
129

Chapter 7

Leaping reachability analysis for
LTL model-checking

Throughout the preceding chapters we have concentrated on relief strategies for verifying logical
correctness properties of protocols, viz. indefinite progress, freedom of non-executable transitions,
freedom of unspecified receptions and freedom of buffer overflows. These are general properties
that are pertinent to basically all protocols, independent of their intended functionality. They are
therefore often regarded also as “syntactic” correctness requirements. The focus of this chapter is
instead on proving “semantic”, or functional correctness requirements of protocols and, moreover,
of concurrent systems in general. Specifically, we consider the verification of properties that are
expressible as formulas in linear-time temporal logic. Linear-time temporal logic (LTL) is a
popular formalism for reasoning about the semantic correctness of concurrent systems. It is well
suited for specifying temporal properties over infinite executions of a system, including arbitrary
safety and liveness properties. Given a concurrent system and a temporal formula (in LTL),
verifying that every execution of the system satisfies the formula is known as (LTL) model-
checking.

For many concurrent systems, model-checking also suffers severely from the state explosion
problem. An eminent and quite general approach to relieve the state explosion problem for model
checking is the partial-order approach, which actually captures a group of cognate state exploration
techniques called partial-order reduction methods. These methods have been developed in recent
years by different researchers [God90, Val90, HGP92, KP92a, Val92, Val93, GW93, GW94,
HP95, Pel96], largely independent of the specific model used for specifying concurrent systems.
They have proved effective for verifying local and termination properties of concurrent systems, as
well as for LTL model-checking. Experiments have shown that these methods can substantially
reduce the space and time needed for LTL model-checking.

Notwithstanding these results, in this chapter we propose an enhancement of partial-order
reduction methods, in particular of the most recent and advanced one described in [HP95, Pel96].

Chapter 7!!Leaping reachability analysis for LTL model-checking 130

Following a prelude to concurrent systems, temporal logic and LTL model-checking, we describe
the partial-order approach to LTL model-checking. We then show how the concepts underlying
LRA in Chapter 5 can be combined with this approach to further relieve the state explosion problem
for LTL model-checking. This is done first for concurrent systems in general, and subsequently for
protocols defined in the CFSM model. Lastly, we provide an empirical comparison between the
partial-order reduction method in [HP95, Pel96] and its proposed enhancement on the basis of
experiments performed with the research tool package RELIEF discussed in Chapter 6. The main
contributions of this chapter appeared in [Sch97, SU98b]

7.1 Preliminaries

7.1.1 Representing concurrent systems

Thus far we have confined ourselves to the CFSM model for the specification and verification of
communication protocols. In Chapter 2, a protocol was defined explicitly as a set of processes (or
finite state machines) which communicate asynchronously by exchanging messages over FIFO
queues. In this chapter we consider more generally any (concurrent) system that can be formalized
as a finite labeled transition system (LTS). An LTS is defined in the customary way as a quadruple
(Q, q0, S, D), where

• Q is a finite set of states,

• q0 ŒQ is the initial state of the LTS,

• S is a finite set of labels (the alphabet of the LTS), and

• D Õ Q ¥ S ¥ Q is a transition relation.

An LTS can be used most elementary to formalize the behavior of a single sequential process. It
can also formalize the joint behavior of a finite number of interacting and concurrently executing
sequential processes. Each transition of the LTS then corresponds to the execution of a specific
atomic operation or statement within one (or some, in case of synchronization) of the processes, in
accordance with a standard interleaving semantics of concurrency. An LTS is sufficiently abstract to
model virtually any finite-state system. In particular, every (bounded) protocol specified in the
CFSM model can be represented by an LTS: the behavior of such a protocol P = ({Pi | i ŒI}, L) is
formalized by the tuple (Q, q0, S, D), with Q = RP , q0 = G0, S = DiiŒIU , and D = {(G, t, H) | G!ŒRP

Ÿ G t
æ Æ æ H} (cf. Chapter 2). In other words, all send and receive transitions in the protocol are

viewed as atomic operations that act as global state transformers. Henceforth, we designate the term
concurrent system to mean any system that can be formalized as a finite LTS, and we assume

Chapter 7!!Leaping reachability analysis for LTL model-checking 131

implicitly that the system is composed of a finite number of distinguishable sequential processes
P1, P2,…,Pn . The labels of the transitions of a concurrent system are referred to as operations.
Definition 7.1 captures the basic semantics of concurrent systems.

Definition 7.1
Let S = (Q, q0, S, D) be a concurrent system. An operation a ŒS is executable at a state q ŒQ if (q,
a, q¢) ŒD, for some q¢ ŒQ. The set of all operations (of a sequential process Pi in S) that are
executable at q is denoted by X(q) (Xi(q)). A computation of S over a sequence s = a1a2… of
operations from S is a finite or infinite sequence q = q0q1q2… of states from Q, where (i) q0 = q0,
i.e. the sequence starts at the initial state of S, (ii) (qi– 1, ai , qi) ŒD for all i ≥ 1 (and i £ |s| when s is
finite), and (iii) the sequence is maximal, i.e. q is either infinite or its last state q|s| satisfies X(q|s|) =
∅. A state q ŒQ is a reachable state if it occurs in some computation of S. !

Like in the previous chapters, we use q a
æ Æ æ q¢ to denote that the operation a leads from the state q to

the state q¢ (i.e. (q, a, q¢) ŒD), and q s
æ Æ æ * q¢ to denote that the finite sequence of operations s leads

from q to q¢. Naturally, a computation of a concurrent system, or any segment thereof, may be seen
either as a sequence of reachable states, or as the corresponding sequence of executed operations.
For ease of presentation, we will denote a computation interchangeably by a sequence of operations
or by a sequence of states. As for protocols specified in the CFSM model, the complete reachable
state space of a concurrent system S, including all its computations, can be represented by a labeled
directed graph. Every (finite or infinite) path through this reachability graph that starts with the node
corresponding to the initial state of S resembles the effects of a computation of S. There is one such
path for each possible way in which the execution of operations can be interleaved in time.

7.1.2 Expressing properties of concurrent systems in temporal logic

Among the non-classical logics used in computer science, temporal logic has probably been the
most successful. It is an extension of traditional logic (i.e. Boolean algebra and simple predicate
calculus), and was first suggested by Pnueli [Pnu77] as a tool for the specification and verification
of concurrent systems (also called concurrent programs). Temporal logic provides a sound logical
basis for reasoning about the time varying behavior of concurrent systems without introducing an
explicit notion of time. That is, it has been designed to reason about the order in which system
events occur, as opposed to the actual times at which they occur. Expressions in temporal logic
typically assert properties of sequences of states, whereas expressions in traditional logic assert
properties of individual states.

Two variants of temporal logic are commonly distinguished, based on different conceptions of
the nature of time: linear or branching. In linear temporal logic, time is viewed as linear, meaning

Chapter 7!!Leaping reachability analysis for LTL model-checking 132

that each instant in time has a unique possible future (i.e. next instant). The structures over which
linear temporal logic is interpreted are thus linear sequences. In branching temporal logic, each time
instant may split into several possible futures, for instance those resulting from nondeterminism. All
these possible futures are then considered to be equally real, while in linear temporal logic only one
of them is regarded as the future that will actually occur. The structures over which branching
temporal logic is interpreted can be viewed as infinite trees. Both the linear and branching variants
of temporal logic are well-established. Excellent surveys are given in [Lam80, Wol89, Eme90].
Lamport [Lam80] has argued that the logic of linear time is better suited for reasoning about
concurrent systems. Wolper [Wol89] has found that the linear variant is natural when the properties
of a system can be expressed in terms of its computations, and that the branching variant is well
adapted when the properties are thought of in terms of the structure of the system. In general, it
appears largely a matter of debate as to which variant is to be preferred [Eme90]. For the purpose of
this chapter we consider linear-time temporal logic (LTL) only.

Formulas in LTL assert properties of infinite sequences of states. An LTL formula is built from
Boolean propositions, the Boolean connectives ‘¬’, ‘Ÿ’, …, and the temporal operators ‘ ’ (read
as “next-time”), ‘ ’ (read as “henceforth” or “always”), ‘ ’ (read as “eventually”), and ‘U ’
(read as “until”). Precisely, let AP denote a finite set of atomic propositions, and p ŒAP, then the
syntax of LTL is as follows:

f ::= p | ¬f | f1 Ÿ f2 | f | f | f | f1 U f2 .

The atomic propositions in the set AP are assumed to refer to the states of the concurrent system for
which an LTL formula asserts a property. Indeed, since all states of a concurrent system S are in
essence just different combinations of values assigned to the variables that constitute S, each state is
uniquely characterized by the subset of atomic propositions which hold true in that state. Every
computation of S can therefore be interpreted as a propositional sequence over the set 2AP.
Although LTL allows assertions only over infinite sequences of states, in order to take into account
also terminating computations of S it is common practice to transform these finite computations
into infinite ones simply by repeating the last state forever [Val92, Pel96]. Let q = q0q1q2… be an
infinite sequence of states interpreted as a propositional sequence, and denote by q i the suffix of q

starting from its i-th state. For an LTL formula f, one usually writes q |= f to mean that q satisfies f
(or f holds true for q), in accordance with the following semantics:

• q |= p iff p ŒAP holds true in q0,

• q |= ¬f iff not q |= f,

• q |= f1 Ÿ f2 iff q |= f1 and q |= f2,

• q |= f iff q 1 |= f,

Chapter 7!!Leaping reachability analysis for LTL model-checking 133

• q |= f iff "i ≥ 0: q i |= f,

• q |= f iff $i ≥ 0: q i |= f,

• q |= f1 U f2 iff $i ≥ 0: q i |= f2 and " 0 £ j < i: q j |= f1.

Note that the “eventually” operator is the dual of the “henceforth” operator, viz. f = ¬ ¬f. Also
note that f and f can be expressed in terms of the “until” operator as true U f and f U false,
respectively. Informally, where the Boolean connectives (including ‘⁄’ and ‘fi’ defined in terms of
‘¬’ and ‘Ÿ’) have their usual interpretations, the temporal operators have the following meaning:

• f holds in the current state if f holds in the next state,

• f holds in the current state if f holds in the current state and in all subsequent states (in the
linear sequence on which the formula is interpreted),

• f holds in the current state if f holds in the current state or in some subsequent state, and

• f1 U f2 holds in the current state if f2 holds in the current state, and if f1 holds in the current
state and in all subsequent states preceding the state in which f2 holds.

Unlike the “henceforth”, “eventually” and “until” operators, the “next-time” operator is
often omitted by researchers in reasoning about temporal properties of systems. This has been
instigated mostly by Lamport, who strongly objects to the use of the “next-time” operator,
claiming that it introduces a notion of time which is too discrete (namely between two immediately
following time instants) to fit the level of abstraction appropriate for a specification formalism
[Lam83]. Formally, he found that every nexttime-free LTL formula is closed under stuttering,
meaning that the formula cannot distinguish between two stuttering equivalent sequences. Two
sequences of states, or the corresponding propositional sequences, are stuttering equivalent if they
can be made identical by replacing in both sequences every finite adjacent number of occurrences of
the same state with a single occurrence [Lam83]. Since a temporal formula containing the “next-
time” operator is not necessarily closed under stuttering, Lamport argued that this operator enables
the expression of distinctions between systems that should be considered equivalent.

Many interesting properties of concurrent systems can be formalized in LTL, even without the
“next-time” operator. For instance, that some property P is invariant throughout system execution
is expressed simply as P. In order to state that a property P always causes a property Q to hold
subsequently, one writes (P fi Q). This combination of operators is often used to specify the
eventual response (i.e. Q) to some given request (i.e. P). Asserting that a property P is satisfied
infinitely often is done by writing P. This means that for each state along a computation there is
a future state in which P will be true. Lastly, an expression of the form P fi (P U Q) asserts that if

Chapter 7!!Leaping reachability analysis for LTL model-checking 134

P is true in the current state, then it will remain true at least until Q becomes true.
In general, (nexttime-free) LTL is sufficiently expressive to capture all safety and liveness

properties of concurrent systems. These properties have been regarded by many researchers as the
two most fundamental types of properties one would want to prove of a concurrent system (see e.g.
[Lam77, Lam80, Lam83, WVS83, AS87, MP92]). Intuitively, a safety property asserts that
something bad never happens, whereas a liveness property asserts that something good must
eventually happen [Lam80]. “Something bad” thereby refers to the system entering an
unacceptable state, and “something good” to the system entering a desirable state. Well-known
safety properties are partial correctness (a program never halts with the wrong answer), mutual
exclusion (two processes are never in their critical sections at the same time), and indefinite
progress or deadlock-freedom (a system never enters a state in which no further progress is
possible). The absence of unspecified receptions and buffer overflows considered earlier for
protocols in the CFSM model also classify as safety properties. Note that all these examples of
safety properties are (global or local) state invariances. Safety properties can also stipulate some
precedence relation between states or events. For systems that implement FIFO buffers, an example
is the assertion that messages are taken from a buffer in the same order as they are put into the
buffer (this property was assumed to hold for protocols in the CFSM model). Familiar liveness
properties are termination (a program eventually halts) and freedom from starvation or livelocks
(each process makes progress infinitely often). Other kinds of liveness properties that are important
for concurrent systems include such assertions as “a request for service will eventually be
granted”, “a process will eventually enter its critical section”, or “a message will eventually reach
its destination”.

A formalization of safety and liveness properties appeared in [AS87], where the two kinds of
properties are characterized from a language-theoretic point of view. It was also shown in [AS87]
that every property which classifies neither as a safety property nor as a liveness property is in fact
the conjunction of a safety and a liveness property. The safety / liveness classification is further
discussed in view of a more refined hierarchy of temporal properties in [MP92], which includes a
syntactic characterization of safety and liveness properties in terms of the temporal formulas that
specify them. Basically, safety properties can be expressed using only the concept of “henceforth”
(typically in the form P or P fi Q), whereas one needs the additional concept of “eventually”
to express liveness properties (usually in the form P or (P fi Q)).

Another useful concept in the application of temporal logic to concurrent systems is fairness.
Considering fairness means taking into account certain assumptions about the context in which
processes of a concurrent system are executed. For instance, if concurrent processes are executed
on different processors it is customary to assume that, if a process has an operation that remains
executable, it will eventually execute it (this assumption is often called weak fairness). Various

Chapter 7!!Leaping reachability analysis for LTL model-checking 135

notions of fairness have been studied in [Fra86, MP92]. The purpose of these notions is to exclude
from analysis the computations of a concurrent system that would not be permitted by the specific
type of process scheduler that is assumed. The fairness assumptions then act as filters, removing
certain classes of infinite computations that conflict with the assumptions made about the process
scheduler. Like safety and liveness properties, fairness assumptions can be expressed in (nexttime-
free) LTL [LP85]. If a fairness assumption is formalized by an LTL formula f1, one can use a
logical implication f1 fi f2 to assert that the property expressed by f2 holds true under this fairness
assumption.

7.1.3 Model-checking

Currently the most advocated method for verifying temporal properties of (finite-state) concurrent
systems is model-checking. In the context of LTL, model-checking refers to a fully automatic
procedure for checking that a given concurrent system satisfies, or is a model of, some property
formalized as an LTL formula [LP85, VW86, Wol89]. A concurrent system is thereby defined to
satisfy an LTL formula if all the computations of the system satisfy the formula. At first, (LTL)
model-checking was proposed as an off-line procedure. This means that the actual algorithms for
verifying the satisfiability of LTL formulas are applied to a concurrent system after constructing the
reachable state space of the system. These algorithms do not work directly on the state space, but
rather construct from it a graph which contains in each node information to derive the formulas that
hold true in the state represented by the node, based on fixpoint characterizations of the temporal
operators (for instance, the fixpoint characterization of P is P Ÿ P) [MW84, LP85]. It was
recognized later that model-checking can also be performed on-the-fly [VW86], in which case the
verification algorithms start to examine a given concurrent system during the construction of its
reachable state space, not waiting for this construction to be completed. The main advantage of on-
the-fly model-checking is that, if the checked formula does not hold true for the system, a counter
example may be encountered before completing the construction of its state space. It is well argued
in [Val93] that this advantage appears exactly when needed the most: the state spaces of incorrect
systems tend to be “extra” large due typically to their faulty behavior. Another advantage of on-
the-fly model-checking is that, in some cases, certain parts of the state space that are not important
to the verification of the checked formula may be omitted, even when the formula happens to be
satisfied by the system.

The ability to verify temporal properties on-the-fly has actually emerged from the so-called
automata-theoretic approach to model-checking [WVS83, VW86]. This approach is based on the
fact that for each LTL formula it is possible to construct a non-deterministic Büchi automaton
[Büc62] that accepts exactly the (infinite) sequences of states satisfying the formula. Formally, a

Chapter 7!!Leaping reachability analysis for LTL model-checking 136

Büchi automaton is a quintuple A = (Q, q0, S, D, F), where

• Q is a set of states,

• q0 ŒQ is the initial state,

• S is an alphabet,

• D Õ Q ¥ S ¥ Q is a transition relation, and

• F Õ Q is a set of acceptance states.

Büchi automata are a theoretical means to define languages of infinite strings: a string is accepted
by a Büchi automaton if the automaton enters one of its acceptance states infinitely many times
while reading the string. Notice that a Büchi automaton can be seen as an LTS with various states
predefined as acceptance states. One defines a computation of a Büchi automaton A over an infinite
sequence of symbols a1a2… from S as an infinite sequence of states q0q1q2… starting at the initial
state q0 of A, with (qi– 1, ai , qi) ŒD for all i ≥ 1 (cf. Definition 7.1). A is then said to accept the
computation (or the computation is accepting) iff for some acceptance state q ŒF there are infinitely
many states qi such that qi = q.

For an LTL formula f, the transitions in the corresponding Büchi automaton Af carry predicate
labels from the alphabet 2AP, each of which represents a Boolean proposition [WVS83]. Recall that
the atomic propositions of AP in f are supposed to refer only to the states of the concurrent system
S for which the formula formalizes a property, and hence these Boolean propositions are in fact
propositions on the states of S (i.e. on the values of the variables that constitute S). The Büchi
automaton Af then accepts an infinite computation q of S (a sequence of system states) iff there
exists an accepting computation of Af (a sequence of automaton states) over q. In other words, q

satisfies the formula f if there is a “path” p in Af starting from the initial state of Af , such that the
label of the i-th edge in p holds true in the i-th state of q, for all i ≥ 1, and some acceptance state of
Ff appears infinitely often in p. Further recall that the finite computations of S are taken into
account by first transforming them into infinite ones, through infinite repetition of their last states.
An algorithmic construction of a Büchi automaton Af from an LTL formula f can be found in for
instance [Wol89]. This construction is exponential in the length of the formula, defined as the
number of symbols (propositions and connectives) it contains. However, the exponential blow-up
of the number of states in Af is usually not a concern since most formulas checked in practice are
quite short, and since the construction algorithm often behaves much better than its upper bound
[VW86, Wol89].

Example 7.2
Figure 7.1 depicts a Büchi automaton which accepts exactly all the infinite computations satisfying

Chapter 7!!Leaping reachability analysis for LTL model-checking 137

the LTL formula ¬ (P fi Q) = (P Ÿ ¬Q). That is, every sequence of states containing a state
in which P Ÿ ¬Q holds true, and from which Q never holds true in any state in the remainder of the
sequence, is accepting. The initial state of the automaton is indicated by the symbol ‘⁄’, and its only
acceptance state by a double circle. This formula can be used, for example, to express the negation
of a precedence property of a concurrent system, stipulating that it is always the case that the
execution of some operation a (for instance, a send operation) is eventually followed by the
execution of an operation b (for instance, the matching receive operation). The LTL formula then
accepts all computations that violate this property, i.e. all computations in which an occurrence of a
is never followed by an occurrence of b. The formula can indeed be described equivalently by a
Büchi automaton over the alphabet of operations of the system, rather than by an automaton over
state predicates as in Figure 7.1. Such an automaton over system operations is obtained from the
automaton in Figure 7.1 by replacing true with S, P Ÿ ¬Q with a, and ¬Q with S \ {b}. !

ÿQq0 q1

⁄
true P Ÿ ÿQ

Figure 7.1!!A Büchi automaton for ¬ (P fi Q).

The automata-theoretic approach to LTL model-checking now proceeds as follows [WVS83,
VW86]. Given a concurrent system S and an LTL formula f to be checked for S, one first builds a
Büchi automaton A¬ f for the negation of f. It accepts all and only sequences of states that satisfy ¬f,
i.e. that violate f. Secondly, one computes the so-called synchronous product of (the reachable state
space of) S and A¬ f , a Büchi automaton which accepts exactly those computations of S that violate
f. This automaton is then checked for emptiness: either it does not accept any computation, implying
that all computations of S do in fact satisfy f, or it accepts at least one computation of S which is a
counter example to f.

The synchronous product of S and A¬ f in the above three-step procedure is actually defined as
the product of the two Büchi automata AS and A¬ f , where AS is obtained from S by designating all
states of S as acceptance states. Precisely, if S = (QS , qS

0 , SS , DS) then AS = (QS , qS
0 , SS , DS , FS), with

FS = QS , and the product of AS and A¬ f = (Q¬ f , qÿf
0 , S¬ f , D¬ f , F¬ f) is the Büchi automaton AS ¥ A¬ f

= (Q, q0, S, D, F) defined by

• Q = QS ¥ Q¬ f ,

• q0 = (qS
0 , qÿf

0),

• S = SS ¥ S¬ f ,

Chapter 7!!Leaping reachability analysis for LTL model-checking 138

• D Õ Q ¥ S ¥ Q such that ((x, y), (a, P), (x¢, y¢)) ŒD iff (x, a, x¢) ŒDS , (y, P, y¢) ŒD¬ f , and the
Boolean proposition P holds true in state x ŒQS ,

• F = FS ¥ F¬ f .

For further referencing we call the Büchi automaton AS the full automaton for S. Notice that the
transitions of A¬ f are essentially used to test the values of the variables of the concurrent system S
whenever the system is ready to execute an operation, as explained before. Operations of S that can
affect the truth value of any proposition in the LTL formula f are also said to be visible. That is, an
operation a of S is visible if there exists a transition label in A¬ f for which the corresponding
proposition has a truth value in a system state q that is different from its truth value in a state q¢ with
(q, a, q¢) ŒDS ; otherwise it is invisible. The set of all visible operations of S with respect to the
formula f is denoted by visf (S). As the exact set of visible operations is generally too hard to
determine, in practice one would have to compute some upper approximation of visf (S), which can
be done by a syntactic analysis of (the operations of) S [Val92].

An alternative definition for the product automaton AS ¥ A¬ f would apply if, as indicated in
Example 7.2, A¬ f were taken as an automaton over the alphabet SS of system operations. In that
case, the transitions of the product automaton would also carry labels from SS , and the relation D!Õ
Q ¥ SS ¥ Q would be such that ((x, y), a, (x¢, y¢)) ŒD iff (x, a, x¢) ŒDS and (y, a, y¢) ŒD¬ f . In this
framework, the transitions in AS and in A¬ f are thus synchronized on operations (i.e. on the
transition labels), and the operations of S that can, through synchronization, alter the state of A¬ f are
the visible transitions. In the first definition of the product automaton one can see the transitions as
being synchronized on states [God96]. Both frameworks are used in like manner for model-
checking.

As it appears, the product automaton AS ¥ A¬ f can be computed without ever building the full
automaton AS . In other words, the reachable state space of S need not be constructed explicitly. The
product automaton can at the same time also be checked for emptiness. This is precisely what is
meant by on-the-fly model-checking. First, the inspection of the state space of S is guided by the
checked formula, which acts as a constraint on the system’s behavior through the required
accordance of proposition labels (or the required synchronization of operations). In some cases the
automaton AS ¥ A¬ f may therefore be smaller than AS itself. Second, the product automaton may be
found non-empty before completing its construction. It is well-argued in [CV+92, Val93] that this
advantage appears exactly when needed the most: state spaces of incorrect systems tend to be
“extra” large due typically to their erroneous behavior. Deciding emptiness thereby amounts to
checking whether there exists a cycle in AS ¥ A¬ f (when viewed as a graph) that is reachable from
the initial state (qS

0 , qÿf
0) and that contains an acceptance state (which is hence repeated infinitely

often). A particular memory-efficient algorithm for on-the-fly detection of such acceptance cycles is

Chapter 7!!Leaping reachability analysis for LTL model-checking 139

given in [CV+92]. It requires space linear in the number of states of AS ¥ A¬ f and implements a so-
called nested depth-first search: a first search to find a reachable acceptance state, followed by a
second search to determine whether this acceptance state can be reached from itself. Checking
whether the product of two Büchi automata is empty is known to be much easier than checking
whether the language generated by one of the automata is included in the other (a PSPACE-
complete problem), which explains why one uses the Büchi automaton for the formula ¬f instead of
f [VW86, Wol89]. An overview of various algorithms for checking the emptiness of Büchi
automata is given in [GH93], all of which also run in time linear to the size of these automata.

w d

d1 2

> 0

S \ {d ,w }

SS \ {d }

A ÿfP1
start

ab

c

d

10

11

12

13

P2

v

w

21

22

start
20

>

(10, 21, 0)

vb
a

(11, 21, 0)

wb
a

c v

c w b
a

d w c

dw

(13, 21, 2)

(10, 20, 0)

(11, 20, 0)

(10, 22, 1)(12, 20, 0)

(12, 21, 0) (11, 22, 1)

(12, 22, 1)

(13, 22, 2)

(13, 20, 2)

d v

v

Figure 7.2!!The product AS ¥ A¬f for the concurrent system S and an LTL formula f in Example 7.3.

Chapter 7!!Leaping reachability analysis for LTL model-checking 140

Example 7.3
Consider a concurrent system S composed of two sequential processes P1 and P2, depicted in
Figure 7.2, and assume for simplicity that these processes execute autonomously, i.e. without any
interaction. Suppose we want to check the absence of computations of S in which operation w
occurs and operation d does not occur. This property can be expressed by an LTL formula f of the
form (‘P2 is at local state 22’) fi (‘P1 is at local state 13’). The negation of the property is
described in Figure 7.2 as a Büchi automaton A¬ f over the alphabet S of operations of S. It accepts
all infinite sequences of states starting with its initial state 0 in which its (only) acceptance state 1 is
repeated infinitely often, and thus all computations of S along which w occurs and d does not occur.
Note that the operations w and d are the visible operations of S, as they can change the state of A¬ f .
The product automaton AS ¥ A¬ f is illustrated at the bottom of Figure 7.2, where the three double-
circled states are the acceptance states (i.e. A¬ f must be in state 1). It is non-empty as it accepts
several computations of S, namely those in which w is executed and in which a and b are executed
infinitely many times thereafter. In practice, the on-the-fly construction of AS ¥ A¬ f need not be
completed, but can be stopped as soon as one of the accepting computations is found. !

7.2 The partial-order approach to LTL model-checking

Being the main practical limitation for all verification methods based on state exploration, the state
explosion problem must be reckoned with also when using model-checking for verifying temporal
properties of concurrent systems. Certainly, on-the-fly model-checking already has a head start over
off-line model-checking, but the often excessive size of the full automaton AS of a concurrent
system S still renders the construction of the product automaton AS ¥ A¬ f impractical for most real
systems. An eminent and quite general approach to tackle the state explosion problem in concurrent
system verification is the partial-order approach. This actually refers to a collection of cognate state
exploration techniques, called partial-order reduction methods, that have been developed in recent
years by different researchers [God90, Val90, HGP92, KP92a, Val92, Val93, GW93, GW94,
HP95, Pel96]. Partial-order reduction methods are largely independent of the specific model used
for specifying concurrent systems, and they have proved adequate not only for verifying local and
termination properties [God90, Val90, HGP92, KP92a, GW93], but also for LTL model-checking
[Val92, Val93, GW94, HP95, Pel96]. Experiments have indicated that these methods can
substantially reduce the space and time needed for model-checking. They have also been shown to
combine well with on-the-fly model-checking [Val93, GW94, Pel96] and with model-checking
under certain fairness assumptions [Pel93, Pel96].

Like most improved state exploration techniques, partial-order reduction methods are inspired
by the observation that many properties of interest to concurrent systems are insensitive to the

Chapter 7!!Leaping reachability analysis for LTL model-checking 141

execution order of concurrent, or independent, atomic operations (see Chapter 3). Common to all
partial-order reduction methods is the use of an explicit dependency relation among the operations
of a concurrent system, which induces an equivalence relation between computations of the system
(cf. Section 4.1.1). The term “partial-order reduction” then stems from the fact that equivalence
classes of computations are actually partial orders of operation occurrences.

Definition 7.4
Let S = (Q , q0, S, D) be a concurrent system. A dependency relation for S is a reflexive and
symmetric relation D Õ S ¥ S such that for all a, b ŒS, (a, b) œD implies that the following two
properties hold for each q ŒQ:

i) if a ŒX(q) and q a
æ Æ æ q¢, then b ŒX(q) iff b ŒX(q¢);

ii) if a, b ŒX(q), then there exists a unique state q¢ such that q a b
æ Æ æ æ * q¢ and q b a

æ Æ æ æ * q¢.

Two operations a, b ŒS are dependent iff (a, b) ŒD; otherwise, they are independent. !

The first requirement listed in Definition 7.4 states that independent operations can neither enable
nor disable each other, and the second requirement states that executing independent operations is
commutative. The definition itself may at first seem of no more than semantic use, since it is not
practical to check these requirements for every pair of operations and for every state of a concurrent
system. However, in practice it is possible indeed to give easily checkable syntactic conditions that
are sufficient for operations to be independent [HP95, God96]. For instance, two operations from
the same sequential process can generally not be independent. If the two operations are defined in
sequence, executing the first one will enable the other. If they appear together is a single selection,
executing either operation will disable the other. Operations from distinct sequential processes can
be independent under certain conditions. Two operations from distinct sequential processes that
access only local variables within each process will in general be independent. Two send or receive
operations on distinct message queues are usually also independent, but two such operations on the
same queue need not be. For two send operations on the same queue, the operation that is executed
first may disable the second if it yields a full queue, or the execution order of the two operations
may be distinguished by the order in which the messages sent appear in the destination queue,
which violates the commutativity requirement. For two receive operations on the same queue, the
operation that is executed first may disable the second if it yields a empty queue. For a send and
receive operation on the same queue, the send operation may enable the receive operation if the
queue is currently empty, or vice versa if the queue is full. Various ways to refine dependency
relations, in order to increase the number of pairs of independent operations, can be found in
[KP92b, Val92, GP93, God96]. A particularly evident way is to define them as being conditional

Chapter 7!!Leaping reachability analysis for LTL model-checking 142

upon states: instead of defining a dependency relation that holds for all (reachable) states of a
system, it is possible to define such relation for each state individually [KP92b]. Definition 7.4 then
becomes as follows.

Definition 7.4bis
Let S = (Q, q0, S, D) be a concurrent system. A relation D Õ S ¥ S ¥ Q is a conditional dependency
relation for S iff for all a, b ŒS and q ŒQ, (a, b, q) œD implies that (b, a, q) œD, and that the
following two properties hold in state q:

i) if a ŒX(q) and q a
æ Æ æ q¢, then b ŒX(q) iff b ŒX(q¢);

ii) if a, b ŒX(q), then there exists a unique state q¢ such that q a b
æ Æ æ æ * q¢ and q b a

æ Æ æ æ * q¢.

Two operations a, b ŒS are dependent in a state q ŒQ iff (a, b, q) ŒD; otherwise, they are
independent in q. !

For ease of presentation, we will adhere to the use of a binary, unconditional dependency relation
between operations as in Definition 7.4. Nevertheless, all what follows in the rest of this chapter is
valid also with a conditional dependency relation, and can readily be interpreted in that context.

Definition 7.5
Let S = (Q, q0, S, D) be a concurrent system. Two finite sequences of operations s, s¢ ŒS* are
equivalent with respect to (wrt) a dependency relation D for S, denoted by s ≡D s¢, iff there exist
sequences s1, s2,…, sk such that s1 = s, sk = s¢, and for all 1 £ i < k, si = mabr and si+1 = mbar, for
some m, r ŒS* and a, b ŒS with a and b independent wrt D (in the states where they are permuted,
in case of a conditional dependency relation D).

For u, u¢ ŒS* » Sw (i.e. u and u¢ can be finite or infinite), define u pD u¢ iff for all m Œpref(u)

there exist m¢ Œpref(u¢) and r ŒS* such that m¢ ≡D r Ÿ m Œpref(r), where pref(u) is the set of finite
prefixes of a (finite or infinite) sequence of operations u. Two infinite sequences of operations s, s¢

ŒSw are equivalent wrt D iff s pD s¢ and s¢ pD s. !

Intuitively, two sequences of operations are equivalent (wrt a given dependency relation) if one
sequence can be obtained from the other by repeatedly permuting adjacent independent operations
[Maz86]. The extension of the equivalence relation ‘≡D’ to infinite sequences of operations in the
definition above is adopted from [Pel96]. Equivalence classes induced by ‘≡D’ are also called
traces [Maz86], and traces consisting of computations (i.e. sequences of operations that are
maximal) of a concurrent system are sometimes referred to as runs of the system. For any finite
sequence of operations s, it follows readily from Definition 7.4 that all sequences of operations
equivalent to s lead to the same state (cf. Proposition 4.3).

Chapter 7!!Leaping reachability analysis for LTL model-checking 143

Since equivalent computations of a concurrent system differ only in the order of independent,
commutative operations, it appears not necessary in general to examine all computations in order to
verify the system against various desirable properties. It is instead sufficient for many properties to
examine just one representative computation per equivalence class of computations. Accordingly,
partial-order reduction methods attempt as much as possible to fix an order among independent
operations, by executing at each state encountered during state exploration only a subset of the
operations executable at that state, rather than all of them. State exploration is thereby performed
usually via a depth-first search, or some variation of it. Some conditions apply to selecting a subset
of the executable operations at a given state, which must guarantee that the reduced part of the
reachable state space of a concurrent system that is explored by a partial-order reduction method
preserves the property being checked. Devised by different researchers, such subsets adhere to
different names: stubborn sets [Val90, Val92, Val93], persistent sets [God90, GW93, GW94],
faithful decompositions [KP92] or ample sets [HP95, Pel96]. Although the definitions of these sets
and the associated algorithms differ, they do have much in common [God96] and are therefore
referred to collectively as partial-order reduction methods.

For the course of this chapter it would be futile to try to capture all the subtleties of the various
suggested partial-order reduction methods, some of which take advantage of confining themselves
to a restricted class of properties. We will describe, and subsequently enhance, the partial-order
reduction method based on ample sets [HP95, Pel96]. This particular method has been proposed
most recently, and it is fairly generic in the sense that it can be adapted without too much difficulty
to resemble the other partial-order reduction methods. Furthermore, it is advocated as the most
advanced partial-order reduction method in terms of the properties that can be checked, the way
fairness is dealt with, and the low overhead and high overall performance of its implementation
[HP95, Pel96]. The method has been implemented as an extension to SPIN, a verification tool
which is increasingly being used for teaching and for industrial applications [Hol91, SPIN95,
SPIN96, SPIN97]. For convenience, the partial-order reduction method based on ample sets will be
referred to as POVAS (Partial-Order Verification with Ample Sets).

POVAS is intended as a relief strategy for verifying concurrent systems against properties
formalized by nexttime-free LTL formulas, i.e. for nexttime-free LTL model-checking. It comes in
four different “modes”, depending on whether model-checking is done off-line or on-the-fly, and
with or without certain fairness assumptions. We focus primarily on the off-line and on-the-fly
versions without fairness assumptions. Model-checking under fairness assumptions with POVAS
is conceptually not much different, and will be addressed later in Section 7.3.

Chapter 7!!Leaping reachability analysis for LTL model-checking 144

7.2.1 Off-line LTL model-checking with POVAS

POVAS implements a depth-first search (DFS) algorithm which, in contrast to a classical brute-
force DFS, incorporates three conditions for selecting a subset of the operations that are to be
executed at a given state encountered during state exploration. For the off-line version in particular,
when a state q on the DFS stack is expanded and at least one operation is executable at q, a non-
empty subset of X(q) is used to generate successor states for q in accordance with the following
definition [Pel96].

Definition 7.6
Let S = (Q, q0, S, D) be a concurrent system, D a dependency relation for S, f an LTL formula to be
checked for S, and q ŒQ the current state to be expanded during the DFS. An ample set in q is a
non-empty subset A Õ X(q) of operations executable at q satisfying the following three conditions:

i) for every non-empty sequence q1 a1
æ Æ æ æ q2 a2

æ Æ æ æ … qk ak
æ Æ æ æ qk+1 from q1 = q, with ai ŒS \ A for

all 1 £ i £ k, each operation ai is independent wrt D (in qi , in case of a conditional dependency
relation D) of all operations in A;

ii) if A Ã X(q), then no operation a ŒA with q a
æ Æ æ q¢ is such that q¢ is on the current DFS stack;

iii) if A Ã X(q), then A « visf (S) = ∅.

An ample set in q is denoted by ample(q). !

Note that the set X(q) itself is trivially an ample set in state q. In the sequel, we refer to the three
conditions on ample sets in Definition 7.6 as conditions C1, C2 and C3, respectively. The first
condition C1 is a consistency requirement. It guarantees that after state q is reached, no operation
outside ample(q) that is dependent of an operation in ample(q) can be executed before an operation
in ample(q) is executed. Equivalently, every single operation outside ample(q) is either independent
(in q) of all operations in ample(q), or it is not executable at q and at every state that can be reached
from q without executing an operation in ample(q). The execution at q of only the operations in
ample(q) does therefore not affect “negatively” the executability of any operation outside
ample(q), for operations outside ample(q) which are already executable at q remain executable,
while those not executable at q can “only” become executable. Condition C2 is enforced to avoid
the ignoring problem, which may cause the execution of operations to be deferred indefinitely along
a cycle. We have already addressed this problem in Chapter 5 in the context of LRA for verifying
logical correctness properties of protocols in the CFSM model. It is of the same nature here:
condition C2 guarantees that a state q is fully expanded (i.e. ample(q) = X(q)) whenever one of the
operations in ample(q) closes a cycle on the DFS stack, thereby providing an exit from this cycle if

Chapter 7!!Leaping reachability analysis for LTL model-checking 145

one exists (cf. Section 5.5). Lastly, condition C3 is enforced in view of the fact that the checked
LTL formula may very well be sensitive to the order of two visible operations of the concurrent
system (i.e. operations that can affect the truth value of the formula), even when these operations are
mutually independent. The effect of not allowing visible operations in ample(q), in case it is a
proper subset of X(q), is that all the possible execution orders of all visible operations will be
explored. Every two visible operations are then essentially treated as being always dependent. In
this regard, condition C3 actually justifies why POVAS should be restricted to LTL formulas that
are nexttime-free or, in general, to temporal properties that are stuttering closed (see Section 7.1.2).
Although POVAS can in principle also handle LTL formulas that do contain a “next-time”
operator, such formulas generally cause all the operations of a concurrent system to be visible, and
hence they would all be considered as dependent. Each state encountered during state exploration
by POVAS would then be fully expanded, exactly as in a classical DFS, which annihilates any
benefit coming from the use of POVAS. In the remainder of this chapter, we implicitly mean
nexttime-free LTL when we refer to LTL.

The algorithm presented in [HP95, Pel96] for calculating ample sets is as follows. Based on the
fact that operations of a single sequential process can generally not be independent, it seeks some
process in a concurrent system whose set of operations executable at the current state q satisfy
conditions C1 to C3. As soon as such a process Pi is found, the set Xi(q) is returned as ample(q).
If no such process exists, the algorithm returns the entire set X(q) of all operations executable at q.
Condition C2 must be checked during state exploration by inspecting the current contents of the
DFS stack. However, most of the information required for checking C1 and C3 is gathered
efficiently by a static analysis of the concurrent system before state exploration [HP95]. That is,
during system compilation each local state of each sequential process is analyzed and annotated
with one of three types of labels: safe, conditionally safe upon some condition, or unsafe. These
labels signify whether at run time (i.e. during state exploration), when a system state q is expanded
and some process is at its local state l, the set of operations of this process that are defined at l and
executable at q satisfies conditions C1 and C3. A local state l of a process is labeled “safe” if it is
determined at compile time that the set of (executable) operations defined at l will qualify as an
ample set. This would be the case if all these operations are invisible, and if they are independent of
every operation belonging to another process. Recall from Section 7.1.3 that (an upper
approximation of) the set visf (S) of visible operations of a concurrent system is itself computed
statically [Val92]. Analogously, l is labeled “unsafe” if it is already decided at compile time that no
ample set can be formed from the operations defined at l. The local state l is labeled “conditionally
safe” for some precomputed condition C (which is one out of a small number of conditions
[Pel96]) when the operations defined at l form an ample set only if C holds during run time. For
example, if only send operations are defined at l, such a condition can be that none of the

Chapter 7!!Leaping reachability analysis for LTL model-checking 146

corresponding queues are filled to their capacity.
Several other algorithms have been proposed earlier to compute sets of operations that satisfy in

particular condition C16. An overview and a comparison of these algorithms can be found in
[God96], all of which also infer such sets from the syntactic structure of a concurrent system, but
not statically as in the algorithm described above. They further differ from the algorithm in [HP95,
Pel96] in their aim to compute the smallest sets of operations satisfying C1. Typically, the more
information (static or dynamic) used, the smaller these sets can be, but at the cost of an increased
computational complexity. Moreover, exploring the smallest number of operations at each step
during state explarion is only a heuristic: it does not necessarily lead to the generation, and hence
the storage, of the smallest number of states. For these reasons, checking C1 in the ample set
algorithm is based on a more delicate trade-off between the storage space and the overall execution
time needed for model-checking [HP95, Pel96].

To sum up, off-line model-checking with POVAS proceeds as a “selective” DFS, using the
above algorithm for calculating ample sets to determine for each state encountered during the DFS
the subset of successor states that need be expanded next. As a result, it explores only a reduced
part of the reachable state space of a concurrent system S. Precisely, instead of building the full
automaton AS = (QS , qS

0 , SS , DS , QS) for S, it builds a reduced automaton ¢ A S for S defined by the
tuple (¢ Q S , qS

0 , SS , ¢ D S , ¢ Q S), where ¢ Q S Õ QS and ¢ D S Õ ¢ Q S ¥ SS ¥ ¢ Q S such that (q, a, q¢) Œ ¢ D S iff a
Œample(q) (as opposed to a ŒX(q)) and q a

æ Æ æ q¢. This reduced automaton ¢ A S preserves all non-
progress states of S (states at which no operation is executable), and it reveals all reachable local (or
process) states and thus all non-executable operations (operations that are not executable at any
reachable state of S). Moreover, for every computation s of S (or equivalently of AS), there is at least
one computation s¢ of ¢ A S such that s and s¢ are stuttering equivalent [HP95, Pel96]. Hence, when a
temporal property is closed under stuttering, the property holds true for (all computations of) S iff it
holds true for all the computations of ¢ A S . Since all nexttime-free LTL formulas are closed under
stuttering, algorithms for off-line LTL model-checking [LP85] can be applied directly to ¢ A S , rather
than to the full automaton AS , in order to verify these formulas.

7.2.2 On-the-fly LTL model-checking with POVAS

POVAS can readily be combined with on-the-fly LTL model-checking in order to gain from both.
Verifying an LTL formula f for a concurrent system S then involves constructing the product of the
reduced automaton ¢ A S for S and the Büchi automaton A¬ f for the negation of f, and checking its
emptiness. This can again be done by seeking acceptance cycles in ¢ A S ¥ A¬ f , similar as explained

6 Condition C1 is in fact the basic consistency requirement that underlies also the other partial-order reduction methods
based on stubborn sets, persistent sets, or faithful decompositions.

Chapter 7!!Leaping reachability analysis for LTL model-checking 147

before in Section 7.1.3. POVAS utilizes the nested DFS algorithm given in [CV+92], or actually a
slight modifcation of it to ensure compatibility with the selective DFS algorithm based on ample
sets [HPY96] (the need for this modification was not yet recognized in [HP95, Pel96], but the
authors proposed the correction in [HPY96]).

For the on-the-fly version of POVAS, the calculation of ample sets itself also undergoes a
minor change so that it applies to composite states of the product automaton ¢ A S ¥ A¬ f instead of
single system states. When a composite state (q, r) of ¢ A S ¥ A¬ f on the DFS stack is expanded and
at least one operation is executable at system state q, a non-empty subset ample(q, r) of X(q) is
employed to generate successor states for (q, r), which satisfies the earlier conditions C1 and C3 in
Definition 7.6 and the new condition C2¢ [Pel96]:

C2¢ if ample(q, r) Ã X(q), then no operation a Œample(q, r) with q a
æ Æ æ q¢ is such that the

composite state (q¢, r) is on the current DFS stack.

Conditions C1 and C3 remain unaffected because the dependency relation D and the set visf (S) of
visible operations are irrespective of the state of the Büchi automaton A¬ f . Condition C2 entails
inspecting the DFS stack and must be adapted in particular because each system state may yield
several composite states that differ in the state of the Büchi automaton A¬ f . That is, the on-the-fly
construction of ¢ A S ¥ A¬ f operates on a different DFS stack and may postpone the closing of cycles
compared to the off-line construction of ¢ A S [Pel96]. The new condition C2¢ appears sufficient to
guarantee that the modified version [HPY96] of the nested DFS algorithm in [CV+92], with the
calculation of ample sets to determine successor states, detects at least one acceptance cycle on-the-
fly in ¢ A S ¥ A¬ f if one or more such cycles exist in the “full product” AS ¥ A¬ f . Thus, model-
checking the LTL formula f on-the-fly with POVAS will yield a correct and conclusive verdict: one
either finds a counter example to f (i.e. an acceptance cycle), or else f is satisfied by concurrent
system S.

Example 7.7
Consider again the concurrent system S and the LTL formula f described in Example 7.3, and
depicted in Figure 7.2. Recall that the two sequential processes P1 and P2 execute autonomously,
meaning that each operation of P1 is always independent of each operation of P2. Also recall that
the operations w and d are the only visible operations of S. The product automaton ¢ A S ¥ A¬ f
obtained with POVAS, using the algorithm suggested in [HP95, Pel96] for calculating ample sets,
is given in Figure 7.3. It is non-empty, like the “full product” AS ¥ A¬ f shown in Figure 7.2, but it
contains less states and transitions. For instance, at the initial composite state (10, 20, 0) only
operation a of P1 is executed since X1((10, 20)) = {a} is an ample set in this state, i.e. {a} satisfies
conditions C1, C2¢ and C3. This is not the case for X1((11, 20)) = {b, c} in the subsequent

Chapter 7!!Leaping reachability analysis for LTL model-checking 148

composite state (11, 20, 0), which violates C2¢ since the execution of operation b leads back to the
initial state (10, 20, 0) that is on the current DFS stack. However, X2((11, 20)) = {v} is now an
ample set in (11, 20, 0). Note further that, amongst others, the state (12, 21, 0) is fully expanded as
both w and d are visible operations and thus neither {w} nor {d} is an ample set in this state. !

>

(11, 20, 0)

(10, 21, 0)

(11, 21, 0)

(12, 21, 0)

(13, 21, 2)

(13, 22, 2)

(12, 22, 1)

(11, 22, 1)

a

v

w

ca
b

ab

c d

d

d

w

w

(10, 20, 0)

(10, 22, 1)

(12, 22, 1)

Figure 7.3!!The product ¢ A S ¥ A¬f for the concurrent system S and the LTL formula f in Example 7.3.

7.3 Enhancing POVAS

For many concurrent systems, the reduced automaton ¢ A S resulting from POVAS can be much
smaller than the full automaton AS , as witnessed by the experiments reported in [HP95, Pel96].
Nevertheless, we recognize that even ¢ A S may still manifest a notable amount of redundancy that can
be eliminated. A simplified example explains this. Consider a concurrent system composed of n
sequential processes P1, P2,…,Pn , where each process Pi terminates after executing a single
operation, say ai (1 £ i £ n). Also assume that all the operations ai are mutually independent and
invisible, i.e. the processes execute autonomously and no particular temporal property is checked.
Obeying conditions C1, C2 and (trivially) C3 on ample sets, it is not difficult to construct the
reduced automaton ¢ A S for this system. It generates only one of the n! possible orderings of the

Chapter 7!!Leaping reachability analysis for LTL model-checking 149

ai’s, namely a1a2…an . Yet, even the generation of just this one order appears redundant. Since all
the operations ai are mutually independent and invisible, one can in fact avoid an order altogether by
mimicking a truly concurrent execution of these operations, i.e. by executing them collectively. A
further reduction of ¢ A S is then obtained since the n–1 intermediate states reached after executing the
operations a1a2…an–1 from the initial state are no longer generated. Remark that this follows the
same idea as employed earlier in Chapter 5 in the context of LRA for the verification of logical
correctness properties of protocols in the CFSM model. Indeed, using concepts analogous to those
underlying LRA, we propose an enhancement of POVAS in terms of the space and time (in
particular, the number of stored states and explored transitions) needed for LTL model-checking. In
the remainder of this section, we set out the enhancement for concurrent systems in general (i.e.
modeled as finite LTSs). The realization of POVAS and the proposed enhancement for protocols in
the CFSM model is then discussed in Section 7.4, and an experimental comparison based on this
realization is provided in Section 7.5.

7.3.1 Proper leap sets

The key to enhancing POVAS lies in a rather simple observation: states of a concurrent system may
have multiple disjoint ample sets. For instance, a state q has multiple disjoint ample sets particularly
when there is more than one sequential process Pi whose set Xi(q) is non-empty and satisfies the
conditions C1, C2 and C3 (which is the case in the above example). Two disjoint ample sets in the
same state have the nice characteristic that no operation in either ample set can be dependent of an
operation in the other ample set. Furthermore, two disjoint ample sets in the same state cannot
contain visible operations. Proposition 7.8 proves these claims.

Proposition 7.8
Let q be a state of a concurrent system S, with X(q) ≠ ∅, and let A1 and A2 be sets of operations of
S such that ∅ Ã A1, A2 Õ X(q) and A1 « A2 = ∅. If A1 and A2 satisfy condition C1, then all
operations in A1 are independent (in q) of all operations in A2. If A1 and A2 satisfy condition C3,
then all operations in A1 and A2 are invisible.

Proof:!!For the first claim, suppose there exist operations a1 ŒA1 and a2 ŒA2 such that a1 and a2
are mutually dependent (in q, in case of a conditional dependency relation). Since A1 and A2 are
disjoint, this yields the contradiction that A1 and A2 do not satisfy condition C1: a2 œA1 (a1 œA2)
is dependent of an operation in A1 (A2) but can be executed at q before an operation from A1 (A2) is
executed (cf. Definition 7.6). For the second claim, both A1 and A2 must be (non-empty) proper
subsets of X(q) since otherwise they cannot be disjoint. Thus, by condition C3, A1 and A2 do not
contain visible operations. !

Chapter 7!!Leaping reachability analysis for LTL model-checking 150

/* S = (Q,q0,S,D) is a concurrent system and q ŒQ is a state of S. */
/* f is an LTL formula to be checked for S. */
/* AS is a set of multiple disjoint and non-empty subsets of X(q) */
/* that satisfy conditions C1 and C3. */

AS = ∅

for all processes Pi do
if Xi(q) ≠ ∅ then {

C3 = (Xi(q) « visf(S) = ∅)
if C3 then {

C1 = check_C1(Xi(q))
/* check_C1(Xi(q)) returns true if Xi(q) satisfies C1, */
/* and false otherwise (see Section 7.2.1). */
if C1 then add the set Xi(q) to AS

}
}

return AS

Figure 7.4!!Finding multiple disjoint ample sets (wrt C1 and C3).

To exploit the possible existence of multiple pairwise disjoint ample sets in a system state q, or
actually the existence of disjoint subsets of X(q) that satisfy C1 and C3, we adopt the algorithm in
Figure 7.4 for calculating such sets. This algorithm differs from the one given in [HP95, Pel96] in
two ways. First, it enforces only conditions C1 and C3 on ample sets. The reason for omitting C2
will become clear in the next subsection. Secondly, it returns the set of all sets Xi(q) satisfying C1
and C3, or the empty set if no such Xi(q) exists. Thus, we calculate only nontrivial ample sets with
respect to C1 and C3. Our algorithm is a straightforward adaptation of the algorithm in [HP95,
Pel96] for finding just one ample set, and it does not introduce significant extra overhead. This is
true especially since C1 and C3 are already checked for the most part statically by a prescan of the
sequential processes during system compilation, as described in Section 7.2.1. Both algorithms
then have a time complexity linear in the number of processes, since the algorithm in [HP95, Pel96]
must also scan all processes in the worst case.

Let k be the number of ample sets, with respect to C1 and C3, returned by the algorithm in
Figure 7.4 (i.e. k is the cardinality of the returned set AS in Figure 7.4 and 0 £ k £ the number of
sequential processes). When k > 0, each such ample set is a subset of X(q) satisfying C1 and C3
and thus, by Proposition 7.8, all its operations are invisible and independent (in q) of all operations
in the other ample sets. This then motivates that any collection of executable operations forming an
element of the Cartesian product of the k ample sets can be executed concurrently at state q. When k
= 0, no appropriate proper subset of X(q) has been found and all operations executable at q are to
be executed separately. That is, the state q is then fully expanded as is the case in [HP95, Pel96].
Formally, we employ the following definition.

Chapter 7!!Leaping reachability analysis for LTL model-checking 151

Definition 7.9
Let S = (Q, q0, S, D) be a concurrent system, and for some q ŒQ let ample1(q), ample2(q),…,
amplek(q) denote the k disjoint subsets of X(q) satisfying conditions C1 and C3 that are returned
by the algorithm in Figure 7.4. The set pleap(q) of proper leap sets in q is defined as follows:

pleap(q) = amplej(q)j=1
k

’ if k > 0

pleap(q) = { {a} | a ŒX(q) } if k = 0 !

When k = 0, all operations executable at q are thus considered individually by including them in
pleap(q) in the form of singleton sets, like in Chapter 5.

We have designated the term “proper leap set” and the corresponding set denotation pleap(q)
to!comply with the terminology in Chapter 5. In further analogy with Chapter 5, a permutation of
the operations in a proper leap set T is called a linearization of T, and the set of all linearizations of
T is denoted by lin(T). For a finite or infinite sequence of proper leap sets W = T1T2… we have
lin(W) = {g1g 2… | gi Œlin(Ti) for all i ≥ 1}. Since all operations in a proper leap set are mutually
independent, it follows from Definition 7.4 that all its linearizations are equivalent and lead to the
same state. Hence, we write q

l
T

æ Æ æ q¢ to mean that there is a set T Œpleap(q) with g Œlin(T) such that
q g

æ Æ æ
* q¢, and q

l
W

æ Æ æ æ * q¢ to mean that the sequence W of proper leap sets leads from q to q¢.
Akin to a DFS with ample sets implemented by POVAS, one can now perform a DFS that

governs the execution of proper leap sets to determine (not necessarily immediate) successor states
for each state expanded during the search. The fraction of the state space of a concurrent system
S!= (QS , qS

0 , SS , DS) explored by such a reduced search can again be viewed as an automaton,
defined by the tuple AS

l = (QS
l , qS

0 , 2SS, DS
l , QS

l) with QS
l Õ QS and DS

l Õ QS
l ¥ 2SS ¥ QS

l such that
(q, T, q¢) Œ DS

l iff T Œpleap(q) and q

l
T

æ Æ æ q¢. This so-called leap automaton for S is adequate for
verifying indefinite progress, but it does not yet lend itself for LTL model-checking. We will come
back to this shortly. Let us first show that exploring AS

l indeed reveals all non-progress states of S.
Theorem 7.10 below7 proves that for every terminating computation s of a concurrent system S
there is at least one sequence of proper leap sets in AS

l , starting from the initial state of S, whose
linearizations are equivalent (wrt any dependency relation D) to s. This directly implies that every
non-progress state of S is a state in the leap automaton AS

l .

Theorem 7.10
Let S = (Q, q0, S, D) be a concurrent system and D a dependency relation for S. For every finite
computation s ŒS* of S, there exists a sequence of proper leap sets W in AS

l from the initial state q0

of S, with h Œlin(W), such that s ≡D h.

7 This theorem should be compared with Lemma 5.10 and Theorem 5.11 in Chapter 5.

Chapter 7!!Leaping reachability analysis for LTL model-checking 152

Proof:!!Let q0 s
æ Æ æ * q, then X(q) = ∅ by Definition 7.1 (i.e. computations of S are defined to be

maximal). We first prove that there exists a proper leap set T1 in the initial state q0 of S, with
g 1!Œlin(T1), such that g1 pD s (see Definition 7.5). If pleap(q0) = { {a} | a ŒX(q0) } then T1
exists trivially, namely T1 is the singleton set containing the first operation of s. If pleap(q0) =

amplej(q0)j=1
k

’ , then by condition C1 and the fact that s is a terminating computation, it follows
that for each process Pi with Xi(q) = amplej(q) there exists an operation from amplej(q) in s (since
otherwise X(q) ≠ ∅). Let aj denote the first operation in s from amplej(q), for each 1 £ j £ k.
Clearly, {a1, a2,…, ak} Œpleap(q0). By C1, each aj is independent of all operations that occur in s

before the occurrence of aj itself, and hence the operations a1, a2,…, ak can all be permuted to the
front of s. Consequently, in this case let T1 = {a1, a2,…, ak} with g 1 Œlin(T1), then for some r we
have s ≡D g 1r and thus g 1 pD s. Let then q0

l
T1

æ Æ æ æ q1 r
æ Æ æ * q. The proof of the theorem is now

straightforward by finite repetition of the above reasoning, continuing with q1 r
æ Æ æ * q (cf. the proof

of Theorem 5.11). !

One should realize that the detection of non-progress states does not require the specification of
a temporal formula, meaning that condition C3 on ample sets is actually void. Indeed, this condition
is not used in the proof of Theorem 7.10. It is clear that enforcing just condition C1 generally aids
the calculation of larger proper leap sets, which may result in a further reduction of the number of
states and transitions explored.

7.3.2 Off-line LTL model-checking with (proper) leap sets

As just mentioned, a DFS that governs the execution of proper leap sets is not yet fit for LTL
model-checking. It should be no surprise that the reason for this is that we have thus far omitted
condition C2 on ample sets. Recall from Section 7.2.1 that this condition is enforced to avoid the
ignoring problem, which may cause the execution of operations to be deferred indefinitely along a
cycle. Condition C2 prohibits any operation in ample(q) from closing a cycle on the DFS stack in
case ample(q) is a proper subset of X(q). However, incorporating C2 directly in the formulation of
proper leap sets does not solve the ignoring problem for a DFS that governs the execution of these
sets, because it employs a different DFS stack (see also Section 7.2.2). We enforce the following
condition on proper leap sets instead. Denote by op(pleap(q)) the set of all operations in all proper
leap sets in q, i.e. op(pleap(q)) = {a ŒT | T Œpleap(q)}. If op(pleap(q)) is a proper subset of X(q),
then for no proper leap set T Œpleap(q) it should hold that the execution of T at q leads to a state
that is already on the DFS stack. Otherwise, pleap(q) is extended by adding to it all sets T » {a},
where T ranges over the sets in pleap(q) that do lead to a state on the DFS stack, and a ranges over
the operations in X(q) that are not in op(pleap(q)).

Chapter 7!!Leaping reachability analysis for LTL model-checking 153

Definition 7.11
Let S = (Q, q0, S, D) be a concurrent system, and let q ŒQ be the current state to be expanded
during the DFS. The set xpleap(q) is defined as follows:

xpleap(q) = pleap(q) » {T » {a} | a ŒX(q) \ op(pleap(q)) and
T Œpleap(q): q

l
T

æ Æ æ q¢ Ÿ q¢ is on the DFS stack } !

Observe that each operation (if any) in X(q) \ op(pleap(q)) belongs to some sequential process Pi
whose set Xi(q) is non-empty but does not satisfy C1 or C3. Thus, these operations can easily be
determined also with the algorithm in Figure 7.4 (only a few straightforward statements need be
added to the algorithm), i.e. together with the search for multiple disjoint ample sets that satisfy C1
and C3. It is further important to stress that we extend pleap(q) rather than returning all singleton
sets of executable operations, which would reflect the calculation of ample sets in [HP95, Pel96]. In
this way the calculation of pleap(q) is not wasted when it turns out that the execution of some
proper leap set leads back to a state on the DFS stack. Lastly, observe that for each set T Œxpleap(q)
all operations in T are mutually independent and at most one of these operations is visible, by the
construction and condition C1.

Analogous to the leap automaton AS
l for a concurrent system S, an extended leap automaton

 AS
l* for S can be defined on the basis of the execution of elements from the extended set xpleap(q).

Since xpleap(q) ⊇ pleap(q) for any state q, AS
l* strictly extends AS

l . That is, each state of AS
l is a

state of AS
l* and each transition of AS

l is a transition of AS
l* . This extension solves the ignoring

problem as it causes every cycle in AS
l* (when viewed as a graph) to contain at least one state q for

which op(xpleap(q)) = X(q), which is not necessarily the case for pleap(q) (cf. Section 5.5 in
Chapter 5).

Henceforth, the term “leap set” refers to an element of xpleap(q) (in state q). As before, lin(W)
denotes the set of all linearizations of a (finite or infinite) sequence W of leap sets. In addition, q!

 l*
T

æ Æ æ

q¢ denotes that (any linearization of) the leap set T Œxpleap(q) leads from state q to state q¢, and
likewise q

l*
W

æ Æ æ æ * q¢ in case of a sequence of leap sets W. Remark that all linearizations of a sequence
of leap sets from the initial state of S are computations of S. Hence, like for computations of S, an
infinite sequence of leap sets W from the initial state of S is said to satisfy an LTL formula f iff the
Büchi automaton Af accepts the computation of AS

l* over W (i.e. the sequence of states
corresponding to W, see Section 7.1.3). Recall thereby once more that finite sequences of leap sets
are taken into account by repeating forever the last states generated by these sequences. Since any
leap set contains at most one operation from visf (S), all visible operations in W appear in the same
order in each linearization of W , while the invisible operations correspond to stuttering steps.
Therefore, either all or none of the linearizations of W satisfy f and, moreover, W itself satisfies f iff
all linearizations of W satisfy f.

Chapter 7!!Leaping reachability analysis for LTL model-checking 154

Let D ¢ = D » (visf (S) ¥ visf (S)) be the dependency relation D of a concurrent system S
augmented with dependencies between all the visible operations for the checked formula f. This
makes f equivalence robust [Pel93, Pel96]: all sequences equivalent wrt D ¢ contain the same visible
operations and in the same order, and thus f has the same truth value for each of them (i.e. either all
or none of these sequences satisfy f). Surely, all linearizations of a sequence of leap sets are
equivalent wrt D ¢. The dependency relation D ¢ is used specifically to show that a DFS governing
the execution of leap sets retains the order of visible operations in the computations of a concurrent
system (Lemma 7.13 and Lemma 7.14 below). This in turn is the key to proving the main result of
the chapter: LTL model-checking can be conducted faithfully with the extended leap automaton AS

l*

for S (Theorem 7.15 below). The associated proofs are somewhat similar to the proofs of the
corresponding claims in [Pel96]. For convenience, the next definition is therefore taken directly
from [Pel96].

Definition 7.12
Let S = (Q, q0, S, D) be a concurrent system and D a dependency relation for S. For a (finite or
infinite) sequence s ŒS* » Sw of operations of S, denote by op(s) the set of operations occurring
in s, by s(i) the i-th operation in s, and by s(i+1…) all but the first i operations in s. A selection
function for s is a function c : {1,…, |s|} a {true, false}, mapping each operation in s to either
true or false. Denote by sc (sc) the sequence remaining from s after the removal of all operations
s(i) with c(i) = false (c(i) = true). Also, denote by c«r the selection function c shifted to the left r
places, i.e. (c«r)(i) = c(i + r). Define s pD

A s¢ iff there exists a selection function c for s¢ such that
(i) s ≡D ¢ s c , (ii) op(¢ s c) Õ A Õ S, and (iii) for all 1 £ i £ |s¢|, if c(i) = false then each operation in
op(s¢(i+1…)c«i) is independent wrt D of s¢(i). !

Informally, s pD
A s¢ if a sequence equivalent (wrt D) to s can be obtained from s¢ by removing from

s¢ some operations in A that are independent of all the non-removed operations of s¢ that appear
after them [Pel96]. For example, let S = {a, b, v, w}, D = {(a, a), (b, b), (v, v), (w, w)}, s =
abvw(ab)w, s¢ = (bwav)w and A = {v, w}, then s pD

A s¢. To see this, choose a selection function c
for s¢ such that c(i) = true if i is odd or less than 5; c(i) = false otherwise. One obtains ¢ s c =
bwav(ba)w, i.e. all occurrences of v and w in s¢ except the first ones are removed. The equivalence s

≡D ¢ s c is then immediate. Notice that every removed operation v or w is independent of all the
operations occurring to its right in s¢ that are not removed (these are the occurrences of a and b
except the first a and b).

Lemma 7.13
For a concurrent system S = (Q, q0, S, D), let q ŒQ be a state that is removed from the DFS stack
during the construction of the extended leap automaton AS

l* for S, and let mas ŒS* » Sw be a

Chapter 7!!Leaping reachability analysis for LTL model-checking 155

computation of S, with q0 m
æ Æ æ * q. Then, there exist a sequence q

l*
T1

æ Æ æ æ q1

l*
T2

æ Æ æ æ …
 l*

Tm -1
æ Æ æ æ æ qm–1

l*
Tm

æ Æ æ æ q¢

(m ≥ 1) in AS
l* , and a selection function c for g Œlin(T1T2…Tm–1(Tm \ {a})), such that

i) a ŒTm
,

ii) no operation in T1, T2,…, Tm–1, Tm \ {a} is visible,

iii) no operation in T1, T2,…, Tm–1, Tm \ {a} is dependent wrt D ¢ of a,

iv) ga ≡D¢ agcg c ,

v) $r: gcr ≡D¢ s (i.e. gc p ¢ D s), and

vi) the operations in g c are independent wrt D ¢ of the operations in r.

Proof:!!If xpleap(q) = { {b} | b ŒX(q) }, then a sequence with the required properties exists
trivially, namely q

 l*
{a}

æ Æ æ æ q¢. Alternatively, if xpleap(q) ⊇ pleap(q) = amplej(q)j=1
k

’ , then for each
amplej(q), no operation in amplej(q) is visible (by C3), and no operation outside amplej(q) that is
dependent wrt D of an operation in amplej(q) can occur in as before the occurrence in as of some
operation in amplej(q) itself (by C1). The holds then true also wrt D ¢ = D » (visf (S) ¥ visf (S)). It
follows that for each process Pi such that Xi(q) = amplej(q), either amplej(q) contains the first
operation of Pi in as, or all operations in as are independent wrt D ¢ of all operations in amplej(q)
(i.e. Pi has no operations occurring in as). Note that the latter cannot be the case if s is finite (which
was in fact the key to proving Theorem 7.10). Thus, there exists T = {a1, a2,…, ak} Œ pleap(q) Õ
xpleap(q) such that aj is the first operation from amplej(q) occurring in as if there is such
operation, or else aj is any operation from amplej(q), for each 1 £ j £ k, and all the aj’s are invisible
and mutually independent wrt D ¢. The proof now continues by induction on the order in which
states are removed from the DFS stack during the construction of the extended leap automaton AS

l*

for S. When removing the state q from the DFS stack, two cases can be distinguished:

• a ŒT or T leads to a state on the DFS stack

Remark that this case covers in particular the induction basis where q is the first state removed
from the DFS stack: each proper leap set in pleap(q) executed in q leads to a state that is
already on the DFS stack since any other state would have been removed before q (a
characteristic of a depth-first search). Let T1 = T » {a} if a œT (i.e. a ŒX(q) \ op(pleap(q)); T1
= T otherwise. By construction, a ŒT1 and T1 Œxpleap(q), and all operations in T1 \ {a} are
invisible and independent wrt D ¢ of a, viz. q

l*
T1

æ Æ æ æ q¢ is a sequence satisfying properties (i), (ii)

and (iii). For any sequence of operations g, define the required selection function c such that c(i)
= true if g(i) Œop(s); c(i) = false otherwise. Here, g Œlin(T1 \ {a}) and properties (iv), (v) and
(vi) follow readily, again by construction of T1.

• a œT and T does not lead to a state on the DFS stack

Chapter 7!!Leaping reachability analysis for LTL model-checking 156

Let T = T1 and q

l*
T1

æ Æ æ æ q1. Thus, q1 is not on the DFS stack and when added it will be removed
before q itself is removed (a characteristic of a depth-first search). But this means that the
induction hypothesis can be applied to q1, viz. there exists a sequence of leap sets T2…Tm–1Tm
from q1 with respective selection function c for g ¢ Œlin(T2…Tm–1(Tm \ {a})) (defined as above)
satisfying properties (i) to (vi). Now, since a œT1 and each operation in T1 is invisible and
independent wrt D ¢ of all operations in as before its own occurrence (if any) in s (because
T1!Œ amplej(q)j=1

k
’), it is immediate that T1T2…Tm–1Tm is a sequence of leap sets from q

which satisfies properties (i), (ii) and (iii). In order to prove property (iv), let t Œlin(T1) and
g!Œlin(T1T2…Tm–1(Tm \ {a})) = tg ¢. We derive ga = tg ¢a ≡D¢ ta ¢ g c ¢ g c ≡D¢ tctc a ¢ g c ¢ g c , using
the induction hypothesis and the fact that the operations in a leap set are mutually independent
wrt D ¢. Since all the operations in T1 are independent wrt D ¢ of a and all the operations in tc
are independent wrt D ¢ of all operations in s and hence in ¢ g c , it follows that tctc a ¢ g c ¢ g c ≡D¢

atc ¢ g c tc ¢ g c = agcg c . Properties (v) and (vi) are proved similarly via the induction hypothesis. !

Lemma 7.13 implies that for each operation a that becomes executable along some computation of a
concurrent system S, the extended leap automaton AS

l* for S also contains a sequence along which
a becomes executable. Thus, aside from our objective, AS

l* serves to detect all (non-)executable
operations of S. Condition C3 on ample sets can thereby be void, as was the case for detecting non-
progress states, which similarly favors the size of the extended leap automaton.

Lemma 7.14
Let S = (Q, q0, S, D) be a concurrent system and f an LTL formula to be checked for S. For every
computation s ŒS* » Sw of S there exists a sequence of leap sets W in AS

l* from the initial state q0

of S, with h Œlin(W), such that s p ¢ D
S \ visf(S) h.

Proof:!!For any (finite or infinite) computation s of S , while reading s, we describe a traversal of

 AS
l* starting from the initial state q0 that yields a sequence W of leap sets, with h Œlin(W), such that

s p ¢ D
S \ visf(S) h. The following variables are used in the process:

s¢ the sequence of operations read so far from s;
W¢ the sequence of leap sets in AS

l* traversed so far, with h¢ Œlin(W¢);
r a linearization of W¢, projected on the set of operations that have not yet been read from s (i.e.

removed from h¢ Œlin(W¢) are the operations already read from s);
q the current state of AS

l* .

The variables s¢, W¢ and r are initialized to the empty sequence, and q is initialized to q0. Whenever
the next operation a ŒS is read from s, the following updates are made:

1. s¢ := s¢a ;

Chapter 7!!Leaping reachability analysis for LTL model-checking 157

2. if r = uau¢, for some u, u¢ ŒS* such that all operations in u are independent wrt D ¢ of a, then
r := uu¢;

3. else choose a sequence of leap sets T1T2…Tm–1Tm from the state q, leading to a state q¢, such
that a ŒTm and ¢ h c g ca ≡D¢ ¢ h c agc p ¢ D s, with g Œlin(T1T2…Tm–1(Tm \ {a})) and the selection
function c , for any sequence of operations m, such that c(i) = true if m(i) Œop(s); c(i) = false
otherwise. Make the following updates:

W¢ := W¢ T1T2…Tm–1Tm ;
r := rgc ;
q := q¢ .

The following properties are now inductively proved to be invariant while reading s:

i) s¢r ≡D¢ ¢ h c ,
ii) ¢ h c p ¢ D s,
iii) if the condition of Step 2 does not hold when checking it, then all the operations occurring in

r are independent wrt D ¢ of a, and
iv) the choice of the sequence T1T2…Tm–1Tm required by Step 3 can always be made when

taking Step 3.

Initially, the properties (i) to (iv) trivially hold since s¢, W¢ and r are empty, and the algorithm is just
before Step 1. At each step of the update procedure, s¢a p ¢ D s since a is the next operation from s

read after s¢, and s¢r p ¢ D s by the induction hypotheses (i) and (ii). This together implies that r

cannot contain operations that are dependent wrt D ¢ of a before the occurrence of a (if any) in r,
which proves (iii). When a does not occur in r and thus not in any leap set in W¢, Step 3 is taken and
the existence of the sequence of leap sets T1T2…Tm–1Tm from state q required by Step 3 is
guaranteed by Lemma 7.13, proving (iv). It is then easy to check that both (i) and (ii) are preserved
by taking either Step 2 or Step 3 of the update procedure.

Let W denote the entire (finite or infinite) sequence of leap sets collected into W ¢ along a
traversal of AS

l* upon reading s, with h Œlin(W). From (i), for each s¢ Œpref(s), s¢ p ¢ D ¢ h c and hence
s¢ p ¢ D hc. Also, from (ii), for each g Œpref(hc) we have g p ¢ D s. Thus, s ≡D¢ hc by Definition 7.5,
and s p ¢ D

S \ visf(S) h by definition of ‘ p ¢ D
S \ visf(S) ’ (in particular because all operations in hc are invisible

and independent wrt D ¢ of the operations in s). !

Theorem 7.15
Let S = (Q, q0, S, D) be a concurrent system and f an LTL formula to be checked for S. For every
computation s ŒS* » Sw of S there exists a sequence of leap sets W in AS

l* from the initial state q0

of S, such that s satisfies f iff W satisfies f .

Chapter 7!!Leaping reachability analysis for LTL model-checking 158

Proof:!!By Lemma 7.14, there exists a sequence of leap sets W in the extended leap automaton AS
l*

for S, with h Œlin(W), such that s p ¢ D
S \ visf(S) h. To prove that s satisfies f iff W satisfies f , it is

sufficient to show that s satisfies f iff h satisfies f . This follows from the fact that W captures the
same visible operations and in the same order as they occur in h (any leap set contains at most one
visible operation). That is, a computation of the extended leap automaton AS

l* over W is stuttering
equivalent wrt f to a computation of the full automaton AS over h, and thus f cannot distinguish
between these two computations (recall that f is implicitly assumed to be a nexttime-free LTL
formula, i.e. f is stuttering closed). It remains to be shown that s and h yield stuttering equivalent
sequences. Since s p ¢ D

S \ visf(S) h, this is immediate by the definition of ‘ p ¢ D
S \ visf(S) ’ and the inclusion

visf (S) ¥ visf (S) Õ D ¢. !

In conclusion, Theorem 7.15 warrants the application of off-line LTL model-checking algorithms
[LP85] to the extended leap automaton of a concurrent system, as opposed to its full automaton or
the reduced automaton resulting from POVAS.

7.3.3 On-the-fly LTL model-checking with (proper) leap sets

We now turn to the aptness of the extended leap automaton AS
l*

 for on-the-fly LTL model-checking.
Recalling the preliminaries in Section 7.1.3, when the Büchi automaton A¬ f for the negation of the
checked LTL formula f is defined over state predicates, each transition of the product automaton

 AS
l* ¥ A¬ f is of the form (q, r) (T,P)

æ Æ æ æ æ æ (q¢, r¢), with q
 l*

T
æ Æ æ q¢ a transition of AS

l* and r P
æ Æ æ r¢ a

transition of A¬ f such that proposition P is true in system state q. Alternatively, when A¬ f is defined
over the alphabet of operations of the concurrent system S, each transition of AS

l* ¥ A¬ f is of the
form (q, r) T

æ Æ æ (q¢, r¢), with q
 l*

T
æ Æ æ q¢ a transition of AS

l* , g Œlin(T) and r g
æ Æ æ

* r¢ a sequence in A¬ f .
Since there is at most one visible operation in any leap set, the product automaton is well-defined in
either case. For the latter case in particular, at most one operation in T can actually cause a state
transformation of A¬ f , and r¢ follows therefore uniquely from r and (any linearization of) T. The
next theorem proves that it is sufficient to check the emptiness of AS

l* ¥ A¬ f in order to verify S
against the formula f.

Theorem 7.16
Let S = (Q, q0, S, D) be a concurrent system and f an LTL formula to be checked for S. The
product automaton AS ¥ A¬ f is empty iff the product automaton AS

l* ¥ A¬ f is empty.

Proof:!!By Theorem 7.15, for every computation of S there exists a sequence of leap sets in the
extended leap automaton AS

l* for S, such that either both sequences satisfy f or both do not satisfy

Chapter 7!!Leaping reachability analysis for LTL model-checking 159

f. Thus, AS ¥ A¬ f is non-empty iff there exists some computation s of S satisfying ¬f iff there exists
some sequence of leap sets W in AS

l* satisfying ¬f iff AS
l* ¥ A¬ f is non-empty. !

As for the on-the-fly construction of ¢ A S ¥ A¬ f with POVAS (see Section 7.2.2), the on-the-fly
construction of the product automaton AS

l* ¥ A¬ f can likewise postpone the closing of cycles on the
DFS stack because it operates on a DFS stack (made up of composite states) that is different from
the DFS stack used by the off-line construction of AS

l* (made up of single states of S). Since this
affects solely condition C2 and since the definition of pleap(q) does not rely on C2 (the ample sets
used to construct pleap(q) obey only C1 and C3), we need to modify only the definition of
xpleap(q) in order to make the execution of leap sets compatible with the algorithms for on-the-fly
LTL model-checking. Similar to the modified condition C2¢ on ample sets, composite states of the
product automaton AS

l* ¥ A¬ f are accounted for in leap sets as follows.

Definition 7.17
Let S = (Q, q0, S, D) be a concurrent system, f an LTL formula to be checked for S, and (q, r) the
current composite state of AS

l* ¥ A¬ f to be expanded during the DFS. Define

xpleap(q, r) = pleap(q) » {T » {a} | a ŒX(q) \ op(pleap(q)) and
 T Œpleap(q): q

l
T

æ Æ æ q¢ Ÿ (q¢, r) is on the DFS stack } !

The adaptation of the algorithm for on-the-fly detection of acceptance cycles in the context of
POVAS [HP95, Pel96, HPY96] now simply consists in using xpleap(q, r) instead of ample(q, r) to
determine the subset of (not necessarily immediate) successor states of q that need be explored
next. Suffice it to say that this adaptation is indeed adequate for effectively combining the execution
of leap sets with on-the-fly LTL model-checking. That is, the adapted algorithm returns true if the
given concurrent system does not satisfy the checked LTL formula, and false otherwise. The
correctness proof is virtually identical to the one given in [Pel96] for the on-the-fly construction
algorithm of POVAS, considering also the modification suggested in [HPY96] (see Section 7.2.2)
of the nested DFS algorithm in [CV+92] (see Section 7.1.3). It entails a reduction from the on-the-
fly algorithm to a non-deterministic variant of the off-line algorithm, which preserves the validity of
Lemma 7.13 and hence of Lemma 7.14 and Theorem 7.15. We refer the interested reader to
[CV+92, Pel96, HPY96] for precise details.

It is appropriate here to point out that an alternative definition can be given for xpleap(q, r), and
likewise for xpleap(q), that does not require inspection of the DFS stack. By always adding the sets
T » {a} to pleap(q) for each a ŒX(q) \ op(pleap(q) and for each T Œpleap(q), i.e. even if T does not
lead to a state on the DFS stack, all the previous results still hold (in particular, the sequence of leap
sets sought in Lemma 7.13 is then guaranteed to be of length one). Although this generally

Chapter 7!!Leaping reachability analysis for LTL model-checking 160

increases the size of the extended leap automaton AS
l* for a concurrent system S, and of the

corresponding product automaton AS
l* ¥ A ¬ f , it may reduce the time for constructing these

automata, especially when it turns out that at many expansion steps during state exploration the
number of proper leap sets (i.e. the leap sets in pleap(x)) and the current DFS stack are large. In
addition, for on-the-fly cycle detection one can directly use the nested DFS algorithm of [CV+92]
without any modification.

Example 7.18
Consider once more the concurrent system S and the LTL formula f described in Example 7.3, and
depicted in Figure 7.2. The product automaton AS

l* ¥ A¬ f is shown in Figure 7.5. It is again non-
empty, like the “full product” AS ¥ A¬ f in Figure 7.2, and smaller than the product ¢ A S ¥ A¬ f in
Figure 7.3 obtained with POVAS. For instance, at the initial state (10, 20, 0) both X1((10, 20)) =
{a} and X2((10, 20)) = {v} satisfy conditions C1 and C3, yielding pleap((10, 20, 0)) = {{a, v}}.
Furthermore, since this proper leap set does not lead to a composite state already on the DFS stack,
xpleap((10, 20, 0)) = pleap((10, 20, 0)). Notice that at the composite state (10, 21, 0) the subset
X1((10, 21)) = {a} satisfies C1 and C3, but X2((10, 21)) = {w} does not because operation w is
visible. Thus, pleap((10, 21, 0)) = {{a}}. This proper leap set leads back to a state on the DFS
stack, however, and hence xpleap((10, 21, 0)) = {{a}, {a, w}}. For this small but illustrative
example, the extra reduction achieved amounts to just one state and one transition. Later we will see
that the overall gain over POVAS is generally more significant for “larger” concurrent systems. !

{a, v}

{a, w}

{c}{a}
{b}

{d}

{d}

{w}

{w}{c}
{a}

{b}

{d}

(10, 21, 0)

(11, 21, 0)

(12, 21, 0)

(11, 22, 1) (13, 21, 2) (12, 22, 1)

(10, 22, 1)

(10, 20, 0)

(12, 22, 1) (13, 22, 2)

Figure 7.5!!The product AS
l* ¥ A¬f for the concurrent system S and the LTL formula f in Example 7.3.

Chapter 7!!Leaping reachability analysis for LTL model-checking 161

7.3.4 LTL model-checking under fairness assumptions

The presentation of POVAS and its proposed enhancement so far has been confined to LTL model-
checking without fairness. As explained at the end of the preliminary subsection 7.1.2, when the
interleaving semantics of a concurrent system involves fairness, all computations of the system that
violate the assumed fairness assumptions are no longer considered. Since fairness assumptions can
also be expressed in nexttime-free LTL [LP85], LTL model-checking under fairness assumptions
can be done simply by checking formulas of the form f1 fi f2, where f1 formalizes a conjunction of
fairness assumptions and f2 a desirable property. Unfortunately, adding f1 as part of the formula
often introduces many additional dependencies among operations [GW94, Pel96], since f1 causes
more (usually all) operations to be visible and condition C3 on ample sets must be applied also to
f1. A DFS based on the execution of ample sets or leap sets will then yield little or no gain at all.

In order to exploit a restricted class of fairness assumptions more efficiently and, in general, to
introduce dependencies among visible operations more carefully, it was shown in [Pel93] that a
temporal formula f which is not equivalence robust (see Section 7.3.2) can sometimes be made
equivalence robust by rewriting f as a Boolean combination of sub-formulas fi and treating each fi
individually when adding dependencies among visible operations. This is based on the simple fact
that when two formulas f1 and f2 are equivalence robust, then so are f1 Ÿ f2, f1 ⁄ f2 and ¬f1.
Precisely, instead of augmenting the dependency relation D of a concurrent system S with all pairs
of visible operations, which is the effect of imposing condition C3 on ample sets and thereby on
(proper) leap sets, it appears sufficient to augment D with the pairs in

 (iU visfi
(S) ¥ visfi

(S)) . This
union is a subset of visf (S) ¥ visf (S) and can yield much fewer dependencies in several cases. For
example, if f = (P ⁄ Q) then visf (S) includes all the operations of S whose execution can change
the truth value of the Boolean propositions P or Q. However, this formula is logically equivalent to
f1 ⁄ f2 = P ⁄ Q, where visf1(S) includes the operations that can change P and visf2(S) includes
those that can change Q. Thus, any two operations such that one can change only P but not Q, and
the other can change Q but not P, are dependent wrt to D » visf (S) ¥ visf (S) but not necessarily wrt
D!»

 (iU visfi
(S) ¥ visfi

(S)) . Other logical equivalences among temporal formulas that can be used
profitably as rewriting rules are: (f1 Ÿ f2) ≡ f1 Ÿ f2, (f1 ⁄ f2) ≡ f1 ⁄ f2, !(f1 Ÿ f2)
≡ f1 Ÿ f2, as well as (f1 Ÿ f2) U f3 ≡ (f1 U f3) Ÿ (f2 U f3) and f3 U (f1 ⁄ f2) ≡ (f3 U f1) ⁄ (f3 U
f2). Although rewriting can increase the length of a formula exponentially, it is argued in [Pel93,
Pel96] that the checked formulas are generally quite short and, moreover, that they need not be
rewritten completely. That is, the rewriting rules can be used to separate Boolean components of a
formula one at a time without explicitly generating the rewritten formula. This is done with a
recursive algorithm in time linear in the length of the formula [Pel93]. Following this algorithm, the
original formula can still be used for actual model-checking.

Chapter 7!!Leaping reachability analysis for LTL model-checking 162

In summary, POVAS employs the dependency relation D »
 (iU visfi

(S) ¥ visfi
(S)) instead of

D » visf (S) ¥ visf (S) (the latter implicitly through condition C3) for LTL model-checking with a
certain class of fairness assumptions [Pel96], including such assumptions as weak fairness, process
fairness and process justice [Fra86, MP92]. This is accomplished by dropping condition C3 and
enforcing condition C1 with respect to D »

 (iU visfi
(S) ¥ visfi

(S)) as opposed to just D. In effect,
the fairness assumptions then act as “low-cost” filters on the computations of a concurrent system,
allowing the calculation of ample sets with respect to a subset of these computations. This may
decrease the size of ample sets and thus result in the exploration of a yet smaller number of states
and transitions. It is evident that the same advantage applies also to the proposed enhancement of
POVAS. Indeed, we can equally use D »

 (iU visfi
(S) ¥ visfi

(S)) in place of D » visf (S) ¥ visf (S),
and construct leap sets as before from ample sets that respect this refined dependency relation.

A final note concerns yet another, very recent improvement of POVAS for on-the-fly LTL
model-checking, where the number of visible operations with respect to a formula f may diminish
during model-checking [KPV97]. Roughly speaking, it is shown that the set visf (S) itself can in
many cases be reduced dynamically, yielding even fewer dependencies, by exploiting information of
the current state of the Büchi automaton A¬ f . This is translated into a visibility condition that relaxes
condition C3. We refer to [KPV97] for details. Because this improvement operates “only” at the
level of (the Büchi automaton A¬ f for) the formula f, it can also be applied directly to our
enhancement of POVAS.

7.4 LTL model-checking in the CFSM model

Having addressed the topic of LTL model-checking in general for finite-state concurrent systems
formalized as LTSs, for the remainder of the chapter we turn the focus back to protocols defined as
networks of CFSMs. As noted earlier, every bounded protocol P in the CFSM model qualifies as a
finite-state concurrent system: its behavior is defined by the LTS (RP , G0, DiiŒIU , {(G, t, H) | G
ŒRP Ÿ G t

æ Æ æ H}). POVAS and its proposed enhancement based on leap sets are thus suited for
LTL model-checking in the CFSM model. We now show how to realize these two relief strategies
specifically for the CFSM model, by harmonizing their formulation with the formulation of LRA in
Chapter 5. This facilitates the integration of POVAS and its enhancement in the research tool
package RELIEF discussed in Chapter 6, which can then be used to perform an experimental
comparison of the performance of both techniques.

POVAS and its proposed enhancement make use of a dependency relation among transitions
(or operations) to tackle the wasteful exploration of many equivalent interleavings of concurrent
transitions. As discussed, it is thereby important that it can be easily checked in practice whether
two transitions are (in)dependent. This is certainly the case for protocols in the CFSM model: a

Chapter 7!!Leaping reachability analysis for LTL model-checking 163

syntactic condition that is sufficient for two transitions t and t¢ to be independent is that they are not
from the same process and they do not involve the same simplex channel. It is not difficult to see
that the dependency relation induced by this condition is a valid one according to Definition 7.4.
Nevertheless, for the CFSM model we can readily establish a weaker condition by considering a
conditional dependence among transitions, as in Definition 7.4bis. For each individual global state
G, two transitions are independent in G if they are not from the same process and if neither one of
them is enabled at G by the other. Proposition 7.19 proves that this condition is sufficient to meet
the requirements listed in Definition 7.4bis. Recall from Section 4.1 that a transition t defined at G
is enabled at G by a transition t¢ ŒX(G) if t is potentially executable at G and the execution of t¢ at
G causes t to become executable immediately thereafter. A send (receive) transition is potentially
executable at G if it involves a channel that is full (empty) in G.

Proposition 7.19
Let G be a global state of a protocol P. Two transitions t and t¢ are independent in G if it holds that
(i) act(t) ≠ act(t¢), and (ii) t is not enabled at G by t¢ and t¢ is not enabled at G by t.

Proof:!!Since transitions t and t¢ are not from the same sequential process (i.e. act(t) ≠ act(t¢)), and
since neither transition is enabled at G by the other transition, it follows immediately that the two
requirements in Definition 7.4bis are satisfied. That is, if t (t¢) is executable at G, leading to some
global state H, then t¢ (t) is executable at G iff it is executable at H, and if both t and t¢ are executable
at G, then executing the sequence tt¢ from G yields the same global state as executing the sequence
t¢t from G. Transitions t and t¢ are thus independent in G. !

The above translated requirement on a conditional dependency relation for protocols in the CFSM
model renders in turn a translation of condition C1 on ample sets (see Definition 7.6) for these
protocols, as stated by the next proposition.

Proposition 7.20
Let G be a global state of a protocol P, and let A Õ X(G) be a (non-empty) subset of transitions
executable at G. A satisfies condition C1 if for each i Œact(A) it holds that:

i) Xi(G) Õ A, and

ii) if A Ã X(G), then Pi(G) = ∅.

Proof:!!By Definition 7.6, condition C1 stipulates that for each non-empty sequence s = G1 t1
æ Æ æ

G2 t2
æ Æ æ æ …Gm tm

æ Æ æ æ Gm+1 from G1 = G, with tj Œ DiiŒIU \ A for all 1 £ j £ m, each transition tj is
independent in Gj of all transitions in A. This holds trivially if A = X(G), satisfying properties (i)

and (ii), since in that case no such non-empty sequence s from G exists. Alternatively, if A Ã X(G)

Chapter 7!!Leaping reachability analysis for LTL model-checking 164

then by properties (i) and (ii), Xi(G) Õ A and Pi(G) = ∅ for all i Œact(A). We prove that this implies
that for all 1 £ j £ m: (1) act(tj) « act(A) = ∅, and (2) if i Œact(A), then Pi(Gj) = ∅.

To show (1), suppose that act(tj) = {i} Õ act(A) for some j, then Xi(G) Õ A and Pi(G) = ∅.
Hence, tj œXi(G) » Pi(G). However, since no transition in A, and thus no transition in Xi(G), is
executed along s, it follows that tj cannot become executable at Gj – a contradiction. To show (2),
suppose that i Œact(A), then Xi(G) Õ A and Pi(G) = ∅. From the proof of (1), no transition of
process Pi is executed along s, implying that Pi(Gj) = ∅ for all 1 £ j £ m.

In conclusion, from (1) it follows that for each transition t ŒA we have act(tj) ≠ act(t), while
from (2) it follows that for each i Œact(A) we have Ei(Gj) Õ Pi(Gj) = ∅ (i.e. no process with
transitions in A has enabled transitions at Gj). Thus, by Proposition 7.19, transition tj ŒX(Gj) is
independent in Gj of all transitions in A. As this holds for all 1 £ j £ m, A satisfies condition C1. !

The first requirement in Proposition 7.20 stipulates that the subset A of X(G) contains for each
process either all or none of this process’ executable transitions at G, which is in fact necessary for
condition C1 to hold. To see this, suppose that Xi(G) Õ/ A for some i Œact(A), then process Pi has
two transitions t, t¢ ŒXi(G) where t ŒA and t¢ œA. These transitions are dependent in G since they
are from the same process. But G ¢ t

æ Æ æ H is then a non-empty sequence from G of transitions
outside A containing a transition that is dependent with a transition in A, and thus C1 is violated.
The second requirement in Proposition 7.20 prohibits every process with transitions in A from
having potentially executable transitions at G if A is a proper subset of X(G). To illustrate the
importance of this requirement for condition C1, suppose that Pi(G) ≠/ ∅ for some i Œact(A), then
process Pi has two transitions t ŒXi(G) and t¢ ŒPi(G) such that t ŒA, t¢ œA, and t and t¢ are
dependent in G. If A Ã X(G), then since t¢ is potentially executable at G it may be possible that t¢
becomes executable, and is executed, along a sequence from G of only transitions outside A. Again,
in that case C1 would be violated. This scenario can actually be drawn for the initial state G0 of the
simple protocol depicted in Figure 5.1, by letting A!= X2(G0) = {(20, –b, 21)}. We have X2(G0) Ã
X(G0) and P2(G0) = {(20, +a, 22)} ≠ ∅, and hence X2(G0) does not satisfy the second requirement
in Proposition 7.20. Condition C1 is violated here because G0 (10 ,-a,11)

æ Æ æ æ æ æ æ æ G 1 (20,+ a,22)
æ Æ æ æ æ æ æ æ æ G2 is a

sequence from G0 of transitions outside X2(G0), while transition (20, +a, 22) is dependent in G1

with (20, –b, 21) ŒX2(G0).
In Section 7.2 we described the algorithm used by POVAS for computing an ample set in a

global state G. It aims at finding some process Pi whose set of executable transitions Xi(G) is non-
empty and satisfies the three conditions C1, C2 (or C2¢ for on-the-fly model-checking) and C3.
For the enhancement of POVAS in Section 7.3 we adopted a similar algorithm to find all processes
Pi for which Xi(G) satisfies just C1 and C3. Concerning the implementation of these algorithms in
the CFSM model, it is now immediate from Proposition 7.20 that one can check C1 simply by

Chapter 7!!Leaping reachability analysis for LTL model-checking 165

establishing whether process Pi has potentially executable transitions at G. Checking C2 and C3 is
of course done as before by examining the DFS stack and the visibility of the transitions in Xi(G)
with respect to the given LTL formula. Precisely, when G is the current global state of a protocol P
= ({Pi | i ŒI}, L) to be expanded during a DFS, and f is the LTL formula to be checked for P, then
for each i ŒI we have that:

• Xi(G) satisfies C1 if Pi(G) = ∅;

• Xi(G) satisfies C2 if no t ŒXi(G) with G t
æ Æ æ H is such that H is on the DFS stack;

• Xi(G) satisfies C3 if Xi(G) « visf (P) = ∅.

In terms of the algorithm in Figure 7.4 for finding multiple disjoint ample sets wrt C1 and C3, the
function call check_C1(Xi(G)) is thus replaced by the simple test Pi(G) = ∅.

With the above translation of condition C1 for protocols in the CFSM model, the formulation
of LRA for verifying logical correctness properties in Chapter 5 can now be adapted easily to
incorporate also the proposed enhancement of POVAS for LTL model-checking. Specifically, the
leap sets to be used for LTL model-checking in the CFSM model can be constructed on the basis
of wait-sets, in accordance with the following two definitions (cf. definitions 5.30 and 5.46).

Definition 7.21
Let G be a global state of a protocol P = ({Pi | i ŒI}, L), and let J, K Õ L and V Õ DiiŒIU . Define
wait(G, J, K, V) = {i ŒI | Xi(G) ≠ ∅ fi (Pi(G) ≠ ∅ ⁄ $(j, i) ŒJ: cj i

G = e ⁄ $(j, i) ŒK: Xij
+(G) ≠ ∅ ⁄

Xi(G) « V ≠ ∅)} and

pleap(G, J, K, V) = { T | T Œleap(G) Ÿ act(T) = {i ŒI | i œwait(G, J, K, V)} }

if wait(G, J, K, V) Ã I

pleap(G, J, K, V) = { {t} | t ŒX(G) }
otherwise. !

Definition 7.22
Let G be a global state of a protocol P to be expanded during the DFS. Define

xpleap(G, J, K, V) = pleap(G, J, K, V) »
{T » {t} | t ŒX(G) such that act(t) Œwait(G, J, K, V), and
T Œpleap(G, J, K, V), gŒlin(T) with G g

æ Æ æ
* H and H on the DFS stack}

if wait(G, J, K, V) Ã I

xpleap(G, J, K, V) = pleap(G, J, K, V)
otherwise. !

Chapter 7!!Leaping reachability analysis for LTL model-checking 166

Observe that when V includes the set visf (P) of visible transitions of a protocol P wrt to some LTL
formula f, the wait-set wait(G, J, K, V) captures at least every process Pi whose set Xi(G) does not
qualify as an ample set in G with respect to conditions C1 and C3, i.e. every process without
executable transitions at G (violating the non-emptiness requirement on ample sets), or with
potentially executable transitions at G (violating C1), or with executable transitions at G that are
visible wrt f (violating C3). This attests that Definition 7.21 and Definition 7.22 indeed comply with
Definition 7.9 and Definition 7.11 in Section 7.3, respectively. As a result, the reduced global state
space obtained by the execution of the leap sets in xpleap(G, J, K, V) in global states is adequate for
deciding the absence of non-progress states, non-executable transitions, unspecified receptions wrt
J and buffer overflows wrt K, as derived before in Chapter 5, and moreover for deciding the
satisfiability of any LTL formula f with visf (P) Õ V. In order to verify a protocol P against a given
LTL formula f, one would then typically set V = visf (P) and J = K = ∅ . To sum up, by
incorporating the proposed enhancement of POVAS into the formulation of LRA, we have
established LRA as a uniform relief strategy for verifying both syntactic and semantic correctness
properties of protocols in the CFSM model.

7.5 Experiments

The off-line versions of POVAS and its proposed enhancement have been implemented in the
research tool package RELIEF, based on their formulation above for protocols in the CFSM model.
Since the proposed enhancement of POVAS implements the execution of leap sets commensurate
with LRA, in this section we will name it also LRA for short. Following the evaluation approach
motivated in Chapter 6, the two model-checking techniques have been tested on the 400 sample
protocols obtained with the automatic protocol synthesizer in RELIEF (see Section 6.3.1), and on
the three real protocols taken from the literature: the X.21 call establishment/clear protocol [WZ78],
the cache coherence protocol [Hol91] (see Appendix), and the alternating bit protocol with
unreliable channels [Pac87] (see Section 6.3.2). The results of the experiments with the 400
synthesized protocols are given in Table 7.1, which compares the average percentages of reduction
obtained with POVAS and LRA for off-line model-checking, per number of processes in a protocol
and per concurrency level of a protocol. Recall that the latter was introduced in Chapter 6 as a
conceivable measure for the degree of parallelism in a protocol. The first two rows of Table!7.1
show the reductions by POVAS and LRA over the conventional reachability analysis (CRA),
respectively. The third row compares LRA directly to POVAS by normalizing the reductions by
LRA with respect to those by POVAS. Table 7.2 gives the results of the experiments with the three
real protocols. Overall, the numbers clearly indicate that using LRA instead of POVAS can further
decrease both the memory and time resources needed for model-checking.

Chapter 7!!Leaping reachability analysis for LTL model-checking 167

Table 7.1!!LRA compared to POVAS for off-line model-checking.

Techniques Average reductions (%) per
 number of processes concurrency level

2 3 4 5 6 7 8 [0, 1] (1, 2] (2, 3] (3, 4]

POVAS
vs.
CRA

states
transitions

space
time

36.11
56.33
36.03

-42.64

51.16
69.02
51.23
10.61

61.67
77.32
61.72
36.48

69.55
82.48
69.68
52.85

77.30
88.24
77.41
65.33

81.79
91.71
81.87
66.06

89.13
95.50
89.15
81.36

38.19
57.44
38.16
-28.15

64.29
79.29
64.37
38.23

85.52
93.89
85.58
77.78

93.41
97.53
93.37
86.76

LRA
vs.
CRA

states
transitions

space
time

54.71
63.59
54.47
30.61

63.67
73.24
63.72
41.61

71.28
80.34
71.33
51.17

75.19
84.32
75.31
59.87

82.86
89.88
82.99
68.41

88.22
93.61
88.31
68.04

92.95
96.33
92.99
84.52

53.05
63.25
52.91
27.26

73.51
82.33
73.59
53.27

91.06
95.29
91.13
79.01

96.75
98.30
96.71
92.22

LRA
vs.
POVAS

states
transitions

space
time

29.11
16.62
28.83
51.35

25.61
13.62
25.61
34.68

25.07
13.32
25.10
23.13

18.52
10.50
18.57
14.89

24.49
13.95
24.70
 8.88

35.31
22.92
35.52
 5.83

35.14
18.44
35.39
16.95

24.04
13.65
23.85
43.24

25.82
14.68
25.88
24.35

38.26
22.91
38.49
 5.54

50.68
31.17
50.38
41.24

Table 7.2!!LRA and POVAS applied to three real protocols.

Protocol Technique States Transitions Space
(MB)

Time
(sec)

X.21 call establishment/clear
CRA
POVAS
LRA

29868
21805
15500

64903
32816
26882

1.42
1.04
0.75

10.58
16.08
6.33

Cache coherence
CRA
POVAS
LRA

37037
8760
5572

126152
11388
7966

1.90
0.45
0.28

32.52
8.78
5.45

Alternating bit
CRA
POVAS
LRA

135352
92414
63876

626608
266206
198583

6.84
4.64
3.24

77.05
69.68
65.90

7.6 Summary

In this chapter we studied the verification of temporal properties of finite-state concurrent systems
and protocols. In particular, we addressed the state explosion problem in the context of LTL model-
checking. LTL (linear-time temporal logic) is a propositional logic well suited for reasoning about
semantic correctness properties of concurrent systems, including arbitrary safety and liveness
properties. LTL model-checking refers to a fully automatic procedure, based on state exploration,
for checking whether a given system satisfies some temporal property that can be expressed as a
formula in LTL. In order to relieve the state explosion problem for LTL model-checking, a series of

Chapter 7!!Leaping reachability analysis for LTL model-checking 168

so-called partial-order methods have been developed in recent years. It has been demonstrated that
these methods can in many cases substantially reduce the space and time needed for LTL model-
checking.

In this chapter we have built on the concepts underlying partial-order methods to yield an
approach that enables further reductions in space and time for LTL model-checking. Specifically,
we have proposed an enhancement of the partial-order method based on ample sets as described in
[HP95, Pel96]. This method, which we referred to as POVAS (Partial Order Verification with
Ample Sets), was chosen because it is generic in the sense that it can be readily adapted to capture
the other partial-order methods (those based on persistent sets or stubborn sets), and because it is
the most advanced partial-order method in terms of the properties that can be checked, the way
fairness is dealt with, and the low overhead and high overall performance of its implementation
[HP95, Pel96]. The idea behind the proposed enhancement stems from the principles underlying
LRA in Chapter 5: instead of exploring a fixed interleaving order among concurrent operations, as
does POVAS through the execution of ample sets, we abstain from any order altogether by
executing leap sets that mimic a truly concurrent execution of these operations. Although POVAS
and its proposed enhancement cannot be strictly compared in the sense that one does not subsume
the other (i.e. their respective sets of reachable global states are not comparable by means of set
inclusion), the experiments performed with both techniques confirmed that our approach to LTL
model-checking is indeed an enhancement of POVAS. That is, our approach generally results in
better space and time reductions and therefore widens the applicability of LTL model-checking to
more complex concurrent systems and protocols.

