9n}
Oooooooooooooboouooo
hide g4,...0,, in B1 i - hide g3,..,g, in B’

Parallel-Selected Synchroniza- Bl a-B1’, name(a){gy,. ,gn, 6}
tion: B behave liké81 andB2 D00000000000000
simultaneously (in parallel) with B1 [[91..-9nll BZJ a-BY’ |[911--’9n]| 52

synchronization on gates, .. gn.

B2 a—-B2’, name(a){gy,. ,gn, 6}
godoodgouoouoot
B1 [[91,.-9nll BZ] &~ Bll[gl,--,gn]I BZ’

B10 a; ~B1’, B21 ay, B2,
name(g)= name(a) [{d;,..9n, O} andaj;=a,
guoouobodooooboobogod
B1 [91,--Gnll B2 @118~ BY [[Gy,.-gnl| B2

Parallel-Pure Interleavind® B1l|]|B2] a-B’

behaves likd31 andB2 simulta- ooooooood

neously (in parallel) with no syn- Bl|[|B2ZJa-PB’

chronization.

Parallel-Full Synchronizatior Bl|[g1, .0nl| B20 a- B’

behaves likd81 andB2 simulta- ooouoobooogno
Bl||B2d0a-B’

neously (in parallel) with synchro
nization on any observable action
that can be offered g1 or B2

wherg g1,..05} is the set of all possible gates o

BlandB2
Relabelling:B behaves aB’ by BO a—-B’, name(a){hy,...h}
relabelling every actioh; thatB’ pooubobooggoooooggn

may perform byg;. This construct| ~ (B)[92/Ny,..., g/hnl0 @ B'[gi/hy,..., g/l
is not in the syntax of LOTOS. Iti
constructed dynamically. BO gdy...dy—B’, g =h; O{hy,.. 1}
goooooooooobooooLooo
(B)ay/hy,... Gh/h 10 gidy...dh
B'[91/hy,..., &/l

"2

Table 2.4: LOTOS Axioms and Inference Rules
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Description Axioms/Inference Rules

Process Instantiation and Recur- ([t1/Xq,-- tmlxm] B)9:/hy,..., ¢/hy]U a—- B’
sionB behaves like the behaviouy 00000000000 0000000
definition of process P by replac- Plg1,-- Onl(ty,... t) 0 @— B’

ing (relabelling) any offered for-
mal gate with its correspondent
actual gate. In Full LOTOS actual
parameters can also be passed.

Table 2.4: LOTOS Axioms and Inference Rules
2.4.4 An Example

iff there exists a process definition:
PP[hy,..hpl(X1:S1.-Xn'Sm) := B

Here, we demonstrate how the inference rules can be applied to obtain the possible transitions
of a given behaviour expression.

Suppose the following process definition exists:

processP[a,b]noexit.=
a;b;P[a,b]
I
b;a;P[a,b]
endproc
and Let B=
P[97.95] |[95]] Pl9).93]
1-> Find alltransand B’ such that
Pl9;,90] [[95]] Plgp,03] -trans- B’
By applying the inference rules of selected synchronization we obtain:
Plg1.9o] -trans-> B}, P[g),93] -trans- B, , if name(trans)ll {g,, d}
000000000000 bOOo0obOo0o0obooooboooooooa
Plg1.95] |[92]| Plgy.93] -trans— B4 |[go]| Bo

Plgy.95] -trans-> By, if name(trans)J {g,, 0 }
O00o00o00o0oooooooooooon
P[97.90] [[92]| Plgy.93] -trans— B [[9,]| P[9,,93]
and
Plgy,g3] -trans-> B,, if name(trans)U {g2, 3}
O00o000o00oooooooooooon
P[97.90] [[92]] Pl).93] -trans- P[g;,9,] [[9,]] B

2-> To satisfy 1, we have to find all
Plo1,92] -transl Bl

and P[g2,03] -trans2 B2

We have: (a)
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(a;b;P[a,b] [] b;a;P[a,b]) [ga,g/b] -trans- B4
O0o0o0obo0obooobobooboooooo
Plg.95] -trans- B4
and (b)
(a;b;P[a,b] ] b;a;P[a,b]) [ga,q5/b] -trans- B,
00o00o0obo0booobDbooboooooo
Plgy.93] -trans- B,
3-> To satisfy 2(a) we have to find all
(a;b;P[a,b] [] b;a;P[a,b]) [ga,gy/b] -trans- B4
We have:
a;b;P[a,b] [] b;a;P[a,b] -g-> B
godoooooonoouououodogon
(aib;Pfa.b] [] b;a;P[a,b])ga,g/b] -g> (B1)[g 1/a.glb]
g'=gifg 0{g1.95}

g=0gifg=a
g'=0gyifg=b
4-> Find all
a;b;P[a,b]] b;a;P[a,b] -trans B4’
We have:
a;b;P[a,b] -trans B4’
00000DbO0o0ooOooboooooa
a;b;P[a,b]] b;a;P[a,b] -trans B4’
and

b;a;P[a,b] -trans By’
godoooooooooogogo
a;b;P[a,b]] b;a;P[a,b] -trans B4’
5-> By the axiom of prefix behaviour we can obtain directly the following transitions:
b;a;P[a,b] -b-> a;P[a,b]
a;b;P[a,b] -a- b;P[a,b]
4<- Back to step 4, we now can obtain the following transitions:
a;b;P[a,b]] b;a;P[a,b] -a- b;P[a,b]
a;b;P[a,b]] b;a;P[a,b] -b- a;P[a,b]
3<- Back to step 3, the following transitions can then be obtained:
(a;b;P[a,b]] b;a;P[a,b]) [g/a,g,/b] -g4 - (b;P[a,b])[g/a,gy/b]
(a;b;P[a,b] ] b;a;P[a,b]) [ga,g/b] -g, - (a;P[a,b])[g/a,g,/b]
2<- In step 2(a) above we have:
Plgy.95] -91 - (b;P[a,b])[g/a,gy/b]
Pl91.9,] -95~ (a;P[a,b])[g/a,g/b]
are valid transitions.
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Similarly for step 2(b) we can obtain:
Plg.93] -95~ (b;P[a,b])[g/a,g3/b]
P[g2,g3J -O3— (a;P[a,b])[gQ/a,%/b]
1<- Then from the initial behaviour expression we can obtain the following transitions:
P[91.95] |[92]] P[9).93] -9o -
(a;P[a,b])[g/a,gy/b]

l[92]|
(b;P[a,b])[gy/a,g/b]

Pl94,90] [[92]] Plgy,93] -91 -
(b;P[a,b])[g/a,g,/b]
(9,
P[gy,93]
and

P[9y.90] 1[92l Plg.03] -3~

P[g1,92]
|9l

(a;P[a,b])[g/a,g/b]

The behaviour tree of B= P[] |[9-]| P[9),93] is infinite. See Figure 2-6 .
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B = Plgy,9,] l[95]l Plg,.93l

Figure 2-6 An Infinite Behaviour Tree
2.4.5 Relief Strategies for the State Space Explosion

As mentioned earlier, the state space of a LOTOS specification is defined as a behaviour tree
that can be very large and often infinite, e.g. the tree in Figure 2-6 . The existing LOTOS
verification methodologies use different techniques to cope with LOTOS state space explosion.
Unfortunately, there is no survey on such techniques in the literature. The following is a brief
description of these techniques.

Step-by-Step Execution

In step-by-step execution [63][66][98][138], the user can explore the behaviour tree by
choosing, from the current behaviour, one of the possible next actions and provide values if
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required by the action. This operation can be repeated under user guidance. Doing so, the user can
determine whether or not the exercised branches (sequences of actions) conform to the intended
behaviour. Obviously, this technique is tedious if one wishes to execute the specification for more
than few dozen steps.

Weighted/Probabilistic Execution

The idea behind this technique is to assign weights to the operators in the given LOTOS
specification. The system then traverses the behaviour tree by automatically selecting an action at
each level. The selection depends on the weight, accumulated during the derivation, of each offered
action, for example, the weight can be interpreted as priority or probability. Ohmaki et al. have
adopted this technique in their LOTOS tool environment LIpS [108].

The drawback of this technique is the selection and the representation of these weights. In
LIpS, the weights are stated as special comments in the specification.

Fair Execution

In this technique, similar to the previous technique, the system traverses the behaviour tree by
automatically selecting an action at each level. The selection, on the other hand, is based on the
underlying fairness assumptions. Wu and Bochmann have shown in [154] how fair execution
model for Basic LOTOS can be constructed based on three fairness concepts defined for CSP [89],
namely process fairness, guard fairness, and channel fairness.

Random Walk Execution

The state exploration is done by randomly selecting an action at each level. This technique can
also be considered as a fair execution technique. This technique was used in [67] to obtain
execution paths for distributed algorithms specified in LOTOS.

Interleave Expansion

The interleave expansion technique, proposed by Quemada in [116], generates a representation
of the transition system of LOTOS where interleaved behaviours are represented in a compressed
form. This representation provides a size reduction with respect to the representation of the plain
state space. The reduction may be of many orders of magnitude for specifications which make
extensive use of interleaving.

The major drawback of this technique is that an extension of LOTOS is necessary in order for
the interleaved expansion to be possible, since the compressed form is represented in term of new
parallel composition constructs.
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Symbolic Execution

The idea behind symbolic execution techniques [1][115] is to produce a compact behaviour
tree for a given LOTOS specification by using symbolic behaviour states which represent a large
number of explicit behaviour states. In particular, parameters and variables are used instead of
actual values. Loops can be found by detecting if a current behaviour state was previously
encountered. Symbolic behaviour trees can be used as a base for verification techniques such as
model checking [60]. The problems with symbolic execution techniques is that in particular cases
the growth of the behaviour tree is still too quick, and the memory consumption is very high, since
all encountered behaviour states must be stored in order to detect loops.

ADT Narrowing Technigues

The purpose of ADT narrowing is to find solutions for a given condition (goal) or to determine
that there is no solution.This technique is useful to prune branches in the symbolic behaviour trees
associated with unsatisfiable predicates [39]. More discussion on this approach is given in the next
chapter.

Behaviour Transformation

Since LOTOS is based on rigorous mathematical foundations, behaviour expressions may be
transformed into other equivalent expressions using equivalence laws, based on the concept of
bisimulation equivalence [84]. Such laws can be used to simplify LOTOS expressions and
therefore reduce the state space, or to demonstrate that two behaviour expressions are equivalent.
Such proofs can be useful for finding loops during the construction of symbolic behaviour trees[1],
i.e. two behaviour expressions are equivalent if both can be transformed, using the same set of
laws, into an identical behaviour.

A number of equivalence laws are known. A short list follows:

* B1[IB=By[] By
« B[l (Bl Bg)=(B1[] By [l B3

* B]J] stop=B

« B1|By=By|B; where ’|' denotes any parallel operator using the
same instance throughout the law

* B1|(ByBg)=(B1|By)|B3 where ’|' denotes any parallel operator using the

same instance throughout the law
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» exit(...) |stop = stop where ’|' denote any parallel operator
» stop>>B =stop
* B[>stop=stop[>B=B

Other algebraic laws for weak bisimulation congruence and for testing congruence can be
found in [84].

Compilation/Translation Technigues

These techniques translate LOTOS specifications into well other known models, such as Petri
nets or Finite State Machines [57][100]. The existing verification tools for the latter can then be
applied.

Unfortunately, such techniques may not apply to LOTOS specifications with infinite behaviour
trees, due to the fact that all behaviour states need to be captured in order to have a complete
translation.

2.4.6 Existing Validation and Verification tools for LOTOS

Many tools exist for LOTOS that assist in specification, simulation, validation, verification,
implementation, and testing.

AUTO

AUTO [100] is a verification system for distributed programs. Its functionalities are the
following:

* LOTOS to Automaton Translatiofiranslates Basic LOTOS specifications (or other
specifications written in an algebraic process algebra such as CCS and SCCS) into an
automaton representing the behaviour of the specification.

* Behaviour TransformatialAn Automaton can be reduced and compared with another
automaton with respect strongandweakequivalence relations.

» Step-by-Step ExecutioAn Automaton can be explored manually.

» Graphical representatianThe results are displayed using a tool called AutoGraph.

To guarantee that the produced automaton is finite, AUTO applies certain constraints on the
generation of the automaton. For example, the rules avoid dynamic generation of processes inside
recursive definitions.

In [21], the authors describe a verification of a point-to-point sliding window protocol with
non-acknowledged messages using AUTO.
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CAESAR.ADT

CASAR.ADT [56] is a compiler that translates the ADT definitions of LOTOS into a C
program. The output of CESAR.ADT is a C library containing a C tgsp (function) for each
sort fesp operation) defined in a LOTOS program.

CASAR.ADT allows sorts and operations to be declared “external”’, which means that the
implementation in C of those sorts and operations is provided by the user, instead of being
generated automatically by the tool.

CASAR.ADT, however, does not accept all ADT constructs, for example parameterized types
are not considered. It also imposes restrictions on the subset of accepted ADT constructs. In
addition, special comments must be used in the ADT definitions to ideatitructorgprimitive
operations) and to provide correspondence between the names of LOTOS objects and the names
of C objects implementing them.

CAESAR

CASAR [55][57] is a tool that usesampilation techniquéo verify LOTOS specifications.
CAESAR translates the source specification, accompanied by a C implementation of the abstract
data types, either written manually or generated by CESAR.ADT, into an extended Petri net and
a graph. Existing validation and verification tools for Petri nets can then be applied. The graph, on
the other hand, describes all possible state transitions. The translation of a LOTOS program into a
graph is summarized by the following four steps:

» Theexpansion phaseanslates the LOTOS program into an equivalent SUBLOTOS program
in a bottom-up way. SUBLOTOS is a process algebra which can be viewed as a simplified
subset of LOTOS.

* Thegeneration phasganslates SUBLOTOS behaviour expressions into an intermediate form,
callednetwork The network is defined by:cntrol part represented as a Petri net, addia
part, consisting of global and typed variables. These variables are accessed and modified by
actions attached to the transitions.

* Theoptimization phasapplies transformations to the network to reduce the number of places
and transitions. The transformation is applied on the control part using Petri net structural
analysis methods, and on the data part using data-flow analysis.

» Thesimulation phas@erforms reachability analysis and generates a graph corresponding to
the given network. The edges of the graph are labelledtigns possibly accompanied by a
list of values sent or received during the rendez-vous communication. The states of the graph
are labelled by the values of the program (specification) variables.
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The drawbacks of CESAR is that it disallows recursive process calls in some cases, in order
to prevent the generation of infinite graphs. Also, SUBLOTOS dynamic semantics is free from
dynamic gate relabelling. This implies that CESAR accepts only LOTOS specifications where
static relabelling (i.e. substitution of formal gates by actual gates) does not change the dynamic
semantics of the specification.

CASAR was used for the verification of an atomic multicast protocol [5], a subset of the FIP
protocol [4], and an overtaking protocol for cars [42].

ALDEBARAN

ALDEBARAN [45][46] is a tool for performing comparison and reduction of graphs according
to various bisimulation equivalence relations and preorders, such as observational equivalence
[103] and safety equivalence [120].

Graph comparisomllows to compare two graphs with respect to one of various equivalences
and preorder relations. The result of the comparison (true or false) is obtained as output. In case of
failure, ALDEBARAN provides diagnostic sequences.

Graph reductionon the other hand, allows to generate the smallest graph which is equivalent
to the original graph with respect to a given equivalence relation.

The tool uses two approaches for determining whether two graphs are strongly bisimilar. The
first approach computes successive refinements on an initial partition of the states of the graph,
until stabilization is reached. The resulting partition coincides exactly with the equivalence classes
of strong bisimulation. Two graphs are strongly bisimilar if and only if their stabilized partitions
are identical. This approach can be applied to weaker bisimulation-based relations by modifying
each graph, taking into account abstraction criteria, and then computing the stabilized partitions
with respect to strong bisimulation. The major drawback of this approach is that the application of
abstraction criteria is done by adding new transitions to the graph. Therefore, the number of
transitions may become very large for the available memory space.

The second approach consists in comparing two graphs “on the fly”. It was used for the
verification of Milner’s scheduler, Datalink protocol, and rel/Rfglprotocol[47]. However, this
approach only performs comparisons and not reductions.

CLEOPATRE

CLEOPATRE verifies a graph, representing a LOTOS behaviour tree generated by C/ESAR,
against a set of formulas expressed in the branching-time temporal logic LTAC[114]. It includes a
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model checking module [120] and an explanation module [117], which provides diagnostics-based
sequences extracted from a graph, generated from the source specification, when a formula is not
valid. The subset of LTAC formulas used for the verification of LOTOS programs is described by
the following grammar:

T | init | enable(a) after(a)| sink|f T g|~f|ine\f]g | poff]lg

wheref andg are formulas and is a label attached to a transition of the graph. The following is
the definition of these formulas:

* any state satisfieE,

* the initial state of the program satisfies;

* a states satisfiesenable(a)if it is possible to execute action a from state

* a state satisfiesfter(a)if it can only be reached immediately after the execution of aafion

* a state satisfiesinkif it has no outgoing transitions;

» a state satisfiels [ gif it satisfiesf andg;

» a state satisfiesf if does not satisfy;

* astatessatisfiesne\f]g if, for every execution of the program frayi is true untilg becomes
true;

* astatessatisfiegpo{f]g if there exist an execution frassuch that is true untilg becomes true.

This tool produces extremely large models, although they are generated and stored efficiently
For example the alternating bit protocol results in several thousands of states, depending on the
number of messages one wants to consider.

CASAR, ALDEBARAN, and CLEOPATRE were combined in one toolbox [48]. Figure 2-7
illustrates the toolbox architecture: a protocol is checked against its expected service, expressed in
LTAC, using the CLEOPATRE tool after the translation of the LOTOS expressions into graphs
using CESAR tool. ALDEBARAN is applied on specifications in LOTOS (translated into
graphs). In [48], this technique is applied to verify iéRELgq, protocol [130] that supports
atomic communication between a transmitter and several receivers.
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PROTOCOL SERVICE
CASAR CAESAR
CAESAR.ADT CASAR.ADT

protocol graph @

Y
ALDEBARAN

Y
CLEOPATRE

I |

Figure 2-7 Architecture of CZESAR, ALDEBARAN, and CLEOPATRE toolbox

LOLA

LOLA (LOtos LAboratory) [115] is a transformation tool used in validation and in design by
stepwise refinement. It usesymbolic execution technigt@®generate a recursive behaviour tree
of a given LOTOS specification (i.e. it detects behaviour already encountered) by using the so-
calledparameterized expansiobOLA also provides the means to translate the symbolic tree into
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a monolithic style LOTOS specification.

A recent version of the tool also implementsititerleave expansiodiscussed in section
2.4.5.

The transformation of an alternating bit protocol specified in LOTOS is given in [115]. [110]
describes the testing functionalities of LOLA based on the definition of testing equivalence in
[107].

SMILE

SMILE (SyMbolic InteractiveLotosExecution) [140][39] is a full LOTOS symbolic
simulation tool. It includes an implementation of an Abstract Data Tiygeswer algorithm
based on &azy evaluatiorstrategy. Using the narrower, the state space (behaviour tree)
exploration can be done symbolically, which means that behaviours are studied without
instantiating the variables. The advantage of this symbolic technique with respect to previous
existing ones, such as SELA technique described below or LOLA above, is that branches in the
tree associated with unsatisfiable predicates can be detected and pruned. Details about the
implementation of the narrower are given in [153].

To avoid infinite execution, the implementation of SMILE restricts the number of values for
goal variables and the number of axioms applications. Also recently, they added an extra
functionality to their system, similar to ours, that uses inference rules directed by static information
[39]. A comparison of their technique to ours is given in Chapter 7.

SQUIGGLES

SQUIGGLES [19] is a tool that verifies strong, weak and testing equivalences between Basic
LOTOS specifications. [20] describes some applications and the performance of SQUIGGLES.

LIpS

LIpS (LOTOSIntempretationServer) [108], is a LOTOS interpretation server that treats
applications as clients. It provides an automatic simulation of a LOTOS specification with non-
determinism.

The simulation is done by implementing the standard LOTOS inference rules inclgdging
information. This information is specified by the user in the specification as special comments.
Depending on different interpretations of the weights, non-determinism is resolved and the
simulation proceeds.
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To deal withfairness the weights described in a process definition may change dynamically.
For example, if the number of selected events offered by a process, say A, is greater than the
number offered by another process, say B, the weights of events offered by A are decreased by
10%. Therefore, the probability to select events from B is increased.

During simulation, LIpS can also assign values to variables specified by the user using, again,
special comments.

Lite

Lite (Lotospheremtegratedrool Environment) [141], is an integrated tool environment that
contains the following functions:

» Syntax/Static Semantics analysis

» Simulation Lite has adopted SMILE as a simulation tool, see above. It allows step-by-step and
automatic symbolic exploration of the specification’s behaviour tree. The simulation includes
a narrowing technique to resolve conflicting predicates.

» Compilation this tool translates a subset of LOTOS processes and abstract data types into C
language. Certain design decisions that cannot be represented in LOTOS can be added in the
specification as special comments called annotations.

» Transformationit supports a number of correctness preserving transformations, such as:

- Regrouping of parallel processes: is a transformation that takes an expression consisting of

a number of processes composed with parallel operators and transforms these into an
expression, with strong bisimulation equivalent behaviour, in which the processes are
grouped differently.

- Bipartition of functionality: is a transformation that splits a single process into two
processes communicating in a prescribed configuration. The original and the resulting
processes are weak bisimulation equivalent.

» \Verification Lite is able to reduce Basic LOTOS expressions according to a number of
equivalences.

» Testing Lite contains a tool to derive canonical testers for Basic LOTOS specifications based
on the CO-OP method.

* Graphical Interfacebased on the X-window system.

ELUDO

The university of Ottawa has developed an analysis environment, called ELUDO
(EnvironmentLOTOS de IUniversitéD’ Ottawa) [61], for LOTOS specifications. ELUDO is
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made up of the following tools:

* Syntax and Static Semantics Analyzer [98], checks the LOTOS specification source for its
syntax and static semantics according to [84], and, if it is found to be correct, an equivalent
internal Prolog form is generated. The latter form is used by the following tools.

» ISLA [66], an interactive interpreter that simulates the behaviour of a LOTOS specification.
This allows the designer to monitor and trace some execution sequences. ISLA provides a wide
range of services [63], such as step-by-step execution, symbolic execution, defining constants
for repeated values, resuming execution at any check point, and saving the state of the
simulation for later execution. Figure 2-8 illustrates a step-by-step execution trace from the
Alternating Bit Protocol specification given in Appendix A. Each action is associated with its
sequential order in the action menu, and with a list of line numbers in the original specification
from which the action was formed. The hidden actions are shown for analysis reason. In this
example, three different user data messages are defined as constants, namely, $M1, $M2 and
$M3.

39



Chapter 2 Literature Review

NRRNPR R

NENRRRPRRPRRNRRRRR

1

abp_servive[Userl,User2]

(* First Message with sequence 0. Normal delivery *)

Userl ?$M1:Data [50]

i (hiding: sendl1 'makepdu($M1,0):Mess) [57,91]

i (hiding: recv2 !makepdu($M1,0):Mess [is_pdu(makepdu($M1,0))]) [75,92]
I (hiding: send2 !'makeack(0):Mess) [77,91]

User2 I$M1:Data [78]

i (hiding: recvl Imakeack(0):Mess [is_ack(makeack(0))]) [65,92]

(* Second Message with sequence 1. Two timeouts occurred due to the lost of PDU
(* and ACK.The proper ACK received after sending the same PDU three times.

Userl ?$M2:Data [50]

i (hiding: sendl1 !'makepdu($M2,1):Mess) [57,91]

i (specified explicitly) [94]

i (hiding: TIMEOUT !makepdu($M2,1):Mess) [67,94]

i (hiding: sendl1 !'makepdu($M2,1):Mess) [57,91]

i (hiding: recv2 Imakepdu($M2,1):Mess [is_pdu(makepdu($M2,1))]) [75,92]
i (hiding: send2 !makeack(1):Mess) [77,91]

User2 1$M2:Data [78]

I (specified explicitly) [94]

i (hiding: TIMEOUT !makeack(1):Mess) [67,94]

i (hiding: sendl1 'makepdu($M2,1):Mess) [57,91]

i (hiding: recv2 !makepdu($M2,1):Mess [is_pdu(makepdu($M2,1))]) [75,92]
i (hiding: send2 'makeack(1):Mess) [81,91]

I (hiding: recvl !Imakeack(1):Mess

(* Ready to deliver the Third Message *)

Userl ?$M3:Data [50]

Figure 2-8 Step-by-Step Execution sample

» SELA [1], a tool that generates symbolically the behaviour tree of a given LOTOS

specification and detects recursion (i.e. if a behaviour is already encountered). SELA also
provides the means to translate the symbolic tree into a monolithic style LOTOS specification.
» LMC[60], a model checker for LOTOS that is capable of verifying branching temporal logic
properties on the graph model generated by SELA. The properties are expressed in branching
temporal logic CTL [32]. The set of CTL formulas used by LMC for the verification of LOTOS

specifications is described by the following grammar:

wheref andg are formulas and is a label attached to a transition of the graph. The following

-f| £ OglAX®HIEX(®H [Alfv gl |E[fug]

is the definition of these formulas:
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- AX(f) means thatholds in every immediate successor of the current state.
- EX(f) means thattholds in some immediate successor of the current state.

- Alf v g] means that for every computation path, starting at the current state, there exists a
sequence of transitions satisfyig@t last, and for all the other transitions.

- E[f v g] means that for some computation path, starting at the current state, there exists a
sequence of transitions satisfyig@t last, and for all the other transitions.

ELUDO'’s tools enable a design methodology involving several phases, see Figure 2-9 :
Initial phase: The designer collects the informal requirements.

Specification phase: The requirements are specified in LOTOS and by means of temporal logic
properties.

Checking phase: Once the LOTOS specification is written, the syntax and static semantics
analysis is performed. The dynamic semantics are then checked by using the interpreter ISLA.

Expansion phase: This phase deals with the generation of the symbolic behaviour tree.

Verification phase: At this point the model checker LMC is used to determine if the set of
temporal logic properties, provided in the specification phase, is valid for the system specified
by exploring the tree generated in the previous phase.
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j

LOTOS Specification

=T

Syntax and Internal Form

Static Semantics ISLA
Analyser

Internal Form

Symbolic Treg
> | IMC <: SELA

Evaluation

Figure 2-9 ELUDO: A Validation Environment

The environment also provide X-Window graphical interface, called XELUDO.
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Chapter 3 Overview Of Goal-Ori-
ented Execution

3.1 Introduction

Verification of protocols and other distributed systems specified in LOTOS requires the
analysis of their behaviour trees. As we have discussed in chapter 2, the construction of such trees
is restricted by the state space explosion problem. We have also discussed the various techniques
used to overcome this problem.

In this chapter, we propose a formal search technique used to explore LOTOS behaviour trees,
calledGoal-Oriented Executiann this technique, LOTOS specifications can be verified by means
of derivingtraces i.e paths in the behaviour tree, satisfying certain properties. This is shown in
Figure 3-1, wher® represents the specification under verificati®ms the trace property to be
satisfied, and is a trace derived frofd and leading t®’, i.e. B=t(] B’, such thaP(t) holds.

B: LOTOS Behaviour
P: Property

T {(t,B) | B=tO B, P(t)}

Goal-Oriented Execution

Figure 3-1 A Black Box View of Goal-Oriented Execution
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To avoid the derivation of unwanted traces, and therefore to cope with the state explosion
problem, the inference system is guided by static information, caliéid derivation paths
(SDPs). An SDP locates where, in the abstract syntactic tree of the current behaviour, the given
trace property can possibly holss a result, this inference system, catiecded-inference system
executes only parts of the specification to generate the desired traces.

The derived traces are callegitiable tracedecause they may be associated with free variables
and predicates. To assign values to these variables satisfying all predicates, or to determine that
some predicates have no solution for any given values, the assistamegrof\ertool is needed.
Narrowing [118] is a technique for finding solutions to a goal in abstract data types.

Goal-oriented execution is, therefore, composed of:

1- A static analyzerdetermines the possible static derivation paths.
2- A guided-inference systemerives traces guided by SDPs.
3- Anarrower. a tool to find solutions to a goal expressed as an abstract data type expression.

The overall structure of the goal-oriented execution is illustrated in Figure 3-2.

Goal-Oriented Execution

Static Analyser Guided-Inference Narrower
System

Figure 3-2 A Structural View of Goal-Oriented Execution

The remaining of this chapter is organized as follows. In the next section, we provide general
definitions such as conventions and trace operations that will be used throughout the thesis. An
inference system that define trace derivation is presented in section 3.2. In the following section,
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section 3.4, the definition of the trace properties is given. The components of goal-oriented
execution, namely static analyser, guided-inference system and the narrower, are explained in
more details in section 3.5, 3.6 and 3.7 respectively. Finally, in section 3.8, we present the goal-
oriented execution algorithm.

3.2 General Definitions

3.2.1 Conventions

The following conventions are used in this paper:

» Als the collection of all possible observable LOTOS action denotations.

» B s the collection of all possible LOTOS behaviour expressions.

* Gisthe collection of all possible LOTOS gates including the gate name of an action performed
by anexit construci(d).

* B, B’, BB, stand for LOTOS behaviour expressions.

* g,0h h OG, stand for gates or basic actions (actions with no events and no predicate).

» Lower case letters, b, ¢ excepi, stand for observable or unobservable actions, unless
otherwise specified.

» i stands for an unobservable action.

* i/a stands for actioa whena is hidden from (unobservable by) the environment.

* a(B) is the set of gates of all observable actions that appear in behAviour

* name(a)enotes the gate name of acttomame(a)=i, if ais an unobservable action.

» card(a)denotes the number of events offered by aation

* evenf(a) denotes the event of actiora.

» sort(E)denotes the sort of eveat

» pred(a)denotes the associated predicate of acion

* rel(g, a)stands for relabelling the gate name of actitny g.

* (B)Igi/hy, ..., g/hy] stands for a relabeled behaviour expresBiowhere the gate of each
action with gate namie thatB can perform is relabelled gs

o [ty/Xq,...1n/Xn] B denotes the result of the replacement of all occurrences of vasigblgs in
B by termdt,... 1, respectively.

e« V=V,...V,, is alist of free variables.

e T=Ty,.,T, is alist of non-variable terms.

» eval(T) denotes the evaluation of the ADT expression T.

« t(V) andB(V) denote a trace and a behaviour with a list of free varidbtespectively.

* t; Aty denotes the condition of matching tetgmvith termt,, defined below.
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» t4/to denotes the result of matching tetpwith termt,

* a; = adenotesy; matches g, defined in Table 2.1 of the previous chapter.

* a1 aydenotes the resulting action obtained from matchjrenday, also defined in Table 2.1.

*  a; =aydenotesy, statically matches-a defined below.

* a1 ga denotes the resulting action obtained fratatically matchinga; anday, also defined
below.

3.2.2 Variable Actions and Matching

A variable action is an observable or an unobservable LOTOS action possibly prefixed by a
guard. The following are some examples:

« alo

e a?X:nat[X>3]

o [Y>4]alY?X:nat[X>Y and X < 7]
e i/(a?X:nat[X>3])

Here are some definitions related to matching variable actions:
« t1 Aty denotes the condition of matching tetwith termt,, defined as:
ty Aty = true if t, is a free variable artg/t,
ty Aty = true if t1 is a free variable arg/ty

ty Aty =ty >><<t, if t; andt, are not free variables. ‘>><<* is the narrowing operator
that returns true only if there exist values for all free variables in
andt, such thaevalt;)=evalt,). This operator is defined in more
detail in section 3.7.3.

* ay =g aydenotesy statically matchesa defined as follows:
a Sgqaif name(g) = name(g) #i and
card(a) = card(ay) and
sort(evenf(a;)) = sort(eveni(ay)) for 1<i<card(a;).

* a1 ga denotes the resulting action obtained from statically matchirgamda,, defined in
Table 3-1. For simplicity, the definition considers the case where aetj@rgia, have one
event. Grepresents a prefixed list of guardsrdépresents a postfixed list of predicates, and *
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stands foand

Table 3-1 Statically Matching Variable Actions

Action ag Action ay Con_dltlon ytgd Effect
a1 Sg

G101'E1 Py Go lE> P g1= 92 GagilE1 P3| G3=G "Gy

sort(E,)=sort(Ey) P3=(EEANE) PP,
G1oi'lEPy Gy @?Xt P g91= 92 Gz g1'E P3 G3=G "Gy

SOrt(E) = t P3=(XAE)"P"P,
GLo?Xy Py | Go@?Yib Py | 01= 0 Gz 91! X P3 G3=G "Gy

t]_:tz P3 = (X /\ Y) A Pl A P2

Note that a variable X in ?X:t or IX may or may not be free when static matching is applied, as
we shall see in the next chapter.

This example demonstrates the above definitions whedenote free variables; ¥enote
non-free variables and @ienote non-variable terms:

[Y>4]alYq ?X:nat 1Ty 1galTy ?Yoinat 1Ty [Yo < Tyl =
[Y{>4]alY X1 1T [(Y1>><<T,) and (true) and (1 >><< T ,) and (% < Ty)]

According to the third case in Table 3-1, the varia@leepresents the effect /Y, in the
result of the above example.

3.2.3 Variable Traces and Operations

A variable traceconsists of a finite sequence of variable actions. Unlike a normal trace, a
variable trace may contain, in addition to variables, unobservable actions. A variable trace is
denoted as follows:

e [ An empty trace.

o [aO A trace containing only one variable actan

o [3y, A trace containing two variable actioagfollowed byay.

o [a.tl A trace containing the variable actiarfiollowed by the tracé

For examplda?X:nat,i/c, [X>3]b?Y:bool!X[Y<X][is a variable trace.

The behaviour from which a tratés derived, is denoted B(t). The definitions of some
variable trace operators are given below. A subset of these trace operators for basic LOTOS can be
found in [52][71].
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o Alphabet: Denoted byu(t), is the set of all gates of the observable actiohsdefined as:
1. a(y=0
2. a([a.)=af(t) if name(a)=i
3. a(@E.t)={name(a) O a(t) if name(a}i

o Projection: The projection of a tradeon an alphabek [ a(B(t)) O {9, i}, denoted byA, is
the trace excluding all actions with gate nanmest includedn A. It is defined as follows:
1. A=
2. [AtTA =t[A if name(a)JA
3. [AtTA =[A.tA0 if name(a)JA

o Inverse Projection: The inverse projection of a traten an alphabei [ a(B(t)) O {9, i},
denoted by[A, is the trace excluding all actiongcludedin A. This operator is defined as
follows:

1. [MA= 0
2. [BAIA = [A.tAl if name(a)JA
3. B.UIA=tA if name(a)JA

o Concatenation: The concatenation of two tradgsandt,, denoted by;et,, is the trace
containing the action sequencetpfollowed by the action sequencetgf The concatenation
definition is:

1. (&t =t
2. EA4yHEt, =R (4et)0

o Containment: Denoted byg in t, is used to express the fact that the ttaxmtains an action
with gate nameg, and is defined as follows:
1. gin@.td if g=name(a)
2. gin@tFgint if g# name(a)

0 Hiding: Denoted byti[g1 . dn], where each observable acteom t with naméa)U {gy, ...,
On} is hidden by replacing it witiva. This operator is defined as follows:
1. gy, ..., g =00
2. @A[gy, ..., ¢ = Wa.tt[gy, ..., g]O if name(a)d {9y, ..., G}
3. @A[gyg, ... ] = BA&t[0g, ..., ¢JO if name(a)d {9y, ..., G}
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0 Relabeling: Denoted by[g4/hy, ..., g/hy] , where each observable actem t with
nameg@)=h; for (1<i<n), is replaced byel(g;, a). This operator is defined as follows:
1. 0gy/hy, ..., gy/hy] = 0O
2. [@Atfgq/hy, ..., g/hy] = el(g;,a).19:1/hy, ..., /T if name(aFh; O {hq, ..., i}
3. [@A.tgi/hy, ..., /hyl = EAqgq1/hy, ..., g/hpl O if name(a)d {hy, ..., i}

o Last: Denoted by, is the last action in a nonempty tracks is defined as follows:
1. @™ =a
2. A=t if t# [0

o Matching: Denoted by; match $. Is used to express the fact thadtatically matches, with
respect to the definitions given in Table 3-1. This operator is defined as:
1. MmatchlD

2. [@y.tyOmatch@y.tr[F t matchlay.ty0 if name(q) =i
3. [Ey.tyOmatch@y.tr[F [@4.t;0match if name(g) =i
4. [BAy.tyOmatch@y. b= a1=5 ap andt; match

0 Merging: Denoted byt; [ A}|ty, whereA O a(B(ty)) U a(B(ty)) {8} . This describes the set
of variable traces resulting from composing two LOTOS processeB,aaQ, by means of
the parallel composition operator, wheyandt, are variable traces generated by proceBses
andQ respectively. For example:

[Wa?X:nat, [X>3]b?Y:nat[Y<X], clY, d

{{b.c

(B?Z:nat[Z>1], e?X:nat[X<Z], c!XF

{a?X:nat, [X>3]b?Y:nat[Y<X, Y>1], e?X:nat.[X<Y], [Y=X]c!Y, [d}

Note that in the resulting trace, variaBles represented by variab¥e The formal definition
of this operator is as follows:

1. By.H0O{AHt, =0y . (L A tp) O if name(g) =i or name(g) LA

2. t1 {A} Bo.tblEDay . (4 [A} tp) O if name(g) =i or name(g) LA

3. By .HyO{A} Bu.tlF Oagtsay . (1 A tp) O if name(g) = name(g) UA and
a Ssa

4. 1 {AHt,=<> otherwise
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Note that non-determinism occurs when rule 1 and rule 2 can both be applied. For example,
[BLKc}B= {[a, bl b, &j.
o0 Selecting:Two selection operators are definp(t) andt(t). p(t) describes the ordered set of

all guards and predicates in tracandt(t) describes the tra¢excluding all guards, predicates
and sorts, also replacing all *?’ with ‘'. For example:

p([a?X:nat, [X>3]b?Y:nat[Y<X, Y>1], e?X:nat[X<Y], [Y=X]c!Y, d) =
{X1>3, Y<Xq, Y>1, Xo<Y, Y=Xo}

and

T(@?X:nat, [X>3]b?Y:nat[Y<X, Y>1], e?X:nat[X<Y], [Y=X]c!Y,d) =

[@!Xq, Y, e c!Y, dJ

Variable renaming conventions are used to guarantee uniqueness.

These operations can also be applied on non-variable trace, i.e. normal traces, by eplacing
by = and1t by 1. The defnitions of andt are given in chapter 2, Table 2.1.

3.3 Inference System for Relation-

Since we are mainly dealing with trace generation, two basic trace relations are of our concern:
relation —» and relatiori] . They are defined as follows:
Leta; O A O {i} for all 1<i < n, then relation- is defined as:
BO @y,....a50 B’ iff OBy, ...,By 0 B with B =B,, B'=B,,, and

Bill & - Bj;q forall < i< n-1.

Leta; O A for all 1< i< n, then relatiort] is defined as:
B =[ay,...,.a,0 B’ iff O natural numberk,...,k, with

BO K0, &, iX%,..., &, iK'OL B
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B =l B’ iff B =B’ or Onatural numben with

BO G- B.

Therefore, using the trace operations defined above, relatioan be defined as:

B=tdi}0 B’ iff BOt- B

The inference system for relati@h] a— B’ is given in chapter 2, Table 2.4. Here we provide
an inference system that defines the relaidan (ay,...,a,0~ B'.

o Internal Action Prefix

i; BO OO-B (1)
B;Ot- Bqg
Oo00ooooooooogoo 2
i; B]_D .t Bll
o Observable Action Prefix
gd;...d [P]; B O Wlvy...vy - [/, mfYml B (3)

[ri/y,e-SmfymlBO t— B’
guooobuogoooooon 4)
gd;...d[P]; B O M@'vy..!v,, . tC- B’

if eval([r1/y1,..../Yrr] P) = true, where
{(ruyd), o (hnym} =
{(rx) | Od; O{d; .. dy} with ¢ = ?x:s, rOdomain(s)}
v, =eval(n) if 4 = Ir,
v, = eval(r) if ¢ = ?x:s and rOdomain(s)

0 Successful Termination
exit(Eq,..,5,) O d!vy...lv [ stop (5)

vi=eval(g ), if § is a term

v;domain(s), if E= any s
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o Choice

By Oto Byg
0000000000000000 (6)
By [] B,Ot- Byy

B, 0t By
0000000000000000 ©
By[]B,0t— By

o Nested

Bt B’
OoO00o0O00o0oo0oO (8)
(B) 0t B

o Guard

B[O t - B, eval(P)=true
gbodoooooooogodot 9
[PI->BO t - B’

0 Local Definition

[r1/X1, .., /Xp]B Ot— B’
ODoooooooooooobooooooboooooo (10)
let X1:S$1=rq, .. %;'Sy=rpin BO t- B’

0 Summation on Values

[r/x]BO t - B’, r Odomain(s)
Oooooooooood (12)
choicex:s[|BOt- B’
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o Hiding

BOt- B
ODO00000D0O00DOO0O0DOO00ODOOoOooOOoOood (12)
hideGLin BO t1 {GL} - hideGLin B’

All actions in the trace generated by the hide operator with gate names in the list GL, are
hidden.

o Enabling

B, t—Bqq, name(t" &
Ooboooooooooobooooooobooboooooo (13)
By >> acceptxy:Sq..X:Spin BoO t -
B11>> acceptxy:Sq..X,:Sp in By

B]_D | . B]_]_, th= 6!V1...!Vn
ODOoO0oO00oooOooOo0oooo0oooooOooooooboooOooooDoood (14)
B1 >> acceptxq:Sy..%,:Sy in BoO t1{d} -
[V1/X1,... Va/Xn] B

B_'LD t1—> Bll’ [V]_/Xl,...,\/n/Xn] 82D t2—> 821, tll\ = 6!V1...!Vn
gododooodoooooooooooooo0oooboooooooooao (15)
Bl >> acceptxl:sl..xn:sn in Bz|] (tll{é})° t2—> 821

o Disabling

By Oty » By, name(}™) =0
godoooooooooooooooooooog (16)
Bl [> BZDtl_’ Bll

B, O t;— Bqq, name({") # 0
OOooO00oooooOoooooooooooooo (17)
Bl [> 82Dt1—> Bll[> BZ

B]_D t1—> Bll’ Bz|:| t2—> BZl’ name(i/\) Z0

goooooooooooooooooooooo (18)
Bl[>82|]tl‘t2—> BZ].
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0 Selected Synchronization

By Uty - Byg, 4{ S {0}) = I
Ood0oooooooouoooooooooooooooooon (29)

B1[[SIBx 0 t;— By11[S] By

By Ut~ By, bU{ S {0}) = (I
Ood0oooooooouoooooooooooooooooon (20)

B[S B2 U ty— By [ By1

B1 0ty — Byg, Bp O tp— Bpg, 4I{ S 0{3}) # Mit,L{ S L{0}) # Mland

t40{ S 0{0}) match bi{ S T{d})
0000000000000000000000000000000 (21)

B1[[SB2 0t {S]t2~ B11[[S] B2y

o Interleave Parallelism

By [[|B,0t- B
00000000000 0000000000000000C0 (22)
B [IB, Ot B'

The interleave operator is treated as the selected synchronization operator with an empty list of
synchronization gates.

o Full Synchronization

B [[a(By) O a(By)]| B, O t— B'
0000000000000000000000000000 (23)
B, [|B,0t— B

The full synchronization operator is treated as the selected synchronization operator with the
list of synchronization gates composed with the alphabet of behaEpariB,.
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0 Relabeling

BUOt- B
gobbobbouooooobbbbboooooooboboo (24)

B)[gy/hy, ... g/Nl O t{gg/Ny, ... dhl - (B)gr/hy, ... g/l

o0 Process Instantiation

Ep[hl’---'hn] (Xl:Sl..)(rn:Sm) =B, ([r]_/Xl,...,rm/Xm]B)[g]_/hl,..., g-/hn] Ut- B
doddododooooodoouoooooooooon (25)

plg1,....90] (F,..¥)O t— B
3.4 Trace Properties

The trace properties allowed by our method are defineddnrgeted actioror anordered set
of actions and arestricted gate seProperties on values can also be expressed by associating
constraints to the targeted actions. We have modeled these properties using felatods] *
defined below. In the following’ identifies an action that matches actipne.a’ = a:

1- (a,B)/G=t0 * B’, wherename(a)d a(B) andG O a(B) O {3}, defines the derivation of
behaviouB on a trace leading to a targeted actiahwithout passing through any other action
with gate name is. Note that, ihame(a)J]G, then tracé may contain any number of actions
with gate nam@ame(a)

2- ([@y,...,2,00B)/G=t0 * B’, name(a) 0 a(B) and whereG [ a(B) 0 {8}, defines the derivation
of behaviouB on a trace, such that contains a predetermined series of act{@ns...,a,'},
not necessarily contiguously, without passing by any other action with gate n@me in
a((@y,....a,0. This implies that tracecannot have any other appearances of actions with gate
names im([3y,...,a,0, and does not necessarily terminate with acjpn

For example, leB be the behaviour given in Figure 3-3, then

(d?U:nat, B)/{c,d} =00 * B’ holds with

t=1[el2, b!12!1, d!T] B'=(c!2 11 ; stop|[b]| 12 !1; stop)

t=[e!3, b!3!1, d!T] B'=(c!3!1 ; stop|[b]| f!3 !1; stop)

t=[e!3, b!3 12, d!Z] B' = (c!3 12 ; stop|[b]| '3 !2; stop)
and

55



Chapter 3 Overview of Goal-Oriented Execution

(2?U1:nat[U1<3], d?U:naf) B)/{c} =t0 * B’ holds with
t=[el2, b!121, d!T] B'=(c!2 11 ; stop|[b]| 12 !1; stop)
t=[@I2,b1211, dI1fl2110 B'=(c!2!1;stop |[b]| stop)

while

(d!3:nat, B)/{c,d} =0 * B’ does not hold because the only action that maitf3esatin
the specification without going through an action with gate ras@Z with Z=3. For this to hold,
actionb!Y?Z:nat[Z>=1] must matctb!W?X:nat[X<W]with X=2=3, W=Y and[3 < W]. This
forces a contradiction with the predicate in the (hidden) agitdhnat[Y<4] i.e. predicat¢3 <
W] and predicatfY<4] cannot be both true wh&d=Y. Therefore, there is no feasible trateat
satisfies the initial relation. And

(d?Y:nat, B)/{b} =01 * B’ does not hold because there exists no trémen B that lead to
an action that match@®Y:natwithout passing by an action with gate name

The following abbreviations for action denotations and restricted sets used by rélatiand
0 * are also be supported:

* " represents any action, any number of events, or a restriction gate set of all possible gates,
depending on the context.

e ‘- any action gate name or any event sort, also depending on the context.

» arestriction gate set of all possible gates can also be represefifed as

The following are some examples:

* ‘a* represents an action on gaevith zero or more events

o - ?X:- ?Y:-’ represents any action with exactly two events of any sort.

« - ?X:Nat ?Y:- * represents any action with at least two events where the first event must be
of sortNat

These abbreviations are only an implementation extension and therefore are not considered in
the theory.

Note that internal actions are not expressible by the user since they are not part of execution
traces. Internal actions involved in derived traces can be viewed before they are removed. See
section 3.8.
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(a; c?V:nat; b'VI0; d!(V+1);stop

e?W:nat; ([W>1] -> bIW?X:nat[X<W]; c!W!IX;stop) )

|(o]l
hide gin (g?Y:nat[Y<4]; b'Y?Z:nat[Z>=1]; d!Z; f'Y!Z; stop)

g?Y:nat[Y<4]

blY?Z:nat[Z>=1]

d!(V+1)

Figure 3-3 A behaviour and its Abstract Syntactic Tree
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The formal definition of relations ¥ andd * is as follows:

1- (a, B)/G=[by,....b,d0 * B, iff B=[by,....b,00 B’ such thahame(l) OG for k<i<n-1, andb,
= a. This implies that ihame(a)! G, then only actioiy, in tracell, ... b,[has gate name
name(a)

2- ([@y,...,3,0 B)/A=[Dy,...,b, [0 * B, iff B=[y,...,.0,,0 B’ such thatby,...,b,M&(Ry,....a,0
match(3y,...,a,0) andld Oo(by,...,by Mt (@Ey,...,a,0, d OG.

An alternative recursive definition of relatiah™ is:

(@4 0B)/G=t,0 * B'iff (a, B)/(GO a(@.t;0)=t;10 " By, (t1, B)/(G O name(a))yty,0 * B,
andty =tyq°tyo.

(0 B)/G=tO ™ B’ iff B =t B’ such thatld Da(t), d OG. Note thatt can bel

Since relatiori] * can be defined recursively using relatiofi, the main functionality of goal-
oriented execution is then to provide an efficient implementation for rel@tiorFollowing the
notation of Figure 3-1B=t] B’, wheret leads ta’ without passing through actions with gates in
G, is written(a,B)/G=t0 " B'. See Figure 3-4.

a: Targeted Action

B: LOTOS Behavioir
G: Restricted Se

T {(1B) | (a,B)/G=t0 *B’}

Goal-Oriented Execution

Figure 3-4 Goal-Oriented Execution with relationd *

One way of implementing relatidn * is to derive all possible traces using the inference system
defined in section 3.3, and to keep only those satisfying the given property. Computationally, this
is usually infeasible. Our aim in this thesis is to provide an efficient implementation for relation
o
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To accomplish our goal, two other relations are defined, namélgnd — *. These relations,
unlike relationg] * and 0 *, are applied on variable traces that may contain unobservable actions.
Their informal definition is given below whegé identifies an action that matches actsounsing
variable matching relatioa’ =g a:

1- (a,B)/GO t(V)- " B'(V), wherename(a)d a(B) andG O a(B) 0 {8}, defines the derivation
of behaviouB on a variable trac&V) leading to a targeted actiah ¢ a without passing
through any other action with gate nam&irNote that synchronization between actions is also
done using static matching,.

2- ([@y,...,2,0B)/GO t(V)- " B'(V), name(a O a(B) and whereG 0 a(B) O {3}, defines the
derivation of behaviouB on a variable tracg such that contains a predetermined series of
actions 4 t1say,...,8,7 1 5 &y}, Not necessarily contiguously, without passing by any other
action with gate name i@ O a([ay,...,a,0.

For example, let B be the behaviour given in Figure 3-3, then
(d?U:nat, B)/{c,d}d t—* B’ holds with
t=0 e?W/Y:nat,
i/g?W/Y:nat[W/Y < 4],
[WIY >1]bIW/Y 2X/Z/U:nat[X/Z/U <WIY, X/Z/U>=1],
d!X/z/ud
B' = (c!W/Y X/Z/U ;stop |[b]| fIW/Y IX/Z/U; stop)
and
([@!4, d?U:naf) B)/{c,f} O t— * B’ holds with
t=0 elW/Y/4,
i/g?W/IY/4A:nat[W/Y/4 < 4],
[W/Y/4>1]bIW/Y/4 2X/Z/U:nat[X/Z/U < W/IY/4, X/Z/U>=1],
d!X/z/ud
B' = (c!W/Y/4 1X/Z/U ;stop |[b]| fIW/Y/4 1X/Z/U; stop)

while
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(d?Y:nat, B)/{b}J t » * B’ does not hold because there exists no variablettfemra B that
leads to an action that statically matcbl@¥:natwithout passing by an action with gate name

In sections 3.5 and 3.6, we present the derivation methodology for the variable traces under
relations— " and- *. Section 3.8 demonstrates an implementation strategy that uses the narrowing
technique, described in section 3.7, to map relatiohignd - * into relations] * and 0 *
respectively.

3.5 Static Derivation Paths

A static derivation pati{SDP of an actiora in a given behaviouB is a sequence identifying
a path in the abstract syntactic tre®déading to an actioa’ wherea’ =ga. This path reflects the
directedtraversal of the operators composing the behaviour. As mentioned earlier, SDPs guide the
inference system towards executing a part of the specification where the desired sequence of
actions can be found. They provide a static analysis of the specification, which is necessary to
prevent the inference engine from attempting to derive the full behaviour tree of the specification,
often leading to the state space explosion problem. Consider for example the following very simple
behaviour expression:

B = (a; b; ¢;stop||| d; c; f; stop) [] g; h; stop

Obviously, if we are looking for an execution trace leading to abtitme left sub-expression
of the operatof] does not need to be explored. An SDP for such a goal would instruct the inference
engine to direct itself immediately to the right-hand-side of the opdtafbhus an SDP encodes
structural information of the specification, which yields information on the direction where
evaluation must proceed (left or right) for binary operators.

A static derivation path has the following form:

| An empty path.

o [€ A path containing only one elemeat

* [ee)] A path containing two elements, followed bye,.

* [ed A path containing the elemeafollowed by the patls.

An element of an SDP is a symbol identifying the type of the current behaviour construct in the
abstract syntactic tree. The symbols are names chosen after the LOTOS operators they represent
(e.g.choice guard, nested If the behaviour is involved in a binary operator, ||ld[G]|, || [], [>
or >>, then branches for the left and right behaviour of the operator are identified by the symbol
left andright respectively, preceded by the symbol ~. The following is the BNF for an element of
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an SDP identified by sdp_element

<sdp_element> .= <unary_element> | <binary_element>

<unary_element>  ::= <unary_operator>

<binary_element> ::= <binary_operator> " <direction>

<unary_operator> ::= prefix | exit | guard | let | chval | nested | hide | relabel | instance
<binary_operator> ::= choice | parallel | disable | enable

<direction> ;= left | right

The elements corresponding to thlabeland thanstanceoperators will contain other
information related to gate relabeling that is discussed in section 4.1.1 of the next chapter.

Consider the LOTOS specification and its abstract syntactic tree given in Figure 3-5 and Figure
3-6 respectively. A static derivation path for the actiatputin the behaviour
producer_consumer[input, outputjould be [nstance, relabel, hide, parallel*eft, nested,
parallel*right, instance, relabel, prefix, prdfit identifies the actiomutputto be the actioa in
the processonsumer|c,afollowing the above path. It is indicated by a thick line in Figure 3-6.
Process instantiations are done by ustagic relabeling Although relabeling must be done
dynamically from the operational semantics point of view, at this point, the only conedreres
in a behaviour expression a given action may be found, arftbnot is derived. More on static
and dynamic relabeling is said in the next chapter.
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specificationproducer_consumer[gl,92]: noexit.=
behaviour
hideg11,g22 in
(producer[gl,911] ||| consumer[g22,92])
[911,922]|
channel[gl1,g22]
where
processproducer[g,p] : noexit
g;p;producer(g,p]
endproc
processconsumer]c,a] : noexit
c; & consumer|c,a]
endproc
processchannel[r,s] : noexit
r;s;channel[r,s]
endproc
endspec

Figure 3-5 A LOTOS Specification
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producer_consumer[gl,92] producer[g,p] consumer[c,a] channellf,s

ol oNCcHNEe
hide 9 c r

o G (=)
[[911,922]

S
channel[gl1,g22] I

producer[g,p] consumer[c,a] channel[r,

= \2/

@ jsH

UJ
d

nested

producer[gl,g11] consumer[g22,g92]

Figure 3-6 An SDP in the Abstract Syntactic Tree of Figure 3-5
Static derivation paths are generated using the funkztioh x B x G - X where

» Als the collection of all possible observable LOTOS action denotations
* B s the collection of all possible LOTOS behaviour expressions

* G s the collection of all possible LOTOS gates including

» Xis the collection of all possible static derivation path structures

2(a,B,G, wherename(a)l a(B) andG O a(B) 1 {8}, derives the set of SDPs in behavi@ur
leading to all actiong;, sucha; =g a, without passing through any other action with gate name in
G. For example, considering the behaviour B given in Figure 3-3:

>(d?U:nat B, {c}) = { [ parallel*right, hide, nested, prefix, prefix, préfix

63



Chapter 3 Overview of Goal-Oriented Execution

which leads to actiod!Z. Note that the SDPpfrallel™left, nested, choice”left, prefix, prefix,
prefiy, which leads to actiod!(V+1), withd!(V+1) =d?U:nat is excluded since it passes through
actionc?V:natthat has gate name ig{{

3.6 Guided-Inference System

The next step in goal-oriented execution is to provide an efficiently computable definition for
the relation(a, B)/GO t(V) - B’(V). This was accomplished by meansgjofded-inference
systemwhere the variable trace generation is directed by the static derivation paths.

To do so, the relatioa, B)/GO t(V) - ¥ B'(V) is redefined as:
(a, sdp, B)/& t' (V)= * B'(V), wheresdp 2(a,B,0.

The SDPs are generated when needed by the inference system, see Figure 3-11. Consider the
following situations:

» If the targeted action was found statically on the right of an enable operator B1 >> B2, namely
in B2, then the inference system will be directed to the right, giving a trace from B2. To comply
with the semantics of LOTOS, another trace from B1 leadidgieds to prefix the original
trace. In this case another application-of is needed, and yet another SDP.

* A more complicated situation occurs in parallel constructs. Suppose the inference rule were
directed to generate a tragérom B4 in B4 |[S]| Bo. Again, to comply with LOTOS semantics,
another tracé, from B, is needed having the following property: “all actions;imvith gate
names irS must match actions iy and with identical order.” More formally [{{ S} U{ 8}
match p{{ S} {8} ). We also have to keep in mind the original characteristics of the resulting
trace.

There are other situations where the inference system needs a different applicatifon of
These situations are explained more in detail in the chapter 5, where the formal definition of
guided-inference systeimgiven. Note also that the SDPs may not be executable by the inference
system. For instance, althouBta, bexit || a;exit, {} ) = {[ parallel*right.prefi¥}, this cannot be
executed due to lack of synchronization.
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a: Target Action {(t(V),B' (V) | (a,B)/GO t(V) - "B’ (V)}
sdp: Static Derivation Ppth

B: LOTOS Behaviour

G: Restricted Set

Guided-Inference

System
A
a,B,G sdp’
Y
Static
Analyser
)

Figure 3-7 Guided-Inference System

The guided-inference system is consistent with the usual inference system, but differs from it
in the following respects:

1
2

defines the derivation of a behavid@inot only on single actions, but also on traces

does not describe all possible derivations of a behaBicugeneral, but only those satisfying
a given property
SDPs are generated demandy the inference system

3
4

derived traces may contain free variables and unobservable actions, i.e. variable traces.

3.7 Rewriting and Narrowing ADT expressions of LOTOS

3.7.1 Introduction

We have developed an algorithm for transforming abstract data type equations into a rewriting
rules evaluator and narrower engine with considerable performance efficiency.

A term rewriting rule system is a set of directed equations used as a non-deterministic pattern-
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directed program that returns as output a simplified term equal to a given input term [77]. For
suitably written LOTOS abstract data type equations, an equivalent term rewriting system can be
found by simply orienting the equations. Earlier LOTOS interpreters [44] used an inner-most left
to right rewriting rule strategy to execute the equations of LOTOS data types. In this section we
discuss a new rewriting technique that (1) provides greater performance efficiency and, more
importantly, (2) can be used to generate solutions to a goal.

3.7.2 Term Rewriting Systems

In this section we briefly review the basic notations and terminology for term rewriting
systems. Surveys of this topic can be found in [34][77].

LetF be a set of operators with fixed arit§a finite set of variables, #ermis defined as either
a variable fronV, which is considered to beuaiversal quantifigror f(ty,...,§), wheref OF has
arity k andt; aresubtermsWe definet(F,V) to be the set of all terms ovierandV, andv(t) to be
the set of variables in tertmA termt with v(t) = O is calledground

A substitutiono is a function fronV to t1(F,V). The domain o0&, denoted by (o), is {X| a(X)
# X}. The termto represents the term obtained by replacing the variabtés/dheir image under
0. A substitutioro is as generahs a substitutiop if there exists a substitutiansuch thatw = p.

A termt matchegor is annstanceof) a ternsif t = so for some substitutioa. A termt unifies
a termsif to = so for some substitutioq.

A term rewriting rule(TRR),l - r, is an oriented equation between termsern rewriting
system(TRS) is a finite set of TRRs. For a given TRS R, the rewrite relatigmeplaces any
subterm that is an instank® of the left-hand sideby the corresponding instanice of the right-
hand side of a TRRI - r in R. The relatiors - g t holds ifs rewrites tat in one step under R,
and the relatios - * rt holds ifs rewrites ta in zero or more steps under R. We also sayttkat
derivablefroms. The relatiors! gt holds ifsandt join; i.e if s - *gr wandt —* gw for some term
w. A termsisirreducible or innormal form if there is no ternh such thas -y t.

A term rewriting relation- g is terminatingor noetherianif there is no infinite chain of
rewrites:t; - gty - R..., and it isconfluentf whenever two terms,andt, are derivable from term
u, then a ternv is derivable from botk andt, i.e. ifu - *g sandu -* gt thens - *gvandt -*
rV for some ternv. If a TRS is both terminating and confluent it is said tcdrevergent
Unfortunately, it is undecidable whether an arbitrary TRS terminates [76]. However, a number of
methods have been proposed that prove termination in particular cases [87].
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A set of equations E can be transformed into a term rewriting system R using the following
technique suggested in [77][87]: for every equasiertin E, choose non-deterministically one of
the following:

1- If v(s) Ov(t), putt - sin R.
2- If v(t) Ov(s), puts - tin R.

As mentioned above, there is no guarantee that R is convergent.

For example, in Figure 3-8 we provide a definition for tiaguralPlusthat contains one sort
natfor natural numbers and the declaration of some operators and their equations. A term rewriting
system for such equations is given in Figure 3-8.
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(M<N) =>
M

endtype

(M >= N) =>
M mod N

library Boolean endlib
type NaturalPlus IS Boolean
sortsnat
opns
: -> nat
succ :nat ->nat
_++_ :Bool, Bool ->Bool
_<_ :nat,nat ->Bool
== :nat,nat ->Bool
_>=_ :nat,nat ->Bool
- :nat,nat ->nat
_mod_ :nat,nat ->nat
eqgns
forall c:Bool, M,N:nat
ofsort Bool
false ++ C =C;
true = true ++ C;
succ(M) < succ(N) =M<N;
true =0 < succ(N);
false =M<0;
succ(M) ==succ(N) =M==N;
0==0 = true;
false = 0 == succ(M);
succ(M) == = false;
M>=N = (N<M) ++ (M==N);
ofsort nat
M-0 =M,

succ(M) - succ(N) =M - N;
0 =0-M;

= (M-N) mod N;

=M mod N;

Figure 3-8 An Abstract Data Type
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false ++ C

true ++ C

succ(M) < succ(N)
0 < succ(M)
M <0
succ(M) == succ(N)
0 ==

0 == succ(M)
succ(M) ==

M >=N

M -0
succ(M) - succ(N)

0 -M

(M >=N)=>Mmod N
(M <N)=>Mmod N

- C;
- true;

- M <N;
- true;
- false;

- M==N;
— true;

- false;
- false;

- (N < M) ++ (M==N);

- M;
- M-N;

- 0;
- (M -N) mod N;

- M;

Figure 3-9 A Term Rewriting System

3.7.3 Narrowing: Equation Solving using Term Rewriting Systems

As mentioned earlier, goal-oriented execution resolves predicates in the derived variable traces
by finding proper values to all free variables. The narrowing techniques provide such a facility. In

general, a narrower attempts to:

1- find values for the variables in a gaaf tfor which equality holds. More formally, finding a

substitutiono such thaso —* uandtoc — * u for some ternu.
2- detect when equality is unsatisfiable.

Narrowing can be best implemented using a combinatitwyaf programmingandfunctional
programming34][35][36][153]. For example, in the case of the ADT of Figure 3-8, a goal of the

form:

X = (succ(succ(0)) >= succ(0))
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can be solved bsewriting the right-hand side of the goal producing a solution:
X =true.

while a goal of the form:

true = (X >= succ(0))

requiresequation solvingo produce values for X that satisfy the equation. Rewriting
corresponds to the functional programming capability, while equation solving corresponds to the
logic programming capability.

Narrowing Approach

Our current ADT interpreter, called SVELDA [44], evaluates (or rewrites) a given term using
the internal form representation of the abstract data type equations. These equations are oriented
as rewriting rules where renaming and parametrization are resolved. The new interpreter, which
we call ERNAL (AnEngine toRewrite andNarrow theADTs of LOTOS), transforms the internal
representation of the term rewriting rules into an evaluator/narrower engine. See Figure 3-10.
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LOTOS Abstract Data Types

Syntax and

Static/Semantics
Analyzer

(LOTOS Compiler)

¢

Internal Form Rewriting Rules

'

Transformation
Function

¢

ERNAL

Figure 3-10 ERNAL'’s Structure

ERNAL, the automatically generated engine, is a set of Prolog clauses. Since overloading is
allowed in ACT ONE, all arguments are represented in internal form where overloading is resolved
by assuring that all operators and sorts have unique internal names. The user interface of ERNAL
consists of an infix operator '>><<' of the form:

EXP1:S >><< RES

whereRESis the resulting evaluation of the ADT expressto(P of sortS.
The main characteristics of ERNAL are the following:

1- It can be used as a rewriting system. For example:
((sucd(0) mod suc¥(0)):nat >><< X) O X = sucé(0)

This expresses the fact that 7 modulo 5 is 2.
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It can be used as a narrower. For example:

((sucd(0) - X):nat >><< succ(0)) O X = suce(0)
deriving a value of X=5 that satisfies the query 7 minus X is equal 2.
In many cases, it produces the most general solution. For example:

((X >= suc(0)):bool >><< true) O X= sucé(Y)

i.e. "Y+2’ for any natural number Y which is greater than or equal to 2 .

It detectsshort-circuit That is to say that ERNAL does not evaluate some operands if they do
not need to be evaluated in order to obtain the result. For example, among the rewriting rules
of the++ operator in Figure 3-8, the second rule says that if the evaluation of the left operand
is true then the result isue, disregarding the right operand. ERNAL detects such situations
and reorders the rewriting rules accordingly

Operands are not evaluated more than once. For example, if the rewriting rules are selected
sequentially using the order specified, then the left operand of the operatoFigure 3-8 is
evaluated twice if it happens to be evaluatetie. ERNAL avoids this, see section 5.2.3.

ERNAL also provides evaluation traces, enabling the user to step through the execution.
To achieve the above characteristics, the transformation should provide:
Outer-most evaluation strategy. This allows the detection of short-circuit situations.

Reordering of equations. Equations must be reordered with respect to special criteria in order
to achieve a more efficient implementation. As an example, the equations containing short-
circuit situations should, whenever possible, be identified and evaluated first.

Equations-dependent implementation. For example to achieve point 5 above, evaluated
operands of an operator in one rewriting rule should not be re-evaluated in the successor
rewriting rules of the same operator.

No predefined order of evaluation.The translator determines which operand is to be evaluated
first.

Additional details on ERNAL are given in chapter 5.
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3.8 Goal-Oriented Execution Algorithm

What has been described so far, were the components of goal-oriented execution, namely the
static analyzer, the guided-inference system, and the narrower. The following algorithm uses these
components and the trace operators to define relation

Giving a behaviouB, a targeted actioa, and a restricted s&, find all traceg such thata,
B)/G =tOd * B’ holds. This is done by the following steps:

1. Obtain all static derivation paths satisfyii@, B, G).
2. Obtain all variable traces satisfying the relation
(a, sdp, B)/& t'(V) - * B"(V), wheresdpd 3(a, B, G).
3. For each tracg(V), extract the list of all guards and predicates.ine. p(t'(V)).
4. For each trace(V), clean the trace from guards, predicates and sorts(ti(&)).

5. For each tracg(t'(V)) obtained in step 4, clean the trace from unobservable actions. i.e.

()i}

6. For each tracg(t'(V)){i}obtained in step 5, find substitutioos for all free variable¥
using the narrower, such that all conditiong(ty( V)) are satisfied.

7. For each trace(t'(V))Ji}obtained in step 5, apply'(V))Ji}) o; andB”(V)o; to obtain
the desired trackeand its resulting behaviour expressigirespectively.

The overall mechanism is shown in Figure 3-11.
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a: Target Action {(t,B) | (a,B)/G=t0 *B’}
B: LOTOS Behaviour
G: Restricted Set t=(t(t (V))3i}) oj
B'=B"(V)o;
a, B, G !
Goal-Oriented
Execution
t'(V
sdp I et(V) o
a, sdp, B, G
t'(V), B"(V)
a', B, G
Static Guided-Inference Narrower
Analyser System
(2) :
(1) sdp 2) 3)

Figure 3-11 Goal-Oriented Execution

Note that, a derived variable tratebtained in step 2 is considered toupéeasibleif no
substitutions are found in step 6 satisfying all conditionxtiV)) . This can be avoided by
detecting unsatisfiable conditions during the derivation of the variable traces by using the narrower
in the inference system of relatien®. This method is also implemented in our tool and is left as

an option to the user.

Here we demonstrate the algorithm using an exampld3 betthe behaviour given in Figure

3-3, then

(d?U:nat, B)/{c,d} = * B’ can be satisfied by the following steps:

1. Obtain all static derivation paths, satisfyi(g?U:nat B, {c,d}). There is only one such

path which is:

{ [ parallel”*right, hide, nested, prefix, prefix, prgfix
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2. Obtain all variable traces satisfying the relation
(d?U:nat,[parallel*right, hide, nested, prefix, prefix, préfR)/{c,d}0t-* B’

The following are the only traces (with their resulting behaviour expressions) that can
satisfy the above relation:

t; = 0 e?W/Y:nat,
iI/g?W/Y:nat[W/Y < 4],
[WIY >1]b!W/Y ?X/Z/U:nat[X/Z/U <WIY, X/Z/U>=1],
d!X/z/ud
By' = (c!W/Y IX/Z/U ;stop |[b]| fIW/Y !X/Z/U; stop)
t, = O i/g?W/Y:nat[W/Y < 4],
e?W/Y:nat,
[W/Y >1]bIW/Y ?2X/Z/U:nat[X/Z/U <WIY, X/Z/U>=1],
d!X/z/ud
B,' = (c!W/Y IX/Z/U ;stop |[b]| fIW/Y !X/Z/U; stop)
3. Extract the list of all guards and predicatety iandty:
p(ty) =p(ty) = { WIY <4, WIY >1, X/Z/U <W/Y, XIZIU>31
4. Clean the traces from guards, predicates and sorts using the operator
T(ty) = BIW/Y,i/gIW/Y, bIW/YIX/Z/U, &K/Z/U0
1(ty) = WalWI/Y, e!W/Y, bIW/Y!IX/Z/UYH/Z/U0
5. Clean the traces from unobservable actions:
(t)Qi} = IWIY,i/g'WIY, bIWIY!IX/ZIU, K/ZIUT§i}= [@!W/Y, b!W/Y!X/Z/U, '&K/Z/U0
()i} = t(t)Qi} = @IW/Y, bIW/YIX/Z/U, IK/Z/U0

6. Using the narrower, find substitutions tdrW, X, YandZ, such that all conditions in the
set {W/Y <4, W/Y >1, X/Z/U <W/Y, X/Z/U>F4hre satisfied:
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((WIY < 4™ (WIY >1) A (XIZIU <WIY) A (XIZ/U>=1)pol >><< true
=>

01=UclLWe2Xel,Ye2,Zc1

0,=U c LWe3XclYec3,Zc1

03=U c 2We3Xe2Yece3,Zc2

7. Apply the substitutions, a,, andog to the traces obtained in step 5 and to their resulting
behaviour expressions:

Solution 1

(t(tpdiyh o1 = (((ty)diY) o1 = @12, b12 11, d!T]

B, 01= By'oy = (c!2 1 ; stop [[b]| f!2 !1; stop)

Solution 2

(T(tpdiy oo = (1(ty)di}) o, = [@!13, b!3 11, d!T]

B, 0,= By'0, = (c!3 1 ; stop [[b]| f!3 !1; stop)

Solution 3

(T(tpdiy o3 = (1(ty)di}) o3 = [@!3, b!3 12, d!Z]

By 03= By'o3 = (c!3 12 ; stop |[b]| f!3 12; stop)

giving all the traces satisfyin@?U:nat, B)/{c,d} =1 * B".
The following is an example where the relation does not hold:

(d!3:nat, B)/{c,d} =0 * B’ is resolved as follows:

1. Obtain all static derivation paths, satisfyi(gl!3:nat, B, {c,d})). There is only one such
path which is:

{ [ parallel”*right, hide, nested, prefix, prefix, prgfix
2. Obtain all variable traces satisfying the relation

(d!3:nat, [parallel*right, hide, nested, prefix, prefix, préfig)/{c,d} O t-* B’
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The following are the only traces (with their resulting behaviour expressions) that can
satisfy the above relation:

t, = 0O e?W/Y:nat,
i/g?W/Y:nat[W/Y < 4],
[WIY >1]bIWIY ?X/Z/3:nat[X/Z/3 <WIY, X/Z/3>=1],
dIX/z/aa
By = (c!W/Y IX/Z/3 ;stop |[b]| fIWIY 1X/Z/3; stop)
t, = O i/g?W/Y:nat[W/Y < 4],
e?W/Y:nat,
[W/Y >1]bIW/Y ?X/Z/3:nat[X/z/3 <WIY, X/Z/3>=1],
dIX/z/ao
B,' = (c!W/Y IX/Z/3 ;stop |[b]| fIWIY 1X/Z/3; stop)
3. Extract the list of all guards and predicatef iandts:
p(ty) =p(ty) = { WIY <4, WIY >1, X/ZI3 <WIY, XIZ/3>3F1
4. Clean the traces from guards, predicates and sorts using the operator
1(ty) = [IW/Y,i/gIWIY, bIWIYIX/Z/3,'XK/Z2/3]
1(ty) = WalWI/Y, e!W/Y, bIW/YIX/Z/31 /213
5. Clean the traces from unobservable actions:
T(t) i} = RIWIY,i/gIWIY, bIW/IYIX/Z/3,\X/Z/3Ti}= [@IW/Y, bIW/YIX/Z/3,1%/Z/30
()i} = 1(t)di} = IW/Y, bIW/YIX/Z/3,'/Z/30

6. Using the narrower, find substitutions # X, YandZ, such that all conditions in the set
{ WIY <4, WIY >1, X/ZI3 <WI/Y, X/Z/3>Fare all satisfied:

No substitutions can be found since predicatg/@ <W/Yj and predicaté///Y < 4 cannot be
both true. Therefore, there is no feasible ttabat satisfies the initial relation.

77



Chapter 4 Variable Traces Derivation

Chapter 4 Variable Traces Deriva-
tion

In the previous chapter, we have discussed the goal-oriented execution technique to derive
characterized traces from LOTOS specifications, expressed by rel@atioasd *. The
components used in this technique arestafic analyserexplores the given LOTOS specification
to determine where possibly, and not how, a desired trace can be founddéz)-inference
systemuses static information, generated by the static analyser, to derive variable traces defined
by relations— " and - *, and (3)ADT narrower used to resolve all guards and predicates in the
variable traces by assigning values to all free variables.

In this chapter, the formal definitions of the static analyser and the guided-inference system are
presented. Their limitations and the heuristics used to overcome these limitations are also
discussed.

4.1 Static Derivation Paths

As described in the previous chapter, static derivation paths are generated by the Iunction
AxBxG - X. 5(a,B,0 derives the set of all possible static derivation paths from behdiour
leading to each actiom that statically matches actiani.e. bya; =g a, and not passing through
any prefixed action with gate nameGn This implies that if the gate name of the target action is
in G, then the SDPs cannot go through any prefixed action with target action’s gate name other than
the terminating actions. The formal definition of the funciorA x B x G - Xis provided in
the following section.
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4.1.1 Formal Definition ofZ

Successful Termination oz

The following describes the successful ending of the traversal of the static behaviour, namely
when a target action is found:

2(aq, a;B, G) ={[prefix]}, if ag=gap
>(a, exit(Ey,..,5,), G) ={[exit]}, if a=gdd,..d,, where
d, = !E; if Ejis aterm or
di =?2x:sif E =anys
Unsuccessful Termination o>
Unsuccessful termination may result from:
1- reaching a stop;
2- the action encountered does not statically match the target action and its gate b&ongs to
3- encountering an exit construct that does not statically match the target action;
4- encountering a relabeled behaviour whose actual gate list does not contain the gate name of the
target action;
5- encountering an instantiation of a process whose actual gate list does not contain the gate name

of the target action; or
6- encountering a list of hidden gates including the gate name of the target action.

More formally:

>(a, stop, G)=01

2(aq, a;B, G) =01 if not(ay =5 ay) and
name(g) UG
2(a, exit(Ey,..,5y), G) =0 if not(a =g &d,..dy,), where

d, = 'E; if Ejis aterm or
d =?:5if Ej=anys

2(a, (B)[gy/hy, ..., ¢¥hyl, G) =00 if name(a)d {9y, -...0n}
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>(a, plo.--Gnl, G) =0 if name(a)d {gy, -...gn}
>(a, hide GLin B, G)=0 if name(a 0 GL
Recursion

In all other situations, the behaviour has to be analyzed further. This is done by carrying the
evaluation o to the sub-behaviour(s), according to the specific rules for each type of construct,
as described below. Informally, the recursive generation of the set of SDPs from the current
behaviour has one of the 2 forms:

1- unary operatorsZ(a, op B, G)s a composition of the elementsX{f, B, G) prefixing each
element with the symbol representimgwith the exception ahstanceandrelabeloperators
where a new target action gate name and a new restricted gate set are carrig(ho &, &)
= [, thenX(a, op B, G) =[1.

2- binary operatorsZ(a, By op By, G) is a composition of the elementsX{h, B;, G) andZ(a,

B,, G), prefixing each element with the symbol representimfpllowed by “direction with

direction beindeft for elements fronx(a, B;, G) andright for elements fronz(a, B,, G).

o Prefix
>(a,i;B, G)= {[prefix.4 | sOZ(a, B, G}
2(ay, B, G) = {[prefix.q | s0Z(ay, B, G}

if name(g) U G

Note that even i&; =g a in the second rule, recursion is carried out to find another path as long
as the gate name of the encountered aetjos not restricted, i.exame(g) LG.

o Choice
2(a, Bi[IBy, G)= {[choiceMleft.p| s [Z(a, By, G)} U
{[ choice”right.$| s U%(a, By, G)}
o Guard
>(a,[P]-> B, G)= {[guard.§ | sOZ(a, B, G}
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0 Local Definition
2(a, let xg:s1=tq, .. ¥;:'Sy=tin B, G)=

{[let. |s0(a B, G}

0 Summation on Values
>(a, choicex:s[] B, G)=

{[chval.§ | s0O(a, B, G}

0 Nested
>(a, (B), G) = {[nested 5| sO3(a, B, G}
0 Hiding
>(a,hide GLin B, G)=  {[hide.§ |sO=(a, B, G}
if name(a)J GL
o Enabling
S(a, B>>B,, G) = {[enableNeft}|s 0%(a, By, G)} O
{[enable®right}| s 0%(a, By, G)}
if name(ay &
S(a, B>>B,, G)= {[enable®right}| s O3 (a, By, G)}
if name(a)= &

In this case, ib action exists in some trace, it will be found at the end of the executi®n of
All other & actions inB; are transformed into internal actions by the enable operator.

81



Chapter 4 Variable Traces Derivation

o Disabling
2(a, Bi[>By, G) = {[disableMeft.5| s 0Z(a, By, G)} O

{[ disable”right.$| s 0Z(a, By, G)}

0 Selected Synchronization
2(a, By |[GL]| By, G) = {[parallei™left.§ | s0Z(a, By, G)} O
{[ parallel*right.q | sOZ(a, By, G)},
if name(a)J({GL} O {&})
>(a, By [[GL]| By, G) = {[parallel™left.g | sUZ(a, By, G)}
if name(a)J({GL} O {d})

The second rule states the fact that if the target azig®a synchronization action, denoted by
name(a)J({GL} O {d}), then only one side is explored. As we shall see in section 4.2, the other
side will be explored while generating the desired trace.

0 Interleave Parallelism
>(a, B |||By, G) = {[parallei™left.§ | s0Z(a, By, G)} O
{[ parallel*right.q | sOZ(a, By, G)},
if name(a) o
>(a, B |||By, G) = {[parallel™left.§ | sUZ(a, By, G)}

if name(a) o

An alternative definition oE(a, By |||By, G)is:

2(a, B [[IB2, G) = 2(a, B [l B2, G)

o Full Synchronization

2(a, B ||By, G) = {[parallel™left.g | sUZ(a, By, G)}
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In this case, only one side is explored since the target aothust be a synchronization action.

o Relabeling
2(9 &y...ch[P], (B)[g1/hy. ... Hhl, G) =
{[relabel(h, G).9 | sUZ(h d;...d,[P], B, G')}
it g0 {9y,....gn}
where
h O TargetSet =K |gx = g} and G’ = {hy | gx U G}
5(8 dy...ch[P], (B)g/hy, ... Hhel, G) =
{[relabel®, G).9 | sUZ(d d;...d,[P], B, G')}
whereG’ = {h, | gx U G}
In these rules, the gate namef the actual target action (whem @) and the actual restricted
gate seG are replaced by the corresponding formal gates of beh&®jm@melyh andG’

respectivelyh andG’ may need to be referenced by the guided-inference system, defined in
section 4.2. For that reason, they are saved in the static derivation paths vataldbkelement.

The following is an example that demonstrates the above rule:
>(a?X:Nat,p[hy.hp.hg.hglla/h 1. bihy, alhs, cly], {a,b}) =
{[relabel(hy, {hy,hp.hg}).s] | s O((hy?X:Nat p[hy.hp.hehgl, {hyhphgh) } O

{[ relabel(ty, {hy,hp.had) | | s O(E(hs?X:Nat plhyhphahgl, {hyhoha) }

I.e. the static derivation paths of acte?X:Natwith restricted setd,bjare those oh;?X:Natand
h3?X:Natwith restricted setl;,h,,hs}, sinceh; andhg are to be relabeled lay andh; is to be
relabeled byb.
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0 Process Instantiation
2(g o4...d[P], P9 1,--9n)(t1,---tm), G) ={[instance(h, G.9 | sU%(h d;...d[P], B, G})}
if g0 {0y,...,.0n and [P[h4,.. hl(X1:S1.-Xn:Sm) := B,
where
h O TargetSet =K |gx = g} and G’ = {hy | gx U G}
28 dy...d,, P[O1,--Onl(t1,--- 1), G) ={[instanced, G').9 | sUZ(dd,...d|[P], B, G}
if CP[hq,..0hn](Xq:Sq, .oy dniSm):exit(Sy,....S) = Band
sort(d) =§ for 1<i<n,
whereG’ = {h, | gx [l G}
Similar to the relabeling rules, the gate nanferhen g# d) of the actual target action and the
actual restricted gate d8tare replaced by the corresponding formal gates. The target gate name

and restriction set replacements are also saved in the static derivation paths wstatioe
element.

4.1.2 Observations

Lemma 4-1: The number of possible distinct process instantiations encountered during the
derivation of static derivation paths is finite.

Proof: Two process instantiations are said to be distinct if (1) they have different process
names, or (2) they have same process name but different actual gates. Since the
number of processes in any LOTOS specification is finite then the number of process
instantiations with different process names is also finite. The number of possible
distinct instantiations for processes having the same process name is also finite, since
the number of gates of any LOTOS behaviBuria(B)[, is finite.

Lemma 4-2: If the number of occurrences of identical process instantiations encountered during
the derivation of static derivation paths is finite, tbhéa, B, G)is a finite set.

Proof: If the number of possible distinct process instantiations encountered during the
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derivation of static derivation paths is finite (lemma 4-1), and the number of possible
occurrences of each of the distinct process instantiations is also finite, then the
number of all process instantiation occurrences in deriving the static derivation paths
is finite. This implies that the search space for deriving thE(seB, G)is finite.

0

Lemma 4-3: If £(a, B, G)= 0 then there exists no tra@, ..., gJsuch thata, B)/G 4y, ...,
a, * B, holds.

Proof: >(a, B, G)=0 only if one the following is true:

1-no actiora’ is found that statically matches actnsing static relabeling. In this
case, there will be no action that can be derived from B that matchesatrah
therefore(B, a)/G =3y, ..., 0 * B, does not hold;

2-an actiora’ is found that matches actiarusing static relabeling, but there is an
intermediate actiob on the same static derivation path that has a g&elmthis
case, actiolv must also appear as an intermediate action in thegce, g,[Jand
therefore contradict the definition (d, B)/G =y, ..., a0 © B,.

Lemma 4-4: 3(a,B, G} O does not imply thafa, B)/G =2y, ..., 310 © B, holds.

Proof: This can be proven by a counterexample. For exarkfde(a; stop || b; stop), {})
= {[nested, parallelMeft, prefix but (a, (b;stop || a; stop))/{} =t 0 * B, does not
hold for anyt, because of lack of synchronization.

4.1.3 Limitations

The limitations of static derivation paths definition are:

1. The derivation of an SDP may not terminate. For example, consider the definfibn of
given in Figure 4-4 | the derivation of the first SDE(b?X:Nat, p1[a,b](0), {b}will cycle
indefinitely searching for an action that statically matdif®s:Natas follows:

[instance, choice”left, nested, choice”right, instance, choice”left, nested, choice”right,
instance, choice”left, nested, choice”right, ...],

2. The sek(a, B, G)can be infinite. Again, considering the specification in Figure 4-4 , we
have:
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2(a, p1[a,b](0), {a, b})=
{[instance, choice”left, nested, choice”left, prefix],

[instance, choice/Meft, nested, choice*right, instance, choice”left, nested, choice”left,
prefix],

[instance, choice/Meft, nested, choice*right, instance, choice”left, nested, choice”right,
instance, choice”left,nested, choice”left, prefix],

Y

that can be represented as

{[instance, (choice”left, nested, choice”right, instafioehoice”left, nested, choice”left,
prefix]},

forn=0

specificationtesting[a,b]: noexit
library NaturalNumber, Boolean endlib

behavior

p1[a,b](0)
|[a,b]|
b?X1:Nat;
b?X2:Nat;
a?X3:Nat;
stop
where
processpl[a,b](X:Nat):noexit :=
(alX[X ge Succ(Succ(0))]; stop

I
pl[a,b](Succ(X)) )

E!X; pl[a,b](Succ(X))

endproc
endspec
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Figure 4-4 Recursive Process Definition

Both problems can be solved by adding appropriate heuristics to the implementation. The first
problem occurs when a process instantiation is re-encountered before the target action is found.
The second problem occurs when a process instantiation is re-encountered in an alternative, after
the target action has been found. Therefore, these limitations are due to recursive process
definitions. To avoid such problems, the search space for deriving the static derivation paths can
be made finite by limiting the number of identical process instantiations occurrences, see lemma
4-2. We recall that identical process instantiations are those having the same process name and
actual gates, i.e. actual value parameters are not considered. Now returning to the previous
example, if the number of identical process instantiations is constrained to be at most 3, then:

1. the derivation of the first SDR Z(b, p1[a,b](0), {b})will terminate with the following

path:
[instance, choice/Meft, nested, choice*right, instance, choice”eft, nested, choice”right,
instance, choice’left, nested, choice”left, prefix], and

2. 2(a, pl[a,b](0), {a, b})=

{[instance, choice”left, nested, choice”left, prefix],

[instance, choice/Meft, nested, choice*right, instance, choice”left, nested, choice”left,
prefix],

[instance, choice/Meft, nested, choice*right, instance, choice”left, nested, choice”right,

instance, choice’left, nested, choice”left, prefix]}

To reflect the above heuristic, the definition>g¢é, B, G)will carry a listPl_LISTof process
instantiations (not including actual value parameters) with their number of occurrences. Therefore,
>(a, B, G)is defined a&(a, B, G, PI_LIST)wherePl_LISTis initially empty.

The following is the definition ok(a, B, G, PI_LISTwhenB is a process instantiation.

2(9 o4...d[P], P9 1,--9n)(t1,---tm), G, PI_LIST)H{[ instance.5| sU%(h d...d,[P], B, G’,
PI1_LIST2}

<same conditions as in the definitionx{f, B, G)whenB is a process
instantiation> and

PI_LIST2 = PI_LISTJ (p[91,--9n].1), if (P[91,.-9n],N) OPI_LIST,i.e. first
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occurrence op[gy,..9n]
PI_LIST2 = PI_LISF(p[91,--9n,N) O (P[91,..9n,N+1),
if (p[91,--9nl,N) OPI_LIST,i.e. N+1 occurrences p{g,,...0,], and

N < PI_Limit

P1_LISTis not affected in the definition &f(a, B, G, PI_LISTwhenB is not a process
instantiation.

4.2 Guided-Inference System

As described in section 3.5 of the previous chapter, the algorithm to implement the (alation
B)/G =t0 * B’ is defined by first generating variable traces satisfying the relation:

(a, sdp, B)/G t(V) - * B'(V), wheresdpO Z(a, B, G).

Relation— * is defined using guided-inference system where the derivation is guided by static
derivation paths.

To demonstrate some key points in our definition of guided-inference system, the references to
behaviourB; used in our examples refer to the behaviour tree in Figure 4-6 . For exBBiple,
identifies the behaviowa;b;stop [] b;c; stop.

specificationtesting[a,b,c,d,e]: noexit.=
behaviour
(a;b; stop
I
b;c; stop
[>
a;b; stop
[l
d;c; stop)
[a.c]|
b;c;  stop
I
a;e;c; stop
endspec
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Figure 4-5 A LOTOS Specification

testing[a,b,c,d,e]

|[a.c]|
. (>3
nested

T (e b

69 69
l C e

B4 B7 B11 B14
a b a d B2o Bos
C

Bs Bg Bi2 Bis
b c b c B2a

< Be > < Bo > Bi13 Bie

Figure 4-6 Abstract Syntactic Tree of Figure 4-5
4.2.1 Formal Definition

The formal definition ofa, sdp, B)/G1 t(V) - * B’(V), wheresdp Z(a, B, G), is given below.

Target action is reached
A target action is reached when the current behaviour expressioexs @nanaction prefix
and the static derivation path has only one element identifying the behaviour. In this case, the

accumulated action will be the result of statically matching the current derived actiod the
actual target actioa,, preciselya; t s & defined in Table 3-1 of the previous chapter.
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0 Successful Termination
(a, [exit], exit(Ey,..,E,))/G O [& 1 ¢ 8d;..d, - * stop (1)

d, = 'E; if Ejis aterm or
di =?x:sif E=anys
The actioma 1+ &d,..d,, is accumulated.

Example

The relation(d !0, [exit], exit(any Nat)){} Ot-* B’ will be satisfied witht = [ !00andB’ =
stop.

0 Action Prefix
(aq, [prefix], a;B)/G O @yt ga- " B (2)
When the end of the SDP is reached, the prefixed action is matched with the target action

producing the desired action. If the matching causes varialdggarbe substituted by terms
in a4, then this substitution is carried to the resulting behaBour

Example

Let B =c?Y:Nat ?Z:Nat[Y<Succ(0)]; d ! Ystop,

then(c!0 ?X:Nat[X>0], [prefix], B){} Ot-* B’ will be satisfied with
t = [¢!0 ?Z:Nat[0<Succ(0) * [Z>0][ZandB’ =d ! 0; stop.

Target action is not reached

This is the case where the static derivation path has more than one element.
0 Action Prefix (Target action is not reached)

s#[], (a,s B)Y/GOt-"*B’
goooooooooooooo 3
(a, [prefix.d, a’;B)/G O @'.t0L ¥ B’

These rules adds the internal and external prefixed actions to the derived trace.
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Example

The relation(c, [prefix, prefix, i; ¢; stop)/{} Ot-* B’ will be satisfied with = [, cJandB’
= stop.

o Choice

(a s, B)/GOt-"B
gdododoooooooooo 4)
(a, [choiceMefts], By [] Bo)/GOt- "B

@&s, B)/GOt-" B
gdododoooooooooo (5)
(a, [choice’rights], B [] Bo)/GOt— "B

The trace generated for the choice operator is either the trBg¢dinfthe case ofhoice”lefy
or B, (in the case ofhoice”righj.

o Nested

(a, s, B)YGOt-* B
godooooooooo (6)
(a, [nestedy], (B)/GOt-" B

Nesting has no effect on the derived trace.
o Guard

(a, s, B)/GO q.t0- " B’
OoOo0O000oooOoOoOoooooOoo (7)
(a, [guards], ([P]->B))/G O .t * B’
whereb, = [P]b, if b; has no associated guard,
by, = [P*Py]bq4, if by has the form:R4]bq4

The guardP in [P]-> B is associated with the first action of every trace generatedBrom
Example

Let B = [X>Succ(0)-> (c!X; stop[] [ Y<Succ(0Q) -> d!X!Y; a?Z:Bool;stop),
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then @?Z:Bool [guard, nested, choice”right, guard, prefix,pref®I{} Ot-* B’, will be
satisfied with

t = X>Succ(0)) ™ (Y<Succ(0))]d!X!Y, a?Z:BddndB’ = stop.
0 Local Definition

(as, [/X1, .., WxaIB)YG Ot-" B
gubuobooooouobobouoooooooood (8
(a, [let.s], let xg:81=t1, .. %;Sy=tpin B)/GOt- " B’

The trace generated from the behavietik;:s;=t1, .. X;:Sy=tin Bis the same trace generated
from B after replacing all occurrences gf .. x,in B by t; .. t,respectively.

Example
Let B =let X:Nat=Succ(0)n c?Y:Bool; a!X; d!X,stop,
then @?Z:Nat,[let, prefix, prefix],B)/{} O t - * B’, will be satisfied with

t =[¢?Y:Bool, alSucc(@andB’ = d!Succ(0);stop.
0 Summation on Values

(a, s, B)/GO y.t0- " B’
ODooOoopooogoooon 9)
(a, [chvals], choicex:s[] B)/G O ,.tC- ¥ B’
whereb, = [x=x]ay, if b; has no associated guard,
b, = [(x=x)"P4]ay 4, if by has the form:R4]b;,

For behaviouchoicex:s[] B, The guardk=x is associated with the first action of every trace
generated frorB. The narrower will generate values fowhen applied on the predicatex.

Example
Let B = choiceX:Nat[] (c!X; stop[] [ Y<Succ(0) -> dIX!Y; alX?Z:Bool;stop),

then @?Z1:Nat?Z2:Nat[chval, nested, choice”right, guard, pref)/{}=t-* B’, will be
satisfied with

t = [(X=X) " (Y<Succ(0))]d!X!YandB’ = a!X?Z:Bool stop.
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o Hiding

(a,s,B)/GOt-* B
O0000o0o0oboobobooobuooooooo (20)
(a, [hides], hide GLin B)/GO t1{GL} —* hide GLin B’
All actions in the trace generated by the hide operator with gate names in the list GL, are
hidden.

Example
Let B = hide a,bin c;a;d;stop,
then €, [hide, prefix, prefix] B)/{} O t-* B’, will be satisfied with

t =[¢, all{a,b} = [¢, i/aldandB’ = hide a,bin d;stop.
o Enabling

(a,s,B)/GOt;~" By
oo ooouooga (11)
(a, [enablerlefts], By >> acceptxq:Sy,.., %:Spin By)/G Oty -
B;1 >> acceptxy:Sy,.., %;:Spin By

Or DZ(6 ?Xl:sl ?Xn:Sn, Bl)’
(8 ?X1:S1 ... 2Xy'Sp, 1, BY)/G Ot - By

(@,s, [Vi/X1, .., WXqIB2)/G O ty— " Byq
doodoboooboobdoboooboooooodooooooon (12)

(a, [enable”rights], By >> acceptxq:Sy,.., %1:S4iN Bp)/G O t11 {8} « to— " By
wheret)* =3 dy,..,d,
v =Eif d=Eorv, =xif dj = X:s
The first rule (11) states that if the goal action iBjrthen the resulting trace will be a trage
generated fronB; guided by the remainder SBPand the resulting behaviour will Bg >>
acceptxy:sy,.., %,:Sy in B, whereBq 4 is the behaviouB; after tracd.

The second rule (12) states that if the goal actionBs then the resulting trace will be the
concatenation of two traces:

1. Tracet;!{d}: wheret, is a trace fronB; leading to an action on gakavith events
matching the variable definition list in tlxeceptclause, i.ed ?X:S; ... ?X,:Sp, and not
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including any action with the gate namedn
2. Tracety: is a trace fronB, guided by the remainder SBPwhere all variables defined in
theacceptclause are substituted B by the terms offered by acti@nabove.

The resulting behaviow,4 in the second rule will simply be behaviddy after trace,.
Example
Let behaviouB = a?Z:Nat; exit(Succ(2))>>acceptX:Natin c!X;exit(Succ(X))

then the set of static derivation pak{s?Y:Nat, B} = {[enable”right, prefix]}. Therefore
the relation(c?Y:Nat, B} Ot-" B’ is defined ag(c?Y:Nat,[enable”right, prefix] B)4}
0 t-* B’ which will match rule (12) where the following relations must hold:

1. (0?Xq:Nat, a?Z:Nat;exit(Succ(2))/{} Ot;-" By

2. (c?Y:Nat [prefix], cIX:exit(Succ(X)) }} Oty—" Byq

The first relation §?%;:Nat, a?Z:Nat; exit(Succ(2))/{} O t; " Byq will be defined as
(5?Xq:Nat, [prefix, exit],a?Z:Nat,exit(Succ(Z))/{} Ot; -+ Byg,where [prefix, exit]]
2(0?X;:Nat, a?Z:Nat; exit(Succ(Z)))}, and will be satisfied witht; = [d?Z:Nat,d!'Succ(Z)]
andB; = stop.

Substituting the variable X byucc(Z)in By, the second relation will become:

2'. (c?Y:Nat [prefix], c!Succ(Z)exit(Succ(Succ(Z)) fy = to - " Byq

and will be satisfied with, = [¢!Succ(Z)andB, = exit(Succ(Succ(Z)))lherefore the original
relation(c?Y:Nat[enable”right, prefix]B){} O t-" B’ will be satisfied with

t=t11 {0} * t, = [@?Z:Nat,d!Succ(Z)l {8} » [¢!Succ(Z)F= [&a?Z:Nat,i/d!'Succ(Z), c!Succ(Z)
and

B’ = B, = exit(Succ(Succ(2)))
o Disabling

(a, s, B)/G Oty - Byq, name(a) =5
guodubobboooouoobbouooooon (13)
(a, [disable”lefts], By [>By)/G O t;— " By
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(a, s, B)/G Oty - " By, name(ay &
00000000000000000000000 (14)
(a, [disable”efts], By [> By)/G O t;» " By1[> B>

(a S, Bz)/G O t2—>+ 821,

(0 B/(GO{8)) Oty—*Byq
noooooooooododoooodboooo (15)

(a, [disable?rights], By [>Bo)/G Oty » to— * Byg

Rule (13) and (14) handle the case where the goal actio{s in this case, the resulting
behaviour expression will be constructed depending if the gate name of the target aation is
not.

Rule (15) states that if the search is guided to the right beh@#ptiven the resulting trace

will be the concatenation of two traces:

1. Tracety: is any trace derived froB, with length= 0 and not including actions with gate
names inGL{ &},

2. Tracety: is a trace fronB, guided by the remainder SBP

The resulting behaviour in the third rule will Bg after tracd,, namelyB5;.

Example

Considering behavious, in Figure 4-6 wheréc, By)/{b, ¢ = {[disable”right, choice”right,
prefix, prefix]} then the relationg By)/{b, ¢ 0 t—* B’, is defined asq| [disable’right,
choice”right, prefix, prefix]B,)/{b, ¢ 0t * B’. This matches rule (15) where the following
relations must be satisfied:

1. (c, [choice’right, prefix, prefix]B;g)/{b} 0 t, - By

2. (BAb,c 80t —*By

The first relation will be satisfied witty = [d, dJandB,, = stop; the second relation then
becomeg(T) Bg)/{b, c, 8} 0 t; - * B,1, and will be satisfied with two results:

1. t, =B, =Bz =a; b; stop[] b; c; stop,

2. t1 =[a0)B =Bg = Db; stop.

Therefore the original relatios,(disable”right, choiceright, prefix, prefix,)/{b, g0t *
B’ will be satisfied witht =t; « t, wheret; 0 {{I[a0, t, =[d, dJandB’ = By, = stop.
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0 Selected Synchronization

name(a)d ({ St 0{d})
(a,s B)/GOt;-" By,

(tL{ S O{3Y, B)(GO{S}0{8}) O tr ™ Bpy,
oooooodoooooodooooooodoogooon (16)

(a, [parallelMefts], By [[S]] Bo)/G O ty{ S}t~ " By1 [S] By

name(a) ({ St 0{d})
(a S, B]_)/G O t1—>+ Bll’

(LS O{3Y, B)/(GU{SO{8}) O tp -
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD (17)

(a, [paralleltlefts], By [ B)/G O (tyHname(a) { S} tp) « B"T- " By [[S] Boy

name(a)l ({ S O{d})
(a, S, Bz)/G O t2—>+ le,

(S O{3}), BYI(GO{S{3}) Oty ™ Byy,
oooooodboooooodoooboooodoogooon (18)

(a, [parallel*rights], By [[S]| B2)/G U ty{ Stz " B11 [[S] B2y

name(a)d ({ St 0{d})
(a S Bz)/G 0 t2—>+ 821,

(LS O{3Y), BY(GO{SO{8}) Oty -~
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD (19)

(a, [parallel*rights], By [[S]] B2)/G O (t1{ S}| to[{{ name(a) ) "0 * By1 [[S]] By

Inference rules (16) and (17) state the fact that the desired actidByi§i.@. parallel*left),

where the remainder of the SDP, nanghyill guide the inference rules to generate a ttace
such thata, s, By)/G O t; -~ * By1. Depending whether the gate name of the target action is a
member of the synchronization list gate or not, the resulting traitiebe t;|{ S}| t, or

(ty,dname(a) S|ty » [ respectively. This fact guarantees that the target az{jort;")

will be at the end of the resulting trace. For either case, the resulting trace will be valid only if

we can generate a traigdrom B, such that,[{{ S} U{ d}) match §[{{ S} [{ &}) andt, does not
contain any elements in the restricted@eThis can be done efficiently using the relation:

LS O{3Y, B)/GOt-" By,

where({ S} J{ d}) is added to the restricted set to prevent the generation of unwanted
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synchronization actions.
Inference rules (18) and (19) are similar to rules (16) and (17) where the inference rules are
guided to the right, nameBy,.

Example

Consider behaviolB in Figure 4-6 . We have

2(c, Bg)/{b, g = {[parallel™left, nested, disable”right, choice”right, prefix, prefix]}

Then the relationg Bg)/{b, ¢ 0t * B’ is defined as:
(c, [parallel*left, nested, disable”right, choice”right, prefix, preBgl{b, ¢ )0 t- " B
This matches rule (16) where the following relations must hold:

1. (c, [nested, disable~right, choice”right, prefix, prefi])/{b, ¢ Ot - By
2. (1Ha, 6 o}, Bp)l({b,d0{a 63)Ot,-" By

The first relation will be satisfied with two results from the previous example:
1. ty =[d,c)Byq =stop,
2. t1=1[a,d, d]B,, =stop.
The second relation then becomes
([d,dda, ¢ &}, By7)/{a, b, ¢ 8} 0 ty— ™ By, OF
(@, d, dfa, ¢ &, By){a, b, ¢ d Oty- "B
The first relation will not hold sinc&(c, B17)/{a, b, ¢ 8} =0, and the second rule will succeed
with t, = [&, e, ¢]B;, = stop. And as a conclusion, the original relation

(c, [parallel*left, nested, disable”right, choice”right, prefix, preBgl{b, ¢ ) O t- "B’

will hold with:
t=t{a, ¢|t, = [@&, d, d{a, ¢|[&, e, ¢]B = By4|[a, d|B,» = stop|[a, d|stop. Therefore:

tO{@&, d, e €lla e, d,dg.
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0 Interleave Parallelism

(a,s, B|]By)/GOt-"B
0000000000000000000000000000 (20)
(a,s,B|IBy)/GOt-"B

The interleave operator is treated as the selected synchronization operator with an empty list of
synchronization gates.

o Full Synchronization

(a, s, B [[a(By) Oa(By]|By)/GOt-"B
0000000000000000000000000000 (21)
(a,s,B|By)/GOt-"B

The full synchronization operator is treated as the selected synchronization operator with the
list of synchronization gates composed with the alphabet of beha@parsiB,.

o Relabeling

(h d...dP], s, B)/G Ot-*B
OOooO000ooOooO0OoooooOooooooOooooDoood (22
(g dy...d{[P], [relabelf, G').g], (B)[RL])/G O t[RL] - (B))[RL]
where RL =g4/hy, ..., g/hp

In this rule, the gate nangeof the actual target action and the actual restricted gateaet
replaced bynandG’ respectively which are the corresponding formal gates of behd&idtiese
new elements are found by the static analysis. See section 4.1.

Example

Consider behaviouB, of Figure 4-6 . Let

s = [parallel™eft, nested, disable”right, choiceright, prefix, prefix]

the relation s, [relabe(c, {b}).s, Bglgi/a, g/b, g/c, gy/d, g/el)/{ g} ) O t— " B matches
rule (22) where the relatiqe, s, B)/{b} 0 t; - By must hold, as in the previous example,
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with:
1. t1=[&, d, e, €)B = stop|[a, d|stop,
2. t1=1[a, e, d, €/ B’ = stop|[a, d|stop.

Therefore the original relation

(g3, [relabe.s], Bglgi/a, gp/b, gs/c, au/d, gg/e])/{ 9o} ) U t-.* B

will be satisfied with

t = t1[g4/a, @/b, g/c, g/d, g/€], B’ = (stop|[a, d[stop)[gi/a, B/b, g/c, gi/d, g5/€]

This implies

t U {91, I, 95, 930) (91, G5, Gs, T3

0 Process Instantiation

plhy,....h] =B, (a,[relabelp, G).g, (B)RL])/G O t-* B
dbddododooooboooouoooooooonood (23)
(a, [instancek, G’).5, p[gy,....90)/G Ot- "B
where RL =g4/hy, ..., ¢/hp

In this rule the elememstancéh, G’) in replaced byelabelh, G’), since a process
instantiation relabels the behaviour of the process and the elémamd&’ are the new gate
name of the target action and the new restricted gate set found during static analysis.

Example

Given the specification in Figure 4-6 , suppose we want to reach ggtiathout passing by
g, from the behavioutestinggs, do, 93, da, gs]. This can be specified by the relation

(93, testindigy, 9y, 93, 94, 9s]){ gz} Ot~ B

which is defined as

(g3, sdp, testingy, 9, 93, 9a, 9s1){ g2} Ot-" B, where
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sdpU 2(g3, testindgy, do, 93, 94, I5])/{ d2, 93}

Forsdp= [instanceg, {b}), parallel*eft, nested, disable”right, choice”right, prefix, prefix] we
have the relatior([instance¢, {b}).s], testindg, g, 93, 94, 951)/{ gy} 0t B’ that matches
rule (23) and yields to

(c, relabel€, {b}).s, (Bp)[g1/a, @/b, gy/c, a/d, as/e))/{ go} ) O t—* B, where

s = [parallel™eft, nested, disable”right, choice*right, prefix, prefix]

This is the same relation we had in the previous section that resulted in:

t = t1[g1/a, @/b, g/c, a/d, g/€], B’ = (stop|[a, d[stop)[gi/a, Bp/b, gs/c, g /d, g5/€]

This implies

t O {[@1, 9, 95, 930) 1, G5, Ou, G303

The following lemmas sketch the correctness of the guided-inference system definition given
above and the goal-oriented execution algorithm presented in section 3.8.

4.2.2 Observations

In the following proofs, we refer to the inference rules of relatidndefined in the previous
section.

Lemma 4-5: If (a, sdp, B)/GJ t' -~ ¥ B”, wheresdp (a, B, G), holds, thert* =, a.This lemma
identifies the fact that the derived traces by the inference rules of relaticto in
fact terminate with an action that matches the goal action.

Proof: Static derivation pathdpl] Z(a, B, G) always leads to an acti@hthat statically
matches action, denoted by’ =q a, using static relabeling. Looking at the guided-
inference rules definition, a givedp Z(a, B, G) will direct the execution to derive
a sub-trac& wheret™=¢ a, see termination rules (1) and (2). For the other rules, we
have the following:

Rule (10):sdp= [hides] - states that the desired trate t” | {GL}. But since static
derivation paths definition guarantees the factbate(a) {GL}, and sincet™ =g
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Lemma 4-6:

Proof:

a, thereford* =g a.

Rule (12):sdp= [enable”righg] - in this rule the desired trate=t,1{d} * t", and
thereforef~ = t"* =g a.

Rule (15):sdp= [disable”right] - similarly, in this rule the desired trate=t; t”,
and thereforet™ = t"* =g a.

Rule (16):sdp= [parallel*efts] andname(a)d ({ S} I{ d}), whereSis the list of
synchronization gates - the desired tracet” |{ S| ty, where(t” [{{ S T{d}) , By)/G
0ty * Byy. Sincet™ =g aandname(a)d ({ S} 0{a}), then (t” [{{ S O{))" = &,
and therefore from the definition of *, we will havet,* = a andt,({{ S} (I{ 8}
match t"L{{ § U{d}. This impliest'* = (1" [ §| )" =5a.

Rule (17):sdp= [parallellefts] andname(a)d ({ S 0{ d}), whereSis the list of
synchronization gates - the desired trace in this rdle=i¢t” fname(a) |{S}|t) *
[~ [ Sincet™ =4 a, therefore’ =g a.

Rule (18) and rule (19) are similar to rule (16) and rule (17) respectively adiere
= [parallel*rights].

All the other rules state the fact that the desired trae¢’ , and thereforé”=q a.
0

If (a, sdp, B)/GI t' « @'~ " B”, wheresdp 2(a, B, G), holds, therilb O G, not(b

int"). This lemma identifies the fact that the derived traces by the inference rules of
relation - ¥, do not contain any action, other than the last attiphaving a gate

name inG.

A givensdpl (a, B, G will direct the execution of the guided-inference system
definition to derive a sub-tratge (&[] Static derivation paths definition guarantees
the fact thatdb O G, not(b in {). When other sub-tradg is needed to derive the
desired trac€ « [&’'[Jthe restricted set is carried out to guarantee the fadilknat

G, not(b in §), except for rule (16) and rule (18) whex@me(a)is a member of the
synchronization set. In these rules the sub-trawél have the fornt,’ « [&, Cwhere

Ob O G, not(b in}’). Therefore, the desired trace @& [will be equal to

t1e By Sty « By’ [ with name(a)= name(a’)= name(g’) [ {Sland
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which is equivalent to:

€ e @0 (4K SH) Byt sy’
Sincellb O G, not(b in {) andnot(b inb"), thenb O G, not(b in §{{ S |to") . Which
impliesdb O G, not(b in t’)

Lemma 4-7: If (a, sdp, B)/G] [&y’,...,a, 0-" B” holds, wheresdp Z(a, B, G), and there exists
a substitutioro such thaevalp([a;,...,a, Do) = true, then there exists a trace
[3y,...,a50such thaB [ [3y,...,a,0- B’ holds withname(g) UG for I<i<n-1 and
a =4, @y,...a,F 1([&y,...,a,' Do, andB’= B" 0.

Proof: Here we only give a sketch of the proof. Wifansdp, B)/G] @, ...,a, - " B
holds using the definition in section 4.2.1, and a substitatisfound by the
narrower such thavalp((@,',...,a, o) =true, then all encountered guards and
predicates that are accumulated in the variable fégce.. ,a, L] plus the action
synchronization conditions, see the definitiom\ah section 3.2.2, are satisfied.
Now, if the definition of- , defined in section 3.3, follows the same derivation path
of the variable trac&y’,...,a,' Jand uses the values in the substitutomhen
needed, then a trac, ..., a,Lwill be generated and, obviousy =5 &’ for 1<i<n.
This implies from lemma 4-5 and lemma 4-6 thatne(g) UG for I<i<n-1 anda, =
a.

Therefore, a detailed proof of this lemma would imply a comparison between the
inference rules of relation * and those of relation.. We leave to the reader.
o]

Lemma 4-8: If (a, sdp, B)/GJ t' - * B” holds, wheresdp Z(a, B, G), and there exists a
substitutiono such thaevalp(t’) o) = true, then there exist a tra¢such thata, B)/
G =t0 * B’ holds witht = (1(t')0)Ji} and B’= B” 0.

Proof: If (a, sdp, B)/G1t' " B” holds, wheresdp 3(a, B, G), and there exists a
substitutiono such thaevalp([dy’,...,ay, Do) =true, then there exist a tratgsuch
thatB O t, — B’ holds withty= 1(t") 0 andB’= B” 0, see lemma 4-7As defined in
section 3.4(a, B)/G=t0 * B’, iff B=tO B’ such thahame(b)JG for allb int And
we haveB =tlJ B’ iff B 0t~ B’ such that =t,[Ji} = (1(t") 0){i}. Therefore this
lemma holds.
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4.2.3 Limitations

Guided-inference system execution may not terminate for two reasons:

1- When static derivation paths cycle in an unfeasible path. This problem was resolved by limiting
the number of identical process instantiations involved in deriving the static derivation paths,
see section 4.1.3.

2- When relatior(] B)/GO t - * B’ is involved in deriving the traces. This relation is defined as:

(I)B)/GO M- "B (1)

(*,B)GOt;-" B,
(By)/GOty-* B
gdodoooooodododooooooonouodogon 2
()B)/GO tye ty— * B’
where *' stands for any action

The above definition of relatiofil) B)/GO t - * B’ may derive infinite number of undesirable
sub-traces. For example, let

Ala, b] :=a; Ala, b] [] b; exit

D[a, b, c] := (A[a, b] [> c; exit)|[a,b,c]| a; b; c; exit

The relation(c, D[a,b,c])/{} O t—* B’ has an obvious solutidr= [&, b, d1But since the first
static derivation path ik(c, D[a,b,c])/{c} will guide the inference rules through parallel"left
then through disable”right, the following rules will be executed:

1. Rule (16), for parallel™left, states that the trgcderived from the left behaviour (leading
to actionc) must synchronize with a tratederived from the right behaviour on gates
[a,b,c]. More formally, this rule tries to satisfy t1|{a,b,g |t,, such that;{ a,b,cd} =
t,{a,b,cd}, andty™ = c. This can succeed onlytif= [, b, dl

2. Rule (16), for disable”right, is responsible of deriving the sub-tjaoeeded by rule (16)
above. Rule (15) states thgt t11°t1o, Wheret;, = [¢[lderived from the right behaviour,
andty is derived from the relatiofill] A[a,b])/{8} O t—* B’. This relation produces an
infinite number of traces, namely,

t O{@L @&, a)[&, a, d)[&, a, a, &)[a, a, a, a, al..},
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this implies
t, O{e0@, )&, a, &)@, a, a, €[4, a, a, a, €4, a, a, a, a,d...},

and therefore the desired sub-traeela, b, dcannot be derived, since t(i&] A[a,b])/{d}
0t~ B, failed to produce the sub-tra@g bl

We have limited the number of solutions for relai@iB)/G 0 t— * B’ by removing the
recursion in its definition as follows:

(I)B)/GO M- ™ B (1)

(*,B)/GOt-"B
000000000000000000000000000000 (2)

(I)B)/GOt-*B’
where *’ stands for any action

Rule (1) simply states théil) B)/GO t - * B’ will always hold witht=[I)andB’=B. The second
rule states thgtll] B)/GO t— > B’ will hold if (*, B)/GO t—* B’ holds, where “* stands for
any action. The number of solutions &y B)/GO t— * B’ is finite due to the fact thai(*, B,
G) is finite with the added heuristics defined in section 4.1.3.

Now consider the above relati¢ey D[a,b,c])/{} O t—* B’ where the number of identical
process instantiations for static derivation paths is limited to 2. The first static derivation path
in £(c, D[a,b,c])/{c} will guide the inference rules through parallel*left then through
disable”right, so the following rules will be executed:

1. Rule (16), for parallel™left, states that the trgcderived from the left behaviour (leading
to action c) must synchronize with a tragelerived from the right behaviour on gates
[a,b,c]. More formally, this rule tries to satisfy t;|{a,b,gd |ty, such that;{{a,b,cp} =
to;{a,b,cd}, andty™ =c.

2. Rule (15), for disable”right, is responsible of deriving the sub-tjaoeeded by rule (16)
above. Rule (15) states thgt t11°t15, Wheret,, = [¢liderived from the right behaviour,
andty 4 is derived from the relatiofil] A[a,b])/{&} 00 t— ™ B’. This relation produces the
following traces:

ty; O{M @@, &)@, b,

this implies
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t, O{el@, d)[a, a, dJ[&, b, ¢},

and therefore, back to step 1 abavets|{a,b,g|t,, such that,{a,b,cd} = t,[{a,b,cd}
andt;”™ = ¢, can be satisfied with = [&, b, dJproducing the desired solutior (&, b, ¢

Note that any other bound on the number of identical process instantiations would have
given the same final result.
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Chapter 5 Narrowing Technique

5.1 Introduction

This chapter is devoted to the implementation technique of ERNAE(@me taRewrite and
Narrow theADTs of LOTOS). As mentioned in chapter 3, ERNAL is an automatically generated
Prolog implementation tool capable of efficiently evaluating and narrowing equations specified in
LOTOS data types. The implementation is obtained by applying transformation techniques to a
given term rewriting system.

Efficient narrowing techniques have been studied extensively in the literature
[34][35][36][153], and an analysis of this subject would be a doctoral thesis in itself. Here we
discuss a new approach, which we do not claim to be optimal, but which provides good results with
relatively simple transformations.

SVELDA, our current ADT interpreter, uses an inner-most left-to-right evaluation strategy and
it can only be used to rewrite terms and not to solve equations. ERNAL, on the other hand, will
adopt outer-modtest-orderevaluation strategy. We call the operands evaluation order “best-
order” since it is not specific and it depends on factors described later in this chapter.

Figure 5-1 shows the order in which the operators are evaluated using inner-most left-to-right
strategy and outer-most left-to-right strategy respectively for the expression

('succ(0) > succ(succ(0)) ) and (succ(0) < 0)
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7'\
e

(succ (0)>succ (succ(0)))and (succ(0) s

2 1 6 5 4 3 11 8 7 109

Inner-most left-to-right evaluation order

7'\
e

(succ (0)>succ (succ(0)))and (succ(0) s

3 4 2 5 6 7 1 9 10 8 11

Outer-most left-to-right evaluation order

Figure 5-1 Orders of evaluation

We chose the outer-most evaluation for the following reasons (see section 3.7.3):

It detectsshort-circuit That is to say that it does not evaluate some operands if they do not need
to be evaluated in order to obtain the result, i.e. best-order evaluation.

Unlike the inner-most evaluation, it does not require the use of de-structuring and re-structuring
Prolog operator '=.." to ungroup and re-group ADT expressions.

It is capable of producing the most general substitution, called the most general incomplete
structure in Prolog. Such a substitution is useful for narrowing. For example, the most general
solution of the goaX > succ(0O)will be X = succ(succ(Y)whereY is a variable representing

any natural number.

ERNAL is a set okval/2Prolog clauses of the form:

eval(EXP:S, RES)
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whereRESIs the resulting evaluation of the ADT expression EXP ofSdétor readability, we use
external names in our examples.

The transformation techniques used to obtain the desired ERNAL implementation are given in
the next section. In section 5.3, an evaluation of these techniques is reported. Finally, section 5.4
lists the limitations of ERNAL’s implementation.

5.2 Transformation Phases

The transformation of a TRS into an evaluator/narrower implementation consists of the
following phases, see Figure 5-2 :

1- Reordering Phasd~or a given TRR [0 RS reorder the underlying TRRs of each operator
OF, whereF is a set of defined operatorsRnusing a functio®©®RD : RS- RSdiscussed
below.

2- One-to-One Mapping Phas&ransform the reordered TRRs irgeal/2Prolog clauses using
a functionTR : RS- E.

3- Merging PhaseFor each operatdilF, merge all iteval/2clauses into oneval/2clause using
a functionMRG : E - E. Note tha MRGis amany-to-onenapping function.

Note that, as explained in section 3.7.2 of chapter 3, we assume that the ADT equations have
already been properly oriented as rewriting rules.
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Term Rewriting System

Reordering
Phase

'

One-to-one
Mapping
Phase

'

Merging
Phase

¢

ERNAL

5.2.1 Reordering Phase

The order of rewriting rules may affect the execution performance. For example, looking at the
TRRs of thet+ operator in Figure 3-8 given in previous chapter, one sees that a short-circuit can
be detected by the second rule, therefore it's more reasonable to evaluate this rule first. Non-
termination may also be caused by the order of rewriting rules. To take into consideration these
factors, we have devised a sorting criterion, defined by a funoftid: RS- RS to sort the TRRs
for each operator using three numerical keys that will be assigned to each rule. These numerical

Figure 5-2 Transformation Phases

keys are defined by the following functions:

* SC:R=N, calledshort-circuitfunction, that returns the number of variable operands of the
defined operator occurring on the left hand side of therrdle but which do not occur on its
right hand side nor in its condition part (for conditional rewriting rules). These operands are
those that do not need to be evaluated to obtain the result. For example, the values of this
function on the two rules of thie+ operator defined in Figure 3-8 , are 0 and 1 respectively.
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This because the first rule has the variable C which appears on both sides, while in the second
rule the variable C appears only on the left hand side. For readability, the values of a sorting
key function for a given operator wikrewriting rules is represented ag,(,, ...,ny), where

n; is the value assigned to tiferule. The values of short-circuit function applied on the rules

of the++, <, ==, >=, -, and thenodoperators defined in Figure 3-8 are (0, 1), (0, 0, 1), (0, O,

0, 0), (0), (0, 0, 1), and (0, 0) respectively. We believe that this is the most important sorting
key, since it forces to detect short-circuits early, and thus, evaluation will be more efficient.

* GT:R-N, calledground-termgunction that returns the number of ground term operands of
the left hand part of the ruteJR. This is useful for narrowing when free variables can be
instantiated with ground terms. In Figure 3-8 , the values of ground-terms function applied on
the rules of the-+, <, ==, >=, -, and thenodoperators are (1,1), (0, 1, 1), (0, 2, 1, 1), (0), (1,

0, 1), and (0,0) respectively.

* XT:R-1, wherer UR, calledcomplexityfunction, that returns the complexity of a rule with
respect to the number of operators and operands in its condition and right-hand part. By using
this function as a sorting key, we will evaluate the most complex rule last. In Figure 3-8 , the
values of complexity function applied on the rules of+he <, ==, >=, -, and thenod
operators are (1,1), (3,1, 1), (3,1, 1, 1), (7), (1, 3, 1), and (8, 4) respectively.
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SC GT XT
false ++ C - C; 0 1 1
true ++ C - true; 1 1 1
succ(M) < succ(N) - M<N; 0 0 3
0 < succ(M) - true; 0 1 1
M <0 - false; 1 1 1
succ(M) == succ(N) -~ M==N; 0 0 3
0 == - true; 0 2 1
0 == succ(M) - false; 0 1 1
succ(M) == - false; 0 1 1
M >=N - (N < M) or (M==N); 0 0 7
M -0 - M; 0 1 1
succ(M) - succ(N) - M-N; 0 0 3
0 -M - 0; 1 1 1
(M >=N) =>M mod N -~ (M- N) mod N; 0 0 8
(M <N)=>MmodN - M; 0 0 4

Figure 5-3 A Term Rewriting System With Sorting Keys Assignment

ORD RS- RSis defined as follows:

1- For each set of rules RER of an operatdi, reorder them idescending order with respect to
key defined by the functio8C giving a TRS R1.

2- For each set of rules REPR1 of an operatdrwith an identicaSCvalue, reorder them in
descending order with respect to key defined by the fun@Qrmgiving a TRS R2.

3- For each set of rules REBR2 of an operatdrwith identicalSCandGT values, reorder them
in ascending order with respect to key defined by the funXiomiving a TRS R3.

R3 is the required ordering of TRS R. Figure 5-4 illustrates the reordering of rules in Figure 5-
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SC GT XT
true ++ C - true; 1 1 1
false ++ C - C; 0 1 1
M <0 - false; 1 1 1
0 < succ(M) - true; 0 1 1
succ(M) < succ(N) - M<N; 0 0 3
0 == - true; 0 2 1
succ(M) == - false; 0 1 1
0 == succ(M) - false; 0 1 1
succ(M) == succ(N) -~ M==N; 0 0 3
M >= N - (N < M) ++ (M==N); 0 0 7
0 -M - 0; 1 1 1
succ(M) - succ(N) - M-N; 0 0 3
(M <N)=>Mmod N - M; 0 0 4
(M>=N)=>Mmod N - (M - N) mod N; 0 0 8

Figure 5-4 Reordering of rewriting rules of Figure 5-3

5.2.2 One-to-One Mapping Phase

This phase translates each rule in the reordered TRS into a Bvaléigclause. We refer the
reader to section 3.7.2 for basic definitions to be used below.

We have chosen the logic programming language Prolog for the implementation of our
evaluator/narrower since it has the expressive power of combining conditional rewriting (or
evaluation), to perform functional simplification, and conditional narrowing, to generate solutions
to goals [35].

Let:
a- r be a rewriting rule of the forp => f(xy,....%) —d, wherep is a term of sobool and f(x)
andg are terms of the same Sotts Xq,...,%

112



Chapter 5 Narrowing Technique

b- yj,....) for k< n denote the non-variable argument$ ofx,,...,%,, in their given order. We
call “non-variables” all terms that are not simple variables.

c- X=Xq,...,%, be a set of unique Prolog variables associatedxith,x, respectively.

d- RESdenote a unique Prolog variable that will be used to hold the result of an evaluation.

e- STx(F,V)- Sbe a function that maps terms into their associated sorts.

f- V:x- Xbe a function that maps an argumerto its associated Prolog variabdgas follows:

- if X is a non-variable theX is a unique Prolog variable.
- if x; is a variable theX;=x;.
The transformation functiohR: R- E, whereR is a TRS andt is a set okval/2clauses, is
defined as follows:
TR(r), wherer O R of the formp => f(x4,...,%) — 0, iS equal to
evalf(Xq,...,.Xn):ST(f) RES :-
eval(:bool true), -- for the condition

evalV(y1):STy1), Y1), -- for non-variable arguments

evalV(yi):STYi)s i)

eval@:ST(f) RES. -- for the right hand side

The variable arguments are left as such. The transformation of the rewriting rules in Figure 5-
4 is given in Figure 5-5 .
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eval(A ++ B : 'Bool',C) :-
eval(A : 'Bool',true),
eval(true : 'Bool',C).

eval(A ++ B : 'Bool',C) :-
eval(A : 'Bool'false),
eval(B : 'Bool',C).

%

eval(A < B : 'Bool',C) :-
eval(B : nat,0),
eval(false : 'Bool',C).

eval(A < B : 'Bool',C) :-
eval(A : nat,0),
eval(B : nat,succ(D)),
eval(true : 'Bool',C).

eval(A < B : 'Bool',C) :-
eval(A : nat,succ(D)),
eval(B : nat,succ(E)),
eval(D < E : 'Bool',C).

0,

&al((A == B) : '‘Bool'.C) -
eval(A : nat,0),
eval(B : nat,0),
eval(true : 'Bool',C).

eval((A ==B) : 'Bool',C) :-
eval(A : nat,succ(D)),
eval(B : nat,0),
eval(false : 'Bool',C).

eval((A ==B) : 'Bool',C) :-
eval(A : nat,0),
eval(B : nat,succ(D)),
eval(false : 'Bool',C).

eval((A ==B) : 'Bool',C) :-
eval(A : nat,succ(D)),
eval(B : nat,succ(E)),
eval((D == E) : 'Bool',C).

%

eval(A >= B : 'Bool',C) :-
eval((B < A) ++ (A == B) : 'Bool',C).

%

eval((A - B) : nat,C) :-
eval(A : nat,0),
eval(0 : nat,C).

eval((A - B) : nat,C) :-
eval(B : nat,0),
eval(A : nat,C).

eval((A - B) : nat,C) :-
eval(A : nat,succ(D)),
eval(B : nat,succ(E)),
eval((D - E) : nat,C).

%

eval(A mod B : nat,C) :-
eval(A < B : 'Bool',true),
eval(A : nat,C).

eval(A mod B : nat,C) :-
eval(A >= B : 'Bool',true),
eval((A - B) mod B : nat,C).

Figure 5-5 eval/2 transformation of rewriting rules of Figure 5-4
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5.2.3 Merging Phase

One-to-one mapping leads to poor performance since some operands may be evaluated many
times before the result is achieved. For example the left opArahthe operato#+ in Figure 5-
5 is evaluated twice if it happens to be evaluatddise For this reason, as well as for narrowing
purposes, this phase is needed. It resolves the problem of re-evaluation of operands by detecting
such operands and by evaluating them before applying the rules. The rules then use the evaluated
operands.

Let Eop[] E be the ordered set of @Val/2clauses of an operatbJF, and letn denote the
number of such clausddRG(Eop)is defined as follows:
1- The head of the resultimyal/2clause is the unification of the heads ofeadhl/2clauses in
Eop This provides association of variables between the bodies.
2- The body of the resultingval/2clause will have the following form:

Evaluated_Operands
(Sub_Results_UnificatignResulting_Clausge

| Evaluated_Operands
(Sub_Results_UnificatignResulting_Clause

| Evaluated_Operangls
(Sub_Results_UnificatignResulting_Clausge
| RES =1(Y1,..-.Y)
)

).

Where, informally Evaluated_Operanglss the evaluation of the operands that arevial/2
UEopandnot ineval/3 for j <i. The evaluation results Evaluated_Operangsvill be replaced
by unique Prolog variables and are checked (or instantiated in case of narrowing) in
Sub_Results_Unificatigrusing ‘=" Prolog OperatoResulting_Clauses identical to the last
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clause ireval/2 OEop. RES =1(Y3,..., ¥y, whereY, is equal to the evaluation of the operapdf
done byEvaluated_Operanglsand is equal tX otherwise. This term is added in case of
incomplete definition of the operatbr

Merged eval/2 clauses for the rewriting rules presented in Figure 5-5 , are given in Figure
5-6 .
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eval(A ++ B : 'Bool',C) :-
eval(A : 'Bool',D),
(D =true,
eval(true : 'Bool',C)
; D = false,
eval(B : 'Bool',C)
;C=D++B

).
eval(A < B :'Bool',C) :-
eval(B : nat,D),
(D=0,
eval(false : 'Bool',C)
; eval(A : nat,E),
(E=0,
D = succ(F),
eval(true : 'Bool',C)
; E = succ(G),
D = succ(H),
eval(G < H: 'Bool',C)
;C=E<D
)

).
eval((A ==B) : 'Bool',C) :-
eval(A : nat,D),
eval(B : nat,E),
(D=0,
E=0,
eval(true : 'Bool',C)
; D = succ(F),
E=0

ev;I(f’aIse :'Bool',C)

’

E = succ(G),
eval(false : 'Bool',C)
; D = succ(H),

E = succ(l),

eval((H ==1) : 'Bool',C)
;C=(D==FE)

ev?:{I(A >=B: 'Bool',C) :-
(eval((B <A) ++ (A == B) : 'Bool',C)
;C=A>=B

eV?:ﬂ((A - B) : nat,C) :-
eval(A : nat,D),
(D=0,
eval(0 : nat,C)
; eval(B : nat,E),
(E=0,
C=D
; D = succ(F),
E = succ(G),
eval((F - G) : nat,C)
:C=D-E
)

)
eval(A mod B : nat,C) :-

(‘eval(A < B : 'Bool',true),
eval(A : nat,C)

; eval(A >= B : 'Bool',true),
eval((A - B) mod B : nat,C)

;C=AmodB

).

Figure 5-6 Merged eval/2 defined in Figure 5-5
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Clauses oéval/2are also created for the operators that do not have any rewriting rules (i.e.
constructors). These clauses are included prior to the previous clauses. They are created as follows:
1- For every sors, reorder all its operators that are not yet translated (i.e. the ones that do not have

any TRRs) in increasing order with respect to their arity.

2- Create amval/2clause for each operator, and add such clauses in the given order before the
eval/2 clauses created for the operators with TRRs.

Figure 5-7 shows the eval/2 clauses for the construgtansisuccof sortnat, andtrue and
falseof sortBool.

eval(0:nat, 0).
eval(succ(X):nat, succ(Y)) :- eval(X, Y).

eval(true:’Bool’, true).
eval(false:'Bool’, false).

Figure 5-7 eval/2 clauses for Constructors

Figure 5-8 shows systematically the order in which eval/2 predicate will resolve the goal:

eval((succ(0) >= suc%(X) ++ (succ2(0) < X)):bool, true)

using the automatically derived implementation given in Figure 5-6 and Figure 5-7 .

118



Chapter 5 Narrowing Technique

(succ(0) >= sucg(X) ++ (suc@(O) < X)):bool, true

/ X:succg(X”)
eval/2
(succ(0) >= SUC@(W (succ,Z(O) < X):boa,\K
X=succ§(X")
A=false

evall2 eval/2
(suc(,2 (X) <succ(0)|++ (succ(0) < succ(X')):bopl, true
(succ(0) ::sucg( ))):bool, X succ,Z(X’)
A=false |
eval2 | Aoase eval/2
(suc(X) <succ(0)):bool, A’ A (Susc(0) ==sucé(x))):bool, A (0 < X'):bool [ true
Al=false X'=gucc(X”)
evall2 evall2 eval/2

(succ(X) <0):bool| A’ T © ==SUCC(X))):b00iA T
A=false
A'=false

eval/2

eval/2

Figure 5-8 Instantiation of Free Variables

As aresult, the free variab¥en the above goal is instantiated to the general solutioﬁ(é(]'()c
for any natural numbex”, i.e.X =Y for Y >= 3. ERNAL provides textual derivation traces
showing the execution steps leading to a conclusion (or a non-conclusion) for a given goal.

5.3 Comparison
Another observation about the transformation defined in the previous section, is that evaluated

sub-terms may be re-evaluated when carried out recursively to aee#h@ For example,
eval(X-Y,Res)esolves the rule:
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succ(M) - succ(N) - M-N;

by first evaluatingX andY and then matching them witlucc(M)andsucc(N)respectively. If the
matching succeeds th&handN will be unified to already evaluated terms. So, to avoid re-
evaluation oM andN in recursiveeval/2call, i.e.eval(M-N, Res)M andN will be tagged to
identify that they are already evaluated.

Different transformation versions were evaluated by applying them on the same set of ADT
expressions. The evaluation is judged by the numbevailf2invocations. The transformation
versions are:

version 1: is One-to-One mapping without reordering.

version 2: is N-to-One mapping without reordering. i.e. Applying the merging phase on
version 1.

version 3: is N-to-One mapping with reordering. i.e. eval/2 clauses in Figure 5-6 .

version 4: N-to-One mapping with tagging the evaluated sub-terms.

The following table summarizes such comparison.

Table 3: Transformation Comparison

Expression Version 1 Version 2 Version 3 Version 4
(succ,z(O) >= succ(0)):Bool 30 14 14 13
((succ(0)>= sucé(0) )++ 60 54 52 42
(succo’(O) < succ4(0))):BooI
((suc(0) < sucé(0)) ++ 69 31 31 22
(succ(0)>= suc<,2(0))):Bool
((sucd (0) mod suc¥0)) - 1576 456 365 219
succ(0)):nat
((sucd%0) mod suck0)) - | 1505 677 444 199
succ(0)) == suct(0):Bool

The above table demonstrates that Merging phase, Reordering phase and tagging do indeed
increase the overall evaluation efficiency.
Version 4 is the one used for ERNAL.
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5.4 Limitations

For our purposes of automatic LOTOS behaviour validation, we are mainly concerned about
validating guards and selection predicates accumulated during trace derivations. They are usually
conjunctions of conditions resulting from matching a number of actions together. So, the general
form of the narrower that will be used in our validation is:

Ci1~rC21..Cn>><$rue

which may lead us to one of the following cases:

a- instantiating free variables in C1, C2, .., and Cn such that their evaludtion is
b- determining that there is no solution

c- or, unfortunately, inability to find a solution.

The third case is when the evaluation does not terminate. This is due to the infinite search space
that can be caused by one of two reasons:

1- Encountering an infinite branch in the search tree when looking for a solution.

2- Encountering a sub-term that generates an infinite number of non-desirable solutions.

An example of non-terminating evaluation causes by reason 2 is

(X > succ(0)) and (X < succ(succ(0))):bool >><< true,

assuming that the evaluation order ofdihe operator happened to be left-to-right. This is because
the left condition has an infinite number of solutions, represented initially by the most general
solutionX=succ(succ(Y))The right condition cannot be satisfied with any natural number value
of Y.

To deal with this limitation, ERNAL'’s transformation includes controls to limit the
backtracking, i.e. limiting the number of solutions, and to limit the number of invocation, i.e.
limiting the length of search paths.

We expect that experienced tool users will understand these limitations of the tool, and will use
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an appropriate specification style. For example, the problem discussed above will not occur if the
two arguments of thand operator are reversed.
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Chapter 6 Goal-Oriented Execution
Applications

An arbitrary LOTOS specification cannot be fully verified by using formal methods due to the
fact that the dynamic behaviour of a given specification is often infinite. For this reason, many
semi-automated tools were developed to verify LOTOS specifications using a variety of different
methods, see 2.4.6 of chapter 2.

The goal-oriented execution technique is capable of constructing execution traces satisfying
certain assertions. Using this technique, the specification under verification (SUV) is seen as a
black box. The verifier needs only the knowledge of the interaction point structures (or action
denotations) that include the formal gate names and the possible associated event sorts. Queries are
then constructed, using relatiods” and *, and then submitted for execution. See Figure 6-1.
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User N

ouery IP1
. :::BPZ

Goal-Oriented SUV
Answer Execution

<«—»@IPn

N

IPi: Interaction Point
SUV: Specification Under Verification

Figure 6-1 Black Box Verification

Two types of properties can be expressed as queries:

1. The existence of execution traces satisfying valid assertions. The user can construct queries
on traces that should be possible by the specification. If such queries hold by goal-oriented
execution, the possible execution traces are returned.

2. The absence of execution traces satisfying invalid assertions. The user may verify that the
specification does not accept traces with invalid assertions. In this case, the related queries
should not hold by goal-oriented execution.

Properties such as absence of deadlocks or livelocks are not handled by our method. The
absence of a deadlock at a given point of execution can, on the other hand, be determined. For
example, from a given behavidsy, we can determine by the following queries that deadlock does
not occur immediately after acti@ns executed:

if (a, B)/{} =t;0 ¥ B, holds ther(*, Bo)/{} =t,00 " B3 should also hold,
where *' identifies any action. See the next section for other action denotation abbreviations.

In this chapter, we demonstrate how goal-oriented execution can be applied for verification,
and how it can be used to enhance existing verification methods.
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This chapter is divided as follows: in section 6.1, we provide guidelines for the use of goal-
oriented execution to verify LOTOS specifications describing a protocol and the provided services.
The application of goal-oriented execution to verify an Alternating Bit Protocol specification is
demonstrated in section 6.2. Section 6.3 lists some existing verification techniques that can be
improved using our method.

6.1 Verification Guidelines

This section provides guidelines for the application of goal-oriented execution to verify a
LOTOS protocol specification for a layered network model. (See section 2.1).

The protocol verification process involves checking for the following properties:

0 syntactic properties These are general design properties of a given protocol such as the
absence of the following errors [155}ate deadlock, unspecified receptions, non-executable
interactions, state ambiguity, channel overflow, tempo blockimgdyinfairness The
verification of syntactic properties, often call@@tocol validation does not require
knowledge of the provided services.

0 semantic properties These are the intended sets of services that a given protocol needs to
provide to the protocol of the layer above. The verification of such properties requires the

service specification to be provided, and it is necessary to assume the correctness of the service

provided by the layer below. Such properties cannot be classified or generalized since they
depend on a specific protocol or service specifications. Such verification has proved difficult
to automate.

o protocol behaviour properties These properties describe the intended protocol behaviour,
i.e. the exchange of messages among peer processes, that provides the intended services. As

mentioned above, these properties are hidden from the user of the services. We believe that the

verification of such properties is very important, since the verification of semantic properties
may not necessarily exercise all protocol behaviour properties. An example of a protocol
behaviour property is error recovery when a message is lost in an unreliable channel.

Here, we are only concerned about the verification of semantic and protocol behaviour
properties. Note that the correctness of protocol behaviour properties does not imply that the
semantic properties hold, but the failure of these may prevent the protocol from providing its
specified services.Therefore, it is logical to verify protocol behaviour properties first.
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The following rules enable an efficient verification of semantic properties and protocol
behaviour properties using goal-oriented execution:

Rule 1: Specification Style- In order to verify protocol behaviour properties, it is important to
specify the protocol behaviour in a process definition that can be tested separately. The
overall specification will then have the form:

specification<service_provider>[SAP1,...,SAPmoexit
behaviour
hide g1,..,gnin

<protocol>[SAP1,..., SAPn, g1,.., gn](<actual parameters>)

whereSAPL,...,SAPare the logical service access points provided to the user of the
services, andl,.., gnare the logical peer-to-peer protocol communication chargils.

gnare obviously hidden from the user of the services. In this form, the service is provided
by the specificatiorservice provider>[SAP1,...,SAP@hd the protocol behaviour is
expressed by the processrotocol>[SAPL,..., SAPn, g1,.., gn](<actual parameters>)
Note that the latter will show the interactions between the protocol entities, but not their
internal behaviour.

Rule 2: Properties Definition - Define the protocol behaviour and the semantic properties using
relationsd Fandd *.

Rule 3: Protocol Behaviour Properties Application- Apply the protocol behaviour properties
on the protocol behaviour, i.e. the behaviour of process <protocol>. Hidden actions will

be visible at this stage.

Rule 4: Protocol Behaviour Properties Analysis Analyse the results of the protocol behaviour
properties resulting from application of Rule 3. If errors are detected in the specification,
then modify it and return to Rule 3.

Rule 5: Semantic Properties Application- Apply the semantic properties on the overall
behaviour, i.e. the behaviour of specificati@ervice provider. Actions involved in
protocol communication will be hidden at this stage.

Rule 6: Semantic Properties Analysis Analyse the results of the semantic properties resulting
from application of Rule 5. If errors are detected in the specification, then modify it and
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return to Rule 3.

6.2 Verification of the Alternating Bit Protocol

The objective of this section is to apply the rules stated in the previous section for the
verification of an Alternating Bit Protocol LOTOS specification. The following are the informal
service and protocol specifications.

Informal Service Specification

This protocol provides areliable, uni-directional data transfer service between two users, Userl
the source and User2 the sink.

Informal Protocol Behaviour Specification

The protocol uses an unreliable full duplex one place channel to transfer protocol data units
(PDUs) and acknowledgments. To ensure that the messages sent by Userl are received in the
correct order by User2, the protocol associates a sequence number, alternating between 0 and 1,
with the delivered PDUs and acknowledgments. Figure 6-2 illustrates the overall composition of
the Sender and the Receiver entities, associated with Userl and User2 respectively, and the
unreliable channel. The gates used by the protocol to communicate with the channel are hidden
from the environment, i.e. the users.

LOTOS Specification

The following is the top level structure of the Alternating Bit Protocol LOTOS specification to
be verified. The complete specification is given in Appendix A.

specificationabp_service[Userl,User2joexit
behavior
hide send1, recvl, send2, recv2, LOBT
abp[Userl, User2, sendl, recvl, send2, recv2, LOST )
where
processabp[Userl, User2, sendl, recvl, send2, recv2, LOST]

(s_seq:Bitjnoexit:=
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Userl User2
LOST
Sender Receiver
sendé | ! I recv;
Channel
~tecvi L ¢ Tend2
Protocol LOST

Figure 6-2 Alternating Bit Protocol Structure

The servicabp_servicénas two interaction points through gateserlthe source and
User2the sink. They both allow one event of doata. A value of sorDatais simply any natural
number.

The protocol, specified in proceabp, is a composition of three entities, the sender, the
receiver and the unreliable channel. The sender entity sends PDUs and receives acknowledgments
by communicating with the channel through gatesdlandrecvlrespectively. The receiver
entity receives PDUs and sends acknowledgments by communicating with the channel through
gatessend2andrecv2respectively. The PDUs and the acknowledgments are both dfesst
GateLOSTis added to the channel process to identify the loss of a message.

Verification

We give now the definition of the protocol behaviour properties and of the semantic properties.
The protocol behaviour properties are applie@d(X) = abp[Userl, User2, sendl, recvl, send2,
recv2, LOST](X)where X is the current sequence number, and the semantics properties are applied
onB2 =abp_serviciserl, User2] For better understanding of the message exchange between
the protocol entities, the resulting traces are also shown using message sequence diagrams (MSDs).
Each vertical line in an MSD identifies the entity from which a message is sent or received. The
gates used in the communications are identified at the top of the vertical lines. Some gates are
associated with an arrow to indicate the direction of the messages which will occur on this gate.

128



Chapter 6 Goal-Oriented Execution Applications

Protocol Behaviour Properties

P1 “Provide examples of traces that lead to the loss of a message”. This can be described as:
(LOST*, B1(0))/{}=tO0 "B’

This will be satisfied with many execution traces, among others (see Figure 6-3 and Figure 6-
4 respectively):

t=0 Userl ID:Data,
sendl 'makepdu(D, 0):Mess,
LOST !'makepdu(D, 0):Mes$s$

—»Userl Usert»
sendl» —Psendl recv2» —»recv2 User2
Userl recvl<— <arecyl  send2?e  <esend2 ser
D
D,0
D,0 ;<
LOST
Source Sender Channel Receiver Sink
Protocol

Figure 6-3 MSD 1 for Protocol Property P1

and

t=0 Userl !D:Data,
sendl !makepdu(D,0):Mess,
recv2 'makepdu(D,0):Mess,
send2 !makeack(0):Mess,
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LOST !makeack(0):Mess

—»Userl Usert»™
sendlI ™ ®sendl recv2®™ —»>recy?
Userl recvl< <recvl  send2e- <—send? User2
D
D,0
D,0
Ack0 |
: écko
LOST
Source Sender Channel Receiver | Sink
Protocol

Figure 6-4 MSD 2 Protocol Property P1

From the above two traces, we see Matlesscan have a value afiakepdu(D,0pr a value

of makeack(O)ndicating that the types of messages that can be lost are PDUs and
Acknowledgments. Note that in reality, the above query has an infinite number of solutions,
but due to the fact that heuristics are added to static derivation paths and the guided-inference
rules definition, only a finite number of solutions is provided. See sections 4.1.3 and 4.2.3. Note
also that the variabl®:Data in the above traces is left free since its value does not affect the
execution trace in any way, i.e. it is not involved in any condition encountered during
derivation.

P2 “Is it possible for the protocol sink entity to receive the expected PDU after the medium loses
the PDU once?”. This can be described using relatiérby first reaching the loss of a PDU
M, indicated by the associated selection predisatgdu(M) and then receiving at gatecv2
the expected message, expressed by the associated selection ped{é&teq Pwhere 0 is
the expected sequence number:
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(ILOST?M:Mess][is_pdu(M)], recv2!M[seq(M) eqD] B1(0))/{}=t0 *B’

This succeeds with the following trace, where the actions identified in the query match the third
and the fifth action (see Figure 6-5):

t=0 Userl ID:Data,
sendl 'makepdu(D, 0):Mess,
LOST !'makepdu(D, 0):Mess,
sendl !makepdu(D, 0):Mess,
recv2 !makepdu(D, 0):MeSs

—»Userl Usert»
sendl® ®sendl recv2®™ —»recy?2
Userl recvi<- <recyl  send2e <—send? User2
D
D,0
N/
N
LOST
D,0
D,0
Source Sender Channel Receiver | Sink
Protocol

Figure 6-5 MSD 1 Protocol Property P2

P3 “Is it possible that when an acknowledgment is lost by the medium, the protocol source entity
will re-send the same PDU with the same sequence?”. This can also be described by associating
selection predicates to the desired ordered actions as:

(O send1?M1:Mess,
LOST?M2:Mess[is_ack(M2) and (seq(M1) eq seq(M2))],
send1!M1] B1(0))/{}=t0 *B’
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This succeeds with (see Figure 6-6):

t=0 Userl ID:Data,
sendl 'makepdu(D, 0):Mess,
recv2 !'makepdu(D, 0):Mess,
send2 'makeack(0):Mess,
LOST !'makeack(0):Mess,
sendl 'makepdu(D, 0):Médss

—Userl Usert®»
sendlI®™ ®sendl recv2®™ —»recy?
Userl recvl<- <recvl send2<e— <—send?
D
D,0
D,0
Ack0 |
><Ack0
D.0 LOST
Source Sender Channel Receiver
Protocol

User2

Sink

P4 “Provide examples of traces where the source entity sends a PDU with sequenceXnumber
after receiving an acknowledgment with sequence nuodmeplement(X) This can described

as:

Figure 6-6 MSD 1 Protocol Property P3

(O recvl?M1:Messlis_ack(M1)],

send1?M2:MessJis_pdu(M2) and (seq(M2) eq compl(seq(M1)))B1(0))/{}=tC *B’

The following is one possible trace (see Figure 6-7):
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t=0 Userl !D1:Data,
sendl !'makepdu(D1, 0):Mess,
recv2 !makepdu(D1, 0):Mess,
send2 'makeack(0):Mess,
User2 !D1:Data,
recvl!makeack(0):Mess,
Userl !D2:Data,
sendl !makepdu(D2, Succ(0)):Méss

—Userl Usert®»
sendl® —®sendl recvZ® g iacy2
Userl recvl<- <recvl send2€- g send?
D1
D1,0
D1,0
AckO |
D1
Ack 0
D2
D2, SucchI
Source Sender Channel Receiver
Protocol

User2

Sink

Figure 6-7 MSD 1 Protocol Property P4

P5 “Verify that it is not possible for the source entity to send a PDU with sequence ngmber
immediately after receiving an acknowledgment with the same sequence {inlies can

described as:

(O recvl?M1:Messlis_ack(M1)],

send1?M2:MessJis_pdu(M2) and (seq(M2) eq seq(NIL))] B1(0))/{}=t0 *B’

This goal is evaluated to false, so the query is satisfied.

Note that satisfying queries P4 and P5 implies that the following property is satisfied:

133




Chapter 6 Goal-Oriented Execution Applications

“When the source entity sends a PDU after receiving an acknowledgment with sequence
numberX, the sequence number of that PDWdasnplement(X)

Semantic Properties and Queries

S1 “Provide an example of a trace that leads User2 to receive a message?”. This can be described
as:

(User2?D:Data, B2)/{}=t0 * B’
This will be satisfied with
t = [Userl!D:Data, User2!DDatall

for any data messadesupplied byUserl Note that here the underlying protocol that
guarantees the delivery of a message fus@rlto User2is hidden from the environment and,
therefore, its actions, i.e. sequencesxfare not part of the desired traces.

S2 “Is it possible forUser2to receive a messageldterldoes not send a message?”. This query
can be described by reachidger2without passing througtiserlas follows:

(User2?D:Data, B2)/{User1¥td * B’

This relation will not hold, indicating that it is not possible Wser2to receive a message
withoutUserlsending a message. Note that the failure of this relation is caused by the fact that
no static derivation paths that leadiser2without passing througbserlwere found, i.e.
>(User2?D:Data, B2, {User)}=01. See lemma 4-3.

S3 “Check that ifUser2receives a message then this message is first seiseby/. This property
is stronger than the previous one in the sensé&ge2will receive a message only if it is sent
by Userl This can be accomplished by first defining the property as a logical expression on
traces wheré] , [J, [J, and- are the@mplication or, and, andnegationsymbols respectively.
The operators defined in section 3.2.3, are also used in the expressions.

Ot ((t" = User2?D2:Data)] ( (Userl?D1:Datalt) [1(D1=D2)))

which is equivalent to

Ot (~(t" = User2?D2:Data) ( (Userl?D1:Datal t) [1(D1=D2)))

134



Chapter 6 Goal-Oriented Execution Applications

and transforni] to O

A (=(=(t" =User2?D2:Data)]( (Userl?D1:Datd] t) 0(D1=D2))))

which is equivalent to

[ ((t" = User2?D2:Data)] ( ~(Userl?D1:Datall t) 0-(D1=D2) )

which can be divided into:
[ ((t" = User2?D2:Data)]~(User1?D1:Datall t) ), and

= [ ((t" = User2?D2:Data)]( (Userl?D1:Datal t) 1 -(D1=D2)))

These can be described using the following queries respectively:
(User2?D1:Data, B2)/{User1¥t0 * B’ should not hold, and

(Wser1?D1:Data, User2!D2:Data[D1 ne D2]B)/{} =t0 * B’ should not hold, and

we add another query to determine the existence of a trace thdtfadto receive the same
message sent hyserlas:

(Wser1?D:Data, User2!D:Datg B)/{} =t0 * B’ should hold

The first two queries are evaluated to false while the third query yields to

t = Wserl!D:Data, User2!EDatal]

S4 “If a message is sent biserlthenUser2will definitely receive the same message”. This
property is not expressible by relatidng and *, since we have to guarantee that all possible
traces aftetJserlsends a message leadJger2receiving the same message, i.e. absence of
livelocks or deadlocks betweérserlandUser2 For example, the fact that relation
(Wserl1?D:Data, User2!MDatal} B)/{} =t0 * B’ holds simply implies that a trace satisfying
the property can be found and does not imply tssr2will definitely receive the message
sent by Userl. Modification of relations™ and * to express deadlocks and livelocks is an
item for future work, see section 7.2.
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6.3 Scope of Application

Other than being a relief strategy for state space explosion, we foresee several applications for
the techniques discussed in this thesis. These applications are described in the following sections.

6.3.1 Step-by-step execution

Narrowing Technigue

In step-by-step Execution, the narrower can help in: (a) eliminating actions associated with
unsatisfiable predicates, (b) supplying the user with possible values for variables in an action
satisfying its corresponding predicate. For example, consider the following LOTOS process:

process dummy(a,b,c] (X:nat) :=
a?Y:Nat[Y<X]; c!Y!X;stop
I
b?Y[Y>=X]; dummy[a, b, c](succ(X))
[l
a; b; p[a,b]

endproc.

The possible initial actions for the process dalnmy[gl,g2,93](0are:g1?Y:Nat[Y<O0]
g2?Y[Y>=0]andgl

The predicat¢Y<0] of the first action cannot be satisfied for any valu¥ @nd therefore the
action can be eliminated. On the contrary in the second action, the narrower can provide a value
succ(O)for Y.

Static Analyser

During step-by-step execution, the user can determine if the execution of an offered action may
lead to his/her intended targeted action. This is possible by applying the static analyser on the
resulting behaviour expression of the action. If no static derivation paths were found by the
analysis, then the action is not suitable for execution, see lemma 4-3. For example, using the
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process definition above, the possible initial actions for the proceskioaihy[gl,92,93](0are:
g1?Y:Nat[Y<0] g2?Y[Y>=0] andgl If the user’s intent is to reach an action with ggethe
static analyser can determine that selecting agtlas undesirable.

The user may also choose one of the generated static derivation paths to be followed by step-
by-step execution. In this case, the possible next actions that do not comply with the chosen SDP
will be eliminated.

Goal-Oriented Execution

The user may request reaching the targeted action directly by applying goal-oriented execution,
or reaching a desired intermediate action then continue the normal step-by-step execution.

6.3.2 Symbolic execution

Narrowing Technigue

The narrowing technique can help in pruning branches from the symbolic graph with
unsatisfiable guards or predicates. This will reduce the graph considerably. Also, the narrower can
help in transforming paths from the symbolic graph into execution traces by providing values for
the free variables, which will satisfy all guards and predicates.

Guided-Inference System

A symbolic graph is constructed by first generating all possible next actions and their resulting
behaviour expressions using an unguided inference system. The same process is then repeated on
all the resulting behaviours that have not been already encountered. Using the guided-inference
system, the construction of a symbolic graph can be restricted by a given property. This is very
useful in the sense that the graph will only include the possible symbolic paths that satisfy the

property.
6.3.3 Random Walk

Narrowing Technigue

Narrowing can also assist in exercising randomly the dynamic behaviour of a given process, by
providing valid values for variables encountered during the walk. For example, random values can
be generated by applying a random function on a set of values generated by the narrower.
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Static Analyser

Similar to step-by-step execution, by applying the static analyser on the resulting behaviour
expressions of all offered actions, random walk can select (randomly) one of the next actions that
may lead to an intended targeted action. Actions with no static derivation paths found by the
analysis on their resulting behaviours are excluded from the selection set.

Goal-Oriented Execution
Random walk can also be applied by the goal-oriented execution algorithm where static

derivation paths and values offered by the narrower can be selected randomly, see step 2 and step
6 of the algorithm in section 3.8.

6.3.4 Data-Flow Analysis

Static Analyser/Guided-Inference System

van der Schoot and Ural [136] have demonstrated the use of our techniques to perform data
flow analysis and to generate data flow oriented test sequences. First, a flow graph is constructed
modeling both control and data flow aspects expressed in the specification. In this flow graph,
definitions and uses of each variable occurrence employed in the specification are identified. Static
derivation paths for a specific node in the graph are then obtained and fed to a guided-inference
system to obtain test sequences satisfying a specific data flow criterion. Unfortunately, further
explanation of their technique would require the introduction of many definitions.

6.3.5 Temporal Logic Properties

Goal-Oriented Execution

Some temporal logic properties can be checked using the relatibasd * described in
chapter 3. The following are some examples.

“from the current behaviour B, if action altrue can be reached then action b!falsel0 can be
reached after

can be expressed as:

if (altrue,B)/{} =t,;0 * B’ holds then(b!false!0,B")/{}=t,0 * B” also holds,
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and the property

“from the current behaviour B, it is not possible to reach action altrue without reaching an
action with gate name’b
can be expressed as:

(altrue ,B)/{b}=t0 * B’ should not hold,

and the property

“from the current behaviour B, it is not possible to reach action altrue after reaching action
blfalse!0

can be expressed as:

(b!false!q altruelB)/{} =t0O * B’ should not hold,

6.3.6 Test Cases generation

Goal-Oriented Execution

A large part of testing theory relates to the problem of selecting test sequences satisfying
certain requirements, called test intents. Our technique can help finding such sequences by
representing the test intents using relatidrisandd *. For example, the results of the queries
applied in section 6.2 on the specification of the Alternating Bit Protocol can be mapped into test
cases for the implementation of such a design.
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Chapter 7 Conclusion

7.1 Contributions

In chapter 2, we have summarized existing work in the area of protocol validation and
verification, and we have presented some existing intrinsic problems, mainly the state space
explosion problem. We have surveyed many attempts to overcome these problems in various ways,
especially those using Communicating Finite State Machines models and the formal description
technique LOTOS. In the following chapters, we have presented our approach to these problems
for protocols specified in LOTOS using a search technique aadlaidoriented executionn this
technique, traces satisfying a given property are derived. These traces are modeled using relations
0 %and 0% (a,B)/G=t0 * B’ defines the derivation of behavidBion a tracé leading to a
matching targeted actia without passing through any other action with gate nané in
(By,...,a,0)B)/G=t0 * B’, on the other hand, defines the derivation of behaBarm a trac,
such that contains a predetermined series of matching acfiajis..,a,'}, not necessarily
contiguously, without passing by any other action with gate na@éim([ay,...,a,0. The goal-
oriented execution technique results from the combination of:

1- astatic analyser establishes the scope of the search by determining where, in the LOTOS
specification, a given property can possibly hold,

2- guided-inference systena new type of inference system which uses the scope information
generated by the static analyser to generate variable traces satisfying the temporal ordering
restriction specified in the given property, and

3- narrower engine is an automatically generated tool, called ERNAL, which is capable of
evaluating and solving LOTOS ADTSs expressions.

In chapter 4, we have presented the formal definition of the static analyser and of the guided-
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inference system and we have illustrated a sketch for the correctness of such techniques. Also in
that chapter, we have exposed the limitations of the applicability of the static analyser and of the
guided-inference system techniques, along the added heuristics. The method of automatically
generating the narrower engine from a given Abstract Data Type definition was explained in detail
in chapter 5. Finally, in chapter 6, we have demonstrated how the goal-oriented execution
technique can be applied for verification, and how it can be used, along with other techniques
discussed in this thesis, to enhance existing verification methods.

The goal-oriented execution technique was first to be reported for basic LOTOS in [68]. In

parallel with this thesis’ work, a similar technique applying full LOTOS was developed at
University of Twente [38]. Their approach differs from ours in the following ways:

The goal used in their technique is a selected sub-behaviour expression in the overall
specification. They claim that it is more logical to have a state of the specification as a goal than
an action denotation. However, since there may exist sub-behaviour expressions that do not
correspond to reachable states. For example, the sub-behaviour ex@gsgan the
expressiorb;a;c;stop |[a,b]| b;a;stop is not a reachable state, althowagtystop |[a,b]| a;stop

is a state.

Their algorithm is not recursive in nature. For example, to reach a sub-behaviour that occurs
on the right hand side of an enable operator, an execution trace that leads to an action with gate
0 is needed from the left hand side of the enable operator. To do so, they are obliged to use a
method that reaches an action denotation, like ours, rather than reaching a behaviour
expression.

To select a sub-behaviour expression as a goal, the verifier must be familiar with the code of
the specification, i.e. the specification must be seen as a white box. Our technique is suitable
for a black box verification strategy, where the verifier needs only the knowledge of the
interaction structures. See the introduction of chapter 6.

The initial derivation of their static information is re-visited to remove all unsatisfied paths.
This is not needed in our approach, since unsatisfied paths are not even constructed.

Their inference system is less powerful than ours in handling synchronizations caused by
parallel operators. For example, when their system is directed into one side of a parallel
operator towards an action, saythat must synchronize sggnch-failureexception is raised if

no transition is found on the other side of the parallel operator that can synchronize with action
a. The exception must then be handled by the user. This situation is completely handled by our
inference system. See section section 4.2.1.
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» Their narrower technique is borrowed from [152], while the technique used by our narrower is
new. We believe that our approach can lead to a more efficient execution.

7.2 Future Work

We believe that our technique is a powerful verification tool for LOTOS specifications. It
provides an attractive and simple representation for the user objectives and is supported by an
efficient implementation. In order to make the technique even more valuable, the following items
are considered for future work:

1- Applying the technique to verify real-size protocols. Additional heuristics will probably be
needed to cut search time.

2- Maximizing the functionalities of the static analyser. Doing so, the execution complexity can
be reduced. One functionality that can be added is the static construction of complete derivation
paths. For example,

>(d, a;d |[[a]] b;a;stop, {}) ={ [ parallel([prefix, prefix], [prefix, prefiX] }

where the left behaviour and the right behaviour of the parallel operator need to be evaluated,
while

>(d,a;d [[a]| b;a;stop, {b}) = OI.

3- Modifying the relatiori] * to represent contiguous actions. For example, one could write
“aq,May” to express the fact that actiap must immediately follow actioa, in the desired
trace.

4- Other than the restricted gate set that applies globally on all actions in relati@msid *,
restricted gate sets for specific actions can also be applied. For exapmp#G” can identify
a restricted gate s€tspecifically for actioray, i.e. all actions between actiapand actiora,
should not have a gate namean

With these new notations, we claim the following equivalences:
(@, "a,[)B)/G=t0 * B’ = ([&y, ay/{*} [)B)/G=t0 * B’
In other words, saying that actiap must follow immediately actioa; (expressed by

“aq,May"), is the same as saying that the set of all actions between agctowl actiora, are
restricted (expressed By 1, ao/{*} ).

(By,...,a,0)B)/G=t0 * B’ = ([&4/G, ..., a/GL B)/{} =t0 * B’
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This identifies the fact that the application of the global restricte@ seequivalent to its
application on each identified action.

Modifying the restricted gate set to represent the absence of livelocks and deadlocks identified
by 0 andJrespectively. This is obviously undecidable especially when dealing with an infinite
execution space, but we believe that tackling these problems with appropriate limitations is
definitely important. For example, the following property of the alternating bit protocol, stated
in section 6.2,

“If a message is sent hyserl, thenUser2will definitely receive the same message”,
can be expressed as:
(Wserl1?D:Data, User2!EData/{[J, «}[) B)/{} =t00 * B’

assuming that fairness is applied. This implies that any execution path taken after action
Userl?D:Datais executed will eventually lead to actioser2!D.Data. In our technique,
fairness is handled by limiting recursion. See section 4.1.3 and section 4.2.3.
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Appendix A - Alternating Bit Protocol

Appendix A - Alternating Bit Protocol

This protocol provides a reliable, uni-directional data transfer service between two users, Userl
the source and User2 the sink.

The protocol uses an unreliable full duplex one place channel to transfer protocol data units
(PDUs) and acknowledgments. To ensure that the messages sent by Userl are received in the
correct order by User2, the protocol associates a sequence number, alternating between 0 and 1,
with the delivered (PDUs) and acknowledgments. Figure A-1 illustrates the overall composition of
the Sender and the Receiver entities, associated with Userl and User2 respectively, and the
unreliable channel. The gates used by the protocol to communicate with the channel are hidden
from the environment, i.e. the users. The overall structure can be seen as follows:

Userl User2
LiST
Sender Receiver
sendé | ! I recv;
Channel
~tecvi L ¢ Tend2
Protocol LOST

Figure A-1 Overall structure of alternating bit protocol and service

The servicabp_servicénas two interaction points through gateserlthe source andser2
the sink. They both allow one event of dddta. A value of sorDatais simply any natural
number.

The protocol, specified in procealp, is a composition of three entities, the sender, the
receiver and the unreliable channel. The sender entity sends PDUs and receives acknowledgments
by communicating with the channel through gatesdlandrecvlrespectively. The receiver
entity receives PDUs and sends acknowledgments by communicating with the channel through
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gatessend2andrecv2respectively. The PDUs and the acknowledgments are both dfesst
GateLOSTis added to the channel process to identify the loss of a message.

specificationabp_service[Userl,User2hoexit
library
Boolean, NaturalNumber, Bit
endlib
(* messages sent by Userl or received by User2 are of type Data, which are simply
natural numbers *)
type DataTypes NaturalNumberenamedby
sortnamesDatafor Nat
endtype
(* Acknowledgments and PDUs are both of type Mess.An acknowledgment is constructed
by the operator makeack(Bit) that carries the sequence bit of the message to be
acknowledged.A PDU is constructed by the operator makepdu(Data, Bit) that carries the
message to be sent and the associated sequence bit. is_ack(Mess) and is_pdu(Mess) are
boolean operators that determine if the given Mess is an acknowledgment or a PDU
respectively *)
type messagés DataType, Boolean, Bit
sorts Mess
opns
makeack : Bit -> Mess
makepdu : Data,Bit-> Mess
compl: Bit -> Bit
is_ack: Mess -> Bool
is_pdu: Mess -> Bool
data : Mess -> Data
seq : Mess -> Bit
egns forall D:Data, S1,S2:Bit
ofsort Bool
is_ack(makeack(S1)) = true;
is_ack(makepdu(D, S1)) = false;
is_pdu(makeack(S1)) = false;
is_pdu(makepdu(D, S1)) = true;
ofsort Data
data(makepdu(D,S1)) = D;
ofsort Bit
seq(makeack(S1)) = S1;
seg(makepdu(D, S1)) = S1;
compl(1) = 0;
compl(0) = 1,
endtype
behavior
hide send1l, recvl, send2, recv2, LORT
abp[Userl, User2, sendl, recvl, send2, recv2, LOSTE)
where
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processabp[Userl, User2, sendl, recvl, send2, recv2, LOST]
(s_seq:Bitnoexit:=
(sender [Userl, sendl, recvl, LOST] (s_seq)
If
receiver[User2, send2, recv2] (s_seq) )
[[sendl, recvl, send2, recv2, LOST]|
channel [sendl, recvl, send2, recv2, LOST]

where
(* The protocol entity ‘sender’ receives a message from Userl and delivers it, then
repeats the same process *)
processsender[Userl, sendl, recvl, LOST](s_seq:Biexit :=
Userl?D:Data;
(deliver[send1, recvl, LOST](D, s_seq) >>
sender[Userl,sendl, recvl, LOST](compl(s_seq)))
where
(* The delivery process sends a PDU containing the message sent by Userl along with
the associated sequence bit. If it receive the proper acknowledgment for the PDU then
the message is delivered. If not, it re-sends the same PDU once again until the proper
acknowledgment is received*)
processdeliver[sendl, recvl, LOST]|(D:Data; s_seq:Bgxit :=
send1l!makepdu(D, s_seq) ;
(wait_ack[recvl, LOST](s_seq) >a&eceptok : Boolin
([ok] -> exit
I
[not(ok)] ->deliver[sendl,recvl,LOST](D, s_seq) (*re-deliver message *)
)
)
where
processwait_ack[recvl,LOST] (s_seq:Bitexit(Bool) :=
(recvl?M:Messl[is_ack(M)]exit(seq(M) eq s_seq))
I
LOST?M:Messgxit(false)(* LOST *)
endproc
endproc
endproc
(* The protocol entity ‘receiver’ waits until a PDU is ready to be received from the
channel. When it receives a PDU it acknowledges it and then it delivers the associated
message to User2 only if the associated sequence bit is the one expected. *)
processreceiver[User2, send2, recv2](r_seq:Bmpexit :=
recv2?M:Mess [is_pdu(M)];
([seq(M) eq r_seq] -> send2!makeack(r_seq) ;
User2!data(M);
receiver[User2, send2, recv2](compl(r_seq))
[l

[seq(M) ne r_seq] -> send2!makeack(compl(r_seq));
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receiver[User2, send2, recv2](r_seq)
)
endproc
(* unreliable channel: when a message is sent through the channel on gate send1 or send2,
at can be delivered on gate recvl or recv2 respectively or the channel may lose it if
the internal actionis executed *)
processchannel [sendl, recvl, send2, recv2, LOSWexit :=
uni_channel[sendl, recv2, LOST] ||| uni_channel[send2, recvl, LOST]
where
process uni_channel[send,recv,LOST]: noexit :=
send?Msg:Mess;
(recvIMsg; uni_channel[send,recv,LOST]

I
i; LOST!Msg; uni_channel[send,recv,LOST])(* message lost *)
endproc
endproc
endproc
endspec
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abp_service[Userl,User?]

BO

hide send1, recvl, send2, recv2, LOST

Bl

abp[Userl, User2, sendl, recvl, send2, recv2, LOSTERX)

abp[Userl, User2, send1, recvl, send2, recv2, LOST](s_seq:Bit)

channel [send1, recvl, send2, recv2, LOST]

sender [Userl, sendl, recvl, LOST] (s_seq) receiver[User2, send2, recv2] (s_seq)

Figure A-2 Top level view of alternating bit protocol and service
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sender[Userl, sendl, recvl, LOST](s_seq:Bit)

G)

Userl?D:Data

B8

‘= i ‘H

deliver[sendl, recvl, LOST](D, s_seq) sender[Userl,sendl, recvl, LOST](compl(s_seq))

deliver[sendl, recvl, LOST](D:Data,s_seq:Bit)

B11

sendl!makepdu(D,s_seq)

B12

>> acceptok
[ok] -> not(ok)] ->
wait_ack[recvl, LOST](s_seq)

exit deliver[sendl,recvl,LOST](D,s_seq)

wait_ack[recvl,LOST] (s_seq:Bit)

recvl?M:Messl[is_ack(M LOST?M:Mess

I
B18

exit(seq(M) eq s_seq)) exit(false)

Figure A-3 Alternating Bit Protocol - Sender
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receiver[User2, send2, recv2](r_seq:Bit)

B20

recv2?M:Mess [is_pdu(M)]

[seq(M) eq r_seq] -> [seq(M) ne r_seq] ->

B22 B23

send2!makeack(r_seq send2!makeack(compl(r_seq)

69 B25

receiver[User2, send2, recv2](r_seq)

User2!data(M)

B26

receiver[User2, send2, recv2](compl(r_seq))

Figure A-4 Alternating Bit Protocol - Receiver

150



Appendix A - Alternating Bit Protocol

channel [sendl, recvl, send2, recv2, LOST]

>>

uni_channel[sendl, recv2, LOST] uni_channel[send2, recvl, LOST]

uni_channel[send,recv,LOST]

B30

send?Msg:Mess

B31

B32 B33

e

uni_channel[send,recv,LOST]

recviMsg

LOST!Msg

B36

uni_channel[send,recv,LOST]

Figure A-5 Alternating Bit Protocol - Unreliable Channel
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