
An Interactive System for LOTOS Applications
(ISLA)

by
Mazen Haj-Hussein

THESIS SUBMITTED
TO THE SCHOOL OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
MASTER OF COMPUTER SCIENCE DEGREE

at the
UNIVERSITY OF OTTAWA

August 1988
Copyright, Mazen Haj-Hussein, Ottawa, Canada, 1988

ABSTRACT
LOTOS is a Formal Description Technique developed to specify protocols and services for

the Open Systems Interconnection. It is expected to become an ISO standard in the very near
future.

The topic of the thesis is the development and the implementation of an interpreter for
LOTOS specification behaviours called ISLA (Interactive System for LOTOS Applications).
ISLA is the central part of the LOTOS interpreter developed by the Protocols Research Group of
the University of Ottawa.

ISLA allows users to simulate the execution of a specification and check whether it behaves
correctly. The simulation can proceed either under user guidance, by directing the execution step-
by-step, or by symbolic execution. The thesis includes the description of the most important
features of ISLA that help to obtain an analysis of the specification under simulation.

The thesis is structured as follows: In chapter 1, an overview of the thesis motivation and
of the methodology is introduced, and the overall structure of the University of Ottawa LOTOS
Interpreter is presented. The next chapter covers the syntax and semantics of LOTOS. In chapter
3, a detailed description of ISLA’s functionality is given. Chapter 4 describes the implementation
of important functions supported by ISLA. Chapter 5 reports on our experiences in simulating a
real system: the OSI Transport Service provider. Proposed tracing methodologies are also
presented. Finally, the conclusion of the thesis follows in chapter 6.

A table of the syntax of LOTOS behaviour constructs is given in Appendix A. A LOTOS
specification is constructed in Appendix B. In Appendix C, we demonstrate the user interface of
ISLA by a session log of a simulation. The commands supported by ISLA, together with their
descriptions, are listed in Appendix D. The Internal Form syntax of LOTOS specifications is
presented in Appendix E. Finally, Appendix F includes the implementation of the inference rules
in Prolog.

Acknowledgments
I am most grateful to my supervisor, Dr. Luigi Logrippo, for all the guidance and advice

that he has given me throughout my graduate studies.
I acknowledge the contributions made by the University of Ottawa LOTOS group; in

particular A. Obaid for his many useful discussions. The compiler part was written by J.P. Briand
and the abstract data type interpreter was implemented by M.C. Fehri. B.Stepien and R. Guillemot
also collaborated in the programming. Useful comments were also given by J. Sincennes. In
addition, the LOTOS group at Twente University have been generous in sharing their experiences
with our group.

I would like to thank the Natural Sciences and Engineering Research Council for a
scholarship and additional funding. This work was also supported in part by Bell-Northern
Research.

Finally, I would like to express my deepest thanks to my wife, Allyson, for her patience and
support.

Table of Contents
Chapter 1: Introduction 1

1.1 Motivation of the Thesis 2
1.2 The University of Ottawa LOTOS Interpreter 3
1.3 Previous Work 4

Chapter 2: Overview of LOTOS 6
2.1 Introduction 6
2.2 Data Type Component 6
2.3 Control Component 9

2.3.1 Processes 9
2.3.2 Actions 10
2.3.3 Types of Interactions 10
2.3.4 Behaviour Expressions 12

2.3.4.1 Inaction 14
2.3.4.2 Action Prefix 14
2.3.4.3 Internal Action Prefix 14
2.3.4.4 Choice 14
2.3.4.5 Guarded Behaviour 16
2.3.4.6 Process Instantiation 16
2.3.4.7 Local Definition 18
2.3.4.8 Summation on Gates 18
2.3.4.9 Summation on Values 18
2.3.4.10 Parallel Composition 19
2.3.4.11 Hiding 20
2.3.4.12 par-Expression 21
2.3.4.13 Successful Termination 21
2.3.4.14 Disable 21
2.3.4.15 Sequential Composition (enable) 22
2.3.4.16 Sequential Composition with Value Passing (enable) 22
2.3.4.17 Relabelling 23

2.3.5 The Functionality of LOTOS Behaviour Expressions 24
2.4 Inference Rule Semantics 27

2.4.1 Inference Axioms 28
2.4.1.1 Action Prefix 29
2.4.1.2 Successful Termination 30

2.4.2 Inference rules 31
2.4.2.1 Local Definition 31
2.4.2.2 Guard 31
2.4.2.3 Choice 32
2.4.2.4 Hiding 32
2.4.2.5 Nested 33
2.4.2.6 Parallel 33
2.4.2.7 Enable 35
2.4.2.8 Disable 37 2.4.2.9 Summation on Values 37
2.4.2.10 Relabelling 38

2.4.2.11 Summation on Gates 39
2.4.2.12 par-Expression 39
2.4.2.13 Process Instantiation 40
2.4.2.14 stop 40

2.4.3 Example 40
Chapter 3: Functionality of ISLA 45

3.1 Introduction 45
3.2 Function Description 47

3.2.1 Menu of existing Processes 47
3.2.2 Menu of Possible Actions and Next Behaviours 48
3.2.3 The Back and Level functions 50
3.2.4 Check Point Setting 50
3.2.5 Menu of Check Points 51
3.2.6 Saving a Check Point into an Executable File 52
3.2.7 User-Defined Data 52

3.2.7.1 Constants 52
3.2.7.2 Value Expression Sets 53

3.2.8 External Displays 55
3.2.9 Valid Sort Equations 56
3.2.10 Menu of evaluated Guards and Value Expressions 57
3.2.11 Analysis Reports 57

3.2.11.1 Symbolic Execution 57
3.2.11.2 History of Actions 58

Chapter 4: ISLA Design and Implementation 60
4.1 General Structure 60
4.2 Internal Form Representation 62
4.3 Behaviour Tree Semantics 66
4.4 Summation on Values Implementation 68
4.5 The Inference System 73

4.5.1 Inference Axioms 73
4.5.2 Inference rules 74

4.6 Inference System Implementation 78
4.6.1 One-to-One Implementation 80

4.6.1.1 Axioms 80
4.6.1.2 Inference rules 80

4.6.2 Combining Rules for Effeciency improvement 84
4.6.3 Line Numbers and Process Instantiations 86

4.7 Menu of "next actions" construction 87
4.8 External Displays 88
4.9 Representation of History 89
4.10 Check Points and Automatic Execution 91
4.11 Symbolic Behaviour Tree 92

Chapter 5 Executing Large Specifications 95
5.1 Performance Characteristics and Useful Features 95
5.2 Tracing Methodology 96

5.2.1 One-Stepper method 97
5.2.2 Using Symbolic Trees 98
5.2.3 Using Testing Processes 99

Chapter 6 Conclusions and Future Work 100
6.1 Conclusions 100
6.2 Future Work 101

Appendix A: LOTOS Behaviour Expressions’ Syntax 103
Appendix B: Construction of a LOTOS specification 104
Appendix C: Simulating a LOTOS specification using ISLA 107
Appendix D: ISLA’s Commands 119
Appendix E: Internal Form Representation 125
Appendix F: Inference Rules Implementation 129
References 131

J Interactive System for LOTOS Applications ___________________
J____________________________________ Chapter 1 Introduction

Chapter 1: Introduction
The International Organization for Standardization (ISO) has been working on the

development of international standards for Open Systems Interconnection (OSI). The purpose of
OSI is to provide common basis standards, meant to be implemented in compatible ways across
the world, enabling heterogeneous computer systems to communicate meaningfully with each
other. These standards include a framework, called OSI Reference Model, the services offered by
each layer of that model, and the protocols that are needed to provide those services.

All these standard protocols and services are currently specified by informal methods,
consisting of natural languages and various semi formal notations. This could easily lead to
misinterpretation of the standards by some implementors, thus resulting in incompatible
implementations. Furthermore, this makes it impossible to carry out rigorous analysis of the
standards at the specification level. For these reasons ISO has recognized the need of Formal
Description Techniques (FDTs) to provide the basis of OSI standards.

The main objectives of such FDTs are to make it possible to produce unambiguous, precise,
and complete standard specifications, and to provide a formally well-defined basis for the
verification and validation of the standards prior to implementation, as well as conformance testing
after implementation.

LOTOS (Language Of Temporal Ordering Specification) is an FDT being standardized
within ISO for formally specifying protocols and services of the Open Systems Interconnection
[OSI1]. LOTOS is also applicable to distributed systems beyond OSI such as telephone switching
systems.

LOTOS has two components: a ’data’ component that deals with the description of data
structures and value expressions based on the formal theory of Abstract Data Types ACT ONE
[JDM], and a ’control’ component that describes the externally observablebehaviour of the
system. This component is based on Milner’s CCS (Calculus of Communicating Systems) [MIL]
and Hoare’s CSP (Communicating Sequential Processes) [Hoare].

One of the most important features of LOTOS is the fact that thedynamic semantics of a
specification’s behaviour are precisely defined in terms of inference rules that make it possible to
determine its meaning unambiguously [ISO1]. Transforming these rules into equivalent executable
rules makes LOTOS an executable FDT.
1.1 Motivation of the Thesis

Some questions of principle could be asked about writing an interpreter for a specification
language such as LOTOS. Specification languages, unlike implementation languages, do not have
to be executable, although a methodology for obtaining an implementation from a specification is
highly desirable. LOTOS’ philosophy involves executability, even if it is possible to obtain
LOTOS constructs that are non-executable, or executable only very inefficiently (such constructs
would have to be modified in order to be able to run the specifications containing them with our
interpreter). The advantages of being able to execute specifications, although possibly
inefficiently, are several. One is the fact that the behaviour of the specification can be checked with
respect to the intended behaviour of the entity. Other applications involve test sequence generation,
etc [URS].

The main motivation behind this thesis is the development of a tool to prototype the
dynamic behaviour of LOTOS specifications.

The tool features some useful characteristics, such as:
a) portability: the tool is implemented in an environment that is widely used in research

establishments, so that it could be used on most popular systems.
b) modularity: the tool is well modularized such that functionalities can be easily modified,

added, or tested.
The basic operation of such a tool is to allow step-by-step execution of LOTOS

specifications. At each step, all possible actions are offered and the user can choose the action (s)he
wants to execute next. In this way, the user can check whether the actions conform to the ones
expected by the designer of the specification.

This tool can also be used to study certain protocols in detail. For example, to determine if
a given sequence of interactions is acceptable by the protocol, what exactly can happen at a given
point, etc. It can also be used as a tutorial
tool for teaching LOTOS, to show how a given specification behaves.
1.2 The University of Ottawa LOTOS Interpreter

The Protocols Research Group of the University of Ottawa has developed various
’LOTOS-Based’ interpreters for the last three years.

The current interpreter is based solely on the specification of LOTOS. The structure of the
interpreter is shown in figure 1.1. It corresponds to the structure described in [LOBF].

First, the LOTOS specification source is checked for its syntax and static semantics
according to [ISO1], and, if it is found to be correct, an equivalent ’internal’ Prolog form is
generated. These functions are written in C and constitute the LOTOS compiler.

The real LOTOS interpreter runs on the internal representation of the data and control
components. It consists of two interpreters: TheADT Interpreter which validates and evaluates
value expressions. This interpreter is calledSVELDA (System for Validating and Executing
LOTOS Data Abstractions) [FEH]. And theBehaviour Interpreter called ISLA (Interactive
System for LOTOS Applications) which helps to "prototype" the dynamic behaviour of LOTOS
specifications. These interpreters are programmed in Prolog under the Unix operating system.

The construction of theISLA was done by the following steps:
Step 1. Mapping the definition of the inference rules of LOTOS
 dynamic behaviours to a constructive definition.
Step 2. Transforming the latter inference rules into equivalent
 executable rules in a systematic way.
Step 3. Rewriting the latter inference rules in such a way that
 their function will be realised more efficiently, by
 preserving their correctness.
Step 4. Developing functions that help analyzing important
 aspects of the dynamic behaviour of LOTOS specifications.
Step 5. Develop a user interface, enabling users to perform the
 above functions on a given specification.
The above five steps is the work of the author. The other elements of the interpreter were

implemented by other members of the group.

LOTOS Specification
(ADT and Control)

 |
+-----------+----------+

| Syntax and |
| Static/Semantics |

| Analyzer |
| |

| (LOTOS Compiler) |
+-----------+----------+

|
internal form

+-- representation -+
 |

 |
+--------+--------------------+--------+

| +------+------+ +------+------+ |
	ADT +------+ Behaviour			
	Interpreter		Interpreter	
	(SVELDA)		(ISLA)	

| +-------------+ +-------------+ |
| (LOTOS Interpreter) |

+--------------------------------------+
Figure 1.1 The LOTOS Interpreter Structure.

1.3 Previous Work
The first ’LOTOS-Based’ interpreter was developed by Jean-Pierre Briand and Abdel

Obaid, members of the Protocols Research Group of the University of Ottawa. The interpreter was
called SINAPS (for Simulation and INference rules APplication System) [OBA2]. SINAPS was
based on the theory of CCS and was developed as an experimental tool, rather than a production
tool able to undertake large jobs. Obaid was the first to show how the semantics of LOTOS, defined
in terms of inference rules, could be programmed in Prolog [OBA1].

In [PAP] a step-by-step simulator for the specification language ECCS (Extended CCS) is
presented. This tool was programmed in Prolog.

A trace generator for CSP, also written in Prolog, is described in [KOR] where all traces up
to, but not including, terminationor recursion can be generated.

Very recently, a LOTOS simulator called HIPPO was developed in ESPRIT/SEDOS
(Software Environment for the Design of Open Systems) project. This work was sponsored by the
Commission of the European Community and it was based on the simulator tool discussed in
details by Peter van Eijk in his Ph.D. thesis [EIJ]. HIPPO also consists of a compiler and an
interpreter where both are programmed in C. The main advantage of programming the interpreter
part in C with respect to Prolog is that it is more efficient. However, we have found that Prolog was
also a very appropriate language for such a tool, because of the following reasons:

1) LOTOS operational semantics can be specified in a natural way
using Prolog clauses.
2) via backtracking in Prolog, all solutions can be generated for
one goal.
3) using unification, a copy of a Prolog structure can be
obtained and direct substitutions can be performed easily,
where these operations are often used during simulation.

4) since Prolog is an interactive language, any functionality of
the interpreter can be easily tested, removed or added.
Using an optimized definition of the derivation semantics, discussed in chapter 4, the

execution efficiency of the interpreter is quite adequate even when prototyping large LOTOS
specifications (chapter 5).

ISLA and HIPPO have similar functionalities, although the current version of HIPPO does
not support symbolic execution, discussed in chapter 3. We also found that ISLA has more
execution trace support, since the user can trace, for example, the application of the inference rules
on a behaviour expression, the evaluation of predicates, etc. ISLA can also help the user to find
proper values for an action taken from user predefined databases, as discussed in chapter 3.

J_______________________________ Chapter 2 Overview of LOTOS
Chapter 2: Overview of LOTOS
2.1 Introduction

In LOTOS, interprocess communication occurs by means of a "rendez-vous" mechanism,
called "interaction". Processes participate in a "rendez-vous" if and only if they all offer an event
at the same interaction point, called "gate", with matching information. This can range from a
specific value to a type only. For instance, a "rendez-vous" can occur when one process is
expecting a value of a certain type on a specific gate and the other offers a value of that type on the
same gate. Thus, the concept of "information flow" strictly does not exist in LOTOS, unlike in most
programming languages, where messages are directed from a process specifically to another
named process.

We recall that the LOTOS language has two main components: thedata type component
based on algebraic "Abstract Data Types" (ADT) specification, as in ACT ONE , and thecontrol
component based on Milner’s CCS and Hoare’s CSP.
2.2 Data Type Component

LOTOS adopted the Abstract Data Type language ACT-ONE for defining its data types
such as values, value expressions, data structures and operations on them. The choice ofabstract
data types for LOTOS, as opposed toconcrete data types, is consistent with the requirement of
abstraction from implementation details. Abstract types do not indicate how data values are
actually represented and manipulated in memory, but only define the essential properties of data
and operations that any correct implementation is required to satisfy. Since ACT-ONE allows
"nonconstructive" specifications, the execution may end up into infinite loops or deadlocks.
Detecting and/or repairing such specifications may be impossible [FEH].

ACT-ONE is an algebraic specification method to write unparameterized and
parameterized specifications. ACT-ONE has the following features:

1- Reference to already defined specifications in a library.
2- Combination, renaming and parameterization of specifications.
3- Actualization of parameterized specifications.
4- Extension of specifications with operations and sorts.
The basic form of a data type specification consists of asignature, that gives all the

information required to build syntactically correct terms, (also called value expressions), and,
possibly, a list ofequations.

 A signature includes the definition of data carriers and operations. The declaration of an
operation will include itsdomain, which consists of a list of zero or more sorts, and itsrange, which
consists of exactly one sort. The following example is a type definition of the natural numbers. It
consists only of a signature that involves a single sort ’Nat’, and the operations ’0’ and ’Succ’. The
operation ’Succ’ can be applied to single elements of sort ’Nat’, resulting in another element of sort
’Nat’, which is indicated by ’Nat -> Nat’. The operation ’0’ is an operation with no arguments
which results in an element of sort ’Nat’, as is indicated by the notation ’-> Nat’. The definition is
named ’Natural-Numbers’, so that it may be referred to by other definitions, and combined with
them.
type Natural-Numbers

sorts Nat
opns 0 :-> Nat

Succ: Nat -> Nat

endtype
For example, ’Succ(Succ(0))’ is a term of sort ’Nat’.
Suppose now that we want to define the prefix operation ’largest’:
largest : Nat,Nat -> Nat
which takes two arguments of type ’Nat’ and returns the largest of them. For example,
’largest(Succ(Succ(0)), Succ(0))’ will yield ’Succ(Succ(0))’. We need a new construct, called
equation to express properties of operations. The purpose of an equation is to state that two
syntactically different terms denote the same value. A correct definition of the properties of the
’largest’ operation is:
eqns forall X :Nat ,Y: Nat
ofsort Nat
largest(0,X) = X;
largest(X,0) = X;
largest(Succ(X),Succ(Y)) = Succ(largest(X,Y));
where the first and the second equations state that the largest of any natural number X and the
natural number 0 is X. In addition, the largest of two non-zero natural numbers, denoted by
’Succ(X)’ and ’Succ(Y)’, is defined to be ’Succ(largest(X,Y))’, where largest(X,Y) has to be
evaluated. By induction on the structure of terms, and by using these equations, it can be easily
proved that any term containing one or more ’largest’ operations can be expressed by a term
containing only ’0’ and ’Succ’ operations.
The complete definition of natural numbers with the ’largest’ operation is:
type Natural-Numbers

sorts Nat
opns 0 :-> Nat

Succ: Nat -> Nat
eqns
forall X :Nat ,Y: Nat
ofsort Nat

largest(0,X) = X;
largest(X,0) = X;
largest(Succ(X),Succ(Y)) = Succ(largest(X,Y));

endtype
TheADT Interpreter evaluates (or rewrites) a given term using the internal form representation
of the abstract data type equations, where they are oriented as rewriting rules [FEH]. ISLA calls
the latter evaluator whenever a value expression needs to be evaluated. The evaluator function is
called ’eval’. It returns the evaluation of a given term. For example ’eval(largest(Succ(0),0))’
returns the value ’Succ(0)’ with respect to the above equation definitions.
The data type component is outside the scope of this thesis. We refer readers to [FEH] for more
details.
In the examples included in this thesis, we often use operators such as "+", "<", ">", "mod" etc, that
require further definition in the abstract data type components. For brevity we do not provide these
definitions, rather we assume that these operators behave according to their intuitive meaning.
2.3 Control Component

The control component of LOTOS describes the behaviour of a specification via a
hierarchy of process definitions. In the following sections, we describe the elements of this
component.

2.3.1 Processes
A Specification in LOTOS can be seen as a process that may consist of interacting

subprocesses. Each subprocess may in turn consist of other subprocesses. Each process can be
imagined as a black box that is capable of interacting with other processes (its environment) via
common interaction points called "gates". A process can also perform internal, unobservable
actions denoted by ’i’. The environment of a process consists of the other processes in the
specification, plus an unspecified process which is always ready to interact at any gate. In the
interpreter, the user takes the role of this process.

a b d
+------+--------+------+ +-----------+----------+

| |c| |
| P +-+ Q |

| | | |
+----------------------+ +----------------------+

Figure 2.1 Two interacting processes
Figure 2.1 shows two processes P and Q interacting among themselves and the environment at gate
c.
The syntax of a LOTOSspecification is of the form:
specification spec-name[g1,..,gn](v1,..,vm):functionality
behaviour
<behaviour expression>
where
<process definitions>
endspec

The syntax of aprocess definition is of the form:
process proc-name[g1,..,gn](v1,..,vm):functionality :=
<behaviour expression>
where
<process definitions>
endproc
where the syntax of abehaviour expression is described in table 2.2 .
Therefore the definition of Figure 2.1 will be of the form:
process P[a,b,c] :=<behaviour expression>endproc.
process Q[c,d] :=<behaviour expression>endproc.
2.3.2 Actions

The basic element of a process behaviour is the action which represents asynchronization
between processes. An action consists of a gate name (interaction point), a list of events, and an
optional predicate that restricts the event values to those satisfying the predicate.

An event can be either of the form!E, denoting the offering of the valueE, or of the form
?x:s, denoting the readiness to accept any value of sorts. Further conditions on the values that can
be accepted can be expressed by "selection predicates" in square brackets. For example:

g ?x:Nat !Succ(0) [x > Succ(Succ(0))]
is an observable LOTOS action which occurs at gateg and expects from the environment

a value forx of sortNat restricted to be greater than two, while at the same time offering the value
one.

As mentioned above, there is another type of action in LOTOS denoted by ’i’, which is an
internal action. It is also called "unobservable action" because it does not interact with the
environment.
2.3.3 Types of Interactions

Interprocess communication in LOTOS occurs when two or more processes, having a
"rendez-vous" on a gate, agree on a value to be established. This is the case ofmatching actions.

Table 2.1 shows all possible types of interactions between two processes. When more than
two processes are involved, similar rules apply. We recall thateval(E) indicates the value of the
expressionE

J Interactive System for LOTOS Applications ___________________
+--+

|process process sync. interaction effect |
| A B condition sort |

+--------+--------+--------------+------------+----------------+
| g!E1 | g!E2 | eval(E1) | value | synchronization|

| | | = | matching | |
| | | eval(E2) | | |

+--------+--------+--------------+------------+----------------+
| g!E | g?x:t | eval(E) | value | after |
| | | ∈ | passing | synchronization|

| | | domain(t) | | x = eval(E) |
+--------+--------+--------------+------------+----------------+

| g?x:t1 | g?y:t2 | t1 = t2 | value | after |

| | | | generation | synchronization|
| | | | | x = y = v |

| | | | | v ∈ domain(t1) |

+--------+--------+--------------+------------+----------------+
Table 2.1 Types of Interactions

Example:
Process A is prepared to accept a natural number 4,5,6,7,8,9, or 10 at the gate g, as denoted by the
following action:
g?X:Nat [X > 3 and X < 11]
and at the same time Process B is ready to accept a multiple of 3 natural number at gate g, as
denoted by the action:
g?X:Nat [X mod 3 = 0]
then an interaction will occur at gateg, if the environment cooperates by offering a natural number
satisfying the conditions of the above actions, namely 6 or 9.
2.3.4 Behaviour Expressions

In this section, we represent the semantics of LOTOS behaviour expressions. For clarity,
in the examples where the events on the actions do not affect the semantic of the behaviour, only
the gates of the actions are given.

The syntax of LOTOS behaviour expressions is shown in table 2.2.
+--+

| LOTOS behaviour expressions |
+----------------------------------+---------------------------+
| g d1 ... dn[P]; B | action prefix |

| where | |
| di = !ti or ?xi:si | |

+----------------------------------+---------------------------+
| i; B | internal action prefix |
+----------------------------------+---------------------------+
exit	successful termination
or	
exit(E1,..., En)	

| where | |
| Ei is a term or | |

| Ei = any si | |

+----------------------------------+---------------------------+
| let x1=t1,..,xn=tn in B | local definition |

+----------------------------------+---------------------------|
| choice g= in [g1,..,gn] [] B | summation on gates |

+----------------------------------+---------------------------+
| choice x:s [] B | summation on values |
+----------------------------------+---------------------------+
| par g in [g1,..,gn] op B | par |

+----------------------------------+---------------------------+
| hide g1,..,gn in B | hiding |

+----------------------------------+---------------------------+
| B1 >> accept | enable |
| x1:s1,..,xn:sn in B2 | |

+----------------------------------+---------------------------+
| B1 [> B2 | disable |
+----------------------------------+---------------------------+
	parallel			
B1			B2	(interleaving)
B1		B2	(full synchronization)	
B1	[g1,..,gn]	B2	(selected synchronization)	

+----------------------------------+---------------------------+
| B1 [] B2 | choice |
+----------------------------------+---------------------------+
| [Guard] -> B | guarded |
+----------------------------------+---------------------------+
| stop | deadlock (inaction) |
+----------------------------------+---------------------------+
| (B) | nested |

+----------------------------------+---------------------------+
| p[g1,..,gn](t1,..,tn) | process instantiation |

+----------------------------------+---------------------------+
Table 2.2 LOTOS Syntax

2.3.4.1 Inaction
B = stop : B cannot offer any action to the environment nor can it perform internal events.

This behaviour is also denoteddeadlock.
2.3.4.2 Action Prefix

B = g d1 ... dn[P]; B2 : The behaviour B offers participation in eventg d1 ... dn[P]; if the

interaction occurs the resulting behaviour is given byB2.
di is either!E, denoting the offering of the value eval(E), which is the value of expression

E, or?x:s, denoting that a value for the variablex of sorts is expected.
EXAMPLE

 process in-out-buffer[in-gate,out-gate] :=
in-gate ?x:Nat [x>0];
out-gate!x;
stop

endproc

+----------------+
| |

in_gate + -------------> + out_gate
| |
+----------------+

This process accepts a positive natural number at gate in-gate, offers the same value at gate out-
gate, and then stops.
2.3.4.3 Internal Action Prefix

B = i; B2 : The behaviour B may perform nondeterministically an ’unobservable’ internal
action, denoted byi, and transforms intoB2. This internal action is due to an internal event such
as disconnection events, shutdown, or internal synchronization between processes. This action is
not observed by the environment.
2.3.4.4 Choice

B = B1 [] B2 : Depending on the action offered by theenvironment, B will behave asB1 or
B2.

EXAMPLE
process max2[in1,in2,out] :=

in1?x:Nat;
in2?y:Nat;
out!largest(x,y);
stop

[]
in2?x:Nat;

in1?y:Nat;
out!largest(x,y);
stop

endproc

in1 in2
+------+-------+------+
| |
| max2 + out
| |
+---------------------+

This process accepts two natural numbers at gatesin1 andin2 in any order and offers the largest
of these numbers at gateout. The accepted sequence of actions by this process with respect to the
interaction gate names, are:in1; in2; out andin2; in1; out.
The accepted sequences of a given behaviour can be represented by a tree-like structure called
Behaviour Tree or BT, where the root of the tree is the initial state of the behaviour, and the edges
of each node represent the gates of the possible next actions.
The Behaviour Tree of the above example is:

 *
 in1 / \ in2

/ \
 * *
 | |
in2| | in1
 * *
 | |
out| | out
 * *

2.3.4.5 Guarded Behaviour
B = [Guard] -> B1 : B will behave asB1 if Guard is evaluated totrue, and behaves asstop

otherwise.
EXAMPLE

[x > 0] -> g1!(x+3);stop
[]

[x < 0] -> g2!x;stop
If x = 3 then the above behaviour is equivalent to

g1!6;stop
If x = -3 then the above behaviour is equivalent to

g2!-3;stop
If x = 0 then the above behaviour is equivalent to

stop
2.3.4.6 Process Instantiation

B = P[g1,..,gn](t1,..,tn) : B behaves as the behaviour of process definitionP, with the

substitution of the formal variable parameters byt1,..,tn and with the formal gates relabelled by

the actual gatesg1,..,gn.

EXAMPLE
The Behaviour Tree of the following call:

max2[a,b,c]
where processmax2 is as defined above, is:

 *
 a / \ b

/ \
 * *
 | |
 b | | a
 * *
 | |
 c | | c
 * *

In LOTOS, infinite behaviour can be defined using recursive process instantiation.
EXAMPLE
process in-out-buffer[in-gate,out-gate] :=

in-gate ?x:Nat [x>0];
out-gate!x;
in-out-buffer[in-gate,out-gate]

endproc
The callin-out-buffer[in-gate,out-gate] accepts the sequence:
in-gate out-gate in-gate out-gate in-gate
EXAMPLE
process in-out-buffer[in-gate,out-gate] :=

in-gate ?x:Nat [x>0];
out-gate!x;
in-out-buffer[out-gate,in-gate]

endproc
The callin-out-buffer[a,b] accepts the infinite sequence:
a b b a a b b a a ...
EXAMPLE
The following process can accept N sequential messages at the
gate AP.
process receive-N-messages[AP](N:Nat) :=

[N > 0] -> AP?Mes:M;
 receive-N-messages[AP](N-1)

endproc
2.3.4.7 Local Definition

B = let x1=t1,..,xn=tn in B2 : All the instances ofx1,..,xn in B2 are replaced byt1,..,tn
respectively.

EXAMPLE
let x:Nat = Succ(0), y:Bool = truein

g1!x; g2!y;stop
This behaviour is equivalent to

g1!Succ(0); g2!true;stop
2.3.4.8 Summation on Gates

B = choice g in [g1,..,gn] [] B2 : B is a shorthand for the behaviour(B2)[g1/g] [] ... []

(B2)[gn/g], where (B)[gi/g] denotes thatg is relabelled bygi for every action that may be

performed byB on gateg.
EXAMPLE

choice a in [b,c] []
a?x:Nat; d!(x+1);stop

is equivalent to
b?x:Nat; d!(x+1);stop

[]
c?x:Nat; d!(x+1);stop
2.3.4.9 Summation on Values

B = choice x:s [] B2 : B is equivalent to [t1/x]B2 [] ... [][tn/x]B2, where t1,..,tn are all
possible value expressions of sort s.

EXAMPLE
choice x:Nat []

[x mod 2 = 0] -> g!x;stop
is equivalent to

g!0; stop
[]

g!2; stop
[]

g!4; stop
[]

g!6; stop
[]

.

.

.
2.3.4.10 Parallel Composition

B = B1 |[g1,..,gn]| B2 : B1 andB2 are executed independently, except for the actions at any

of the gatesg1,..,gn, whereB1 andB2 must synchronize.

Note that:
- ||| is equivalent to|[]|
- || is equivalent to|[g1,..,gm]| whereg1,..,gm are all possible gates of both behaviours.

EXAMPLE
(a;b;c;stop) |[b]| (b;d;stop)
This behaviour accepts the following sequence of interactions:
a b c d
a b d c

The Behaviour Tree is
 *

a|
*
b|

*
 c / \ d
 / \
 * *
d| | c
 * *

EXAMPLE
(a;b;c;stop) || (a;b;c;d;stop)
This behaviour accepts:

a b c
EXAMPLE
(a;b;stop) ||| (c;d;stop)
This behaviour accepts:

a b c d
a c b d
a c d b
c d a b
c a b d
c a d b

2.3.4.11 Hiding
B = hide g1,..,gn in B2 : any action that may be performed byB2 on gatesg1,..,gn becomes

an internal action. That is, the environment ofB2 cannot participate in these actions.
EXAMPLE
hide b in (a;b;c;stop) |[b]| (b;d;stop)
The sequences of actions that this behaviour may perform are:
a i c d
a i d c

which are externally observable as:
a c d
a d c

2.3.4.12 par-Expression
B = par g in [g1,..,gn] op B2 : B is a shorthand of the behaviour(B2)[g1/g] op .. op

(B2)[gn/g].
EXAMPLE

par a in [b,c] ||
a; d;stop

is equivalent to
b; d; stop
||

c; d; stop
2.3.4.13 Successful Termination

B = exit(E1,..,En) : denotes the successful termination of the behaviour B. The parameters

E1,..,En are the results of B and will be offered in an action performed on a specific gate denoted

by d . The resulting behaviour of B isstop.

EXAMPLE
a?x:Nat; b?y:Bool; exit(x,y)
The above behaviour expression accepts values forx andy at the gatesa andb respectively,

then it offersx andy at gate d and stops.
2.3.4.14 Disable

B = B1 [> B2 : B performs asB1, and during the life ofB1, B2 can disableB1 then start
executing, unlessB1 is successfully terminated. Note thatB1 can be disabled before any of its
actions is executed.

The disabling operator is useful to express situations where aprocess can be interrupted by
an exceptional event during normal functioning. Such situations are common in communication
systems, the most obvious case being a disconnection.

EXAMPLE
a;b;exit [> c;d;stop
This behaviour accepts the following sequences:
c d

a c d
a b c d
a b δ

 d denote the event performed byexit.
2.3.4.15 Sequential Composition (enable)

B = B1 >> B2 : B performs asB1 until successfully terminates, then it performs asB2.
EXAMPLE
(a;b;c;exit [] d;e;stop) >> f;g;stop
This behaviour accepts the following interaction sequences:
a b c f g
d e

In the first sequence, there exists an internal event between the actionsc andf. This internal event
is due to the successful termination ofB1 denoted byexit.
2.3.4.16 Sequential Composition with Value Passing (enable)

B = B1 >> accept x1:s1,..,xn:sn in B2 : B performs asB1 until successfully terminates,

then it performs asB2 taking the results ofB1 in the variablesx1:s1,..,xn:sn in B2.

The number and sorts of the values that are passed at the successful termination ofB1 must
be comparable with the value declarations in theaccept statement.

The sequential composition with value passing is useful when B2 depends on parameters
generated byB1.

EXAMPLE

Connection-Phase[AP1,AP2] >>
 accept EXP-DATA:Bool,QofS:Nat in

Data-Phase[AP1,AP2](EXP-DATA,QofS)
In the above example, two parameters determined in the Connection-Phase are passed to the Data-
Phase: the expedited data option that indicates whether expedited data can be transferred or not,
and the quality of service of the connection during the data phase.
2.3.4.17 Relabelling

B = (B’)[g1/h1,..,gn/hn] : the gatehi is relabelled bygi for every action thatB’ may

perform on the gatehi.

EXAMPLE
(a;b;a;stop)[c/a,e/b]

This behaviour accepts the following sequence:
c e c

The relabelling behaviour expression isnot in the syntax of LOTOS. It is constructed dynamically
as an additional expression (e.g. when a process instantiation is to be executed).
Note that the relabelling is performed after deriving the actions that are offered by the relabelled
behaviour, and it cannot be interpreted as performed statically by simply changing the gate names
in the relabelled behaviour then deriving the actions, because in the second way, the semantics of
the behaviour may change.
For example, let:
B = (a;c;stop |[a]| b;stop)
then B cannot offer the actiona because it can not synchronize with an action offered by the
behaviourb;stop. Therefore the actionb is the only action that can be offered by B then it stops.
Now suppose we have the following behaviour:
B2 = (B)[a/b]
where B is the same as above. Then B2 can offer the actiona. This is done by first obtaining all the
actions offered by B, (only actionb) then relabelling the actions with respect to the relabelling list
(b relabelled bya).
If the gates were relabelled before deriving the actions then we would obtain the following
behaviour:
B3 = (a;c;stop |[a]| a;stop)
In this case, B3 could offer the actiona due to a synchronization, where this was not possible in B.
Action c would then follow.
We conclude that
B2 = (a;c;stop |[a]| b;stop)[a/b]
is not equivalent to
B3 = (a;c;stop |[a]| a;stop)
2.3.5 The Functionality of LOTOS Behaviour Expressions

The product of the domains of the values passed at successful termination is called the
functionality of that termination. For example the functionality of

g?X:Nat Y?Bool; exit(X,Y)
is domain(Nat) x domain(Bool).
The definition of any process in LOTOS should indicate its functionality.

process <proc-name><formal-gates><formalparameters>:<functionality>:=
<behaviour expression>
endproc
The definition of functionality for processes that do not have a sequential structure is indicated by
one of the following:

- noexit if the process does not terminate successfully at all.
- exit if the process terminates successfully without value passing.
- exit(t1,t2,...,tn) if the process terminates successfully with the values passedv1,v2,...,vn andvi
∈ domainti.

In LOTOS, the functionality of a process is specified in the header after a colon.

EXAMPLE1
process in-out[in,out] : noexit :=

in?X:Nat; out!X;stop
endproc

EXAMPLE2
process in-out[in,out] : exit :=

in?X:Nat; out!X;exit
endproc

EXAMPLE3
process in-out[in] : exit(Nat) :=

in?X:Nat;exit(X)
endproc

The functionality of a behaviour expressionB1 op B2, whereop is a LOTOS operator[] or [> is:
- if B1 andB2 terminate successfully, thenfunc(B1 op B2) = func(B1) = func(B2).
- if func(B1) = noexit, thefunc(B1 op B2) = func(B2).
- if func(B2) = noexit, thefunc(B1 op B2) = func(B1).

EXAMPLE
g1?X:Nat;
g2?Y:Nat;

exit(X,Y)
[]

g2?X:Nat;
g1?Y:Nat;
exit(X,Y)

has functionalityexit(Nat,Nat) which isdomain(Nat) xdomain(Nat).
Theparallel composition of two processesB1 andB2 terminates successfully only ifB1 andB1
terminate successfully with comparable list of values, becauseB1 andB2 must synchronize on the
termination value. The functionality of aparallel composition behaviour expressionB1 op B2,
whereop is a LOTOS operator||,|||, or [g1,..gn] is:

- if B1 andB2 terminate successfully, thenfunc(B1 op B2) = func(B1) = func(B2).
- if func(B1) = noexit or func(B2) = noexit, thenfunc(B1 op B2) = noexit.
- if func(B2) = noexit, thefunc(B1 op B2) = func(B1).

EXAMPLE
g1?X:Nat;
g2?Y:Nat;
exit(X,Y)
|||

g3?X:Nat;
stop

has functionalitynoexit.
EXAMPLE
exit(3) |||exit(4)
has functionalityexit(Nat) which isdomain(Nat), but the termination will not be successful. This
is because both processes will attempt to interact on gate δ with different parameters of the exit.
2.4 Inference Rule Semantics

The operational semantics of LOTOS is defined in terms of inference axioms and rules

[ISO1]. The transitions that a given behaviour expression may perform, and the dynamic behaviour
of the next state, can be derived systematically by applying the inference rules.

Theinference axioms are statements that are assumed to be valid. Examples of axioms are:
3 > 0.
X = X.
cats are animals.
Theinference rules are applied on inference axioms and other inference rules to derive new

valid statements. Inference rules have the form:
If S1 and S2 ... and Sn are valid then Sm is also valid

Examples of inference rules are:
If X > 3 and X < 5 then X = 4.
If X is a cat then X is an animal.
Inference rules are often written in the form:

 S1,...,Sn

Sm
Then the above example can be written as:

 X > 3, X < 5

X = 4
The notation B1 -a-> B2 denotes alabelled transition, and means that B1 may perform the
transitiona and the resultant behaviour will be B2. For example:

 B1 -a-> B3

B1 [] B2 -a-> B3

is an inference rule which states that behaviour B1 [] B2 can perform actiona resulting in
behaviour B3, if B1 can performactiona resulting in B3.
In the rest of this section, we present the inference rules that define the operational semantics of
LOTOS. These rules are essentially the same as those presented in [ISO1].
In order to define the inference rules for LOTOS behaviour expressions, let:
eval(E) denote the value of the termE;
G denote the set of the behaviour’s formal gates;
g,gi ∈ G;

i denote an internal action;
di is either

!Ei, denoting the offering of the value eval(Ei)

or
?xi:si, denoting that a value for the variablexi of sortsi is expected;

 d denote the successful termination’s action name;
a denote any action
name(a)gives the gate identifier of actiona
(name(a) ∈ G U {i, d });
ti is a term (ADT value expression);

[t i] or eval(ti) is the ADT evaluation ofti;

[t1/x1,...,tn/xn] B denotes the result of the replacement of all occurrences ofx1,..,xn in B by

t1,..,tn respectively.

(B)[gi/g] denote thatg is relabelled bygi for every action that may be performed byB on the gateg.

2.4.1 Inference Axioms
In LOTOS semantics, axioms describe actions that can be derived directly from the given

behaviour.
The following rules generate the axioms:

2.4.1.1 Action Prefix
B = a;B’
JJ
where B is ready to offer the actiona resulting in behaviourB’ .
The actiona can be an internal actioni which can always be executed, or an observable

action which may be executed if the environment can synchronize with it.
J
J
a) Internal Action Prefix
i;B -i-> B is an axiom
EXAMPLE
i;a;stop -i-> a;stop is a transition
b) Observable Action Prefix
gd1..dn;B -gv1..vn-> [ty1/y1,..,tym/ym]B is an axiom

iff
vi = eval(ti) for di = !ti (1 ≤ i ≤ n),

vi is a value of sort si for di = ?xi:si (1 ≤ i ≤ n),

ty1,..,tym are term instances with vi = eval(tyi) if

di = ?yj:sj (1 ≤ i ≤ n, 1 ≤ j ≤ m, m ≤ n) and

{y 1,..,ym} = {x i| di = ?xi:si, 1 ≤ i ≤ n}.

The example below clarifies the above definitions.
EXAMPLE

g1?X:Nat!0; g2!Succ(X);stop
-g1 eval(T) eval(0)-> g2!Succ(T);stop

is a transition iff eval(T) ∈ domain(Nat)
By the above definitions we have:
n = 2
m = 1
d1 = ?X:Nat

d2 = !0

y1 = X

ty1 = T

v1 = eval(T) ∈ domain(Nat)

v2 = eval(0) = 0

The intuitive meaning of the notation- g eval(T) -> is that the environment provided value
expressionT at gateg.

c) Observable Action Prefix with Selected Predicates
gd1..dn[P];B -gv1..vn-> B’ is an axiom

iff
gd1..dn;B -gv1..vn-> B’ is an axiom

and
eval([ty1/y1,..,tym/ym]P) = true,

where
[P] is a predicate,
ty1,..,tym are term instances with vi = eval(tyi) if

di = ?yj:sj (1 ≤ i ≤ n, 1 ≤ j ≤ m, m ≤ n) and

{y 1,..,ym} = {x i| di = ?xi:si, 1 ≤ i ≤ n}.

EXAMPLE
g?X:Nat[X>Succ(0)];stop -g eval(T)->stop is a transition iff

eval(T) ∈ domain(Nat), and
eval(eval(T) > Succ(0)) =true

2.4.1.2 Successful Termination
a) Without Value Passing
exit - δ -> stop is an axiom.
b) With value Passing

exit(E1,..,En) - δ v1..vn-> stop is an axiom iff

 vi = eval(Ei) if Ei is a term (1 ≤ i ≤ n)

 vi ∈ domain(si) if Ei = any si (1 ≤ i ≤ n).

EXAMPLES
exit - δ -> stop

exit(largest(Succ(0),0),any Bool) - δ Succ(0) V->stop
iff V ∈ domain(Bool) (e.g. V equalstrue or false)

are transitions
2.4.2 Inference rules

Inference rules are needed to derive all possible transitions that can be fired by behaviour
expression constructs other than action prefix.
2.4.2.1 Local Definition
[t1/x1,..,tn/xn] B’ -a-> B"

let x1:s1=t1,..,xn:sn=tn in B’ -a-> B"

is an inference rule.
EXAMPLE
let B =
let X:Nat=Succ(0), Y:Bool=truein

g1!X; g2!Y; stop

then
B -g1 Succ(0)-> g2!true;stop is a transition.
2.4.2.2 Guard
B’ -a-> B"

[P] -> B’ -a-> B"
where [P] is a guard, is an inference rule if eval(P) = true.
EXAMPLE
let B =
[Succ(0) > 0] ->

g!largest(Succ(0),Succ(Succ(0)));stop
then
B -g Succ(Succ(0))->stop is a transition.
If, for example, the guard in B is [0 > 0] then B is equivalent tostop.
2.4.2.3 Choice
B1 -a-> B1’

B1 [] B2 -a-> B1’

B2 -a-> B2’

B1 [] B2 -a-> B2’

are inference rules.
EXAMPLE
let B =
a;b;stop

[]
c;d;stop
then
B -a->b;stop

and
B -c->d;stop
are the valid transitions.
2.4.2.4 Hiding
B’ -a-> B"

hide g1,..,gn in B’ -a-> hide g1,..,gn in B"

is an inference rule if name(a) ∉ {g1,..,gn}

B’ -a-> B"

hide g1,..,gn in B’ -i-> hide g1,..,gn in B"

is an inference rule if name(a) ∈ {g1,..,gn}

EXAMPLE
let B =

hide g1,g2in
g1; g2;stop
[]

g3; g1;stop
then
B -i-> hide g1,g2in g2;stop

and
B -g3->hide g1,g2in g1;stop
are the valid transitions.
2.4.2.5 Nested
B -a-> B’

(B) -a-> B’
is an inference rule.
EXAMPLE
(a;b;stop) -a-> b;stop
is a transition.
2.4.2.6 Parallel

a) selected synchronization
B1 -a-> B1’, B2 -a-> B2’

B1 |[g1,...,gn]| B2 -a-> B1’ |[g1,...,gn]| B2’

if name(a) ∈ {g1,..,gn, δ }

This case describes the situation where the two behaviours interact.
B1 -a-> B1’

B1 |[g1,...,gn]| B2 -a-> B1’ |[g1,...,gn]| B2
if name(a) ∉ {g1,..,gn, δ }

B2 -a-> B2’

B1 |[g1,...,gn]| B2 -a-> B1 |[g1,...,gn]| B2’

if name(a) ∉ {g1,..,gn, δ }

are inference rules.
These two cases describe the situation where no interactions occur. In these cases the behaviours
proceed independently.
EXAMPLE
let B =
a;b;stop [] c;a;stop

|[a]|
d;e;stop [] a;d;stop

then
B -a-> b;stop |[a]| d;stop
B -c-> a;stop |[a]| d;e;stop [] a;d;stop

B -d-> a;b;stop [] c;a;stop |[a]| e;stop
are valid transitions.

b) interleaving
B1 |[]| B2 -a-> B’

B1 ||| B2 -a-> B’

is an inference rule.
EXAMPLE
let B =

exit(any Nat) [] a;d;stop
|||
a;e;stop [] exit(Succ(0))

then
B - δ Succ(0)->stop |||stop
B -a-> d;stop ||| a;e;stop [] exit(Succ(0))
B -a-> exit(any Nat) [] a;d;stop ||| e;stop

are valid transitions.

c) full synchronization
B1|[g1,..,gn]|B2 -a-> B’

B1 || B2 -a-> B’

is an inference rule where {g1,..,gn} = G, is the union of all possible gates of B1 and B2.

EXAMPLE
let B =

exit(any Nat) [] a;d;stop
||
a;e;stop [] exit(Succ(0))

then
B - δ Succ(0)->stop ||stop
B -a-> d;stop || e;stop

2.4.2.7 Enable
B1 -a-> B1’

--
B1 >> accept x1:s1,..,xn:sn in B2 -a->

B1’ >> accept x1:s1,..,xn:sn in B2
if name(a) ≠ δ .
This is the case where the enabling behaviour B1 continues.
B1 - δ v1,..,vn-> B1’

B1 >> accept x1:s1,..,xn:sn in B2 -i-> [t1/x1,..,tn/xn]B2

are inference rules where

vi = eval(ti) (1 ≤ i ≤ n).

This is the case where the enablling behaviour B1 terminates successfully by the transition at gate
δ (seeexit axioms). The values of that transition are passed to B2 by an internal actioni, then B2
takes over.
EXAMPLE 1
let B =

a;b;exit [] exit >> c;d;stop
then

B -a-> b;exit >> c;d;stop
B -i-> c;d;stop

are valid transitions.
Note that theaccept statement is optional. It is needed only if value passing is required.
EXAMPLE 2
let B =

a?X:Nat;b!X;exit(X, X > Succ(0)) []exit(any Nat,any Bool)
>> accept Y:Nat, Z:Boolin

c!Y;d!Z;stop
then

B -a eval(T)-> b!T;exit(T, T > Succ(0))
>> accept Y:Nat, Z:Boolin

c!Y; d!Z; stop
B -i-> c!N; d!B; stop
where eval(T),eval(N) ∈ domain(Nat) and

 eval(B) ∈ domain(Bool)
are valid transitions.
2.4.2.8 Disable
B1 -a-> B1’

------------------------ if name(a) ≠ δ
B1 [> B2 -a-> B1’ [> B2
B1 - δ v1..vn-> B1’

B1 [> B2 - δ v1..vn-> B1’

B2 -a-> B2’

B1 [> B2 -a-> B1’

are inference rules
EXAMPLE
let B=

a;b;stop [] exit
[>
c;d;stop

then
B -a-> b;stop [> c;d;stop

B - δ -> stop
B -c-> d;stop

are valid transitions.
2.4.2.9 Summation on Values
 [t/x] B’ -a-> B"

choice x:s [] B’ -a-> B"
is an inference rule iff eval(t) ∈ domain(s).
EXAMPLE
let B =

choice x:Nat []
a!x[x mod 3 = 0];stop

then
B - a 3 ->stop
B - a 6 ->stop
B - a 9 ->stop

...

...
are valid transitions
2.4.2.10 Relabelling

We recall that the relabelling behaviour expression appears only in the dynamic semantics
of the behaviour expressions, and it is not in the syntax of LOTOS.
B’ -g v1..vn-> B"

--
(B’)[g1/h1,..,gn/hn] -g’ v1..vn-> (B")[g1/h1,..,gn/hn]

with
g’ = g if g ∉ {h1,..,hn}

g’ = gi if g = hi (1 ≤ i ≤ n),

is an inference rule.
EXAMPLE
let B =

(a;b;stop [] c;a;stop)[d/a,e/b]
then

B -d-> (b;stop)[d/a,e/b]
B -c-> (a;stop)[d/a,e/b]

are valid transitions.
2.4.2.11 Summation on Gates
(B’)[g i/g] -a-> B"

choice g in [g1,..,gn] [] B’ -a-> B"

is an inference rule for each gi ∈ {g1,...,gn}.

EXAMPLE
let B=

choice a in [g1,g2] []

a;b;a;stop
[]
c;d;stop

then
B -g1->(b;a;stop)[g1/a]

B -c->(d;stop)[g1/a]
B -g2->(b;a;stop)[g2/a]

B -c->(d;stop)[g2/a]

are valid transitions.
2.4.2.12 par-Expression
B’[g1/g] op ... op B’[gn/g] -a-> B"

par g in [g1,...,gn] op B’ -a-> B"

is an inference rule where
g,g1,..,gn are gate-variable instances,

op is a parallel-operator.
EXAMPLE
let B =

par a in [g1,g2] |||
a;b;a;stop

then
B -g1-> (b;a;stop)[g1/a] ||| (a;b;c;stop)[g2/a]
B -g2-> (a;b;a;stop)[g1/a] ||| (b;a;stop)[g2/a]

are valid transitions.
2.4.2.13 Process Instantiation
([t1/x1,...,tm/xm]B)[g1/h1,..,gn/hn] -a-> B’

--
p[g1,..,gn](t1,..,tm) -a-> B’

is an inference rule
iff
there exist a process definition:
p[h1,..,hn](x1:s1,..,xm:sm) := B

EXAMPLE
suppose we have the following process definition:

process any-thing[g1,g2](X:Nat;Y:Bool) :noexit :=
g1!X; g2!Y; stop
[]
g2!Y; g1!X; stop

endproc
and let B =

any-thing[a,b](largest(Succ(0),0), (0 > Succ(0)))

then
B -a Succ(0)-> (g2!(0 > Succ(0));stop)[a/g1,b/g2]
B -b false-> (g1!largest(Succ(0),0);stop)[a/g1,b/g2]

are valid transitions.
2.4.2.14 stop

There is no inference rules forstop because it cannot generate any action.
2.4.3 Example

<
Here, we demonstrate how the inference rules can be applied to obtain the possible

transitions of a given behaviour expression.
Suppose the following process definition exists:
process P[a,b]:noexit:=

a;b;stop
[]
b;a;stop

endproc
and Let B=

P[g1,g2] |[g2]| P[g2,g3]

1-> Find all
P[g1,g2] |[g2]| P[g2,g3] -trans-> B’

By applying the inference rules of selected synchronization we obtain:
P[g1,g2] -trans-> B1, P[g2,g3] -trans-> B2

P[g1,g2] |[g2]| P[g2,g3] -trans-> B1 |[g2]| B2
if name(trans) ∈ {g2, δ }

and
P[g1,g2] -trans-> B1
--
P[g1,g2] |[g2]| P[g2,g3] -trans-> B1 |[g2]| P[g2,g3]

if name(trans) ∉ {g2, δ }

and
P[g2,g3] -trans-> B2
--
P[g1,g2] |[g2]| P[g2,g3] -trans-> P[g1,g2] |[g2]| B2
if name(trans) ∉ {g2, δ }
2-> To satisfy 1, we have to find all

P[g1,g2] -trans1-> B1
and P[g2,g3] -trans2-> B2
We have:
(a;b;stop [] b;a;stop) [g1/a,g2/b] -trans-> B1
a) --
P[g1,g2] -trans-> B1

and
(a;b;stop [] b;a;stop) [g2/a,g3/b] -trans-> B2
b) --
P[g2,g3] -trans-> B2
3-> To satisfy 2(a) we have to find all

(a;b;stop [] b;a;stop) [g1/a,g2/b] -trans-> B1
We have:

 a;b;stop [] b;a;stop -g v1..vn-> B1’

--
(a;b;stop [] b;a;stop)[g1/a,g2/b] -g’ v1..vn-> (B1’)[g1/a,g2/b]

g’ = g if g ∉ {g1,g2}

g’ = g1 if g = a

g’ = g2 if g = b

4-> Find all
a;b;stop [] b;a;stop -trans-> B1’

We have:
 a;b;stop -trans-> B1’

--
 a;b;stop [] b;a;stop -trans-> B1’

and
 b;a;stop -trans-> B1’

 a;b;stop [] b;a;stop -trans-> B1’

5-> By the axiom of prefix behaviour we can obtain directly the following transitions:
b;a;stop -b-> a;stop
a;b;stop -a-> b;stop

4<- Back to step 4, we now can obtain the following transitions:
a;b;stop [] b;a;stop -a-> b;stop
a;b;stop [] b;a;stop -b-> a;stop

3<- Back to step 3, the following transitions can then be obtained:
(a;b;stop [] b;a;stop) [g1/a,g2/b] -g1-> (b;stop)[g1/a,g2/b]

(a;b;stop [] b;a;stop) [g1/a,g2/b] -g2-> (a;stop)[g1/a,g2/b]

2<- In step 2(a) above we have:
P[g1,g2] -g1-> (b;stop)[g1/a,g2/b]

P[g1,g2] -g2-> (a;stop)[g1/a,g2/b]

are valid transitions.
Similarly for step 2(b) we can obtain:

P[g2,g3] -g2-> (b;stop)[g2/a,g3/b]

P[g2,g3] -g3-> (a;stop)[g2/a,g3/b]

1<- Then from the initial behaviour expression we can obtain the following transitions:
P[g1,g2] |[g2]| P[g2,g3] -g2->

(a;stop)[g1/a,g2/b]

|[g2]|
(b;stop)[g2/a,g3/b]

P[g1,g2] |[g2]| P[g2,g3] -g1->

(b;stop)[g1/a,g2/b]

|[g2]|

P[g2,g3]

and
P[g1,g2] |[g2]| P[g2,g3] -g3->

P[g1,g2]
|[g2]|

(a;stop)[g2/a,g3/b]

J Interactive System for LOTOS Applications _______________
J_________________________ Chapter 3 Functionality of ISLA

Chapter 3: Functionality of ISLA
3.1 Introduction

The dynamic behaviour of a LOTOS specification can be seen as a tree, called Behaviour
Tree, where the nodes of the tree represent the states of the behaviour, and the arcs represent the
possible "next actions". For example for the following behaviour in LOTOS:

i;stop
[]

a;(b;stop [] c;stop)
the corresponding Behaviour Tree is :
(bh0)
/ \
i / \ a
/ \
(bh1) (bh2)
/ \
b / \ c
/ \
(bh21) (bh22)
where
bh0 = original behaviour
bh2 =(b;stop [] c;stop)
bh1,bh21 and bh22 =stop
The purpose of ISLA is to prototype the dynamic behaviour of LOTOS specifications by allowing
the user to traverse the behaviour tree of a given specification, and check whether or not the
exercised branches (sequences of actions) conform to the intented behaviour. The basic operation
of ISLA is as follows. From the current behaviour expression, a list of all acceptable actions is
given. Subsequently, the user chooses one of the actions, identified by a unique number, and if this
action involves a choice of data, the user is required to provide it. The dynamic behaviour of the
next state is then derived. This operation can be repeated under user guidance.
In addition, ISLA supports other functions allowing users to explore several alternative execution
paths in the Behaviour Tree. It is possible to backtrack the execution to any point on the executed
path from the root to the current state. "Checkpoints" can also be set at any visited node. Therefore,
as an alternative for moving down and up the tree, it is possible to jump directly to a specific
previously set checkpoint. A trace of all explored paths can be displayed.
A checkpoint can be saved on an external file, giving the user the possibility of restarting the
execution some time later. Any analysis report generated by ISLA can be saved on external files.
ISLA also allows symbolic execution of any process behaviour, generating the tree of all possible
next actions, with some limitations described later. Help can be provided when dealing with
complex value expressions and guards.
At any point during simulation, the user can obtain a list of all available commands. The ability of
obtaining the description of a specific command is also provided.
During simulation, if a value expression needs to be validated or evaluated, the ADT interpreter
SVELDA is called. These value expressions could be included explicitly in the specification, or
entered by the user in the case where a choice of data of a specific sort is required.

ISLA has been designed to have the following features:
- enough analysis functions to cover all important aspects of the
specification under simulation.
- an appropriate user interface, where help can be obtained at
any point of the simulation.
- acceptable costs in terms of CPU and memory usage.
- adaptability to changes.
The simulation is divided into three phases:
I- Starting phase: upon running ISLA, a menu (called main menu) of all possible initial commands
is displayed. This offers the possibility of:
- listing the existing source and ’internal form’ LOTOS
specifications.
- listing the checkpoints files.
- compiling a source LOTOS specification (done by a system call
to the LOTOS compiler).
- simulating an ’internal form’ LOTOS specification or resuming simulation at an existing
checkpoint and
- executing any UNIX command.
II- Process Menu phase: in this phase a menu of all processes of the chosen LOTOS specification
is displayed. The simulation can be done for any chosen process.
III- Simulation phase: a menu of all possible actions is displayed.
We refer users to Appendix B where a LOTOS example is constructed. Furthermore, in Appendix
C, we show how ISLA can be used to simulate it. In this way, we illustrate the most important
functionalities of the interpreter.
In this chapter, a more complete description of the functions supported by ISLA is given (Appendix
D includes commands help in different phases).
In the remainder of this thesis, we use different terms that have the same meaning, such as:
- ’state’, ’point’, ’node’, ’behaviour expression’, ’dynamic
behaviour’, or simply ’behaviour’.
- ’next state’, ’subsequent node’, or ’resulting behaviour’ after
executing an action.
- ’interaction’, ’branch’, ’event’, or ’action’.
3.2 Function Description

The major functionalities of ISLA are described in the following sections.
3.2.1 Menu of existing Processes

When an internal form LOTOS specification is loaded for execution, a menu of its process
headers is listed (phase II), where each header includes process name, formal gates, formal
parameters and a unique number (starting with the number of the main specification, which is
usually ’1’). The following is the process menu of the pop machine example described in Appendix
B, where the specification name is ’system’, where ’system’ contains three subprocesses ’pop-
machine’, ’get-money’, and ’deliver’.

==
The available processes are:
[1] system[coin-in,buttons,drawer]()
[2] pop-machine[coin-in,buttons,drawer]()
[3] get-money[coin-in,buttons](amount:COIN)
[4] deliver[buttons,drawer]()
P:Choose one command or ’lp’ or ’h’ for help ==>

==
Example: menu of available processes (Phase II)

To execute (simulate) a process, its number should be entered, followed by a list of actual
gates (optional) and actual value parameters.

If the input is found to be free of syntax and static semantics errors, then the execution goes
from phase II to phase III (simulation phase).
3.2.2 Menu of Possible Actions and Next Behaviours

At each step during simulation (phase III), a menu of all possible actions and their resulting
behaviours is given. In terms of the Behaviour Tree, the menu includes all the branches of the
current node and the subsequent nodes. Since each subsequent node represents a behaviour
expression which may be very large, unique indexed symbols are used to represent nodes in the
menu.

An action in the menu has the following form:
<i> - action ----> bhi [ln1,..,lnm]

It can be read as: "The current behaviour expression can accept the action ’action’, and will
result in behaviourbhi".

where:
i is the number associated with the given action (index)
bhi is a symbol representing the resulting behaviour if action
i is chosen
[ln1,..,lnm] is a list of line numbers of the interacting

actions (action1,.. and actionm) in the source external

specification.action can be :
i representing an internal event
<gate-name> <d1...dn> [P] (n,m > 0) where

di = !eval(ti) whereti the offered term, or

= ?xi:si or

= ?[x1,..,xm]:si which indicates an interaction event for?x1:si, ?x2:si ... and?xm:si .

[P] is the union of selection predicates of all
 interacting actions.

The following is an example of an action menu taken from the simulation of the pop
machine specification.
============================ system =============================
CP/MANUAL W/20 Level/2 Path/[1,1]

Events [1] coin-in ?$50:COIN
[1,1] coin-in ?$25:COIN
===
<1>- coin-in ?coin:COIN ----> bh1 [51]
<2>- buttons?[button-name,button-name]:BUTTON
[ge(0+$50+$25,price(button-name))] ----> bh2 [53,57]
===

Example: menu of possible actions (Phase III)
Action # 2 is an interaction between processes ’get-money’ and ’deliver’ at gate ’buttons’. The two
participating processes must agree with the environment on a value of type ’BUTTON’ for the two
variables ’button-name’, taken from process ’get-money’, and ’button-name’, taken from process
’deliver’, with the restriction that price(button-name) should be less that or equal to 75 cents. The
two actions involved in this interaction are at line 53 and 57 in the external source.
The menu also shows:
- The Execution Level : this is the number of actions fired
starting from the initial state and leading to the current
state, and is equal to the length of the path from the initial
state to the current state in theBT (Behaviour Tree) of the
current process.
- The Execution Path : this is the list of the numbers of the
actions fired starting from the initial state and leading to
the current state. (Note that the Execution Level is the length
of the Execution Path).
- The Check Points Setting Status, and the maximum width of the
execution tree (described later).
- The events that were taken on the path from the initial to the
current state (optional).
An action can be chosen by giving its associated number, and if it requires values from the
environment, the user has to provide them. The action is rejected if its associated predicates (if any)
are evaluated to ’false’ because of the values involved. In this case the user is notified, and the
execution remains in the same state.
Thepseudo-action of thechoice construct is represented as:
*< i> - dummy?xj :sj ----> bhi [ln]

which means that the action that can be performed bybhi can be determined only if a value forxj
of typesj is entered. The reason of this representation is described in chapter 4.

3.2.3 The Back and Level functions
Moving down the Behaviour Tree of a specification will cover one sequence of

interactions. ISLA provides the user with the ability to explore additional sequences by allowing
the execution to back up by any number of steps. The user then can choose another action at this
state and move to a different subsequent node.

Alternatively, if this is more convenient, the user can restart the simulation at a specific
level. This is shown in the example of Appendix C (Part 8).
3.2.4 Check Point Setting

During exploration of the Behaviour Tree, it is possible to maintain the behaviour
expression of any visited node in memory, thereby giving the user the possibility to jump directly

to any of these nodes anytime during simulation. These nodes are called "checkpoints". See
Appendix C (Part 6).

One of the important features of ISLA, is that it allows to save a "checkpoint" into an
executable external file, so that the user can resume the simulation at that point any time later. This
is helpful when the user cannot finish his/her intended analysis in one session.

The setting of "checkpoints" can be donemanually, where the user chooses which visited
node is to be set, orautomatically, where ISLA sets a "checkpoint" at every visited node (e.g.
useful for exhaustive coverage). The latter requires a large amount of memory for large
specifications. A "checkpoint" includes the current behaviour expression, the sequence of actions
that led to this point, with their associated numbers (execution path), and the number which is the
name of the checkpoint. Checkpoints are numbered consecutively.
3.2.5 Menu of Check Points

During simulation (phase II), a menu of all existing "checkpoints" can be listed.
==
The available Check Points are:
-<1>- [1,2]
-<2>- [2,2,1]
-<3>- [2,1,2,2,1]
==
A:Choose one command or ’la’ or ’h’ for help ==>
==

Example: menu of available Check Points
Each "checkpoint" is identified by its associated number (the order of its setting), and the execution
path from the root of the Behaviour Tree to that point. We recall that an execution path is an action
sequence, represented by the numbers of the actions in that sequence. For example, the execution
path [2,2,1] means that action number 2 was taken at level 0, subsequently, action number 2 was
taken at level 1, then action number 1 at level 2. It is possible to reexecute the same sequence with
different choices of values. In this case we will have different sequences of actions with the same
execution path representation.
At any point, the user can:
- jump to a specific "checkpoint"
- remove one or all existing "checkpoints"
- see the trace of actions that were taken to lead to a
specific "checkpoint".
- see the External representation of a Check Point
- save a Check Point into an Executable file for later execution.
- obtain the Behaviour Tree of a Check Point using symbolic
execution.
A detailed description of the above functions follows in the next sections.
3.2.6 Saving a Check Point into an Executable File

As a further help for the user, any state of execution (the current state or any "checkpoint"
in the ’Check Point’ menu), can be saved into an executable file, giving the user the possibility to
resume execution some time later.

A checkpoint can be represented in the external file by the sequence of actions that led to
it, so that, when the execution is required to resume at that checkpoint later on, an automatic
execution will be done using the information given in the sequence of actions to obtain the

behaviour expression of the intended point. To avoid this automatic execution, the user can choose
to save the behaviour expression with the sequence of actions.
3.2.7 User-Defined Data

ISLA allows users to define shorthands for commonly used constants, as well as sets of
constants that can be used when a choice of values is required to satisfy a predicates.
3.2.7.1 Constants

Constants for LOTOS value expressions can be defined by giving each constant a unique
shorthand name preceded by the character ’$’. A constant can be defined in terms of other already
defined constants. The following example shows how constants to represent Natural numbers 0
through 9 can be defined.

$0 = 0
$1 = Succ($0)
$2 = Succ($1)
$3 = Succ($2)
$4 = Succ($3)
$5 = Succ($4)
$6 = Succ($5)
$7 = Succ($6)
$8 = Succ($7)
$9 = Succ($8)

Example: Constant definition
At the time of definition, constants are syntactically and semantically checked, translated into an
internal form, and added with their corresponding sorts to the Constant Data Base. The duplication
of shorthand names is also checked. These constants can be saved into an external file, thereby
giving the user the possibility of using the same constants for another session. Another example is
shown in Appendix C (part 5).
Constant definitions can be saved in their external form representation. Alternatively, their internal
form representation can be saved. Constants saved in an internal form, however, can only be used
for the specification that was under simulation when these constants were saved, because the
internal form representation includes the renaming of operators and sorts, which will differ
between one specification and another.
These constants then can be chosen by giving their shorthand name. They can also be a part of any
other value expressions, for example if the constants in the previous example were defined and the
user wanted to enter the Natural number 11 as a choice of value for a certain event, then (s)he can
simply enter ’Succ(Succ($9))’.
3.2.7.2 Value Expression Sets

ISLA also allows to define sets of value expressions, where each set contains value
expressions of one particular sort, and sets can be identified by giving them unique numbers. Again
each value expression of a set is syntactically and semantically checked and translated into internal
form.

Succ($9)
Succ(Succ(0))
largest($4,$1)
$1

Example: Set 1 of sort Nat
true

not(true)
false

Example: Set 2 of sort Bool
When complex selection predicates are involved in an action, it might be difficult to find values
that satisfy them. In this case the user can assign for each event that requires a value in that action
a particular set. Then the predicates are evaluated for each possible combination of values taken
from the sets. ISLA then reports the evaluation result for each tuple of values, and a unique number
is given to each evaluation. The user then can choose any tuple that caused the predicates to be
successfully evaluated to be the next choice of values. It is also possible to obtain detailed step-by-
step traces of an evaluation process that caused the predicates to fail.
If for example we have the following action that was offered in the menu of "next actions" :

g?X:Nat ?Y:Bool ?Z:Nat [X > Z and Y = true]
and the user assigns set 1 of example ... to the event?X:Nat, set 2 to the event?Y:Bool,

and the value expression$2 for the event?Z:Nat, then the following menu will appear:

===
Guard is : [X > Z and Y = true]

X Y Z result

1> Succ($9)true $2 true
2> Succ($9)not(true)$2false
3> Succ($9)false$2 false
4> Succ(Succ(0))true$2false
5> Succ(Succ(0))not(true)$2false
6> Succ(Succ(0))false$2false
7> largest($4,$1)true$2true
8> largest($4,$1)not(true)$2false
9> largest($4,$1)false$2false
10> $1 true $2 false
11> $1 not(true)$2false
12> $1 false$2 false
===
Command Line =>
===

Example: Menu of an evaluated predicate
The usefulness of this feature of course is especially evident in the case of more complex selection
predicates.
Appendix C (Part 9 & 10) shows another example.
3.2.8 External Displays

During simulation, ISLA can provide users with the external representation of any process
definition or any behaviour expression. The output will be justified corresponding to the priority
levels of the operators, as in the example below.

process p[g1,g2]:=
 a;

b;
stop

 []
c;
stop
[>
d;
stop

endproc
See Appendix C (Part 11) for different example.
3.2.9 Valid Sort Equations

When value expressions of specific sorts are required, such as actual process parameter
values or interaction values, the user is able to list the valid syntax of such values. See Appendix
C (Part 4).

For example the output of value expressions syntax for the formal parameters of
P[g1,g2](X:Nat,Y:Bool,Z:Nat)

where the sorts Nat and Bool are defined in the standard library, will be of the following
format:

Nat -->
0
Succ(Nat)
largest(Nat,Nat)

Bool -->
true
false
not(Bool)

Nat = Nat
Nat > Nat
Nat < Nat
...

...
Therefore the actual parameters list:
(largest(Succ(0),0)), not(true), 0)
is valid.
When the syntax for the value expression of a given sort contains another sort, then the syntax of
the value expressions of the latter sort will also be listed.
3.2.10 Menu of evaluated Guards and Value Expressions

During the process of applying the inference rules to obtain the possible "next actions" for
the current behaviour expression, ISLA saves all the guards and value expressions that were
executed. A menu of all these expressions and their evaluations can be listed. The user is allowed
to see a trace of a certain evaluation and to ’force’ certain unsuccessful guards evaluations to be
successful. Then the inference rules can be reexecuted on the same behaviour, and this may cause
some extra actions to be offered. This is helpful when a guard was intended to be successful, but,
due to an improper ADT equations or due to a certain value that was entered earlier during the
simulation, the guard was unsuccessfully evaluated.
3.2.11 Analysis Reports

Other than the above functions, ISLA can generate reports to help the user for better
analysis. These reports can be printed on the screen or they can be directed into external text files.

3.2.11.1 Symbolic Execution
The "step-by-step" execution, which has been described so far, is inevitably slow, because

of the constant interaction with the user. It is possible to produce the Behaviour Tree of a
specification (see section 3.1), where all execution paths are shown up to a maximum specified
depth, by using "symbolic execution". The tree is computed completely by using backtracking, and
replacing actual variable values by symbolic names, according to well-known principles in
computer science [BJ]. The predicates that involve variables whose values depend on interactions
with the environment are assumed to be ’true’ and will be shown in the Symbolic Behaviour Tree.
Since such a tree can have a large depth and width (often infinite), the user is expected to provide
these upper bounds. An example of a symbolic tree is provided in Appendix C (Part 13).

Depending on the format chosen, the actions in the tree may be presented by their gates
only, also the process instantiations between actions can be shown.

The Symbolic Behaviour Tree can be obtained from Phase II for the behaviour of any
process, or from Phase III for the current or a resulting behaviour expression, or for a
behaviourexpression of an existing Check Point. This subject is developed further in section 4.11.

Research is being carried out on applying the congruence equivalence properties, described
in Milner’s CCS, on dynamic behaviour expressions to obtain finite symbolic trees [LG].
3.2.11.2 History of Actions

The user may want to keep track of all the actions taken so far in the current session, this
will allow him/her to see all the execution paths that were explored. The history trace is represented
in a tree form. The information that is given for each action is:

- the action (includes the gate and the events with their chosen
value expressions)
- its associated number in the "next actions" menu
- a list of line numbers for where this action occurs in the
source specification (it may be more than one line number, in
the case of synchronization).
- if a Check Point is set at a specific state in the history
tree, then its associated number will be shown
- an indication of the position of the current execution point
(illustrated by asterisk).
- if required, the process instantiations between any two
sequential actions can be shown.
An example is provided in Appendix C (Part 12).
The following different kinds of history can be provided:
a) Action History
This includes only one path that leads from the initial state (initial call) to the current state.

This command can also be used to determine the Point History of a Check Point.
b) Process History
Process history shows all the actions taken so far for the initial process call (e.g. the above

example).
c) All History
In one session of simulation, the user can execute many processes, or the same process but

with different parameters. ISLA can show the process history of each process call.
J Interactive System for LOTOS Applications _______________
J______________________________ ISLA Design and Implementation

Chapter 4: ISLA Design and Implementation
4.1 General Structure

This chapter describes the overall structure of ISLA (Interactive System for LOTOS
Applications) and the implementation of important components of its functionalities.

ISLA is programmed in Quintus Prolog under UNIX. Prolog was chosen as the
implementation language for the following reasons:

- Objects (e.g. the internal form of LOTOS process definitions,
renaming database, axiom rules, etc...) can be described easily
using facts.
- Rules can be used to derive other objects (e.g. inference
rules, dynamic behaviours, etc...).
- Prolog supports dynamic allocations for facts and rules,
unification, direct substitution and backtracking. These are
all of great importance in the implementation of ISLA.
- Individual functionalities can be easily added, tested,
modified, or removed.
In addition, Prolog is widely used in research environments.
We recall that ISLA is aBehaviour Interpreter , and runs on the ’internal’ form of the

control part. ISLA also uses theADT Interpreter , called SVELDA (System for Validating and
Executing LOTOS Abstractions). The ADT interpreter runs on the ’internal’ form of thedata
component [FEH].

Figure 4.1 shows the general structure of the above interpreters. The relations between the
components are also shown.
+---+
| |
| +---------------------------+ +----------------------------+ |
	+---------------------+		+----------------------+					
		Process				Rewriting		
		Definitions				Rules		
	+---------------------+		+----------------------+					
	+---------------------+		+----------------------+					
		Renaming				Sort		
		Data Base				Equations		
	+---------------------+		+----------------------+					
	Control Component		Data Component					
+------+--------------------+ +--------------------+-------+								
	Internal Form LOTOS Specification							
+--------+--+---------+

 | |
 | |

+--------+--+---------+ | | | |
| +------+--------------------------------+ +-------+-------+ |
	+--------------++--------------+							
		inference		User			ADT	
		Rules +-----+ Interface	+---+ Interpreter					
	+--------------++--------------+		(SVELDA)					
	Behaviour Interpreter							
	(ISLA)							
+---------------------------------------+ +---------------+								
LOTOS Interpreter								
+---+

Figure 4.1 Structure of the Interpreter

J___________________ Chapter 4 ISLA Design and Implementation
4.2 Internal Form Representation

The internal representation of a LOTOS specification has the following features:
- It is free of syntactic and semantic errors.
- It is well structured in a way that no scanning is needed to
obtain specific information.
- It is equivalent to the source so that the latter can be
recovered from the internal representation, with some
exceptions such as process functionality, comments, spacing,
etc.
The ’internal’ form representation of a LOTOS specification consists of the process

definitions, represented as Prolog objects in a ’flattened’ name space, and the renaming data base
that relates the internal names to their corresponding external names. In addition, it contains sort
equations and rewriting rules data bases used by the ADT interpreter [FEH].

Every identifier in the LOTOS specification is renamed by a unique internal form to
prevent ambiguities in the interpretation, since a specification may contain different identifiers
with the same external name. The identifiers are: variables, gates, process names, operators, sorts,
and types. Their internal form names begin with ’v’, ’g’, ’p’, ’o’, ’s’, and ’t’ respectively, followed
by a unique numerical index. The internal name of the main specification begins with ’sp’.

The following is a sample LOTOS specification, and its ’internal’ form representation.

specification example[a1,a2]:noexit
type BITs is
sorts Bit
opns 0 :-> Bit

1 :-> Bit
endtype
behavior
a1?X:Bit;
a2?Y:Bit;
offer[a1,a2](X,Y)
where process offer [b1,b2](V:Bit, W:Bit):noexit :=
b1!V;
b2!W;
stop
[]
b2!V;
b1!W;
stop
endproc
endspec
The corresponding internal form representation for thecontrol part is as follows:

proc(sp9, [g10,g11], [],
seq([g10([10]), [[$,V4,v4,s12]],[]],

seq([g11([11]), [[$,V6,v6,s12]],[]],
instance(p15,[g10,g11], [val(V4,v4),val(V6,v6)])))
).
proc(p15, [g7,g8], [[V1,v1,s12],[V2,v2,s12]],
choice(
[
seq([g7([15]), [[#,val(V1,v1),s12]],[]],
seq([g8([16]), [[#,val(V2,v2),s12]],[]],
stop([17]))),
seq([g8([19]), [[#,val(V1,v1),s12]],[]],
seq([g7([20]), [[#,val(V2,v2),s12]],[]],
stop([21])))
])
).
The renaming data base has the following form:

renm(internal-name, ’external-name’,[nesting]).
The first argument is the internal name of the identifier, while the second argument is its

external name. The latter is enclosed in single quotes so that PROLOG will not interpret it as a
PROLOG variable instead of an atomic name. This can happen when the name starts with an upper
case character. The third argument is the internal name of the structure where the identifier is
defined.

The renaming database of the above example is:
renm(sp9, ’example’, []).
renm(g10, ’a1’, [sp9]).
renm(g11, ’b2’, [sp9]).
renm(p15, ’offer’, [sp9]).
renm(g7, ’b1’, [p15]).
renm(g8, ’b2’, [p15]).
renm(v4, ’X’, [sp9]).
renm(v6, ’Y’, [sp9]).
renm(v1, ’V’, [p15]).
renm(v2, ’W’, [p15]).
renm(t13, ’BITs’, [sp9]).
renm(s12, ’Bit’, [t13]).
renm(o17, ’0’, [t13]).
renm(o18, ’1’, [t13]).

The external name of any object can be found directly by unification. For example we can obtain
the external name for p15 by the following query:

renm(p15,X,_).
then X will be instantiated to ’offer’, and the underscore ’_’ means that the third field is not
required.
The process definitions are represented as PROLOG facts of the form:
proc(<proc-id>, [<formal-gates>], [<formal-pars>], <beh-exp>).
where <proc-id> is the process name, <formal-gates> is the list of the process’ formal gates,

<formal-pars> is a list of zero or more formal parameters, and <beh-exp> is the behaviour
expression of the process.
Each formal parameter is represented as:

[<prolog-var>,<var-name>,<var-sort>]
where <prolog-var> is a unique PROLOG variable that will hold the value of the LOTOS variable
where its internal name and sort are given in <var-name> and <var-sort> respectively.
<prolog_var> occurs in <beh_exp> so that when a value is assigned to it, all occurrences of the
same <prolog-var> will have the same value (i.e. automatic substitution).
In the above example, the formal parameters of processoffer have the following internal form:
[[V1,v1,s12],[V2,v2,s12]]
The following Prolog query:
proc(p15,GL,[[0,_,_], [1,_,_]], B).
will be unified with the internal form representation of the processoffer and:
- GL will be instantiated to the list[g7,g8]
- [[0,_,_], [1,_,_]] will be unified with
[[V1,v1,s12],[V2,v2,s12]] that will cause the variablesV1
andV2 to be instantiated to0 and1 respectively.
- B will be instantiated to the behaviour expression of the
processoffer with all the occurrences ofV1 andV2 replaced
by 0 and1 respectively, caused by the previous instantiation.
A variable can be instantiated by formal and actual parameter matching (unification), input, or by
an assignment statement.
Internal actions are represented as:
i([<line_number>])
where <line_number> is the line number where the internal action appears in the source
specification. <line_number> is also added to external actions and to the behaviour expression
stop.
External actions have the following form:
[<gate>([<line_number>]), [<experiments>], [<predicate>]]
where:

<gate> is the internal form of the action’s gate.
<experiments> is zero or more experiments.

<predicate> is the selection predicate of the action. It may
be empty.
Each experiment can have one of the following forms:
i) [$,<prolog-var>,<var-name>,<var-sort>]
representing the ’accept’ experiments
ii) [#,<expression>,<exp-sort>]
representing the ’offer’ experiments, where <expression> is the internal representation of a
LOTOS expression in prefix format,and <exp-sort> is its sort.
Any variable in <expression> is represented by :
val(<prolog-var> , <var-name>)
so the name and value of the variable are kept together.
In the above example the actions:
a1?X:Bit

and
b2!V
are represented as:
[g10([10]), [[$,V4,v4,s12]],[]],
and
[g7([15]), [[#,val(V1,v1),s12]],[]],
respectively. They have no selection predicates.
The parameters of the behaviourexit are represented as events on the gateexit which represent the
internal name of the gate δ .
The complete BNF of the ’internal’ form representation of LOTOS specifications is given in
Appendix E.
4.3 Behaviour Tree Semantics

The semantics definition of LOTOS, described in Chapter 2, is based on the concept of
Transition Tree, where the branches represent all possible transitions and the nodes represent the
states of the behaviour.

Unfortunately, by this semantics, in many cases an infinite number of transitions will result
from a given behaviour. For example

B = g1?X:Nat[X>5]; g2!X; stop
allows the following infinite number of transitions:
B -g1 6-> g2!6; stop
B -g1 7-> g2!7; stop
B -g1 8-> g2!8; stop

..

..

..
Example 4.1

In the case of complex selection predicates, the transitions may be impossible to derive, e.g.
g?X:Nat ?Y:Nat [X4 + Y4 = 0].
For these reasons, we based our model on the concept of a Behaviour Tree, described earlier in
Section 3.1, where the branches represent the possible "next actions" that the current behaviour can
perform. The notation used for ’branch(B1,a, B2)’ denotes that B1 can execute actiona and the
resultant behaviour will be [t1/x1,..,tn/xn] B2, where t1,..tn are value expressions provided by the

user for the variables of the action parameters x1,..,xn.

An action may consist of event parameters and predicates that restrict the values of such
parameters. Because of the presence of variables and predicates, what is an infinite number of
transitions in the Transition Tree may be a single branch in the Behaviour Tree. A branch in the
Behaviour Tree can be explored by providing values for the action parameters that satisfy the
associated predicates, if any, so that a transition and the resulting behaviour can be computed.
Example 4.1 can then be represented by only one branch in the Behaviour Tree having the action
g1?X:Nat [X>5], which givesg2!X; stop as the behaviour of the subsequent node. This is denoted
by
branch(B, g1?X:Nat [X>5], g2!X; stop)
To execute this action the user has to provide a value, sayN, of typeNat such thateval(N) > 5.
Then the transition fired will be
B -g1 eval(N)-> g2!N;stop

which is one of the possible transitions in example 4.1.
Therefore, by the semantics of ’branch(B1,a,B2)’, we then can obtain the semantics of a transition
’B1 -tr-> B2’ using the following inference rule:
 branch(B1,a,B2), execute(a, tr, [pv1,..pvn], [ap1,..,apn])

B1 -tr-> [pv1/ap1,..,pvn/apn]B2

where
ap1,..apn are the variables of the action parameters,

pv1,..,pvn are the value expressions entered by the user, and

execute is a function that asks the user for pv1,..,pvn
4.4 Summation on Values Implementation

Another complicated situation is presented by the ’summation on values’ construct where
nondeterministic behaviours are generated by the ’choice’ value parameter. The inference rule of
such a construct can be defined by the Behaviour Tree semantics as:

if B = choice x:s [] B’
then

branch([t/x]B’,a, B")

branch(B,a, B")
iff eval(t) ∈ domain(s).
Note that if domain(s) is infinite, this rule corresponds to infinite number of inference rules.
Since [t1/x]B is equivalent to [t2/x]B if t1 = eval(t2) (i.e. they have the same Transition Tree), then

we can regroup all such behaviours into one. The condition on the above inference rule then
becomes:
iff t ∈ domain(s).
Therefore this inference rule is equivalent to:
branch([t1/x]B’ [] [t 2/x]B’ [] ... [] [t n/x]B’, a, B")

branch(B,a, B")
where domain(s) = { t1,t2,...,tn }

For example if B =
choice x:Bool [] g!x; p[g](x)

where domain(Bool) = { true, false },
then
branch(g!true;p[g](true) [] g!false;p[g](false),a, B")
--
branch(B,a, B")
The branches obtained are:
branch(B, g!true, p[g](true))
branch(B, g!false, p[g](false))
Now consider example 4.2 where the domain of the ’choice’ variable is infinite:
B =

choice x:Nat []

[x mod 2 = 0] -> g!x?y; p[g](x,y)
 Example 4.2

domain(Nat) = { 0, 1, 2, 3, ... },
then
branch(B2’,a, B")

branch(B,a, B")
where

B’ = [x mod 2 = 0] -> g!x?y; p[g](x,y)
and

B2’ =
[0/x]B’
[]
[1/x]B’
[]
[2/x]B’
[]
[3/x]B’
[]
...
...

Since [t/x]B’ is equivalent tostop when t in an odd natural number, then the following branches
only can be generated:
branch(B, g!0?y, p[g](0,y))
branch(B, g!2?y, p[g](2,y))
branch(B, g!4?y, p[g](4,y))

...

...
The generation of this infinite number of branches is due to the summation of an infinite number
of behaviours.
Unfortunately, generation of an infinite number of branches would be impossible in a simulator.
For this reason, we limit the summation of behaviours to only one behaviour at a time,
corresponding to a ’choice’ value provided by the user.
The inference rule for
B = choice x:s [] B’
can then be defined as follows:
branch([t/x]B’,a, B")

branch(B,a, B")
if t = eval(t’) ∈ domain(s)
where t’ is provided by the user.
Therefore, every time a ’choice’ is encountered during simulation, the user is asked to provide a
’choice’ value.
The following problems may arise using the above implementation:
a) A non-exit recursion: applying the latter inference rule on
the behaviour of the process in example 4.3, the user will be

asked to provide ’choice’ values infinitely, due to the
recursive call of the same behaviour.

p[g](x:Nat):noexit:=
(choice y:Nat [] p[g](y))
[]
g!x; stop

endproc
Example 4.3

b) In example 4.4, the user will be asked to provide a ’choice’
value for x, even if (s)he is only interested in simulating
behaviourg?y:Nat; B2.

(choice x:Nat [] B’)
[]
g?y:Nat; B2
Example 4.4

c) The user may provide a ’choice’ value that causes guards to be
evaluated to false, leading to an unspecified deadlock. (e.g.
in example 4.2, any odd natural number leads to a deadlock).
d) The user may provide a ’choice’ value that causes an
unspecified deadlock due to mismatching synchronized actions.
In example 4.5, any ’choice’ value other than 2 causes a
deadlock.

choice x:Nat [] g!x; B’
|[g]|
g!2; B"
Example 4.5

ISLA uses the concept of "pseudo-action" which requires a ’choice’ value. The user should keep
in mind that this action is not a regular LOTOS action, and must not be considered in the generation
of a test interaction sequence. This "pseudo-action" is marked by an asterisk in the menu of "next
actions" and is performed on a dummy gate, called’dummy’ . The inference rule for ’choice’ is
replaced by the axiom:
branch(choice x:s [] B’, dummy?x:s, B’)
With this concept, problems (a) and (b) are solved. In example 4.3, the recursion is controlled
because the following branches are produced:
branch(B, dummy?y:Nat, p[g](y))
branch(B, g!x,stop)
where B =
(choice y:Nat [] p[g](y))
[]
g!x; stop
In example 4.4, the user can now simulate behaviourg?y:Nat; B2 without having to enter a
’choice’ value. The branches produced are:
branch(B, dummy?x:Nat, B’)
branch(B, g?y:Nat, B2)
where B=
(choice x:Nat [] B’)

[]
g?y:Nat; B2
To deal with problem (c), the user must first of all set a Check Point at the choice point. (S)he then
can ask that all guards evaluated after a choice value is entered be listed, together with the results
of their evaluation. In this way, it is possible to see if the choice value caused any guard to fail, and
if so, the interpretation can be backtracked to the choice point, where another value can be selected.
Concerning problem (d), is the user’s responsibility to look ahead in the resulting behaviour for
synchronizations involving the ’choice’ value.
To help the user in dealing with problems (c) and (d), we are currently working on an extension to
the above implementation. This extension involves identifying these problems internally, and
notifying the user if, due to a ’choice’ value, guards were evaluated to false or mismatching
synchronizations occurred. Also, it will give the user the opportunity of automatically backtracking
the execution to enter a new value.
Another solution, involving a transformation of the specification to eleminate the choice
constructs, is suggested in [EIJ].
In the following sections we define the Inference System that defines the semantics of LOTOS
Behaviour Trees. We then transform this system into an executable Inference System. Finally we
show how the latter system can be optimized by keeping the correctness of its definitions.
4.5 The Inference System

In this section we describe the semantics of a Behaviour Tree in terms of axioms and
inference rules.

The notation branch(B1,a, B2) denotes that B1 can execute actiona and the resultant
behaviour will be [t1/x1,..,tn/xn] B2, where t1,..tn are value expressions provided by the user for

the variables of the action parameters x1,..,xn.

Defining the semantics of ’branch(B1,a,B2)’, we then can obtain the semantics of a
transition ’B1 -tr-> B2’ using the following inference rule:
branch(B1,a,B2), execute(a, tr, [pv1,..pvn], [ap1,..,apn])

B1 -tr-> [pv1/ap1,..,pvn/apn]B2

where
ap1,..apn are the variables of the action parameters,

pv1,..,pvn are the value expressions entered by the user, and

execute is a function that asks the user for pv1,..,pvn
4.5.1 Inference Axioms

The following rules generate the axioms:
a- Action Prefix
branch(a;B, a, B) is an axiom
EXAMPLE
branch(g1?X:Nat;g2!Succ(X);stop, g1?X:Nat, g2!Succ(T);stop)

is an axiom
branch(g?X:Nat[X>Succ(0)];stop, g?X:Nat[X>Succ(0)],stop)

is an axiom
b- Successful Termination

a) Without Value Passing
branch(exit, δ , stop)

is an axiom.
b) With value Passing

branch(exit(E1,..,En), δ E1,..,En, stop)

is an axiom
c- Summation on Values
branch(choice x:s [] B’, dummy?x:s, B’)
is an axiom.

4.5.2 Inference rules
Inference rules are needed to derive the actions that may be performed by the other

behaviour expression constructs.
a- Local Definition

branch([t1/x1,..,tn/xn] B’, a, B")

branch(let x1:s1=t1,..,xn:sn=tn in B’, a, B")

b- Guard
eval(P) = true, branch(B’, a, B")

 branch([P]-> B’, a, B")
c- Choice
branch(B1, a, B1’)

branch(B1 [] B2, a, B1’)

branch(B2, a, B2’)

branch(B1 [] B2, a, B2’)

Or more general inference rule
branch(Bi, a, Bi’)

branch(B1 [] B2 [] ... [] Bn , a, Bi’)

 Bi ∈ { B1, B2, ..., Bn }

The implementation adopted the latter rule.
d- Hiding
branch(B’, a, B"), name(a) ∉ {g1,..,gn}

--
branch(hide g1,..,gn in B’, a,hide g1,..,gn in B")

branch(B’, a, B"), name(a) ∈ {g1,..,gn}

--
branch(hide g1,..,gn in B’, i(a),hide g1,..,gn in B")

e- Nested

branch(B, a, B’)

branch((B), a, B’)
f- Parallel
Table 4.1 shows the resulting actions of all possible types of interactions between two processes.
Similar rules apply when more than two processes are involved in an interaction.
J Interactive System for LOTOS Applications ___________________

+--+
|process process synch. interaction resulting |
| A B condition sort interaction |

+--------+--------+--------------+------------+----------------+
| g!E1 | g!E2 | eval(E1) | value | g!eval(E1) |

| | | = | matching | |
| | | eval(E2) | | |

+--------+--------+--------------+------------+----------------+
| g!E | g?x:t | eval(E) | value | g!eval(E) |

| | | ∈ | passing | and |
| | | domain(t) | | x = eval(E) |

+--------+--------+--------------+------------+----------------+
| g?x:t1 | g?y:t2 | t1 = t2 | value | g?[x,y]:t1 |

| | | | generation | (i.e. a value |
| | | | | is expected |

| | | | | for x and y) |
+--------+--------+--------------+------------+----------------+

Table 4.1 Resulting Interactions
i) selected synchronization

branch(B1, a1, B1’), branch(B2, a2, B2’),

name(a1) = name(a2) ∈ {g1,..,gn, δ }

branch(B1 |[g1,...,gn]| B2, a3, B1’ |[g1,...,gn]| B2’)

a3 is the resulting interaction (refer to Table 4.1).
branch(B1, a, B1’), name(a) ∉ {g1,..,gn, δ }

branch(B1 |[g1,...,gn]| B2, a, B1’ |[g1,...,gn]| B2)

branch(B2, a, B2’), name(a) ∉ {g1,..,gn, δ }

branch(B1 |[g1,...,gn]| B2, a, B1 |[g1,...,gn]| B2’)

ii) interleaving
branch(B1 |[]| B2, a, B’)

branch(B1 ||| B2, a, B’)

iii) full synchronization

branch(B1|[g1,..,gn]|B2, a, B’)

branch(B1 || B2, a, B’)

where {g1,..,gn} = G, is the union of all possible gates of B1 and B2.

g- Enable
branch(B1, a, B1’), name(a) ≠ δ .

--
branch(B1 >> accept x1:s1,..,xn:sn in B2, a,

 B1’ >> accept x1:s1,..,xn:sn in B2)

branch(B1, δ E1,..,En, B1’)

--
branch(B1 >> accept x1:s1,..,xn:sn in B2, i, [E1/x1,..,En/xn] B2

h- Disable
branch(B1, a, B1’), name(a) ≠ δ

branch(B1 [> B2, a, B1’ [> B2)

branch(B1, δ E1,..,En, B1’)

branch(B1 [> B2, δ E1,..,En, B1’)

branch(B2, a, B2’)

branch(B1 [> B2, a, B1’)

j- Relabelling
Note that the relabelling behaviour expression appears only in the dynamic semantics of the
behaviour expressions as an additional expression, and it is not in the syntax of LOTOS.
branch(B’, a, B"), name(a) ∉ {h1,..,hn}

--
branch((B’)[g1/h1,..,gn/hn], a, (B")[g1/h1,..,gn/hn]

branch(B’, gE1,..En, B"), g = hi (1 ≤ i ≤ n),

--
branch((B’)[g1/h1,..,gn/hn], giE1,..,En, (B")[g1/h1,..,gn/hn]

k- Summation on Gates
branch((B’)[gi/g], a, B")

branch(choice g in [g1,..,gn] [] B’, a, B")

is an inference rule for each gi ∈ {g1,...,gn}.

l- par-Expression
branch(B’[g1/g] op ... op B’[gn/g], a, B")

branch(par g in [g1,...,gn] op B’, a, B")

is an inference rule where
g,g1,..,gn are gate-variable instances,

op is a parallel-operator.
m- Process Instantiation
branch(([t1/x1,...,tm/xm]B)[g1/h1,..,gn/hn], a, B’)

branch(p[g1,..,gn](t1,..,tm), a, B’)

is an inference rule
iff
there exists a process definition:
p[h1,..,hn](x1:s1,..,xm:sm) := B

n- stop
There are no inference rules forstop because it cannot generate any action.
4.6 Inference System Implementation

The inference rules system is implemented using Prolog clauses of the form:
branch(B1,A,B2) :- cond1,...,condn.
where B1 is the given behaviour expression, A is an action that B1 can offer, and B2 is the

resulting behaviour. A and B2 are to be determined by the inference rules by satisfying the
sequence of conditions cond1,...,condn. Clauses of that form are calledrules.

For instance the inference rule of the nested behaviour expression is defined by the
following Prolog rule:

branch(nested(B),A,B2) :- branch(B,A,B2).
It can be read as "behaviour expression nested(B) can offer action A and transform to

behaviour B2 if behaviour B can offer action A and transform to behaviour B2".
Axioms are implemented using clauses with no conditions on the right hand side, called

facts. For example the axiom for action prefix can be defined by the following Prolog fact:
branch(seq(A,B),A,B).
It can be read as "behaviour seq(A,B) can offer action A and transform to B".
There is one or more inference rule for each behaviour expression.
Suppose we have the behaviour expression:
(i;stop)
whose internal representation is:
nested(seq(i,stop))
then the goal is
1- branch(nested(seq(i,stop)), A, B2).
Prolog tries to match (or unify) this goal with a head of a
defined clause by searching its database from top to bottom.
2- Clause found: branch(nested(B),A,B2)
Unification: B is instantiated to seq(i,stop)
3- New goal: branch(seq(i,stop),A,B2)
Clause found : branch(seq(A,B),A,B) by searching the database from top to bottom.
Unification: A is instantiated to ’i’

B is instantiated to ’stop’
and B2 is unified with B, it will also have the
value ’stop’
Then the goal branch(nested(seq(i,stop)), A, B2) succeeds with
A = ’i’ and B2 = ’stop’.
In the following section, Prolog clauses corresponding to the inference rules are defined

one by one. That is, for every inference rule there is a corresponding Prolog clause. Then in the
next section, we show how certain Prolog clauses are combined to optimize execution.

To avoid confusion, we have used the same notations used in section 4.3.1 such as B’ and
B" where they are not acceptable by Prolog. In real implementation different names are used.
4.6.1 One-to-One Implementation
4.6.1.1 Axioms

a- action-prefix
branch(seq(A,B),A,B).
b- successful termination
branch(exit(A),A,stop).
where A has the form of a normal action on gate ’exit’ (internal name for δ), and the events

are the exit-parameters (refer to the internal form).
c- summation on values
branch(distchoice(V,B’),[dummy,[$|V],[]],B’).
The generalized choice offers a pseudo action at gatedummy. This action does not interact

with the environment. It is used only to generate one behaviour choice by entering a value forV.
Refer to section 4.3 for more explanation.
4.6.1.2 Inference rules

a- Local-definition
branch(let(EQs, B’), A, B") :-

asglet(EQs, B’, B2’),
branch(B2’,A, B").

where asglet(EQs,B’,B2’) assigns the values of ’let’ in B’ giving B2’ (i.e. B2’ = [t1/x1,..,tn/xn]B’).

b- Guard
branch(guard([P], B’), A, B") :-

eval(P,true),
branch(B’, A, B").

c- Choice
branch(choice(BL),A,Bi’) :-

member(Bi,BL),
branch(Bi,A,Bi’).

where BL is a list of all behaviours involve in the choice (i.e. BL = {B1, B2, ..., Bn}).

member(Bi,BL) succeeds if Bi ∈ BL, and fails otherwise. If Bi is a variable, which is the case in
the above rule, member(Bi,BL) will instantiate B with the first element in BL, and if the execution
backtracks to resatisfy member(Bi,BL), then Bi will be instantiated to the second element in BL
and so on.
The above rule states that for every behaviour Bi ∈ BL, if Bi can offer action A and transform to
Bi’, then so can choice(BL).
d- Hiding

i- branch(hide(GL,B’), A, hide(GL,B")) :-
branch(B’,A,B"),
\+common(GL,A). /* name(A) ∉ GL = {g1,..,gn} */

ii- branch(hide(GL,B’),i, B") :-
branch(B’,A,B"),
common(GL,A). /* name(A) ∈ GL = {g1,..,gn} */

where common(GL,A) succeeds if name(A) ∈ GL, and fails otherwise. The ’\+’ operator is a
negation, that is ’\+goal’ succeeds if ’goal’ fails, and fails otherwise.
e- Nested

branch(nested(B),A,B’) :-
branch(B,A,B’).

f- Parallel
Since the interleaving synchronization ’|||’ is already defined in the internal form as a selected
synchronization with empty gate list ’|[]|’, and the maximum synchronization is identified with the
keyword ’maxsync’ where a rendez-vous must occur on every action, then only three Prolog
clauses are needed to cover the inference rules of the parallelism.
Rendez-vous synchronization between behaviour B1 and behaviour B2 must occur if one of the
following is true:

i- B1 and B2 are composed with maximum synchronization
ii- there exist branch(B1,A1,B1’) and branch(B2,A2,B2’), and
 name(A1) = name(A2) ∈ GL = list of synchronization gates

If none of the above conditions is true, then the next actions offered by B1 and B2 interleave.
Prolog clauses then can be written as follows:

branch(parcomp(SYNC,B1,GL,B2), A,parcomp(SYNC,B1’,GL,B2)):-branch(B1,A,B1’),
SYNC \== maxsync, /* not a max. sync. */
\+common(GL,A). /* name(A) ∉ GL */

branch(parcomp(SYNC,B1,GL,B2), A,parcomp(SYNC,B1,GL,B2’)):-branch(B2,A,B2’),
SYNC \== maxsync, /* not a max. sync. */
\+common(GL,A). /* name(A) ∉ GL */

branch(parcomp(SYNC,B1,GL,B2), [G,ME,PD3],
 parcomp(SYNC,B1’,GL,B2’)):-

branch(B1,[G,E1,PD1],B11’),
branch(B2,[G,E2,PD2],B22’),
valid(SYNC,G,GL), /* SYNC == maxsync or G ∈ GL */
matching(E1,E2,ME,B11’,B22’,B1’,B2’),
combine(PD1,PD2,PD2).

where:
valid(SYNC,G,GL) succeeds if rendez-vous synchronization should occur, that is if SYNC =
maxsync or G ∈ GL.
matching(E1,E2,ME,B11’,B22’,B1’,B2’) matches event E1 with event E2 resulting in the
matching event ME following table 4.1, and if there is value passing then the resulting behaviours
become B1’and B2’.
g- Enable

/* no successful termination */
branch(enable(B1,ACPT,B2), A, enable(B1’,ACPT,B2) :-

branch(B1,A,B1’),
\+common([exit],A).

/* successful termination */
branch(enable(B1,ACPT,B2), i, B2’) :-

branch(B1,[exit,V1,[]],B1’),
pass_values[V1,ACPT,B2,B2’).

where pass_values passes the values in ’exit’ to B2 corresponding to the variables in ACPT, and
resulting B2’ (i.e. B2’ = [E1/x1,..,En/xn] B2).

h- Disable
branch(disable(B1,B2),A,disable(B1’,B2)) :-

branch(B1,A,B1’),
\+common([exit],A). /* name(A) ≠ δ */

branch(disable(B1,B2),[exit|EV],B1’) :-
branch(B1,[exit|EV],B1’).

branch(disable(B1,B2),A,B2’) :-
branch(B2,A,B2’).

j- Relabelling
branch(relabel(B’,[FG,AG]), A, relabel(B",[FG,AG])):-

branch(B’,A,B"),
\+common(A,FG). /* name(A) ∉ FG */

branch(relabel(B’,[FG,AG]),A’,relabel(B",[FG,AG])):-
branch(B’,A,B"),
common(A,FG), /* name(A) ∈ FG */
relabels(A,A’,[FG,AG]).

where
FG = {h1, .., hn} is a list of formal gates

AG = {g1, .., gn} is a list of actual gates

relabels(A,A’,[FG,AG]) returns action A’ with:
name(A’) = i<t<h element in AG if name(A) = i<t<h element in FG

and the events of A’ = events of A.
k- Summation on gates

branch(distchoice(G,GL,B’),A,B") :-
member(Gi,GL),
branch(relabel([[G], [Gi]],B’),A,B").

can be read as "for Gi ∈ GL, G is relabelled by Gi for every action that may be performed by B’
on the gate G".
l- par-expression

branch(distpar(G,GL,OP,OPGL,B’), A, B") :-
simplify_B(G,GL,OP,OPGL,B’,B1’),
branch(B1’,A,B").

where ’simplify_B’ simplifies the internal form of
par g in [g1,..,gn] op B’

to the internal form of
B’[g1/g] op ... op B’[gn/g].

m- Process instantiation

branch(instance(P,AG,AP), A, B’) :-
proc(P,FG,FP,B),
pass_param(AP,FG,B,B2),
branch(relabel(B2,[FG,AG]), A, B’).

where AG = {g1,..,gn} is a list of actual gates
 AP = {t1,..,tm} is a list of actual parameters
 pass_param passes the actual parameters to B corresponding
 to the formal parameters, and resulting B2.
 (i.e. B2 = [t1/x1,..,tm/xm] B)

n- stop
there are no Prolog rules for stop.

4.6.2 Combining Rules for Effeciency Improvement
Using the above inference system causes repeated calls of theinference rules in the case

where more than one inference rule is defined for one LOTOS construct. For example, in the case
of the parallel composition, the recursive calls required by the first two inference rules (i.e.
branch(B1,A,BR1) and branch(B2,A,BR2)) are also required by the third. For this reason, an early
version of our interpreter ran quite slowly on large specifications. This problem was solved by
combining such rules in one. In this way, the number of inference rules invocations in the case of
parallel composition is reduced to half, and if parallel compositions are nested to N levels then the
number of invocations will be reduced by a factor of two to the power N. The same situation applies
to hiding, disable, enable and relabelling constructs whose semantics were defined by more than
one inference rule each with repeated calls.

The following is the optimized implementation of such rules.
a- hiding
branch(hide(GL,B),A2,B2) :-

branch(B,A1,B2),
hide_or_not(A1,GL,A2).

where hide_or_not(A1,GL,A2) returns
A2 = A1 if name(A1) ∉ GL
A2 = i if name(A1) ∈ GL

b- parallel
branch(parcomp(SYNC,B1,GL,B2), A, BR) :-

allsolutions(B1,S1),
allsolutions(B2,S2),!,
check_parallel([B1,S1],[B2,S2],SYNC,GL,A,BR).

where:
* allsolutions(B,S): returns a list S with all possible actions
that B can offer with their corresponding resulting behaviours
in the following form:

[[A1,BR1],...,[An,BRn]]
* check_parallel: checks the possible synchronization between the
actions offered by B1 and B2, and returns the proper
interaction A with the resulting behaviour BR. When
backtracking is required, check_parallel returns the next
possible interaction and the resulting behaviour.
c- enable

branch(enable(B1,ACPT,B2),A2,B3) :-
branch(B1,A1,BR1),
enable_exit(ACPT,A1,A2,BR1,B2,B3).

where enable_exit, depending on A1, returns A2 and B3.
d- disable
The first two inference rules of hiding required the same calls and they were combined to

give:
branch(disable(B1,B2),A,B3) :-

branch(B1,A,BR1),
disable_exit(A,BR1,B2,B3)).

where disable_exit returns B3 = BR1 if A is not an exit, and returns B3 = disable(BR1,B2)
otherwise.

The third Prolog rule for disable remains the same.
branch(disable(B1,B2),A,B3) :-

branch(B2,A,B3).
e- relabelling
branch(relabel(B’,[FG,AG]),A’,relabel(B",[FG,AG])):-

branch(B’,A,B"),
relabels(A,A’,[FG,AG]).

where
FG = {h1, .., hn} is a list of formal gates

AG = {g1, .., gn} is a list of actual gates

relabels(A,A’,[FG,AG]) returns action A’ with:
A’ = A if name(A) ∉ FG
name(A’) = i<t<h element in AG if name(A) = i<t<h element in FG

and the events of A’ = events of A.
4.6.3 Line Numbers and Process Instantiations

In order to provide the user with more information on the progress of the simulation, the
inference rules were modified to return two additional parameters other than the action and
resulting behaviour expression. These are:

i - Line numbers of the offered action. Associating each action during simulation with the
line numbers of the cooperating action offers in the source text helps the user to relate the results
of the simulation with the text of the specification. For that reason the translator includes line
numbers in the internal representation of actions. When the offered action is the result of
synchronization of several actions, a list of all the line numbers of the synchronized actions is
associated to it. For example, in the menu of next actions, the list of line numbers [LN1,...,LNn]
states that its associated action is the result of synchronization of action1 to actionn that appear at

line LN1 to line LNn respectively.
ii - Process Instantiations: The inference rules also accumulate all the process instantiations

that led from the current behaviour expression to the derived action. This way the user can identify
all the process invocations and their arguments. Two parameters are added to obtain the process
instantiations, the first parameter is the current list of process instantiations, and is initially set to
empty, and the second is the resulting list.

The complete list of inference rules is given in Appendix F .
Therefore for the current behaviour expression, say B, we can obtain a next action and its

resulting behaviour, action’s line numbers, and the process instantiation, by the call:
branch(B,A,BR,LN,[],PI).

4.7 Menu of "next actions" construction
In Prolog the built-in predicatebagof can be used to obtain a list (or a bag), say S, of all

possible next actions,their resulting behaviours, their line numbers and the process instantiations
for a behaviour expression B by the call:

bagof([A,BR,LN,PI], branch(B,A,BR,LN,[],PI), S).
Unfortunately, in some cases the number of next actions of a behaviour expression of a

process may be infinite. This happens in the following example:
P[a,b] :noexit:=
a;stop
[]
P[b,a]
In these cases, thebagof can not be applied. For this reason, a new predicate is created,

calledallsolutions(B,S,MAX), that obtains the same listS above but up to a maximum number of
solutions, specified byMAX , which represents the maximum width of the behaviour tree.MAX
is equal to 20 by default but this value can be changed by the user.

allsolutions forces backtracking to the inference system call trying to obtain new solutions
until no more solutions are found or the number of solutions reachesMAX .

During simulation,allsolutions is applied on the current behaviour expression, then the
next actions are shown on the screen in their external form associated with the order number in
which they appear in the listS, and with their line numbers. When actionN is to be executed the
following steps are done by the simulator:

1- TheNth record is obtained from the listS.
2- If the action requires values from the environment, then the user is asked to provide

them.
3- If the values provided by the user are valid (i.e. have the right syntax and the right sorts)

then they will be substituted in the attached selection predicate and the resulting behaviour
expression.

4- If a selection predicate is associated with the action then it is evaluated. If the result of
the evaluation is false, then the user is notified and is asked to provide new values (step 2).
Otherwise, the executed action is saved in the history database and the resulting behaviour
expression becomes the current behaviour expression. The menu of next actions will then be listed,
and so on.
4.8 External Displays

We recall that ISLA runs on the internal representation of a specification. This
representation has a prefix form, corresponding to the priority levels of the behaviour operators.
For example, the following behaviour

 a;b;stop [] c;stop [> d;stop
has the the following internal form

disable(
choice(

seq(<internal_a>,
seq(<internal_b>,stop)),

seq(<internal_c>,stop)),
seq(<internal_d>,stop)).

since
priority(’;’) > priority(’[]’) > priority(’[>’)
The external representation of any process definition or any behaviour expression can be obtained
from their internal forms, and the user never needs to be aware of the latter form. The output is
justified corresponding to the priority levels of the operators. For example, the output
representation of the above example is:

 a;
b;
stop

 []
c;
stop
[>
d;
stop
The external representation of a behaviour B is generated by the call:

show(B,OFFSET)
The operator of behaviour B is displayed at column OFFSET. The nested behaviours are displayed
with the recursive call
show(NESTED_B,OFFSET+4)
and so on. OFFSET is equal to 0 initially.
4.9 Representation of History

All executed actions are saved in memory during simulation, yielding a tree that can be
called the execution tree or the history tree of the simulated process. The nodes of this tree are
saved in a database calledhistory and contain five fields:

1- The last executed action number
2- The last executed action3- The line numbers
4- Process instantiations
5- Reference to the previous action
Suppose that, during simulation, the variables A_N, A, A_LN, PI, and FATHER_REF have

the above arguments respectively. Then the current history tree node will be saved by the built-in
predicateassert by the call:

assert(history(A_N,A,A_LN,PI,FATHER_REF), CURRENT_REF).
where CURRENT_REF is a unique system reference returned by the above call.

CURRENT_REF will be used as the reference to the current node and will be saved in the history
of all subsequent nodes as the father node reference and so on.

The reference to the root of an execution tree is saved in the clauseroot(ROOT_REF).
ROOT_REF is obtained by saving the initial behaviour, say INITIAL_BEH, by the call:

assert(INITIAL_BEH, ROOT_REF).
A new execution tree is created with a newROOT_REF, when a new process, or the same

process but with different actual parameters, is simulated.
Setting the history database as such, we can obtain the following information for a given

node reference, sayREF:
1- If the node associated withREF is not the root (i.e. no

root(REF) exist), then its history can be obtained by the
call:
clause(history(A_N,A,A_LN,PI,FATHER_REF),true, REF)
whereclause is a built-in Prolog clause.
2- A son node can be obtained by the call:
clause(history(A_N,A,A_LN,PI,REF), true, NEW_REF)
that can be read as "which node hasREF as the father reference?".
Each node (except the root node) has exactly one father node, but it may have several son

nodes. All the son nodes can be obtained by forcing backtracking on the previous query. To obtain
the root reference to all existing execution trees, backtracking should be forced on the call
root(ROOT_REF).

With the above information an execution tree can be traversed easily by using recursion and
backtracking.

The following Prolog clause traverses, in preorder, the execution tree with the root
referenceROOT_REF (comments are surrounded by ’/*’ and ’*/’) :

traverse(ROOT_REF) :-
/* obtain a son node */

clause(history(A_N,A,A_LN,PI,ROOT_REF), true, NEW_REF)
write(A), /* print the action */
traverse(NEW_REF),/* traverse son subtree */
fail. /* forces the backtracking */

/* to obtain next son node */
The following Prolog clause prints all existing execution trees:

traverse_all :-
root(REF), /* obtain a root reference */
traverse(REF), /* traverse the given tree */
fail. /* forces the backtracking */

/* to obtain next tree */
4.10 Check Points and Automatic Execution

Check points are saved in a database calledcheck_point which has two parameters, the
behaviour expression and the reference of the node obtained from saving the history of that node
(CURRENT_REF in previous section). For example we can determine if a Check Point exists at
an execution tree node that has the referenceREF by the query:

check_point(Beh,REF).
that fails if no Check Point is found with the referenceREF, and succeeds otherwise.
Check Points can be identified by the order number in which they appear in the database.

These numbers are displayed in the history tree and the user can resume execution at any of these
Check Points by providing its order number.

As explained in chapter 3, a Check Point can be saved in an external file by saving the initial
process instantiation and the path history. By user choice, the behaviour expression of the Check
Point can also be saved. In the case where the behaviour expression is not saved, anautomatic
execution is done to obtainit, starting by the same initial process instantiation. The action number
and values are taken from the path history.

When the user requires the execution to back up to a specific point on the execution path,

the following steps are executed by ISLA:
1- Obtain the reference of the desired point, sayREF, from the
history database.
2- Check if there is a Check Point that is set at that node by
the query
check_point(Beh,REF).
3- If this query succeeds then the current behaviour expression
becomesBeh and the simulation restarts from there.
4- If this query fails, then the closest Check Point on the
predecessor nodes in the tree is obtained and an automatic
execution is done starting at that point until the desired
point is reached.
5- If no Check Point is found on the predecessor path then an
automatic execution is done starting at the initial process
instantiation.

4.11 Symbolic Behaviour Tree
To compute the Behaviour Tree of a behaviour expression symbolically (see section

3.2.11.1), the user is required to provide the maximum width, which is the maximum number of
next actions for each node, and the maximum depth of the tree. The predicates that are not
evaluated to ’false’ are assumed to be ’true’ and will be shown in the Symbolic Behaviour Tree.
These are the predicates that are evaluated to true or cannot be evaluated because they depend on
values from the environment.

The algorithm to compute the Symbolic Behaviour Tree starting at a behaviour expression
calledBeh with maximum widthW and maximum depthD, is:
1- D2 = 0
2- whileD2 ≠ D do

3- ForBeh, obtain the listS of all possible next actions
 and their resulting behaviour expressions but not
 exceedingW.
4- For every next actionA and its resulting behaviourRBeh
 in S:

5- PrintA
6- Beh = RBeh
7- D2 = D2 + 1

end while
In symbolic execution, a variable’s value is represented by an expression that shows how the value
is computed as a function of the input values. For example, an action that offers at gateg the sum
of two values previously entered for two variables having the same namex, could be represented
as:

g!(x@1+x@2)
Every variable in the Symbolic Behaviour Tree must be associated with a unique number to
differentiate between variables with the same external name but correspond to different values. To
understand the reasons for this, consider for example one path of the Symbolic Tree of the process
pop_machine in Appendix C. If variables are not associated with unique numbers then the path
would be shown as:

1 coin-in ?coin:COIN [51]
| 1 coin-in ?coin:COIN [51]
| | 2 buttons ?[button-name,button-name]:BUTTON

[ge(0+coin+coin,price(button-name))] [53,57]
Consider the selection predicate at line 4
[ge(0+coin+coin,price(button-name))]
in the expressioncoin+coin no distinction can be made between the first and the secondcoin,
giving the impression that this expression is equivalent to2*coin. When numbers are added, the
above path instead is shown as:
1 coin-in ?coin@1:COIN [51]
| 1 coin-in ?coin@2:COIN [51]
| | 2 buttons ?[button-name@1,button-name@2]:BUTTON

[ge(0+coin@1+coin@2,price(button-name@1))] [53,57]
in this case the expressioncoin@1+coin@2 clearly states the sum of the variablecoin@1, taken
from the first action, and the variablecoin@2, taken from the subsequent action.
A more extensive example of symbolic execution is shown in Appendix C (Part 13).
J____________________ Chapter 5 Executing Large Specifications

Chapter 5 Executing Large Specifications
In this chapter, we report on our experiences in simulating a full-sized LOTOS

specification, the specification of the OSI Transport Service Provider [OSI2]. We refer readers to
[LGH] for a more detailed report on these experiences.

The Transport Service specification of [OSI2] is modularized according to the constraint-
oriented specification style. In this style, the specification consists of independent processes, where
each process has its own constraints on the primitives. Constraints can relate to the order in which
primitives can be established (expressed by LOTOS behaviour expressions) and to the possible
values of parameters (expressed by selection predicates). The parallel composition of these
processes is then specified [VIS]. The constraint-oriented style has become the most currently used
style for LOTOS specifications.
5.1 Performance Characteristics and Useful Features

In our first experience in executing the TS specification, we used the one-to-one inference
rules implementation of the interpreter described in Chapter 4. Unfortunately this implementation
led to a disappointing result. For example, it took up to 6 minutes to obtain the initial actions
offered by the specification. After the optimizations described in section 4.6.2, it took a surprising
time of only 6 seconds to obtain the same actions. This was due to the fact that the parallel
composition constructs are nested to several levels in the TS specification.

As mentioned in Chapter 1, ISLA is programmed inQuintus Prolog underUNIX . In these
experiences, ISLA was used in a compilation mode on aSUN 3/75 system. The performance
obtained appears to be quite adequate for use in the "one-stepper" mode. When the interpreter is
used for reachability analysis or for generation of large amounts of data, the performance becomes
inadequate. For these reasons, we are envisaging more radical optimizations, namely in the
inference rules implementation and value expression evaluator. Also research is being done on
detecting repeatedbehaviour expressions and applying the congruent equivalences [LG].

ISLA has features that are very useful in simulating large LOTOS specification such as the
TS specification, namely:

1- User Defined Constants: the display is considerably reduced.
For example a typical TS primitive is presented as an 8
characters constant instead of the actual 400 characters.
2- User Defined Sets: complex selection predicates are
automatically evaluated on sets of possibilities.
3- Check Points and Histories: alternative branches are easily
explored.
4- Saving Check Points in an external file: simulation can be
completed in more than one session.
5- Symbolic Execution: a portion of the behaviour tree can be
computed.

5.2 Tracing Methodology
In order to understand the practical uses of the interpreter, one should first understand the

methodology of protocol software development to which LOTOS relates. Nowadays, protocols are
usually specified informally. A formal specification is then obtained, and if the specification is in
LOTOS, our interpreter can be used in several ways: to obtain sample execution sequences, to
obtain test sequences to test implementation, etc.

In the following we shall concentrate on using the interpreter for checking the

correspondence between the formal specification and the informal one. While this is being done,
the interpereter can also be used to check for common errors such as deadlocks in the formal or
informal specification. This can be done by:

1- obtaining test sequences from the informal standard and
checking if they can be accepted by the formal specification.
2- checking if accepted sequences by the formal specification are
specified in the informal standard.
3- obtaining test sequences that are not specified in the
informal standard and checking if they will also not be
accepted by the formal specification.

Figure 5.1Conformance Testing by ISLA
Three methods have appeared appropriate towards simulating large specifications that can be used
within ISLA. These methods are described in the next sections.
5.2.1 One-Stepper method

This method corresponds to the basic operation of our interpreter. The user exercises a path
in the behaviour tree by entering a sequence of primitives by hand. In this way the acceptable
primitives can be identified at a given point, etc. To exercise another path, Check Points can be
used as well as the back function described in Chapter 3. Although this method is very flexible and
useful for users who are learning the behaviour of the specification, it is limited by the speed of the
user in choosing the actions and entering the data. This method can be speeded up considerably by
using shorthand constants and automatic evaluation of complex predicates on sets of values as
mentioned in section 3.2.7. This method is illustrated in Fig. 5.2 and Fig. 5.3.

Figure 5.2 One-Stepper Method.
Figure 5.3 One-Stepper Method using Constants and Sets.

5.2.2 Using Symbolic Trees
This method involves examination of the symbolic trees. Since large trees are impractical

to compute and read, and since they contain many uninteresting paths, a tree is computed to a
certain depth, and the one-stepper method is then used to reach a specific leaf node in the tree. A
tree is then computed from that node, etc. The main problems using this approach is that many of
the branches are unfeasible because they contain contradictory conditions. For example, in our
work of simulating the Transport Service, by combining the selection predicates of several actions,
we would get contradictory conditions such as "IsTCONreq(x) and IsTCONind(x)" that requires x
to be aconnection request and a connection indication at the same time. Since x is used
symbolically (i.e. no value is assigned to it) such a condition, unfortunately, can not be evaluated,
thus by our interpreter it is assumed to be true and the symbolic subtree of the following behaviour
is computed.

In the figure below the method of using symbolic trees is shown. The bold arrows
correspond to the one-stepper method.

Figure 5.4 Method of Using Symbolic Trees.
5.2.3 Using Testing Processes

This methodology involves creating "testing processes" to be run in parallel with the
specification. Such processes contain simple sequences of actions with value parameters that will
synchronize with the external actions in the specification. This way, all the variables (except the
variables in the choice constructs) are instantiated and the user is not required to provide any
values. For that reason, it is useful to obtain the symbolic tree of specification and its tester. Since

all variables are instantiated, due to the synchronization with the tester process, the tree is
considerably reduced and can be called an ’execution tree’. By inspecting the execution tree, one
can check whether the sequences of data submitted by the tester are accepted. One can create a
library of testing processes according to several testing scenarios.

J________________________ Chapter 6 Conclusion and Future Work

Chapter 6 Conclusions and Future Work
6.1 Conclusions

In this thesis, we have described in detail the LOTOS interactive simulator ISLA. We have
presented LOTOS in a tutorial manner. We have shown how LOTOS inference rules can be
modified in order to be implementable in a systematic way using Prolog clauses. We have also
pointed out the fact that these rules, if implemented exactly as written, do not lead to an efficient
implementation. These rules were optimized such that the execution time is considerably
improved. ISLA is based on these optimized rules.

With the objective of making the simulator a useful tool for various purposes, possibly for
testing and test sequence generation, classes of features are added to it. One of these classes
concerns the step-by-step exploration of the behaviour tree, giving users the flexibility of exploring
various paths. This can be done by setting Check Points at some execution points, allowing users
to jump directly to any of these points to exercise another nondetermenistic choice, producing
another execution path. These exercised paths are called an ’execution tree history’. The internal
representation of the execution tree history can be used for automatic executions allowing
simulation to backtrack to any point even if no Check Point is set at the desired point. Another
feature is symbolic execution which allows to produce the symbolic behaviour tree of a given
process. Since behaviour trees are often infinite, the user is required to provide the upper bounds
of such trees.

We have used ISLA to prototype a full-sized constraint-oriented LOTOS specification: the
OSI Transport Service (TS) provider. Executing a constraint-oriented specification involves
executing several processes at once, each process posing its own constraints on the next actions.
These constraints are expressed in terms of very complex value expressions, which need to be
abbreviated in order to be understood. We have presented an implementation that helps users to
find value expressions for actions, satisfying their corresponding constraints. These values are
taken from user predefined databases. Unfortunately, a great number of these constraints involve
contradictory conditions that cannot be satisfied by any value expression.

For users wishing to take full advantage of this interpreter, we have presented several
methodologies that we have used in simulating the Transport Service specification.

A result of this experiment is the observation that the most effective specification style is
not necessarily the best for execution. Therefore, if it becomes common practice to use simulators,
such as ISLA, to execute specifications while they are being written, this may lead to changes in
the generally practiced specification style.

In the Appendices, we have constructed a LOTOS specification and we have presented the
usage of ISLA in simulating this specification.
6.2 Future Work

In section 4.4, we presented the problems related to the simulation of the ’summation on
values’ constructs, where the user is required to provide ’choice’ values. The values may lead to
situations that appear to the user as deadlocks, although they may simply be the consequence of
inappropriate choice of values. We are currently working on identifying these problems internally,
and notifying the user if, due to a ’choice’ value, actions were not derived.

ISLA would course be inadequate for reachability analysis on large protocols or, more
generally, generation of large amounts of data. For these purposes, we are envisaging more radical
optimizations, namely in the value expression evaluator and in certain frequently used inference
rules. We are also working on a system to derive optimized symbolic execution trees [LG] that

includes:
- The detection of repeated behaviours. In this way, the repeated behaviours can be

indicated by loop references. Detecting all repeated behaviours is not decidable, however some
heuristics to identify some cases of repetition are conceivable .

- The detection of obvious contradictory conditions. These conditions can never be
evaluated to ’true’, therefore their resulting execution subtrees should be eliminated. Of course,
detecting all contradictory conditions is also an unsolvable problem.

- The simplification by congruence rules. This simplification does not in any way change
the semantics of the specification.This is done by identifying some obvious simplifications since,
again, in general this is an undecidable problem.

The optimized symbolic execution trees can be used as a basis for the derivation of test
suites.

We are in the process of implementing two graphical tools for LOTOS. The first tool is a
graphic simulator using only the mouse. The other tool is a graphical representation of LOTOS
behaviours. The two tools can be combined producing a complete graphical simulator for LOTOS.
These tools are being implemented in X-Window with C language on a SUN workstation and they
are based on ISLA by using an interface between C and Prolog.

Appendix A: LOTOS Behaviour Expressions’ Syntax

J______________ Appendix A: LOTOS Behaviour Expressions’ Syntax

+--+
| LOTOS behaviour expressions |
+----------------------------------+---------------------------+
| g d1 ... dn[P]; B | action prefix |

| where | |
| di = !ti or ?xi:si | |

+----------------------------------+---------------------------+
| i; B | internal action prefix |
+----------------------------------+---------------------------+
exit	successful termination
or	
exit(E1,..., En)	

| where | |
| Ei is a term or | |

| Ei = any si | |

+----------------------------------+---------------------------+
| let x1=t1,..,xn=tn in B | local definition |

+----------------------------------+---------------------------|
| choice g= in [g1,..,gn] [] B | summation on gates |

+----------------------------------+---------------------------+
| choice x:s [] B | summation on values |
+----------------------------------+---------------------------+
| par g in [g1,..,gn] op B | par |

+----------------------------------+---------------------------+
| hide g1,..,gn in B | hiding |

+----------------------------------+---------------------------+
| B1 >> accept | enable |
| x1:s1,..,xn:sn in B2 | |

+----------------------------------+---------------------------+
| B1 [> B2 | disable |
+----------------------------------+---------------------------+
	parallel			
B1			B2	(interleaving)
B1		B2	(full synchronization)	
B1	[g1,..,gn]	B2	(selected synchronization)	

+----------------------------------+---------------------------+
| B1 [] B2 | choice |
+----------------------------------+---------------------------+
| [Guard] -> B | guarded |
+----------------------------------+---------------------------+
| stop | deadlock (inaction) |
+----------------------------------+---------------------------+

| (B) | nested |
+----------------------------------+---------------------------+
| p[g1,..,gn](t1,..,tn) | process instantiation |

+----------------------------------+---------------------------+
J____________ Appendix B: Construction of a LOTOS specification
Appendix B: Construction of a LOTOS specification

The following specification models a ’pop machine’ that accepts coins (dollars and
quarters) and delivers the desired pop by pushing the corresponding button. The general idea of
this example is taken from the ’vending machine’ by Bolognesi and Brinksma [BB].

The specification consists of the following processes: ’get-money’, ’deliver’, and ’pop-
machine’.

The process ’get-money’ keeps accepting coins (dollars and quarters) from the user, at gate
’coin-in’ until he/she pushes a button of a specific pop, at gate ’buttons’. The button may only be
pushed when the user has entered enough money to cover the price of the pop. Then the process
will terminate successfully.
process get-money[coin-in,buttons](amount:COIN) :exit:=

coin-in?coin:COIN;
get-money[coin-in,buttons](amount + coin)

[]
buttons?button-name:BUTTON [amount ge price(button-name)];
exit

endproc
The process ’deliver’, after accepting a choice of pop at gate ’buttons’, will offer the pop in the
drawer, specified by gate ’drawer’. Unfortunately, there exists a little devil that can disallow the
machine to deliver the pop, and this is specified by the internal event ’i’. In either case the process
will terminate successfully.
process deliver[buttons,drawer]:exit:=
buttons?button-name:BUTTON ;
(drawer!pop(button-name) ;exit
[]
i ; exit

)
endproc
The overall action of ’pop-machine’ can then be described as follows:
process pop-machine[coin-in,buttons,drawer] :noexit :=
(
get-money[coin-in,buttons](0 of COIN)
|[buttons]|
deliver[buttons,drawer]
)

>> pop-machine[coin-in,buttons,drawer]
endproc
The processes ’get-money’ and ’deliver’ interact among themselves and with the user at gate
’buttons’, and the interaction may occur only after the user has entered at least the price of the pop.
When the interaction does occur, the pop may be offered by the process ’deliver’ or may be taken
by the devil. After this, the pop machine will be ready for the next consumer.

The complete specification is listed below with the data types that describe the sorts
COIN,BUTTON, and POP. The sort COIN is defined in terms of the natural number sort ’Nat’ that
is defined in the standard library.
library Boolean , NaturalNumberendlib
type coin-type0is NaturalNumberrenamedby
sortnames COIN for Nat
endtype
type coin-typeis coin-type0
opns quarter , dollar : -> COIN
eqns ofsort COIN

dollar = Succ(Succ(Succ(Succ(0)))) ;
quarter = Succ(0) ;

endtype
type button-typeis
sorts BUTTON
opns Milk-button , Pepsi-button ,

Coke-button , V8-button : -> BUTTON
endtype
type pop-typeis button-type , coin-type
sorts POP
opns Milk , Pepsi , Coke , V8 : -> POP
pop : BUTTON -> POP
price : BUTTON -> COIN
eqns forall x: BUTTON

ofsort POP
pop(Milk-button) = Milk; pop(Pepsi-button) = Pepsi ;pop(Coke-button) = Coke;

pop(V8-button) = V8 ;
ofsort COIN
 price(Milk-button) = quarter + quarter ;

price(Pepsi-button) = quarter + quarter + quarter;
price(Coke-button) = quarter + quarter + quarter;

 price(V8-button) = dollar ;
endtype
behaviour

pop-machine[coin-in,buttons,drawer]
where process pop-machine[coin-in,buttons,drawer] :noexit :=
(
get-money[coin-in,buttons](0of COIN)
|[buttons]|
deliver[buttons,drawer]
)
>> pop-machine[coin-in,buttons,drawer]
endproc
process get-money[coin-in,buttons](amount:COIN) :exit:=
coin-in?coin:COIN ;

get-money[coin-in,buttons](amount + coin)

[]
buttons?button-name:BUTTON [amount ge price(button-name)];

exit
endproc
process deliver[buttons,drawer]:exit:=
buttons?button-name:BUTTON ;
(drawer!pop(button-name) ;exit
[]
i ; exit

)
endproc
endspec

J______ Appendix C: Simulating a LOTOS specification using ISLA
Appendix C: Simulating a LOTOS specification using ISLA

In this section, a simulation of the pop machine specification constructed in the previous
section is given.

- Comments are preceded by the symbol ’%’.
- What is displayed by ISLA is shown in bold face.
- The user input is underlined
% This is a comment
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 1 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
LOTOS:isla
| ?-isla.
% The first command executes prolog and charges the isla program,
% and the second command executes isla from prolog.
% After these two commands the main menu will be displayed as
% shown.

==
ISLA
Interactive System for Lotos Applications
<1> (l) List LOTOS specifications ’.l’
<2> (c) Compile a LOTOS specification ’.l’
<3> (p) List compiled LOTOS specifications ’.pl’
<4> (x) Execute a compiled LOTOS specification ’.pl’
<5> (cp) List available Check Points ’.cp1’ & ’.cp2’
<6> (xcp) Execute a Check Point ’.cp1’ & ’.cp2’
(pwd) Show current directory
(cd) Change current directory
(ls) List directory
(vi) Text editor
<m> This Menu <h> Help Menu
<exit> Quit ISLA <u> Unix system call
==
% To execute a LOTOS specification, the user should compile it
% then execute it.
% compilation
M:Choose one command or ’m’ or ’h’ for help ==>c
Enter file name or hit <RETURN> to continue ==>pop-machine

LOTOS compiler 87/2.1
(C) University of Ottawa - Protocols Research Group - 1987
syntax and semantic analysis of specification pop-machine.l
... done

make output pop-machine.pl
load library /usr/uotcsih/dept/lotos/lib/dis.x ... done
... done

% execution
M:Choose one command or ’m’ or ’h’ for help ==>x
Enter file name or hit <RETURN> to continue ==>pop-machine

[consulting /usr/uotcsih/dept/lotos/exmpls/pop-machine.pl...]
[pop-machine.pl consulted 3.967 sec 16,960 bytes]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 2 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% A listing of all the processes will be displayed.
% One of them can be executed by giving its corresponding number
% then the actual gates (optional) and the actual parameters
% (if any).
% The formal gates are taken as the actual gates when the user
% does not supply the latter (i.e. see below).

The available processes are:
[1] system[coin-in,buttons,drawer]()
[2] pop-machine[coin-in,buttons,drawer]()
[3] get-money[coin-in,buttons](amount:COIN)
[4] deliver[buttons,drawer]()
P:Choose one command or ’lp’ or ’h’ for help ==>1
Enter actual process gates for execution ==> system
% The interpreter then applies the inference rules on the
% behaviour of the given process and lists a menu of all
% possible actions.
% Each action is associated with: a unique number, the line
% numbers where the action is found in the specification (in
% square brackets), and eventually a list of selection
% predicates.
% Note also that action <2>, which is an interaction between two
% processes, has two variable names between square brackets after
% the question mark. These are the names of the two variables
% that will be assigned the same value in the two interacting
% processes as a result of the action.bh1 andbh2 are the
% behaviours resulting from action <1> and <2> respectively. The
% user can request to see them by typingbh1 or bh2.
% Refer to section 3.2.2 for the exact action menu’s format.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 3 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

============================= system ============================
CP/MANUAL W/20 Level/0 Path/[]
===
<1>- coin-in ?coin:COIN ----> bh1 [51]
<2>- buttons ?[button-name,button-name]:BUTTON

 [ge(0,price(button-name))] ----> bh2 [53,57]
===
 % An action can be fired by giving its associated number. If the % action requires a choice of
values, then the user should
% provide them.
% For example, action # 1 requires a value for ’coin’ of sort
% COIN. The command ’av 1’ can be issued to provide all
% corresponding valid expressions.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 4 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A:Choose one command or ’la’ or ’h’ for help ==>av 1

COIN => COIN*COIN COIN => dollar
COIN => 0 COIN => **(COIN,COIN)
COIN => price(BUTTON)COIN => Succ(COIN)
COIN => +(COIN,COIN) COIN => quarter
BUTTON => Coke-button BUTTON => Milk-button
BUTTON => Pepsi-button BUTTON => V8-button
% e.g. The expression ’price(Coke-button)’ is a valid value of
% sort COIN.
% The user can define his/her own constants that can be used
% later as shorthands.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 5 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A:Choose one command or ’la’ or ’h’ for help ==>cstd
Enter your constants in the form <$CONST-NAME> = <EXPR>
At the end hit <RETURN>

|: $25 = quarter
 -> Ok!!!
|: $50 = +($25,$25)
 -> Ok!!!
|: $75 = +($50,$25)
 -> Ok!!!
|: $coke$ = price(Coke-button)
 -> Ok!!!
|:

% When choosing action 1, any value expression or sort COIN or % any of the above constants
can be used as a value for ’coin’.
A:Choose one command or ’la’ or ’h’ for help ==>1
Enter a value for: coin:COIN => $50
% The actions offered by the resultant behaviour will then be
% displayed.
% Action 2 bellow, is an interaction between process ’get-money’
% and ’deliver’ on the gate ’buttons’.

=============================== system ==========================
CP/MANUAL W/20 Level/1 Path/[1]
Events [1] coin-in ?$50:COIN
===
<1>- coin-in ?coin:COIN ----> bh1 [51]
<2>- buttons?[button-name,button-name]:BUTTON
[ge(0+$50,price(button-name))] ----> bh2 [53,57]
===
A:Choose one command or ’la’ or ’h’ for help ==>2
The existing predicate(s) for this action:
[ge(0+$50,price(button-name))]
Enter a set or a value for:[button-name,button-name]:BUTTON =>
Coke-button
% not enough money to obtain a coke
Predicate evaluated to false
Do you like to see the trace of the evaluation ? (n/y) ==>n
Enter a set or a value for:[button-name,button-name]:BUTTON =>
Milk-button
Predicate evaluated to true
% At this point the user has pushed the button for ’Milk’ and
% the machine has accepted it because the user has already
% entered enough coins to cover the price of the milk. The
% machine is going to deliver the milk.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 6 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% A ’check point’ can be set at any time during simulation
% by the command ’cpset’. We can go back to that point at any% time later.

============================= system ============================ CP/
MANUAL W/20 Level/2 Path/[1,2]
Events [1] coin-in ?$50:COIN
[1,2] buttons ?Milk-button:BUTTON
===
<1>- drawer !Milk:POP ----> bh1 [59]
<2>- i (specified explicitly) ----> bh2 [61]
===

A:Choose one command or ’la’ or ’h’ for help ==>cpset
 Ok!!!
% The pop may be delivered in the drawer or the devil may not
% allow it. Assume that the devil did not interrupt.

A:Choose one command or ’la’ or ’h’ for help ==>1
passed evaluated value: ==> Milk
============================= system ============================ CP/
MANUAL W/20 Level/3 Path/[1,2,1]
Events [1] coin-in ?$50:COIN
[1,2] buttons ?Milk-button:BUTTON
[1,2,1] drawer !Milk:POP
==
<1>- i (enable: exit) ----> bh1 [54,59]
==
% The above internal event passes the execution to the process
% ’pop-machine’ where the operation restarts.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 7 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The command ’cpl’ lists all available checkpoints where they
% are represented by their action numbers path. The user is able % to jump directly to any check
point by giving its associated
% number.
A:Choose one command or ’la’ or ’h’ for help ==>cpl
The available Check Points are:
-<1>- [1,2]
A:Choose one command or ’la’ or ’h’ for help ==>go1
% Execution returns to the only available checkpoint.
============================= system ============================ CP/
MANUAL W/20 Level/2 Path/[1,2]
Events [1] coin-in ?$50:COIN
[1,2] buttons ?Milk-button:BUTTON
===
<1>- drawer !Milk:POP ----> bh1 [59]
<2>- i (specified explicitly) ----> bh2 [61]
===
A:Choose one command or ’la’ or ’h’ for help ==>2
% This time, the user has decided to follow a different execution
% path: the devil has blocked the delivery .

Internal event is executed
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 8 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

============================= system ============================ CP/
MANUAL W/20 Level/3 Path/[1,2,2]
Events [1] coin-in ?$50:COIN
[1,2] buttons ?Milk-button:BUTTON
===
<1>- i (enable: exit) ----> bh1 [54,61]
===
A:Choose one command or ’la’ or ’h’ for help ==>level1
% the command ’level’ allows user to restart the simulation at
% any preceding level on the execution path.

============================= system ============================ CP/
MANUAL W/20 Level/1 Path/[1]
Events [1] coin-in ?$50:COIN
===
<1>- coin-in ?coin:COIN ----> bh1 [51]
<2>- buttons ?[button-name,button-name]:BUTTON
[ge(0+$50,price(button-name))] ----> bh2 [53,57]
===
A:Choose one command or ’la’ or ’h’ for help ==>1
Enter a value for: coin:COIN => $25
============================ system =============================
CP/MANUAL W/20 Level/2 Path/[1,1]
Events [1] coin-in ?$50:COIN
[1,1] coin-in ?$25:COIN
===
<1>- coin-in ?coin:COIN ----> bh1 [51]
<2>- buttons?[button-name,button-name]:BUTTON
[ge(0+$50+$25,price(button-name))] ----> bh2 [53,57]
===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 9 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% When an action requires value expressions to satisfy a
% selection predicate, the user can assign a set of values for
% any required value, then ISLA reports on the evaluation of the
% predicate using every possible combination of values taken
% from the sets. A set can be defined by the command ’setd’ and
% should contain values of one specific sort.

A:Choose one command or ’la’ or ’h’ for help ==>setd
Enter the sort or <RTN> to quit ==> BUTTON
Enter the set name or <RTN> to quit ==>button

Enter your data expressions

At the end hit <RETURN>
|: Milk-button
Ok!!!
|: Pepsi-button
Ok!!!
|: Coke-button Ok!!!
|: V8-button
Ok!!!
|:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 10 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A:Choose one command or ’la’ or ’h’ for help ==>2
The existing predicate(s) for this action : [ge(0+$50+$25,price(button-name))]
Enter a set or a value for:[button-name,button-name]:BUTTON =>set(button)
1> Milk-button ==> true
2> Pepsi-button ==> true
3> Coke-button ==> true
4> V8-button ==> false
t<N> to trace, c<N> to choose or l to relist or <RTN> ?c3
% Therefore, with the amount of money that the user has
% entered, he/she can choose any pop except ’V8’.
% The user can choose any one of these values to be the desired
% value for simulation. In this case a Coke has been chosen.
============================= system ============================ CP/
MANUAL W/20 Level/3 Path/[1,1,2]
Events [1] coin-in ?$50:COIN
[1,1] coin-in ?$25:COIN
[1,1,2] buttons ?Coke-button:BUTTON
===
<1>- drawer !Coke:POP ----> bh1 [59]
<2>- i (specified explicitly) ----> bh2 [61]
===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 11 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The command ’bh0’ prints the current behaviour expression
% (i.e. the behaviour that offered the above actions).
A:Choose one command or ’la’ or ’h’ for help ==> bh0
Output to (s)creen or to a (f)ile or (q) ==>s
 exit
|[buttons]|
(
drawer !pop(Coke-button):POP ; exit
[]
i ; exit

)
>> pop-machine[coin-in,buttons,drawer]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 12 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The command ’hall’ displays all the actions taken so far in
% the current simulation session in the form of a tree.
% It also shows the number and position of all checkpoints on
% the left hand side, and the current simulation point is marked
% by the symbol ’***’.

A:Choose one command or ’la’ or ’h’ for help ==>hall
Show process instantiations (n/y) ==>n
Output to (s)creen or to a (f)ile or (q) ==>s

cp
system[coin-in,buttons,drawer]
..1 coin-in ?$50:COIN [51]
1
[ge(0+$50,price(Milk-button))] [53,57]
......1 drawer !Milk:POP [59]
......2 i (specified explicitly) [61]
....1 coin-in ?$25:COIN [51]
******2 buttons ?Coke-button:BUTTON
[ge(0+$50+$25,$price)] [53,57]
A:Choose one command or ’la’ or ’h’ for help ==>q
Back to process menu (n/y) ?y
% leaving the simulation phase

The available processes are:
[1] system[coin-in,buttons,drawer]()
[2] pop-machine[coin-in,buttons,drawer]()
[3] get-money[coin-in,buttons](amount:COIN)
[4] deliver[buttons,drawer]()
P:Choose one command or ’lp’ or ’h’ for help ==>ptree1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PART 13 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The command ’ptree’ displays the behaviour tree of a process,
% where the execution is done symbolically without the values
% from the environment. In other words, variable values are
% denoted by expressions that may involve variable names. Since
% different variables may have the same name, a unique number is
% attached to every distinct variable name.
% To limit the size of the tree, the maximum width and length of
% the tree should be given.
Maximum execution depth (default = 5) ==>3
Show complete actions or only gates (a/g) ==>a
Show process instantiations (n/y) ==>n
Output to (s)creen or to a (f)ile or (q) ==>s

1 coin-in ?coin@1:COIN [51]
| 1 coin-in ?coin@2:COIN [51]
| | 1 coin-in ?coin@3:COIN [51]
| | 2 buttons ?[button-name@1,button-name@2]:BUTTON

[ge(0+coin@1+coin@2,price(button-name@1))] [53,57]
| 2 buttons ?[button-name@1,button-name@2]:BUTTON

 [ge(0+coin@1,price(button-name@1))] [53,57]

| | 1 drawer !pop(button-name@1):POP [59]
| | 2 i (specified explicitly) [61]
2 buttons ?[button-name@1,button-name@2]:BUTTON

 [ge(0,price(button-name@1))] [53,57]
| 1 drawer !pop(button-name@1):POP [59]
| | 1 i (enable: exit) [54,59]
| 2 i (specified explicitly) [61]
| | 1 i (enable: exit) [54,61]
A:Choose one command or ’la’ or ’h’ for help ==>exit
[End of Prolog execution]
LOTOS:

J___________________________________ Appendix D: ISLA’s Commands
Appendix D: ISLA’s Commands

Note : In any command :
- The part in square brackets "[]" is optional,
- The part in "<>" is a number and should be entered by the
 user.
Remark: All expressions are shown in prefix form, and they
 should also be entered in prefix (even if they are defined
 as infix).
------------------------ div_command --------------------------
h[elp] - this screen or some information about a topic
options - simple list of options in use
? - simple list of all commands
screen[<N>] - sets the displayed screen lines to <N>. Default

 N = 20.
cw[<N>] - (change width),To change the Width of execution.
Default N = 20.
noclear - the screen will not be cleared during execution.

 Useful for printing the whole execution session.
clear - the screen will be cleared during execution.

 (Default)
q - goes back to process menu
qm - goes back to main menu
exit - leaves ISLA.
------------------------- info_on_bh ---------------------------
<N> - Executes action number <N>.
la[f] - (List Actions) relist the current offered actions
"laf" to save this list on a file
bh[l]<N> - (Behaviour), prints behaviour expression number <N>.
To print the original (source) behaviour enter

 ’bh0’ .
.bh prints only the first actions,
.bhl prints all behaviour except recursive calls.
tree[<N>] - generates the symbolic tree for process number <N>.

 It does an automatic execution for the given
 behaviour with no real evaluation (symbolically).

The default dimension of the tree can be changed.
Default : <N> = 0 ,(for the behaviour that fired the

 current actions).
pred<N> - print guards evaluated to get the action number <N>
pi<N> - (process instantiations), shows all the process

 invocations between action <N> and the previous
 action.

how - trace the inference rules which gave the currents

 actions.
stat - print the number of inferences rules used to get the

 actions.
av <N> - (parameters values), prints the valid values of the

 parameters of action number <N>.
?path - print the current path
internal - to skip some internal actions
.enable .distchoice
.internal action .internal_matching

(not implemented)
listinternal - to list these skipped actions when obtaining

 a new screen
[no]listnomatch - to list not matching actions when obtaining a

 new screen
[no]listevents - to list external action who lead to the

 actual point when obtaining a new screen (by
 default)

[not]ignore<ln> - to ignore certain actions defined at <ln> =
 LineNumber

.i specified explicitly

. choice values
listignored - to list lines ignored
[no]listignore - to list ignored actions when obtaining a new

 screen
----------------------- info_on_process ------------------------
<N> - To execute a process, enter the number associated with the
 process. Then the actual gates (optional), and the actual
 parameters (if any) are entered.
 Ex: [G1,G2](succ(0),true)
Note:- the number of actual gates (if entered) should be

 equal to the number of the formal gates.
- the number of actual parameters (if any) should be

 equal to the number of the formal parameters, and
 they should be of the same types.

lp - (list all processes), lists all available processes
 with their correspondent numbers.

pv <N> - (parameter values), prints the valid values of the
 parameters of process number <N>.

pp[l]<N> - (pretty print), displays process number <N>.
sptree<N> - (process tree), generates the static definitions of

 the processes.
ptree<N> - generates the symbolic tree for process number <N>.

 It does an automatic execution for the given
 behaviour with no real evaluation (symbolically).

The default tree’s dimension can be changed.
The output tree can be directed into a file.

------------------ check_points and history --------------------
auto - (automatic check point setting),check points will

 be saved automatically on every execution point.
manual - (manual check point setting), check point can be

 set only manually (see ’scp’ & ’cp’ commands).
save - saves the current point of execution for later

 execution.
Here you will have the option of saving the whole

 behaviour of the current point (MODE 1), or only
 the history (MODE 2).

When resuming execution at that point using the
 saved file, in MODE 2 an automatic execution will
 be done to obtain the desired behaviour.

set - sets a check point for the current execution point.
go<N> - Restart execution at checkpoint number <N>.
back[<N>] - goes back <N> levels in the execution path.

 Default N = 1.
If no CheckPoint is set at that level, a CheckPoint

 will be computed starting from the closest
 CheckPoint above the desired level, or from the
 root if no CheckPoint exist in the execution path.

level <N> - goes to level <N> in the execution path.
If no CheckPoint is set at that level, a CheckPoint

 will be computed starting from the closest
 CheckPoint above the desired level, or from the
 root if no CheckPoint exist in the execution path.

rmcp<N> - Removes checkpoint number <N>.
prcp<N> - Displays the behaviour of checkpoint number <N>.
save <N> - Saves checkpoint number <N> in a file, for later

 execution.
Here you will have the option of saving the whole

 behaviour of the Check Point (MODE 1), or only the
 history (MODE 2).

When resuming execution at that point using the
 saved file, in MODE 2 an automatic execution will
 be done to obtain the desired behaviour.

’sv’ can be used instead of ’save’.
hcp<N> - Prints all the actions that were taken up to

 checkpoint number <N>.
tcp<N> - Prints the symbolic tree starting at checkpoint

 number <N>.
ph - (point history), lists all the actions that lead

 to the current execution point.
th - (tree history), lists all the actions taken so far

 for the current initial call (initial process
 call).

fh - (forest history),lists all the actions taken so far
 for all the initial process calls of the same
 specification.

-------------------- infos on evaluations ---------------------
trace[off|on] - to set automatic or manual (default) trace of

 evaluations
le - to list the evaluations done to obtain the

 currents actions
---------- use of values, defined constants and sets --------
vs - (valid sorts), prints all valid sorts used in the

 current specification.
vo - (valid operators),prints all valid operators used in

 the current specification.
cstd - Allows users to define their own constants.
cstl - lists all user defined constants.
cstrm[] - clears all (or one) user defined constants from

 memory.
cstf - gives the user the following commands:
l)oad : to load a specific user defined constants

 file
s)ave : to save all user defined constants in the

 memory to a file
t)ype : type an existing user defined constants

 file on the screen
d)ir : shows all available user defined constants

 files
setd - Allows users to define their own sets of expressions or constants of same sorts
setl - lists all user defined sets in memory.
setc - lists content of one user defined set.
setrm - clears all (one) user defined set from memory.
setf - gives the user the following commands:
l)oad : to load a specific user defined set file
s)ave : to save one user defined set in the memory

 to a file
t)ype : type an existing user defined set file on

 the screen
d)ir : shows all available user defined sets files
cdtd - to set contradictory predicate
example: IsTReq(@1:TSP) # IsTInd(@1:TSP)
cdtl - lists all user defined contradictory predicate.
cdtrm - clears all (or one) user defined contradiction from

 memory.
cdtf - gives the user the following commands:
l)oad : to load a specific user defined

 contradictions file
s)ave : to save all user defined contradiction in

 the memory to a file
t)ype : type an existing user defined

 contradictions file on the screen
d)ir : shows all available user defined

 contradictions files in the working
 directory

J_____________________ Appendix E: Internal Form Representation
Appendix E: Internal Form Representation

PROLOG REPRESENTATION OF LOTOS SPECIFICATIONS
1) Renaming function

Problems
- Identifiers with a same name that define different objects
 must be given different names because of the absence of
 scoping in Prolog.
- Prolog treats differently identifiers that begin with
 capital letters
- Variables (beginning with a capital letter) have a dynamic
 scope local to the inference rule in which they appear.
 There is no way to get back the name of a variable.
Solutions
- each object is given a distinct number N, and a one or two
 letter string S defined as follow:
sp for specification identifiers
p for processes
g for gates
s for sorts
o for operations
v for values
The new name is now obtained by appending N to S.
- The mapping between the real name and the internal one can
 be obtained from a symbol table of that form:
rename (new_name , old_name , path).
example:
’val’ (v3) declared in process ’proc’ (p2), declared in
 specification spec (sp1) will lead to the following:
rename (v3 , ’val’ , [p2, sp1]).
rename (p2 , ’proc’ , [sp1]).
rename (sp1 , ’spec’ , []).
- Note that values must begin with a capital so that it can
 be treated as a variable by Prolog. However, due to the problem mentioned before, we

must use a lowercase letter in
 order to retrieve its name. The solution here is to use a
 pair of names at each occurence of a value.
For example:
... V12, v12 ...
2) Internal representation

The internal representation is defined in terms of BNF-like
rules.

However, these rules are a bit informal:
- Non-terminals begin with the symbol ’P_’.
- Repetitions of zero or more times are surrounde by the

brackets ’{’ and ’}’.
 - Square brackets represents terminal symbols.
P_internal_representation := P_flat_specification

 P_canonical_type
 P_renaming_function

/* Behaviour Description */
P_flat_specification := { P_process . }
P_process := proc(P_procid , P_gateids , P_valuedecls , P_behexp)

P_behexp := let(P_valueqns , P_behexp)
| distchoice([[P_valdecl] , P_linenum] , P_behexp)
| distchoice(P_gateid , P_gateids , P_behexp)
| distpar(P_gateid , P_gateids , P_parop , P_gateids ,

 P_behexp)
| enable(P_behexp, P_valuedecls , P_behexp)
| disable(P_behexp , P_behexp)
| parcomp(P_parop , P_behexp , P_gateids , P_behexp)
| choice([P_behexp {, P_behexp}])
| guard(P_simpleqn , P_behexp)
| hiding(P_gateids , P_behexp)
| seq(P_event , P_behexp)
| instance(P_processid , P_gateids , P_expressions)
| nested(P_behexp)
| exit([exit(P_linenum) ,

 [P_experiment_accept {,P_experiment_accept}],
 []])

| stop(P_linenum)
P_event := i(P_linenum)

 | [P_gateid(P_linenum) ,
 [P_experiment {, P_experiment}], P_guard]

P_experiment := P_experiment_normal
 | P_experiment_accept

P_experiment_normal := [# , P_expression , P_sortid]
P_experiment_accept := [$, P_valdecl]
P_valueqns := [P_valueqn {, P_valueqn}]
P_valueqn := [P_valdecl , P_expression]
P_valuedecls := [[P_valdecl] {, [P_valdecl] }]
P_valdecl := P_Valid , P_valid , P_sortid
P_guard := []

 | P_simpleqn
P_simpleqn := [P_expression , P_expression]

 | [P_expression]
P_expressions := [P_expression {, P_expression}]
P_expression := P_opnid

 | P_opnid(P_expression {, P_expression})
 | val(P_Valid , P_valid)

P_gateids := [P_gateid {, P_gateid}]
P_parop := interleave

 | maxsync
 | selected

P_linenum := [P_number_id] /* taken from the abstract tree */
/* Abstract Data Types Description */
P_canonical_type := { P_sort . } { P_equation . }
P_sort := sort P_sortid => P_expression
P_equation := [[P_premis {, P_premis }]] =-=> P_simpleqn2
P_premis := P_expression2 =--= P_expression2
P_simpleqn2 := P_expression2 ==> P_expression2
P_expression2 := P_expression2 {, P_expression2 }
P_expression2 := P_opnid

| P_opnid(P_expression2)
| P_Valid

/* Renaming Function Description */
P_renaming_function := { renm(P_renaming) . }
P_renaming := P_specifid , Atom , []

 | P_id , Atom , [P_nesting]
P_id := P_typeid

 | P_processid
 | P_sortid
 | P_opnid
 | P_gateid
 | P_valid

P_nesting := P_specifid
 | P_processid
 | P_typeid

/* Identifiers Description */
P_procid := P_processid

| P_specifid
P_specifid := sp Index
P_processid := p Index
P_typeid := t Index
P_sortid := s Index
P_opnid := o Index

 | true
P_gateid := g Index

| exit
P_valid := v Index
P_Valid := V Index
Note: Index is the unique index associated with each identifier in the specification.

J___________________ Appendix F: Inference Rules Implementation
Appendix F: Inference Rules Implementation

/* Axioms */
branch(seq(i(LN),B),i(explicit),B,LN,Pr,Pr).
branch(seq([A|L],B),[G|L],B,LN,Pr,Pr) :- A =.. [G,LN].
branch(exit([exit(LN),V,[]|T]),[exit,V,[]|T],stop,LN,Pr,Pr).
branch(distchoice([[V1,V2,S],LN],B),[dummy,[V1,V2,S],[]],B,
 LN,Pr1,Pr1).
/* Inference Rules */
branch(let(C,B),Action,BR,LN,Pr1,Pr2):-

asglet(C,B,BL), /* Instantiate values of ’let’ in B */
branch(BL,Action,BR,LN,Pr1,Pr2).

branch(guard([PD],B),A2,BR,LN,Pr1,Pr2):-
tree, /* in the case of symbolic tree, */

 /* guards are assumed true if */
 /* they are not evaluated to false */

eval(PD,P),P \== false,
branch(B,A,BR,LN,Pr1,Pr2),
branch(guard([PD],B),A,BR,LN,Pr1,Pr2):-

\+tree, /* for normal simulation, */
 /* guards should be evaluated to true */

eval(PD,true),
branch(B,A,BR,LN,Pr1,Pr2).
branch(choice(BL),A,BR,LN,Pr1,Pr2):-
member(B1,BL), /* for every B1 in BL */
branch(B1,A,BR,LN,Pr1,Pr2).
branch(hiding(HD,B),Action2,hiding(HD,BR),LN,Pr1,Pr2):-

branch(B,Action,BR,LN,Pr1,Pr2),
hide_or_not(Action,HD,Action2).

branch(nested(B),A,BR,LN,Pr1,Pr2):-
branch(B,A,BR,LN,Pr1,Pr2).

branch(parcomp(CT,B1,CG,B2),A,BF,LN,Pr1,Pr2):- allsolutions(B1,S1), /* all actions of
B1 */

allsolutions(B2,S2),!, /* all actions of B2 */
/* check synchronization type */
check_parallel([B1,S1],[B2,S2],CT,CG,A,BF,LN,Pr1,Pr2).

branch(enable(B1,PR,B2),A2,BR2,LN,Pr1,Pr2):-
branch(B1,Action,BR,LN,Pr1,Pr2),

/* check if successful termination */
enable_exit(PR,Action,A2,BR,B2,BR2).

branch(disable(B1,B2),Action,BR2,LN,Pr1,Pr2):-
branch(B1,Action,BR1,LN,Pr1,Pr2),

/* check if successful termination */
disable_exit(Action,BR1,B2,BR2).

branch(disable(B1,B2),Action,BR,LN,Pr1,Pr2):-

branch(B2,Action,BR,LN,Pr1,Pr2).
branch(relabel(B,RG),Action,relabel(BR,RG),LN,Pr1,Pr2):-
branch(B,Action1,BR,LN,Pr1,Pr2),

/* check if relabelling should occur */
relabels(Action1,Action,RG).
branch(distchoice(G,G2,B),A,BR,LN,Pr1,Pr2):-

member(G21,G2), /* for every gate in G2 */
branch(relabel(B,[[G],[G21]]),A,BR,LN,Pr1,Pr2).

branch(distpar(G,G2,OP,Gs,B),A,BR,LN,Pr1,Pr2):-
length(G2,COPIES),
make(B,COPIES,Bs), /* make COPIES copies of B */
simplify_B(G,G2,OP,Gs,Bs,B2), /* simplify them */
branch(B2,A,BR,LN,Pr1,Pr2).

branch(instance(A,G,V),Action,BR,LN,Pr1,[instance(A,G,V)|Pr2]):-evalparm(V,VR), /* evaluate
actual parameters */
proc(A,OG,VR,B), /* substitute formal parametrs */

 /* by actual parameters */
branch(relabel(B,[OG,G]),Action,BR,LN,Pr1,Pr2).

References
[BB]B. Bolognesi, E. Brinksma, "Introduction to the ISO

Specification Language LOTOS", North-Holland, Computer
Networks and ISDN Systems 14, pp.25-59, 1987.

[BJ]D. Brand, W.H. Joyner Jr., "Verification of Protocols
Using Symbolic Execution", Computer Networks 2,4/5,
pp.351-360.

[BRI]E. Brinksma, "A Tutorial on LOTOS", in: B. Sarikaya and
G.v. Bochmann (eds) Protocol Specification, Testing,
and Verification VI, North-Holland, pp.171-194, IFIP,
1986.

[EFH]H. Ehrig, W. Fey, H. Hanson, "ACT ONE: an algebraic
specification language with two levels of semantics",
Bericht-Nr. 83-03, Technical University of Berlin,
1983.

[EIJ]P. Van Eijk, "Software Tools for the Specification
Language LOTOS", Ph.D. Thesis, University of Twente,
January 1988.

[FEH]M.C. Fehri, "A System for Validating and Executing
LOTOS Data Abstractions (SVELDA)", MCS Thesis,
University of Ottawa, 1987.

[GIL]D. Gilbert, "Executable LOTOS: Using PARLOG to
implement an FDT", in: H. Rudin and C.H. West (eds)
Protocol Specification, Testing, and Verification VII,
North-Holland, pp.281-294, IFIP, 1987.

[Hoare]C.A.R. Hoare, "Communicating Sequential Processes",
Prentice-Hall International, London, 1985.

[JDM]Jan de Meer, "Tutorial on LOTOS Data Types". Hahn
-Meitner-Institut Berlin GmnH,1986.

[ISO1]International Organization for Standardization,
Information Processing Systems, Open Systems
Interconnection, "LOTOS - A Formal Description
Technique Based on Temporal Ordering of Observational
Behaviour" (ISO DIS 8807), 1987.

[ISO2]International Organization for Standardization,
"Formal Description of ISO 8072 in LOTOS",
(ISO/TC 97/SC 6/N 317), 1987.

[OBA1]A. Obaid, "Applications of the inference rules of CCS
and LOTOS", University of Ottawa, Department of
Computer Science, Technical Report 85-14, 1985.

[OBA2]A. Obaid, "SINAPS: A simulator of communicating
systems", University of Ottawa, Department of
Computer Science, Technical Report 86-14,1986.

[PAP] G. Pappalardo, "Experiences with a Verification and
Simulation Tool for Behavioural Language", in: H. Rudin

and C.H. West (eds) Protocol Specification, Testing,
and Verification VII, North-Holland, pp.251-264, IFIP,
1987.

[KOR] D.G Kourie, "The Design and Use of a Prolog Trace
Generator for CSP", University of Pretoria, Software-
Practice and Experience, Vol. 17(7), pp.423-438, 1987.

[LG] L. Logrippo, R. Guillemot, "Derivation of Useful
Execution Trees From LOTOS Specifications by Using an
Interpreter", University of Ottawa, Department of
Computer Science, Technichal Report 88-13, 1988.

[LGH] L. Logrippo, R. Guillemot, M. Haj-Hussein, "Executing
Large LOTOS Specifications", University of Ottawa,
Department of Computer Science, Technichal Report 88
-03, 1988.

[LO] L. Logrippo, A. Obaid, "Outils Logiciels pour le
Langage LOTOS", University of Ottawa, Department of
Computer Science, Technichal Report 88-16, 1988.

[LOBF]L. Logrippo, A. Obaid, J.P. Briand, M.C. Fehri, "An
Interpreter for LOTOS: A Specification Language for
Distributed Systems", To appear in Software - Practice
& Experience.

[MIL] R. Milner, "Calculus of Communicating Systems", Vol.
92, Springer-Verlag 1980.

[URS] H. Ural, R. Short, "An Interactive Test Sequence
Generator", in: Communications Architectures and
Protocols, SIGCOMM ’86 Symposium, pp.241-250.

[VIS] C. Vissers, "Architecture and Specification Style in
Formal Description of Distributed Systems", in: S.
Aggarwal, K. Sabnani (eds) Protocol Specification,
Testing, and Verification VIII, IFIP, 1988.

