
21

Chapter 3

Relief strategies to tackle state explosion

The principle objective of most improved verification techniques is to relieve the intricate problem of
state explosion, without compromising too much the ability to verify several different types of
correctness properties. This chapter gives an overview of the various relief strategies developed to
this extent. In line with the previous chapter, we focus primarily on relief strategies that are based on
state exploration. We point out that two excellent surveys of existing relief strategies already
appeared in the late 80’s [LCL87, Yua88]. Our overview adopts the structure of [Yua88] and
includes also relief strategies that have been proposed more recently.

3.1 Improved state exploration techniques

One of the more prominent causes of the state explosion problem is the modeling of concurrency
by interleaving or, precisely, the exploration of all possible interleavings of concurrent transitions.
For instance, in reachability analysis the execution of k concurrent transitions is examined by
exploring all k! orderings of these transitions. Yet, many properties of interest are insensitive to the
order of concurrent transitions. Protocols therefore often manifest a large number of reachable
global states and transitions that are redundant for verification purposes. It is this observation which
has led to the development of several improved state exploration techniques – techniques that reduce
the complexity of conventional reachability analysis by examining just part of the state space of a
protocol, a part that is provably sufficient to verify a given property.

3.1.1 Fair reachability analysis

Fair reachability analysis has emerged to date as an improved state exploration technique for the
verification of cyclic protocols, in which two or more processes form a unidirectional ring. The
technique has been proposed incrementally by several researchers [RW82, GH85, LM94, LM96].

Chapter 3!!Relief strategies to tackle state explosion 22

Canonical sequences!!Fair reachability analysis was first proposed by Rubin & West as a
nameless relief strategy for the verification of two-process protocols (i.e. networks of two processes
communicating over two error-free simplex channels) [RW82]. They recognized that much of the
redundancy in conventional perturbation analysis can be eliminated by imposing an order among
transitions when both processes can execute a transition at a global state. It was shown that
transitions can then always be executed pair-wise, one of each process, resulting in so-called
canonical sequences. Instead of executing just a single transition of one process, “matching”
transitions of both processes are coupled to generate the next global state. Exploring only canonical
sequences can substantially reduce the number of global states and transitions analyzed, as only the
states with an equal number of messages in both channels are generated. Rubin & West argued that
this improvement in efficiency does not compromise the detection of deadlocks and unspecified
receptions in two-process protocols.

Fair progress state exploration!!Gouda & Han built on the technique above, and actually
introduced the name fair reachability analysis [GH85]2. This name stems from the recognition that
two processes progressing through a canonical sequence factually progress with the same (relative)
speed. Put differently, a canonical sequence does not allow one of the processes to execute more
transitions than the other at any given time, and is hence fair with respect to their progress speeds.
Gouda & Han supported the claims in [RW82], viz. for a two-process protocol the fair reachability
graph obtained by “fair progress state exploration” is usually much smaller than the
corresponding reachability graph and, when finite, this graph can be used to decide the absence of
deadlocks and unspecified receptions. They also learned that boundedness detection, which had not
yet been addressed, is unsolvable by fair reachability analysis itself. Consequently, algorithms were
presented which augment the fair reachability graph of a two-process protocol in order to decide
whether the protocol is bounded [GH85]. The algorithms assume a finite fair reachability graph,
which can then be employed also to find the smallest possible capacities of the two channels in the
protocol. These contributions elevated fair reachability analysis as a rather effective relief strategy,
suitable for detecting the most common logical errors in two-process protocols.

Generalized fair reachability analysis!!Recently, Liu & Miller generalized the technique of fair
reachability analysis to n-process cyclic protocols, where n ≥ 2 processes are joined by n simplex
channels in a closed loop [LM94, LM96]. All channels are oriented in the same direction, hence
forming a unidirectional ring. A two-process protocol is thus a special instance of a cyclic protocol.

2 The name fair reachability analysis was in fact introduced earlier by Yu & Gouda [YG82], who presented an algorithm for
deadlock detection which is polynomial in both time and space. However, the protocols considered are assumed to have two
processes that can only send and receive one type of message, while no process state may involve both send and receive
transitions. These assumptions are too restrictive in practice.

Chapter 3!!Relief strategies to tackle state explosion 23

The key aspect of the generalization consists in preserving the equal channel length property: each
global state generated by fair reachability analysis is a reachable global state in which all channels
hold the same number of messages. As pointed out above, this property was already identified
implicitly in [RW82, GH85]. Indeed, for two-process protocols the equal channel length property
coincides with the perception of equal progress speed.

Liu & Miller showed that the decidability results established for two-process protocols are valid
for all cyclic protocols in general. That is, the detection of deadlocks and unspecified receptions,
and boundedness detection are decidable for any cyclic protocol whose fair reachability graph is
finite. In addition, they determined the decidability of detecting non-executable transitions for these
protocols, which had not been established before for two-process protocols. The fair reachability
graph of a cyclic protocol was found to be finite if (at least) one of the channels in the protocol is
bounded. This also follows the same result achieved earlier for two-process protocols [GCL85]. A
necessary and sufficient condition for finiteness was identified as well, namely the absence of
indefinite simultaneous growth of all channels in a cyclic protocol. This condition thus completely
characterizes the subclass of cyclic protocols for which the detection of deadlocks, non-executable
transitions, unspecified receptions and unboundedness is decidable [LM94, LM96].

Besides being an effective and efficient relief strategy for cyclic protocols, an important extra
asset of fair reachability analysis is that it can solve the verification problem for various unbounded
protocols. The conventional reachability analysis fails to deal with such protocols due to the infinity
of their state spaces, induced by an unbounded accumulation of messages in (one of) the channels
(cf. Section 2.5.1). Yet, the number of global states explored by fair reachability analysis may very
well be finite. The technique of fair reachability analysis is presented in further detail in Chapter 4,
along with one of our own contributions: a generalization of fair reachability analysis to so-called
multi-cyclic protocols.

3.1.2 “Reduced” reachability analysis

For two-process protocols, two other improved state exploration techniques have appeared which
are quite similar in nature to fair reachability analysis. Zhao & von!Bochmann [ZB86] proposed a
“reduced” reachability analysis on the basis of a different representation of the CFSM model, in
which protocols are modeled by process equations. State exploration is then performed through
algebraic transformation rules. In order to reduce the space and time requirements, the proposed
method employs both conventional and fair progress schemes in the generation of global states. It
was first shown to detect all non-progress states, i.e. all deadlocks and blocking unspecified
receptions, and subsequently extended to enable the detection of all unspecified receptions [ZB86].

Chapter 3!!Relief strategies to tackle state explosion 24

Cacciari & Rafiq [CR93] presented a reduced reachability analysis for two-process protocols
that resembles Zhao & von!Bochmann’s technique. They again revert to the plain CFSM model,
however, and also incorporate internal transitions in the model3. Cacciari & Rafiq claimed that their
method improves the one in [ZB86] in the sense that it allows more properties to be verified without
increasing the order of magnitude of the number of generated states. The reachability graph
constructed by the proposed method spans all reachable global states in which either both channels
hold the same number of messages (cf. the equal channel length property), or one of the channels is
empty while the other holds one message. This reduced reachability graph thus includes all
deadlock states and has further been shown appropriate for verifying the absence of unspecified
receptions and certain livelocks (precisely, blocking cycles). Not all unspecified receptions are
necessarily detected though, but it is guaranteed that at least one unspecified reception manifests
itself in the reduced reachability graph if there exists one in the protocol.

3.1.3 Maximal progress state exploration

Like fair progress state exploration, maximal progress state exploration is a technique that attempts
to eliminate redundancy in conventional reachability analysis by not examining all relative progress
speeds of processes [GY84]. Its applicability is limited to two-process protocols. Rather than
forcing the two processes to progress at equal speed, this technique forces one of the processes to
make maximal progress. This means that transitions of one process, say P1, are executed as much
as possible, while the other process P2 remains inactive. Process P2 comes into play only when P1
can no longer progress, i.e. when all transitions at its current process state are receive transitions
that cannot be executed. In this case, state exploration continues by executing transitions of P2 until
one of the receive transitions of P1 becomes executable. Process P1 then resumes progress and the
procedure repeats itself as long as new global states can be generated.

Gouda & Yu proved that all non-progress states are detected by performing maximal progress
state exploration for either process. In addition, they proved that all buffer overflows (in case of
channels with finite capacity) can be identified by performing maximal progress state exploration
for both processes, once for P1 and once for P2. Detecting buffer overflows is thus divided into two
independent subtasks, each of which generally requires less space and time than the combined task.
The overall time requirements may then be reduced by executing the two subtasks in parallel, at the
expense of an extra processor, whereas the space requirements may be reduced by executing the
two subtasks in sequence on a single processor [GY84].

3 Although considered in [CR93], internal transitions do usually not have a significant effect on state exploration based
verification techniques. They are therefore largely ignored by researchers in the field.

Chapter 3!!Relief strategies to tackle state explosion 25

3.1.4 Reduced implementation sequences

The relief strategy proposed by Itoh & Ichikawa [II83] (see also [KI+85]) is applicable to protocols
with any number of processes (at least two, of course). Constraints are imposed, however, on the
structures of these processes: all processes must synchronize on their initial process states after a
finite number of execution steps and no process is allowed to have a cyclic execution that does not
pass through its initial state. Although these constraints ensure that the global state space of a
protocol is finite, eluding any such embedded cycle in the process graph of a process is surely
restrictive in practice. Even a simple data transfer protocol usually exhibits at least one embedded
cycle (e.g. the retransmission part of the sender in an alternating bit protocol).

Itoh & Ichikawa’s technique entails the simultaneous (or parallel) execution of transitions of
different processes in a global state to derive the next global state. Intuitively, the aim is to abstain as
much as possible from any execution order among concurrent transitions. Special attention is
thereby required for transitions that are not executable at the current global state, say G, but that
may still become executable later at a global state reachable from G. Such transitions are called
potentially admissible events. For each global state encountered with potentially admissible events,
additional simultaneous progress schemes are considered by inhibiting the execution of transitions
of the processes in which these events arise. As shown in [II83], this procedure may result in the
analysis of just a small part of the global state space of a protocol. Indeed, the proposed technique
examines only the so-called reduced implementation sequences of a protocol, which constitute a
subset of all the possible protocol executions. A reduced implementation sequence is an execution
from the initial global state of the protocol to either a non-progress state or a global state in which
all processes have returned to their intial process states (the channels need not be empty). The set of
reduced implementation sequences is used to verify the protocol against a given requirement
specification, viz. a set of prescribed protocol executions. Strictly speaking, the intent of Itoh &
Ichikawa is thus not to verify logical correctness properties, but rather “operational” requirements
of a protocol [II83]. Regarding the former, their technique does not lend itself for detecting logical
errors other than non-progress states.

3.1.5 Simultaneous reachability analysis

Simultaneous reachability analysis is a state exploration technique which generalizes the ideas
behind the above work by Itoh & Ichikawa. It was proposed by Özdemir & Ural [ÖU94, ÖU95,
Özd95] as a relief strategy for verifying logical correctness properties of protocols with an arbitrary
number of processes, arbitrary communication topology and arbitrary process structures. That is, in
contrast to the technique in [II83], restrictions no longer apply to any of the protocol attributes.

Chapter 3!!Relief strategies to tackle state explosion 26

Simultaneous reachability analysis was shown to detect all non-progress states and non-executable
transitions of a protocol. Furthermore, augmentations were devised to enable the detection of all
unspecified receptions and all overflowed channels. An overflowed channel refers to a simplex
channel for which there exists a bo-pair (cf. Definition 2.18). Note that the detection of all bo-pairs
implies the detection of all overflowed channels, but not vice versa. We will return in more detail to
simultaneous reachability analysis in Chapter 5, where we propose an incremental improvement of
this relief strategy.

3.1.6 Partial-order reduction methods

Partial-order reduction methods [God90, Val90, HGP92, KP92a, Val92, Val93, GW93, GW94,
HP95, Pel96] are a collection of cognate techniques to alleviate the state explosion problem in
verifying finite-state concurrent systems (including communication protocols). Although these
techniques have been proposed predominantly for systems modeled as Petri Nets (see e.g. [Pet81]),
and for systems defined with CSP/CCS-style semantics [Hoa85, Mil89], they apply in principle to
all models that express concurrency by interleaving [HP95, God96]. Partial-order reduction
methods are effective and generally efficient for verifying local and termination properties (e.g.
freedom of non-progress states and non-executable transitions [God90, Val90, HGP92, KP92a,
GW93] and, moreover, for verifying linear-time temporal logic (LTL) properties [Val92, Val93,
GW94, HP95, Pel96]. The latter is known as LTL model-checking, and captures arbitrary
(temporal) safety and liveness properties of concurrent systems [Lam77, Pnu77, Lam80, Lam83,
WVS83, LP85, VW86, AS87, Wol89, MP92].

Like the improved state exploration techniques discussed above (and specific to the CFSM
model), partial-order reduction methods exploit the fact that in many cases the properties verified
are insensitive to the order of concurrent transitions. They aim at exploring just one fixed order
among concurrent transitions at global states, by executing at each global state encountered during
state exploration only a discriminating subset of the transitions executable at that state, rather than
all of them. This then yields a reduced state space which is guaranteed to preserve the property
under consideration. Partial-order reduction methods are also discussed in more detail later in the
thesis. Chapter 7 presents an approach of our own to LTL model-checking, which we will propose
as an enhancement of the partial-order approach.

3.2 Closed covers

The “closed-cover” technique by Mohamed Gouda [Gou84] is somewhat of an intruder compared
to most other relief strategies in the sense that its sole objective is to prove the absence of protocol

Chapter 3!!Relief strategies to tackle state explosion 27

design errors rather than showing their existence. We quote [Yua88, p. 167]:

“this technique is a theoretical school of thought which believes that proving protocols free from errors is much
more significant than detecting errors, and detecting no errors is not sufficient enough to show protocols are free
from errors [Gou84].”

A closed cover is basically a set of global states of a protocol containing only the initial global state
and global states that are someway “closed” with respect to reachability (we refer to [Gou84] for a
precise definition). It was proven that the existence of a closed cover is sufficient (and in many
cases necessary) to guarantee indefinite progress for a two-process protocol. The technique thus
consists in finding a closed cover which, unfortunately, must be “guessed” and is hence a difficult
task. Another drawback of the closed-cover technique is its inability to verify the possibility of non-
progress, but then again this complies with the aim of proving the absence instead of the presence
of errors. Two clear advantages are that the size of a closed cover is usually smaller than the size of
the state space of a protocol and that progress of unbounded protocols may be verified as well (cf.
fair reachability analysis). Gouda claims that his technique can be extended in a straightforward
manner to verify progress for protocols with more than two processes. He also signifies an analogy
between the closed-cover technique and the assertion techniques to verify safety properties of
sequential programs. In this analogy, “closedness” of a global state corresponds to the
requirement that each assertion before a block of statements in a sequential program must be
sufficient to ensure the assertion after the block.

3.3 Acyclic expansions

In [BZ83, KWN88], acyclic expansion techniques were proposed which attempt to overcome the
state explosion problem by avoiding altogether the construction of a global reachability graph.
Instead of exploring the global states of a protocol as a whole, these techniques consider processes
separately by expanding their process graphs into local trees. Global information is then added to
the trees such that each local tree represents all possible (global) executions of the corresponding
process. Design errors such as deadlocks, unspecified receptions and buffer overflows can be
detected during the construction of the local trees.

In comparison with conventional reachability analysis, the acyclic expansion techniques reduce
the number of analyzed states from O (m1 ¥ m2 ¥…¥ mn) to O (m1 + m2 +…+ mn), where n is the
number of processes and mi is the number of process states of process Pi . Thus, when a protocol is
rather complex, involving a large number of process states per process, these techniques clearly
outperform reachability analysis. An additional advantage is the modularity: processes can easily be
modified without affecting the complete analysis, as all local trees are maintained individually. A
considerable drawback of the approach is the algorithmic complexity. Functions are used to acquire

Chapter 3!!Relief strategies to tackle state explosion 28

and add global information to the local trees. Their implementation requires complex tree searching
procedures, which make the overall verification algorithm much more complicated than the standard
perturbation algorithm.

3.4 Divide-and-conquer strategies

The following techniques follow the well-established divide-and-conquer paradigm to problem
solving. A protocol is decomposed or partitioned into components which are subsequently verified
separately to ensure the correctness of the protocol itself. The complexity of verification is thus
relieved since the components are usually smaller in the number of states and transitions than the
original protocol.

3.4.1 Duologue-matrix analysis

Duologue-matrix analysis is one of the first automated protocol validation techniques [Zaf78]. The
technique was proposed for two-process protocols only, where each process must further obey the
condition that any cycle in its process graph passes through the initial (or some quiescent) process
state. Recall that this restriction was also in effect for the technique in [II83] based on reduced
implementation sequences, which can then be seen as an extension from the two-process model
here to multiple processes.

Duologue-matrix analysis starts off by decomposing each process into paths, or unilogues, that
begin and end in the initial process state. The sets of unilogues of both processes are coupled to
form duologues (i.e. sequences of two-process interactions) and the duologues are represented in a
duologue matrix. This matrix basically resembles the Cartesian product of the sets of unilogues.
Subsequently, each duologue is classified as being either well-behaved, non-occurrable or
erroneous, and assigned the value +1, 0 or –1, respectively. A duologue is well-behaved if it always
returns to the initial global state of the protocol and if all messages sent along one unilogue are
received along the other. Clearly, this prohibits the occurrence of deadlocks and many unspecified
receptions. A duologue is non-occurrable if it can never be executed or if its execution always
results in the execution of another duologue. These duologues have thus little effect on the actual
protocol behavior. Lastly, a duologue is erroneous if it is neither well-behaved nor non-occurrable.
Each duologue in the duologue matrix is then replaced by its corresponding value, yielding a
validation matrix that can be used to detect design errors. In particular, a protocol contains an error
if its validation matrix contains any –1 elements, and the positions of these elements identify the
erroneous duologues of the protocol. Furthermore, if one of the rows or columns of the validation
matrix contains more than one +1 element, then the behavior of one process is ambiguous with

Chapter 3!!Relief strategies to tackle state explosion 29

respect to the other. It turns out that the validation matrix of a “perfect” protocol is an identity
matrix. Duologue-matrix analysis has proven to be useful for the detection of design errors in real
protocols, such as the X.21 recommendation of CCITT [WZ78].

3.4.2 Decomposition methods

Vuong & Cowan observed that large, well-designed protocols represented by finite directed graphs
often exhibit some basic structures which allow them to be decomposed into several smaller
component graphs [VC82]. These components can be verified separately to yield a verdict about the
original protocol. Three basic structures are identified (viz. the nested, sequential and parallel
structures), each of which enables a specific decomposition scheme. The decompositions turn out
rather simple and powerful for protocols which indeed demonstrate these structures, but are suited
for two-process protocols only. Similar methods were proposed in [CM83, CM86, CGL85], where
also protocols with irregular structures are partitioned into components (or multi-phases [CGL85]).

3.4.3 Protocol projections

Another decomposition approach is based on the idea of protocol projections and aims at protocols
with several distinguishable functions [LS84]. A protocol undergoes a functional decomposition by
means of projections. The extracted functions are verified individually on the basis of so-called
image protocols. An image protocol is constructed for each function by aggregating groups of
states, messages and events of the corresponding entities in the original protocol. Image protocols
are typically smaller and easier to analyze.

3.5 Partial state exploration

Partial state exploration techniques are motivated by the perception that analyzing just that part of
the state space with the largest probability of occurring may be “good enough” to judge a protocol
correct. Such techniques may provide a good alternative if the amount of available memory is
insufficient for exhaustive analysis [Hol91], or even for improved state exploration techniques (cf.
Section 3.1). The inherent drawback of partial state exploration is, of course, that it cannot be used
to verify the absence of errors (or conversely, the error coverage attained cannot be measured).

3.5.1 Random-walk state exploration

Colin West [Wes86] proposed a variation of conventional reachability analysis, in which a new
global state is derived at random by selecting arbitrarily one transition to be executed at the current

Chapter 3!!Relief strategies to tackle state explosion 30

state. Execution sequences generated in this manner can thus be seen as random walks through the
state space of a protocol. Hence the name random-walk state exploration. Each time a random walk
leads to an error, one tries to correct the error and continues with another walk. State exploration
through random walks has therefore no well-defined condition for termination. West motivates this
technique by the belief that the analysis of just a few execution sequences leading to a design error
is sufficient to identify the cause of the error and thus to fix it. Its use appeared very effective
indeed: the coverage and number of errors detected increase asymptotically with the number of
random walks [Wes86]. Moreover, even unbounded protocols can be explored by such “random
simulation” since it works largely independent of the size and complexity of a protocol.

Gerard Holzmann also used a random-walk approach in a controlled partial search technique
called supertrace [Hol88, Hol90, Hol91]. The supertrace technique allows larger protocols to be
analyzed by reducing the amount of RAM needed to store each global state. It uses bit-state
hashing: memory is arranged as a bit array and each generated state is “hashed” (i.e. a hash value
is computed from the state) into an index of this array. By ignoring hash conflicts (which arise
when two different global states yield the same hash value), state generation automatically becomes
partial when the number of global states exceeds the size of the bit array, and may already be partial
before this threshold. Obviously, the random nature of the supertrace technique lies in the
unpredictable occurrence of hash conflicts throughout the search. Holzmann claimed that this
technique is superior to other partial state exploration techniques [Hol90, Hol91].

3.5.2 Probabilistic verification

Instead of performing exhaustive state exploration, a probabilistic verification approach examines
the “most probable” execution sequences of a protocol. It operates under the assumption that the
probability of encountering a state or transition with low probability of occurrence is very small in a
real execution sequence of a protocol. Protocols with errors in sequences that are not likely to be
executed are then considered to be acceptable. A concrete probabilistic verification technique is
given in [MS87]. As pointed out in [Rud88, Hol90], the main difficulty with such techniques is
estimating the probabilities of occurrence of states and transitions.

3.5.3 Heuristic verification

Heuristic-based verification techniques have been proposed in [Hol87, LCL87]. Heuristics are used
to guide the generation of global states in order to detect design errors quickly and more efficiently
without incurring too much overhead. According to [LCL87], heuristic information can be applied
mainly at three points during state exploration: (1) in deciding which global state to perturb next, (2)

Chapter 3!!Relief strategies to tackle state explosion 31

in deciding which transition to execute next, and (3) in deciding which global states to discard. For
instance, for a faster detection of deadlocks and unspecified receptions it appears beneficial to
prioritize the execution of receive transitions over send transitions, while for buffer overflows it is
the other way around. Similarly, respective preference should be given to the perturbation of the
global states with the largest number of executable receive transitions, or states with the “longest”
buffers. In order to decide which states to discard one can use occurrence probabilities as in
probabilistic verification methods. Other typical heuristic suggestions are to minimize a protocol
design before verification in terms of the size of its state machines (i.e. the number of process states
and transitions) and the amount of concurrency (i.e. “tightly-coupled” systems), and to limit the
size of buffers (cf. Section 2.5.1).

3.6 Memory management techniques

The supertrace or bit-state hashing technique of Holzmann [Hol88, Hol90, Hol91], described above,
is in fact a pure memory management technique. It does not actually reduce the number of global
states generated during state exploration, as do the improved state exploration techniques in Section
3.1, but it merely decreases the memory used to store each individual state. The supertrace technique
can therefore be used in conjunction with any state exploration technique (i.e. improved or not).

Another memory management technique that can be combined with state exploration techniques
is state space caching [Hol85, Hol87, JJ91, GHP92]. It operates in the context of a depth-first
search (DFS) strategy. State space caching amounts to storing all the global states in the currently
explored execution path of a protocol, i.e. all the states in the current DFS stack, plus as many other
global states as possible given the remaining amount of available memory. A limited cache is thus
created consisting of selected states that have already been generated. Initially, every global state
generated is stored in the cache. When the cache fills up, old states that are no longer in the DFS
stack are removed from the cache to accommodate new ones. This technique never attempts to store
more states than possible in the cache. Hence, if the size of the cache is larger than the length of the
longest execution path of the protocol (i.e. the maximal size of the DFS stack during state
exploration), the state space of the protocol will be fully explored even when the state space itself
does not fit in memory (the depth of the state space is usually much smaller than its breadth
[Hol91]). If the size of the cache is too small, certain execution paths will be truncated.

The problem of using state space caching is that one can no longer determine whether a newly
generated global state has already been encountered in a previously explored execution path (see the
discussion in Section 2.4 prior to Example 2.14). Surely, exploring a state each time it is
encountered is wasteful. State space caching may thus incur many redundant explorations of global
states, yielding a potentially dramatic run-time increase. Indeed, during conventional reachability

Chapter 3!!Relief strategies to tackle state explosion 32

analysis, almost every global state of a protocol is typically encountered many times, primarily
because all explorations of interleavings of concurrent transitions lead to the same state. The use of
state space caching in conjunction with conventional reachability analysis will thus likely cause run-
time explosion. Yet, using state space caching in conjunction with relief strategies like fair
reachability analysis, simultaneous reachability analysis or partial-order reduction methods (or their
enhancements proposed later in this thesis) can be very beneficial. Such improved state exploration
techniques reduce not only the number of global states, but also the number of transitions explored.
They often avoid most of the nonessential explorations of interleavings of concurrent transitions,
and many global states will therefore be encountered only once during state exploration. States that
are encountered only once do not need to be stored in memory. Indeed, the mere reason for storing
states in memory is to avoid multiple explorations of the same state: when an already generated state
is generated again later during state exploration, it is not necessary to regenerate all its successors.
Even though it is impossible to anticipate which global states are generated only once (this can be
determined only after completing state exploration), if most global states are generated just once, the
probability that some state will be regenerated is small. Hence, the risk of redundant work when not
storing an already generated state becomes small as well. This enables the combined use of state
space caching and improved state exploration techniques without incurring too many redundant
explorations of global states. The memory requirements can then strongly decrease without a
serious increase of the run-time requirements.

A novel use of bit-state hashing and state space caching for verifying concurrent systems and
protocols was recently reported in [MK96]. A method was proposed that uses bit-state hashing in a
pre-processing step before verification to compute and store the so-called revisiting degree of each
state of a system (similar but not identical to the indegree of a node in a directed graph). Both the
pre-processing step and the actual verification of the system are performed by a DFS of the
system’s state space. During the first DFS, when a state is generated and its current revisiting
degree is zero, the revisiting degree is set to 1 and the revisiting degrees of all successor states are
calculated recursively. When a state is generated and its current revisiting degree is greater than zero
(i.e. the state is regenerated), the revisiting degree is incremented by 1 and backtracking takes place.
(All this applies in fact only to states that do not close a cycle when generated, since such states are
already on the DFS stack and can thus easily be identified with no additional space needed
[MK96]). During the second DFS, i.e. for the purpose of verification, when a state is generated its
revisiting degree (stored in the hash table) is decremented by one. If this yields a revisiting degree
of zero, the state is removed from memory. As a result, state space caching can be employed during
the DFS without incurring any redundant explorations of global states. The memory requirements
can still strongly decrease and at the predetermined expense of only one extra DFS of the state
space of the verified system, namely for computing the revisiting degrees of the states. Like bit-state

Chapter 3!!Relief strategies to tackle state explosion 33

hashing and “classic” state space caching, the method proposed in [MK96] can be applied to any
(improved) state exploration technique. In particular, one can carry out the computation of revisiting
degrees of states and the subsequent verification effort on the reduced state space spawned by relief
strategies such as fair reachability analysis, simultaneous reachability analysis or partial-order
reduction methods (or their enhancements proposed later in this thesis) instead of the full state
space of the system spawned by conventional reachability analysis.

