
78

Chapter 5

Leaping reachability analysis

Thus far we have seen that FRA is a useful relief strategy for verifying multi-cyclic protocols. In
particular, the execution of multiple transitions in one atomic step (viz. through fair transition-
tuples) proved to be effective in reducing the number of global states and transitions examined for
the purpose of deadlock detection in multi-cyclic protocols. Itoh & Ichikawa [II83] also employed
this idea of executing multiple transitions concurrently for the verification of protocols with two or
more processes in an arbitrary communication topology, but with restricted process structures (see
Chapter 3). The idea of executing multiple transitions concurrently was ultimately generalized by
Özdemir & Ural [ÖU94, ÖU95, Özd95], who proposed simultaneous reachability analysis (SRA)
as a relief strategy for the verification of logical correctness properties of protocols with no
topological or structural constraints at all. In essence, this generality is the result of allowing
processes in a protocol to progress concurrently in a more flexible way than FRA.

In this chapter we propose an incremental improvement of SRA, called leaping reachability
analysis (LRA), which maintains the power of SRA to detect all non-progress states, all non-
executable transitions, all unspecified receptions and all buffer overflows in a protocol, while further
reducing the size of the global state space that needs to be analyzed. This contribution was
published incrementally in [SU96b, SU98a]. We start by formalizing LRA and then provide an
analytical comparison between both relief strategies. An empirical comparison follows in Chapter 6.

5.1 Leap sets and proper leap sets

At the heart of LRA lies the concurrent execution of transitions at global states. Clearly, transitions
that are to be executed concurrently must pertain to different processes. This foremost requirement
is captured by the notion of leap sets in Definition 5.1.

Definition 5.1
Let G be a global state of a protocol P. A leap set in G is a non-empty set T  of transitions
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executable at G (i.e. ∅ Ã T Õ X(G)) such that for all t, t¢ ŒT, act(t) ≠ act(t¢) if t ≠ t¢. The set of all
leap sets in G is denoted by leap(G). "  

It follows that there are |T|! possible interleaving orders of the transitions in a leap set T Œleap(G),
all of which are equivalent up to ≡ and lead to the same global state when executed from G  (cf.
Definition 4.15 and Proposition 4.16).

Definition 5.2
Let G be a global state of a protocol P and T = {t1, t2,…, tk} Œleap(G). A linearization of T is a
sequence tp(1)tp(2)…tp(k), with p any permutation on {1, 2,..., k}. The set of all linearizations of T is
denoted by lin(T), and this notation is adopted also for sequences of leap sets: lin(T1T2…Tm) =
{ g1g 2… gm | gi Œlin(Ti)}. "  

Proposition 5.3
Let T Œleap(G) and g Œlin(T) with G g

æ Æ æ 
*  H, then "g ¢ Œlin(T): g G≡H g  ¢.

Proof:""Directly from the fact that all transitions in T are executable at G and no two transitions in T
belong to the same process. "  

Like the fair transition-tuples in FRA, leap sets provide a means to reduce the number of global
states and transitions explored: all transitions in a leap set can in principle be executed concurrently
in one atomic step. The reduction obtained increases with the size of a leap set and it is therefore
tempting to consider only the maximal sets in leap(G). However, this is inadequate for verification
purposes. To see this, suppose that some process Pi has a transition t that is potentially executable
at G (see Section 4.1.2). Also assume that Pi has an executable transition t¢ at G that is included in
some leap set T in G. When all transitions in T are executed at once, t may become forever disabled
by the execution of t¢, even though its possible execution at a global state H reachable from G could
ultimately lead to a logical error. Figure 5.1 illustrates this scenario for a simple protocol. At the
initial global state, the transitions (10, –a, 11) and (20, –b, 21) are executable and form the only
maximal leap set. Transition (20, +a, 22) is potentially executable and becomes executable at global
state (·11, 20Ò, ·a, eÒ), after the sole transmission of message a. Its execution leads to the deadlock
state (·11, 22Ò, ·e, eÒ). Yet, when the two send transitions are executed concurrently, the reception of
message a is no longer possible and this deadlock state is not detected.

In general, analyzing the effect of a potentially executable transition requires the corresponding
process to refrain from progress for as long as the transition continues to be potentially executable
[II83, ÖU94, ÖU95]. For instance, for the protocol above one must include a progress scheme
which makes process P2 wait until process P1 has sent message a. Based on this observation, we
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Figure 5.1""The role of potentially executable transitions.

employ a selective subset of leap(G) whose elements are called proper leap sets. Each proper leap
set in G contains one executable transition from exactly those processes with executable transitions
but no potentially executable transitions at G, provided that some such process(es) exist(s). This
ensures that the possible effect of potentially executable transitions at G is not ignored: processes
with such transitions are forced to “wait” at their process states in G by excluding their transitions.
The other processes are still forced to proceed concurrently in order to achieve state reduction. In
the special case where each process with executable transitions at G also has at least one potentially
executable transition at G, there is little choice but to consider all executable transitions at G
individually. Note that for each such transition t the singleton set {t} is an element of leap(G).

Definition 5.4
Let G be a global state of a protocol P = ({Pi | i ŒI}, L). Define wait(G) = {i ŒI | Xi(G) ≠ ∅ fi
Pi(G) ≠ ∅}, and the set pleap(G) of proper leap sets in G as follows:

pleap(G) = { T | T Œleap(G) Ÿ act(T) = {i ŒI | i œwait(G)} }

if wait(G) Ã I

pleap(G) = { {t} | t ŒX(G) }

otherwise. "  

Note that trivially i Œwait(G) if no transition of process Pi is executable at G. Some characteristic
properties of pleap(G) are given in Proposition 5.5.

Proposition 5.5

i) t ŒXi(G) Ÿ i œwait(G) fi $T Œpleap(G): t ŒT;

ii) T Œpleap(G) Ÿ i Œact(T) Ÿ t ŒXi(G) fi (T \ Xi(G)) » {t} Œpleap(G);

iii) T Œleap(G) Ÿ i Œact(T) « wait(G) fi T œpleap(G) ⁄ pleap(G) = 
  

{{t}}tŒX (G)U .

Proof:""Straightforward from Definition 5.4 "  
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The definition of pleap(G) is constructive and easily translated into an optimal algorithm. It first
calculates the complement I \ wait(G) of wait(G) by inspecting the transition relations of all the
processes. Clearly, this requires no overhead as the transition relations must be inspected equally
for conventional reachability analysis. The algorithm then returns all (singleton sets of) transitions
executable at G if I \ wait(G) = ∅, or else the cross-product Xi(G)iŒI \ wait(G)’ . The overhead
incurred by this step is O (| Xi(G)iŒI \ wait(G)’ |).

Example 5.6
Consider the protocol ({P1, P2, P3, P4}, {(1, 2), (2, 3), (3, 4), (4, 1), (4, 3)}), with the process graphs
of processes P1, P2, P3 and P4 as in Figure 5.2 (by convention, mij ŒMij ). Let

t11  = (10, –m12, 11) t21  = (20, –m23, 21) t31  = (30, –m34, 31) t41  = (40, –m43, 41)

t12  = (10, +m41, 12) t22  = (20, +m12, 22) t32  = (31, +m43, 30) t42  = (41, +m34, 40)

then X(G0) = {t11 , t21 , t31 , t41 } and P(G0) = P+(G0) = { t12 , t22 }. Hence, leap(G0) = 2X(G0)\{∅} and
wait(G0) = {1, 2}, and thus pleap(G0) = { {t31 , t41 } }. "  
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Figure 5.2""A sample protocol.

5.2 Verifying indefinite progress

Following the discussion above, we formalize the execution of proper leap sets in global states and
show that this is sufficient to detect all non-progress states of a protocol.

5.2.1 l-reachability

Definition 5.7
Let G and H be global states of a protocol P. G 

  
l

æ Æ æ  H iff $T Œpleap(G) with g Œlin(T) such that G
g

æ Æ æ 
*  H. This is also denoted by G 

  
l
T

æ Æ æ  H. "  

Well-definedness of 
  

l
æ Æ æ  follows from Proposition 5.3: executing a (proper) leap set in a global

state G always yields a unique state H.
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Definition 5.8
Let G and H be global states of a P, and denote by 

  
l

æ Æ æ *  the reflexive and transitive closure of 
  

l
æ Æ æ .

H is l-reachable from G iff G 
  

l
æ Æ æ *  H. When G = G0, H is said to be l-reachable. The set of all l-

reachable global states of P is denoted by LP . For a sequence of proper leap sets W  = T1T2…Tm  ,
G  

  
l
W

æ Æ æ æ *  H denotes the existence of global states Q0, Q1,…, Qm such that G  = Q0 
  

l
T1

æ Æ æ æ  Q1 
  

l
T2

æ Æ æ æ 

…
  

l
Tm

æ Æ æ æ  Qm = H. "  

/* A is the set of global states that have been analyzed. */
/* W is the set of global states that still need to be analyzed. */

/* Initialize: */
A = ∅

W = {G0}

/* Loop: */
while W ≠ ∅ do {

remove an element G from W
add G to A

for all T in pleap(G) do {
/* execution of proper leap set T */
derive H such that G 

    l
T

æ Æ æ  H

if H is NOT already in A or W then add H to W
}

}

Figure 5.3""State exploration by LRA.

An algorithm for exploring the l-reachable global state space, or l-reachability graph, of a
protocol is shown in Figure 5.3. The box indicates the modification with respect to the standard
perturbation algorithm in Figure 2.1. Clearly, every l-reachable global state is also reachable.

Proposition 5.9
LP Õ RP

Proof:""By definition of 
  

l
æ Æ æ * . "  

5.2.2 Detecting non-progress states

The next lemma provides the basis for proving that the set LP of l-reachable global states includes
all non-progress states and hence all deadlock states of a protocol.
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Lemma 5.10
Let G s

æ Æ æ * H and s ≠ e, then there exist a proper leap set T Œpleap(G) with g  Œlin(T), transition
sequences w, r and a global state H¢ such that sw G≡H¢ gr, act(w) « act(s) = ∅ and |r| £ |s|.

Proof:""The proof essentially consists in showing that the diagram below holds true for some
proper leap set T Œpleap(G), transition sequences w and r and global states G¢ and H¢. We show in
particular that T, w and r can always be fixed such that w contains exactly those transitions in T that
do not appear in s, and r contains all transitions of s except those that are in T.

¢ H 

¢ G G T

H w *

s
*

r
*

  l

Since s ≠ e, it follows that X(G) ≠ ∅ and hence pleap(G) ≠ ∅. Let first(s) = {t | t ŒDi Ÿ mt Œ
pref(s) Ÿ i œact(m)}, i.e. first(s) contains for each process active on s the first transition of that
process in s. Clearly, first(s) ≠ ∅ since s ≠ e. Now choose T Œpleap(G) such that T \ first(s) is
minimal (∅ Õ T \ first(s) Õ T). We show that act(T \ first(s)) « act(s) = ∅, by contradiction.
Suppose $i ŒI: i Œact(T \ first(s)) « act(s) and let t, t¢ ŒDi such that t ŒT \ first(s) and t¢ Œfirst(s),
then t¢ ŒXi(G) » Pi(G). By Proposition 5.5.(ii), if t¢ ŒXi(G) then (T  \{t}) »  {t¢} Œpleap(G).
However, |((T \{t}) » {t¢})\ first(s)| < |T \ first(s)| which contradicts the minimality of T"\ first(s).
On the other hand, if t¢ ŒPi(G) then i Œact(T) « wait(G) and thus pleap(G) = 

  
{{t}}tŒX (G)U , by

Proposition 5.5.(iii), which in turn implies that T = T \ first(s) = {t}. In this case let t″ be the very
first transition of s, then t″ ŒX(G), {t″} Œpleap(G) and moreover {t″} Õ  first(s). Again, this
contradicts the minimality of T \ first(s), since {t″} \ first(s) = ∅ Ã T  \ first(s). Hence, the claim
act(T \ first(s)) « act(s) = ∅ holds.

Let w Œlin(T \ first(s)) if T \ first(s) ≠ ∅, or else w = e. Surely, act(w) « act(s) = ∅ in either
case and thus there exists a global state H¢ such that G sw

æ Æ æ æ * H¢ (by Corollary 4.4). Now, let
g"Œlin(T) and r such that s ≡ g ¢r, with g ¢ Œlin(T « first(s)). As g ≡ g ¢w and act(w) « act(r) = ∅, it
follows that also G gr

æ Æ æ æ *  H¢. Thus, sw G≡H¢ gr, act(w) « act(s) = ∅ and |r| £ |s|, which proves the
lemma. "  

When H is a non-progress state, w is empty and the conclusion of Lemma 5.10 reduces to s G≡H g r

and thus |r| < |s|. By repeated application of this lemma one can then prove that H is l-reachable.

Theorem 5.11
Every non-progress state is l-reachable.
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Proof:""Let H ŒRP be a non-progress state and G0 s
æ Æ æ * H. H is trivially l-reachable if |s| = 0 since

then H = G0. Suppose that |s| > 0. By Lemma 5.10 there is a proper leap set T1 Œpleap(G0) with
g 1Œlin(T1), transition sequences w1 and r1, and a global state H1 such that sw1 G0≡H1 g1r1 and |r1| £
|s|. Let G0 

  

l
T1

æ Æ æ æ  G1 r1
æ Æ æ æ *  H1, then |r1| > 0 equally implies the existence of T2 Œpleap(G1) with g 2

Œlin(T2), w2, r2, and H2 such that r1w2 G1≡H2 g2r2 and |r2| £ |r1|. Applying this argument repeatedly
results in the following diagram:

HmHm-1H2H1

  l  l  l

r1 r
2

G2G1G0 T1

w1H *

s
* *

T2

w2 *

*

Gm-1

r
m

-1
*

GmTm

r
m

wm *

*

  L  L

  L  L

Thus rj– 1w j Gj–1≡Hj g jrj and |rj| £ |rj– 1|, with gj Œlin(Tj), Tj Œpleap(Gj– 1) and |rj– 1| > 0 (2 £ j £ m).
As a result, sw1w2…wm G0≡Hm g1g 2… gmrm  .

Since H is a non-progress state we have w1w2…wm = e and Hm = H, implying that |rj| < |rj– 1|,
for all 2 £ j £ m, and |r1| < |s|. We may then assume that |rm| = 0 for s is finite and Lemma 5.10
applies as long as |rj| > 0. Thus, s G0≡H g1g 2… gm and G0 

  

l
T1T2KTm

æ Æ æ æ æ æ æ æ *  H, i.e. H is l-reachable. "  

Corollary 5.12
Every deadlock state is l-reachable. "  

Corollary 5.13
Indefinite progress and deadlock-freedom for a protocol P are decidable if LP is finite. "  

(·10, 20, 31, 41 Ò, ·e, e,      , e,      Ò)34m 43m

(·10, 20, 30, 40 Ò, ·e, e, e, e, e Ò)

t31 t41{   ,   }t42t32{   ,   }

Figure 5.4""The l-reachability graph of the protocol of Example 5.6.

Example 5.14
The l-reachability graph of the protocol of Example 5.6 (see Figure 5.2) is shown in Figure 5.4.
For the initial global state we have pleap(G0) = { { t31 , t41 } }. Executing proper leap set { t31 , t41 } in
G0 results in the global state (·10, 20, 31, 41Ò, ·e, e, m34, e, m43Ò). This state has also one proper
leap set, namely {t32 , t42 }, and its execution leads back to the initial global state. State exploration
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based on 
  

l
æ Æ æ *  thus terminates, and since both states are progress states the protocol is (correctly)

found to progress indefinitely. Of course, the same result is obtained by conventional reachability
analysis but this requires exploring as many as 40 global states and 100 global state transitions. "  

While undecidability prevails in general, it is again interesting to note that LRA, like FRA (cf.
Section 4.3.2), is effective beyond the class of bounded protocols. For instance, consider a small
modification of the protocol of Example 5.6, replacing transition (10, –m12, 11) of process P1 by
the “cyclic” transition (10, –m12, 10). It is easy to see that the resulting protocol is unbounded,
whereas its l-reachability graph is the same as in Figure 5.4 and thus finite. Another interesting
result is the fact that the relation 

  
l

æ Æ æ *  preserves the possibility of indefinite progress of a protocol, in
the sense stated by Proposition 5.15.

Proposition 5.15
There exists an infinite sequence of reachable global states in the (conventional) reachability graph
of a protocol P iff there exists an infinite sequence of l-reachable global states in the l-reachability
graph of P.

Proof:""The “if” part is immediate by definition of the l-reachability relation 
  

l
æ Æ æ . For the “only-

if” part, assume the existence of an infinite sequence of reachable global states in the reachability
graph of P, with m the corresponding infinite transition sequence from the initial global state G0.
Let m = sm¢ such that act(s) = act(m), i.e. s Œpref(m) contains at least one transition from each
process that is active on m. We have s ≠ e, G0 s

æ Æ æ * H and m¢ is an infinite transition sequence from
H, for some reachable global state H. By Lemma 5.10, there exist T Œpleap(G0) with g  Œlin(T),
transition sequences w and r, and a global state H¢ such that sw G0≡H ¢ gr, act(w) « act(s) = ∅ and
|r| £ |s|. By the choice of s, act(w) « act(m) = ∅ and thus act(w) « act(m¢) = ∅. It follows that m¢ is
also an infinite transition sequence from H¢:

G0

¢ H 

¢ G T

H w *

s
*

r
*

¢ 
m

 
*

¢ 
m

 
*

  l

Since m is infinite we can apply the same reasoning infinitely often, continuing with the sequence
rm¢ from G¢, to yield an infinite sequence of l-reachable global states. "  
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5.3 Verifying freedom of non-executable transitions

State exploration by LRA based on the relation 
  

l
æ Æ æ *  is inadequate for verifying the absence of non-

executable transitions. This is witnessed by the protocol of Example 5.6: transition (20, +m12, 22)
of process P2 is surely executable, but not at an l-reachable global state (see Figure 5.4). Thus, a
decision procedure based on 

  
l

æ Æ æ *  would mistakenly report this transition as being non-executable.
The problem lies in the conception of delaying the processes with potentially executable transitions
at global states, which results in a phenomenon referred to as the ignoring problem [Val90]: some
processes may be delayed indefinitely from a certain global state, causing the behavior of these
processes to be ignored. For instance, the behavior of processes P1 and P2 of the protocol of
Example 5.6 is completely ignored because in each l-reachable global state they have potentially
executable transitions, while P3 and P4 always have exclusively executable transitions.

In general, due to the ignoring problem the relation 
  

l
æ Æ æ *  may not expose all reachable process

states (i.e. process states appearing in some reachable global state). This clearly hinders not only
the detection of non-executable transitions, but that of unspecified receptions and buffer overflows
as well. For the verification of logical correctness properties other than indefinite progress and
deadlock-freedom we must therefore augment the state exploration scheme defined in the previous
section. Preferably, it should be adapted to the property one wants to verify. This section presents a
simple extension of the l-reachability relation 

  
l

æ Æ æ *  for detecting the non-executable transitions of a
protocol. Unspecified receptions and buffer overflows are dealt with in Section 5.4.

5.3.1 l* -reachability

An effective solution to the ignoring problem is obtained by executing a minimal number of extra
leap sets in a given global state G, in addition to the proper leap sets, such that each executable
transition at G is executed via at least one leap set. Precisely, we extend pleap(G) to form the set
xpleap(G) by adding for one arbitrary T Œpleap(G) all the leap sets T » {t}, where t is a transition
executable at G but not included in any proper leap set in pleap(G). This extension ensures that
processes with executable transitions are not expelled from progress.

Definition 5.16
Let G be a global state of a protocol P and T Œpleap(G) an arbitrary proper leap set in G. Define

xpleap(G) = pleap(G) » {T » {t} | t ŒX(G) Ÿ act(t) Œwait(G)}

if wait(G) Ã I

xpleap(G) = pleap(G)

otherwise. "  
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Note that xpleap(G) = pleap(G) also when wait(G) = ∅. Further note that if pleap(G) consists of
more than one proper leap set without capturing all executable transitions at G, then xpleap(G) is
not unique since the proper leap set to be used for extension can be selected non-deterministically.
Yet, we stress that this nondeterminism does not affect in any way the theoretical results in this
section. For the mere sake of convenience, we use as a heuristic to always choose the first element
of pleap(G) when viewed as an ordered set. This allows us to refer to xpleap(G) as a unique set and
an algorithm for its construction then follows directly from Definition 5.16. Clearly, the fact that we
need to fix only one proper leap set for extension (as opposed to all of them) is important for
efficiency considerations, particularly when |pleap(G)| is large.

Insightful properties of the set xpleap(G) are stated in Proposition 5.17, analogous to those of
pleap(G) in Proposition 5.5. Observe especially that   TT Œxpleap(G)U  = X(G), i.e. for each executable
transition t at G there is a leap set in xpleap(G) containing t (Proposition 5.17.(i)), which does not
necessarily hold for pleap(G) (cf. Proposition 5.5.(i)).

Proposition 5.17

i) t ŒX(G) fi $T Œxpleap(G): t ŒT;

ii) T Œxpleap(G) Ÿ i Œact(T) « wait(G) Ÿ t ŒXi(G) fi (T \ Xi(G)) » {t} Œxpleap(G);

iii) T Œxpleap(G) Ÿ i Œact(T) « wait(G) fi T \ Xi(G) Œpleap(G) ⁄ xpleap(G) = 
  

{{t}}tŒX (G)U .

Proof:""Straightforward from Definition 5.16. "  

Example 5.18
Consider once again the protocol of Example 5.6: X(G0) = { t11 , t21 , t31 , t41 }, wait(G0) = {1, 2} and
pleap(G0) = { {t31 , t41 } }. That is, all four processes have executable transitions at G0, but process
P1 and process P2 also have potentially executable transitions at G0. With neither transition t11  nor
transition t21  occurring in a proper leap set in G0, by the first clause of Definition 5.16 we have
xpleap(G0) = { {t31 , t41 }, {t31 , t41 , t11 }, {t31 , t41 , t21 } }. "  

As before, we define a reachability relation among global states which governs the execution of
all elements of xpleap(G).

Definition 5.19
Let G and H be global states of a protocol P. G 

  l*
æ Æ æ æ  H iff $T Œxpleap(G) with g  Œlin(T) such that

G g
æ Æ æ *  H. This is also denoted by G 

  
l*
T

æ Æ æ  H. "  

Definition 5.20
Let G and H be global states of a P, and denote by 

  
l*

æ Æ æ æ *  the reflexive and transitive closure of 
  l*

æ Æ æ æ .
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H is l*-reachable from G iff G 
  

l*
æ Æ æ æ *  H. If G = G0, then H is said to be l*-reachable. The set of all

l*-reachable global states of P is denoted by LP
* . For a sequence of leap sets W  = T1T2…Tm  ,

G"
  

l*
W

æ Æ æ æ *  H denotes the existence of global states Q0, Q1,…, Qm such that G  = Q0 
  

l*
T1

æ Æ æ æ  Q1 
  

l*
T2

æ Æ æ æ 

…
  

l*
Tm

æ Æ æ æ  Qm = H. "  

Surely, an algorithm for constructing the l*-reachability graph of a protocol (representing its l*-
reachable global state space) is akin to the one in Figure 5.3. We arrive at some anticipated results.
By definition of the relation 

  
l*

æ Æ æ æ *  as an extension of 
  

l
æ Æ æ *  it follows that the l-reachability graph is a

subgraph of the l*-reachability graph. Consequently, all l-reachable global states and thus all non-
progress states of a protocol (by Theorem 5.11) are l*-reachable.

Proposition 5.21
LP Õ LP

*  Õ RP

Proof:""By definition of xpleap(G) we have pleap(G) Õ  xpleap(G), for any global state G. This
implies LP Õ LP

* . The inclusion LP
*  Õ RP holds by definition of 

  
l*

æ Æ æ æ * . "  

Corollary 5.22
Every non-progress state is l*-reachable. "  

Corollary 5.23
Every deadlock state is l*-reachable. "  

5.3.2 Detecting non-executable transitions

The relation 
  

l*
æ Æ æ æ *  is intended for detecting non-executable transitions. We prove that exploring the

l*-reachability graph is indeed sufficient for this purpose: for each executable transition of a
protocol P, there is at least one global state in LP

*  at which the transition is executable. As a result,
LRA based on 

  
l*

æ Æ æ æ *  can verify the absence of non-executable transitions (and non-progress states)
for any protocol with a finite l*-reachability graph.

Lemma 5.24
Let G s

æ Æ æ * H and s ≠ e, then there exist T Œxpleap(G) with g Œlin(T), transition sequences w, r and
a global state H¢ such that sw G≡H ¢ gr, act(w) « act(s) = ∅ and |r| < |s|.

Proof:""By Lemma 5.10, we have a proper leap set T ¢ Œpleap(G) Õ xpleap(G) with g"¢ Œlin(T ¢),
transition sequences w¢ and r¢, and a global state H¢ such that sw¢ G≡H¢ g"¢r¢, act(w¢) « act(s) = ∅
and |r¢| £ |s|. We know from the proof of Lemma 5.10 that T ¢ and w¢ are such that T ¢ \ first(s) is
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minimal and w¢ Œlin(T ¢ \ first(s)), where first(s) = {t | t ŒDi Ÿ mt Œpref(s) Ÿ i œact(m)}. Clearly, if
T  ¢ \ first(s) Ã T ¢ then |w¢| < |g"¢| and hence |r¢| < |s|. Thus, in this case the lemma holds, i.e. choose T
= T ¢, g = g"¢, w = w¢ and r = r¢.

Alternatively, if T ¢ \ first(s) = T  ¢ then w¢ ≡ g"¢ ≠ e and act(s) « act(T  ¢) = ∅. We must have
wait(G) Ã I because otherwise pleap(G) = 

  
{{t}}tŒX (G)U  and |{t¢} \ first(s)| = 0 < |T ¢ \ first(s)|, with t¢

the first transition of s, which contradicts the minimality of T ¢ \ first(s). Definition 5.4 then states
that act(T) = {i ŒI | i œwait(G)}, for all T Œpleap(G). Since act(s) « act(T ¢) = ∅ it follows that
act(s) Õ wait(G) and "T Œpleap(G): act(s) « act(T) = ∅. In particular, the first transition t¢ of s is
executable at G but not in any proper leap set in G. According to Definition 5.16, in this case
pleap(G) Ã xpleap(G) and some proper leap set in G, say T  ″ Œpleap(G), is selected to form
xpleap(G). Now choose T = T ″ » {t¢}, then T Œxpleap(G), T \ first(s) = T  ″  \ first(s) = T  ″ and
act(T) « act(s) = act(t¢). Let g  Œlin(T), w Œlin(T ″) and s = t¢r, then sw G≡H¢ gr, for some global
state H¢, act(w) « act(s) = ∅ and |r| < |s|, i.e. again the lemma holds. "  

Notice that Lemma 5.24 differs from Lemma 5.10 in the strict inequality |r| < |s|, which now holds
irrespective of whether H is a non-progress state. This enables the following generalization of
Lemma 5.24 to sequences of leap sets.

Lemma 5.25
Let G s

æ Æ æ * H and s ≠ e, then there exist a sequence of leap sets W  with h Œlin(W), a transition
sequence w and a global state H¢ such that G 

  
l*
W

æ Æ æ æ *  H¢ and sw G≡H¢ h.

Proof:""The proof essentially consists in showing that the following diagram holds true for some
sequence of leap sets W = T1T2…Tm  , transition sequence w and a global state H¢:

¢ H 

G

H w *

s
*

*

  T1T
2 KT

m  l*

According to Lemma 5.24, there exist T1 Œxpleap(G) with g1 Œlin(T1), w1, r1 and H1 such that
sw1 G≡H1 g1r1 and |r1| < |s|. Let G 

  
l*
T1

æ Æ æ æ  G1 r1
æ Æ æ æ *  H1, then |r1| > 0 equally implies the existence of T2

Œxpleap(G1) with g2 Œlin(T2), w2, r2 and H2 such that r1w2 G1≡H2 g 2r2 and |r2| < |r1|. As in the
proof of Theorem 5.11, applying this argument m  times yields sw1w2…wm G≡Hm g 1g 2… gmrm  .
Since s is finite and Lemma 5.24 can be applied as long as |rj| > 0 (1 £ j £ m), we may assume that
|rm| = 0, i.e. s w1w2…wm G≡Hm g 1g 2… gm  . Let W  = T1T2…Tm  , h  = g 1g 2… gm Œlin(W), w  =
w1w2…wm and H¢ = Hm, then G 

  
l*
W

æ Æ æ æ *  H¢ and sw G≡H¢ h. "  
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Theorem 5.26
A transition t is executable iff t is executable at an l*-reachable global state.

Proof:""The “if” part holds directly since LP
*  Õ RP. For the “only-if” part, when t is executable

there must be a reachable global state H such that G0 m t
æ Æ æ æ * H, for some transition sequence m. By

Lemma 5.25, there exist W with h Œlin(W), w and H¢ such that G0 
  

l*
W

æ Æ æ æ *  H¢ and mtw G0≡H¢ h. That is, t
appears in h and is thus executable at an l*-reachable global state. "  

Corollary 5.27
Freedom of non-executable transitions for a protocol P is decidable if LP

*  is finite. "  

{t21,t32,t4
2}

{t22,t32,t42}

{t22,t31,t41}

{t21,t31,t41}

t31 t41{   ,   }{t32,t42,t11}

t42t32{   ,   }

{t32,t42,t21}

{t32,t42,t11}

t42t32{   ,   }

{t31,t41,t21}{t31,t41,t11} t31 t41{   ,   }

t42t32{   ,   }

t42t32{   ,   }
t31 t41{   ,   }

G 9

t31 t41{   ,   }

{t31,t41,t11}

(·10, 20, 30, 40 Ò, · Ò)G0 =

G5 = (·10, 21, 30, 40 Ò, ·       Ò)23m

(·11, 20, 31, 41 Ò, ·      ,       ,       Ò)34m 43m12mG1 =

(·11, 20, 30, 40 Ò, ·       Ò)12mG4 =

(·10, 20, 31, 41 Ò, ·      ,       Ò)34m 43mG2 = G3 = (·10, 21, 31, 41 Ò, ·      ,       ,       Ò)34m 43m23m

(·11, 21, 31, 41 Ò, ·      ,       ,       ,       Ò)34m 43m23m12mG7 =

(·11, 21, 30, 40 Ò, ·      ,       Ò)12m 23mG9 =34m 43m(·11, 22, 31, 41 Ò, ·      ,       Ò)G8 =

(·11, 22, 30, 40 Ò, · Ò)G6 =

Figure 5.5""The l*-reachability graph of the protocol of Example 5.6.

Example 5.28
Figure 5.5 shows the l*-reachability graph of the protocol of Example 5.6, consisting of 10 l*-
reachable global states and 18 global state transitions (empty channels are not indicated). For each
l*-reachable global state Gk , Table 5.1 lists the data used to calculate the set xpleap(Gk) of leap sets
executed at Gk . The elements of xpleap(Gk) are precisely the labels of the outgoing edges of the
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node labeled Gk . Again the protocol is found to progress indefinitely (all the nodes in the l*-
reachability graph have outgoing edges) and, moreover, state exploration by LRA based on 

  
l*

æ Æ æ æ *

correctly reveals one non-executable transition, namely t12  = (10, +m41, 12) (t12  does not occur in
the l*-reachability graph). Recall that a notably larger number of global states and transitions are
explored in conventional reachability analysis (40 and 100, respectively). "  

Table 5.1""Data for Figure 5.5.

Global state Gk X(Gk) P(Gk) wait(Gk) pleap(Gk)

G0 {t11, t2
1 , t3

1 , t4
1 } {t12 , t2

2 } {1, 2} { { t3
1 , t4

1 } }

G1 {t2
1 , t2

2 , t3
2 , t4

2 } ∅ {1} { { t2
1 , t3

2 , t4
2 }, { t2

2 , t3
2 , t4

2 } }

G2 {t11, t2
1 , t3

2 , t4
2 } {t12 , t2

2 } {1, 2} { { t3
2 , t4

2 } }

G3 {t11, t3
2 , t4

2 } ∅ {1, 2} { { t3
2 , t4

2 } }

G4 {t2
1 , t2

2 , t3
1 , t4

1 } ∅ {1} { { t2
1 , t3

1 , t4
1 }, { t2

2 , t3
1 , t4

1 } }

G5 {t11, t3
1 , t4

1 } {t12 } {1, 2} { { t3
1 , t4

1 } }

G6 {t3
1 , t4

1 } ∅ {1, 2} { { t3
1 , t4

1 } }

G7 {t3
2 , t4

2 } ∅ {1, 2} { { t3
2 , t4

2 } }

G8 {t3
2 , t4

2 } ∅ {1, 2} { { t3
2 , t4

2 } }

G9 {t3
1 , t4

1 } ∅ {1, 2} { { t3
1 , t4

1 } }

As pointed out earlier, the l-reachable global state space LP may be finite even for unbounded
protocols. The same is true for LP

*  as witnessed by the simple protocol with two processes P1 and
P2, where P1 consists of the single cyclic transition (10, –m12, 10) and P2 of the single cyclic
transition (20, +m12, 20). Assuming that the simplex channel from P1 to P2 is not prebounded, this
protocol has an infinite number of reachable global states but only two l*-reachable global states.
Yet, the class of unbounded protocols with finite LP

*  is properly included in the class of unbounded
protocols with finite LP . This can be seen from the protocol of Example 5.6 with the cyclic
transition (10, –m12, 10) replacing transition (10, –m12, 11) of process P1. Recall from the
discussion following Example 5.14 that the l-reachability graph of this protocol is finite (see Figure
5.4). One may check that its l*-reachability graph is infinite.

5.4 Verifying freedom of unspecified receptions & buffer overflows

Despite its qualification to solve the ignoring problem and thereby the problem of detecting non-
executable transitions, the l*-reachability relation is still unsuited for the detection of unspecified
receptions (ur-pairs) and buffer overflows (bo-pairs). The protocol of Example 5.6 serves again as
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an example. Two ur-pairs (30, m43) and (40, m34) occur in, for instance, the reachable global states
(·10, 20, 30, 41Ò, ·e, e, e, e, m43Ò) and (·10, 20, 31, 40Ò, ·e, e, m34, e, eÒ), but not in any l*-reachable
global state (see Figure 5.5). Also, under the assumption that all simplex channels in the protocol
are one-slot buffers, one may check that two bo-pairs (30, m34) and (40, m43) exist which do not
emerge in the l*-reachability graph. In both cases the riddle relates to process P3 and process P4,
which are always forced to progress in parallel as they are not indexed in any of the wait-sets of the
l*-reachable global states (i.e. they always have an executable transition and no potentially
executable transitions in these states).

In order to identify the crux of the matter, let us look at two scenarios. Regarding unspecified
receptions, suppose we want to find all ur-pairs for a process Pi and specifically those that involve a
message over simplex channel Cji . Let G be the current global state and let y be the first message in
Cji if Cji is not empty in G. Clearly, we can determine whether (si

G , y) is a ur-pair for Pi in G (i.e. a
reception of y either is or is not defined at si

G ) but, regardless, further progress of Pi is required to
enable the detection of possible other ur-pairs for Pi with respect to Cji in global states reachable
from G. Put differently, in this case process Pi need not be forced to wait in G  unless it has
potentially executable transitions at G, as was the case before. The complication arises when
channel Cji is empty in G. It may then be the case that process Pj can send a message y to Pi  ,
yielding a global state H with si

H  = si
G  and cj i

H  = y, while (si
G , y) is a ur-pair for Pi in H  (i.e. no

reception of y is defined at si
G ). Yet, with the l*-reachability relation Pi and Pj are forced to progress

concurrently when i, j œwait(G). That is, process Pi need not remain at si
G  and hence the ur-pair

(si
G , x) may not be detected.

Regarding buffer overflows, suppose similarly that the objective is to find all bo-pairs which
involve a message over a (prebounded) channel Cij . For a global state G, let |ci j

G | = Bij – 1 (i.e. Cij
can hold exactly one more message) and t1 = (si

G , –x1, si
H ) ŒXij(G) (i.e. G t1

æ Æ æ  H). In addition, let t2
= (si

H , –x2, s) ŒPij(H) and t3 = (s j
G , +y, s¢) ŒXji(G). Since t2 is potentially executable at H, (si

H ,
–x2) is a bo-pair for Pi in H. If transitions t1 and t3 are executed concurrently at G, yielding a global
state H¢, then |ci j

¢ H | = Bij – 1 (Cij still has one slot available) and hence t2 is executable at H¢. In
effect, we then leap over global state H and may thereby miss bo-pair (si

H , –x2). To detect it, process
Pj must remain at s j

G  in G in particular because it has an executable receive transition pertaining to
channel Cij .

We conclude from the above scenarios that, in general, special attention must be given to a
process when it has an incoming empty channel or an executable receive transition at the current
global state. More precisely, in order to detect the ur-pairs (with respect to a selected subset J of
channels) in a protocol, the processes with an empty incoming channel (in J) in a global state G
should be treated the same way as processes with potentially executable transitions at G, i.e. they
should be forced to wait in G. Likewise, bo-pairs (with respect to a subset K of channels) can be
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detected by forcing the processes with an executable receive transition at G (from a channel in K)
to wait in G.

Definition 5.29
Let P = ({Pi | i ŒI}, L) be a protocol and J, K Õ L. A ur-pair (s, y) for process Pi with y ŒMji is
said to be a ur-pair with respect to (wrt) J iff (j, i) ŒJ. A bo-pair (s, x) for process Pi with x ŒMij is
said to be a bo-pair wrt K iff (i, j) ŒK. "  

Thus, when the aim is to identify all ur-pairs (bo-pairs) for a certain process Pi , the index set J (K)
should include every incoming (outgoing) channel of Pi  .

5.4.1 l(J, K)* -reachability

In this section the l*-reachability relation is parameterized with the channel-index sets J and K. In
analogy with definitions 5.4 and 5.16, we define the sets pleap(G, J, K) and xpleap(G, J, K) on the
basis of a wait-set wait(G, J, K) which identifies not only the processes without executable
transitions or with potentially executable transitions at G (as before), but also the processes with an
incoming channel indexed in J that is empty in G and those with an executable receive transition at
G from a channel indexed in K.

Definition 5.30
Let G be a global state of a protocol P = ({Pi | i ŒI}, L) and J, K Õ L. Define wait(G, J, K) = {i"ŒI |
Xi(G) ≠ ∅ fi (Pi(G) ≠ ∅ ⁄ $(j, i) ŒJ: cj i

G  = e ⁄ $(j, i) ŒK: Xij
+(G)  ≠ ∅)} and

pleap(G, J, K) = { T | T Œleap(G) Ÿ act(T) = {i ŒI | i œwait(G, J, K)} }

if wait(G, J, K) Ã I

pleap(G, J, K) = { {t} | t ŒX(G) }

otherwise. "  

Definition 5.31
Let G be a global state of a protocol P and T an arbitrary element of pleap(G, J, K). Define

xpleap(G, J, K) = pleap(G, J, K) » {T » {t} | t ŒX(G) Ÿ act(t) Œwait(G, J, K)}

if wait(G, J, K) Ã I

xpleap(G, J, K) = pleap(G, J, K)

otherwise. "  
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Example 5.32
For the protocol of Example 5.6, let G = (·10, 21, 31, 41Ò, ·e, m23, m34, e, m43Ò) be a (reachable)
global state, then X(G) = {t11 , t32 , t42 } and wait(G, {(2, 3), (4, 3)}, {(3, 4)}) = {1, 2, 4} since process
P1 has a potentially executable transition at G (viz. t12 ), P2 has no executable transitions at G, and
P4 has an executable receive transition at G  involving channel C34. Even though both incoming
channels C23 and C43 of process P3 are indexed, P3 is not in the wait-set as both these channels are
non-empty in G. Thus, we have pleap(G, {(2, 3), (4, 3)}, {(3, 4)}) = { {t32 } } and xpleap(G, {(2, 3),
(4, 3)}, {(3, 4)}) = { {t32 }, {t32 , t11 }, {t32 , t42 } } "  

Again, without affecting the upcoming results we regard xpleap(G, J, K) as a unique set by
selecting for extension always the first element of pleap(G, J, K) when viewed as an ordered set.
Note that wait(G, ∅, ∅) = wait(G) and hence pleap(G, ∅, ∅) = pleap(G). Further note that J Õ J¢

and K Õ K¢ implies wait(G, J, K) Õ wait(G, J¢, K¢) but not pleap(G, J, K) Õ pleap(G, J¢, K¢) nor
|pleap(G, J, K)| < |pleap(G, J¢, K¢)|. Thus, in particular pleap(G) and therefore xpleap(G) are not
necessarily subsets of respectively pleap(G, J, K) and xpleap(G, J, K). On the other hand, it is not
hard to see that the properties of pleap(G) and xpleap(G) in propositions 5.5 and 5.17 hold
similarly for pleap(G, J, K) and xpleap(G, J, K). Only those of xpleap(G, J, K) are formulated for
later reference.

Proposition 5.33

i) t ŒX(G) fi $T Œxpleap(G, J, K): t ŒT;

ii) T Œxpleap(G, J, K) Ÿ i Œact(T) « wait(G, J, K) Ÿ t ŒXi(G) fi
(T \ Xi(G)) » {t} Œxpleap(G, J, K);

iii) T Œxpleap(G, J, K) Ÿ i Œact(T) « wait(G, J, K) fi
T \ Xi(G) Œpleap(G, J, K) ⁄ xpleap(G, J, K) = 

  
{{t}}tŒX (G)U .

Proof:""Straightforward from definitions 5.30 and 5.31. "  

Naturally, the set xpleap(G, J, K) induces a parameterized reachability relation, referred to as l(J,
K)*-reachability.

Definition 5.34
Let G and H be global states of a protocol P. G 

  
l (J, K)*

æ Æ æ æ æ æ æ  H iff $T Œxpleap(G, J, K) with g  Œlin(T)
such that G g

æ Æ æ *  H. This is also denoted by G 
  

l (J, K)*
æ Æ æ æ æ æ æ 

T  H. "  

Definition 5.35
Let G and H be global states of a P, and denote by 

  
l (J, K)*

æ Æ æ æ æ æ æ * the reflexive and transitive closure of



Chapter 5!!Leaping reachability analysis 95

  
l (J, K)*

æ Æ æ æ æ æ æ . H is l(J, K)*-reachable from G iff G 
  

l (J, K)*
æ Æ æ æ æ æ æ * H. If G = G0, then H is said to be l(J, K)*-

reachable. The set of l(J, K)*-reachable global states of P is denoted by L(J ,K)P
* . For a sequence

of leap sets W = T1T2…Tm  , G  
  

l (J, K)*
æ Æ æ æ æ æ æ *W  H denotes the existence of global states Q0, Q1,…, Qm

such that G = Q0 
  

l (J, K)*
æ Æ æ æ æ æ æ 

T1  Q1 
  

l (J, K)*
æ Æ æ æ æ æ æ 

T2  …
  

l (J, K)*
æ Æ æ æ æ æ æ 

Tm  Qm = H. "  

Proposition 5.36
L(J ,K)P

*  Õ RP

Proof:""By definition of 
  

l (J, K)*
æ Æ æ æ æ æ æ . "  

It is clear that L(∅, ∅)P
*  = LP

*  and thus L(∅, ∅)P
*  reveals all non-progress states and all non-

executable transitions of a protocol (by Corollary 5.22 and Theorem 5.26). As we will show, the
same holds true for L(J ,K)P

*  in general, but note that this cannot be established directly since LP
*

need not be included in L(J ,K)P
*  (i.e. xpleap(G) is generally not a subset of xpleap(G, J, K)).

5.4.2 Detecting ur-pairs and bo-pairs

We continue by proving that state exploration based on 
  

l (J, K)*
æ Æ æ æ æ æ æ * preserves all non-progress states,

all (non-)executable transitions, all unspecified receptions wrt J and all buffer overflows wrt K.

Lemma 5.37
Let G s

æ Æ æ * H and s ≠ e, then there exist a leap set T Œxpleap(G, J, K) with g  Œlin(T), transition
sequences w, r and a global state H¢ such that

i) sw G≡H¢ gr, act(w) « act(s) = ∅ and |r| < |s|;

ii) (s, y) is a ur-pair wrt J in H fi (s, y) is a ur-pair (wrt J) in G or in H¢;

iii) (s, x) is a bo-pair wrt K in H fi (s, x) is a bo-pair (wrt K) in G or in H¢.

Proof:

i) Akin to the proof of Lemma 5.24 (and Lemma 5.10), mutatis mutandis. That is, substitute
pleap(G, J, K) for pleap(G) and xpleap(G, J, K) for xpleap(G). Observe from this proof that T
Œxpleap(G, J, K) remains such that T \ first(s) is minimal and w Œlin(T \ first(s)), with first(s)
= {t | t ŒDi Ÿ mt Œpref(s) Ÿ i œact(m)}.

ii) By definition, if (s, y) is a ur-pair wrt J in H then s = si
H , y ŒMji and front(cj i

H ) = y, for some
(j, i) ŒJ. If i œact(w), then since H w

æ Æ æ æ *  H¢ we have si
¢ H  = si

H  and thus (si
H , y) is a ur-pair in

H¢. Alternatively, if i Œact(w) then i œact(s) and thus si
H  = si

G . Three cases must then be
considered:
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• cj i
G  = e

Since i Œact(w) and (j, i) ŒJ we have i Œact(T) « wait(G, J, K) and consequently, by
Proposition 5.33.(iii), T \ Xi(G) Œpleap(G, J, K) or xpleap(G, J, K) = 

  
{{t}}tŒX (G)U . Either

case contradicts the minimality of T \ first(s);

• front(cj i
G ) = y

Since (si
H , y) is a ur-pair in H and si

H  = si
G , (si

H , y) is also a ur-pair in G;

• front(cj i
G ) = z, with z ≠ y

Since i œact(s) we have front(cj i
H ) = z, which contradicts the fact that front(cj i

H ) = y.

In conclusion, (s, y) is a ur-pair wrt J in G or in H¢.

iii) By definition, if (s, x) is a bo-pair wrt K in H then s = si
H , x ŒMij and |ci j

H | = Bij , for some (i,
j) ŒK. Three cases are considered:

• i œact(s)
In this case, si

H  = si
G  and |ci j

G | = Bij (no message is sent to Cij or received from Cij along
s, since otherwise i Œact(s) or |ci j

H | < Bij). Thus, (si
H , x) is a bo-pair in G;

• i Œact(s), j œact(w)
Since act(w) « act(s) = ∅ we have i œact(w). Clearly, H w

æ Æ æ æ *  H¢ and i, j œact(w) imply
that si

H  = si
¢ H  and |ci j

¢ H | = Bij , i.e. (s, x) is a bo-pair in H¢;

• i Œact(s), j Œact(w)
Again, i Œact(s) implies i œact(w). Since w Œlin(T \ first(s)) and T  \ first(s) Œleap(G),
there is exactly one transition t from process Pj in w and t ŒXj(G). Clearly, if t does not
entail a reception from channel Cij , then (si

H , x) is a bo-pair in H¢. On the other hand, if t
does entail a reception from Cij we have j Œact(T) « wait(G, J, K) since j Œact(w) and
(i,"j) ŒK. Again, T \ Xj(G) = (T \ {t}) Œpleap(G, J, K) or xpleap(G, J, K) = 

  
{{t}}tŒX (G)U , by

Proposition 5.33.(iii), and either case contradicts the minimality of T \ first(s).

In conclusion, (s, x) is a bo-pair wrt K in G or in H¢. "  

Lemma 5.38
Let G s

æ Æ æ * H and s ≠ e, then there exist a sequence of leap sets W  with h Œlin(W), a transition
sequence w and a global state H¢ such that G 

  
l (J, K)*

æ Æ æ æ æ æ æ *W  H¢ and

i) sw G≡H¢ h;

ii) (s, y) is a ur-pair wrt J in H fi $W¢ Œpref(W): G 
  

l (J, K)*
æ Æ æ æ æ æ æ *¢ W  G¢ and (s, y) is a ur-pair in G¢;

iii) (s, x) is a bo-pair wrt K in H fi $W¢ Œpref(W): G 
  

l (J, K)*
æ Æ æ æ æ æ æ *¢ W  G¢ and (s, x) is a bo-pair in G¢.

Proof:""Repeated application of Lemma 5.37.(i) yields the following diagram (cf. Lemma 5.25):
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  l(J ,K )*

Gm HmHm-1H2H1

r1 r
2

G2G1G T1

w1H *

s
* *

T2

w2 *

*

Gm-1

r
m

-1
*

wm *  L  L

  L  L

T
m

  

  

=

l(J ,K )*

l( J ,K ) *

i) Let W = T1T2…Tm with h Œlin(W), w = w1w2…wm and H¢ = Hm, then G 
  

l (J, K)*
æ Æ æ æ æ æ æ *W  H¢ and sw

G≡H¢ h;

ii) Assume that (s, y) is a ur-pair wrt J in H, then by Lemma 5.37.(ii), (s, y) is a ur-pair wrt J in G
or in H1. The claim trivially holds if (s, y) is a ur-pair wrt J in G (let W¢ = e). On the other
hand, if (s, y) is a ur-pair wrt J in H1, then again by Lemma 5.37.(ii) (|r1| > 0), (s, y) must be a
ur-pair wrt J in G1 or in H2. By repeating this argument it follows easily that (s, y) must be a
ur-pair wrt J in (at least) one of the l(J, K)*-reachable global states G1, G2,…, Gm, say in Gj,
in particular because Gm = Hm. The claim then holds by choosing W¢ = T1T2…Tj  ;

iii) Analogous to the proof of part (ii), using Lemma 5.37.(iii). "  

Note the resemblance between Lemma 5.38.(i) and Lemma 5.25. As a consequence, the results
established for LP

*  also hold for L(J ,K)P
* , viz. exploring the l(J, K)*-reachability graph of a

protocol suffices to detect all non-progress states and all non-executable transitions (independent of
J and K). Lemma 5.38.(ii) and (iii) yield the result anticipated for unspecified receptions and buffer
overflows.

Theorem 5.39
Every non-progress state is l(J, K)*-reachable, for all J, K Õ L.

Proof:""Let H be a non-progress state with G0 s
æ Æ æ * H. H is trivially l(J, K)*-reachable if |s| = 0. If

|s| > 0, then by Lemma 5.38.(i) and the fact that H is a non-progress state (i.e. w  = e), there is a
sequence of leap sets W with h Œlin(W) such that G0 

  
l (J, K)*

æ Æ æ æ æ æ æ *W  H and s G0≡H h. Again, H is l(J, K)*-
reachable. "  

Theorem 5.40
A transition t is executable iff t is executable at an l(J, K)*-reachable global state, for all J, K Õ L.

Proof:""The “if” part holds directly since L(J ,K)P
*  Õ  RP. For the “only-if” part, when t is

executable there exists a global state H such that G0 m t
æ Æ æ æ * H, for some transition sequence m. By

Lemma 5.38.(i), there exist W with h Œlin(W), w and H¢ such that G0 
  

l (J, K)*
æ Æ æ æ æ æ æ *W  H¢ and mtw G0≡H¢ h.

Hence, since t appears in h it must be executable at an l(J, K)*-reachable global state. "  
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Theorem 5.41
If (s, y) is a ur-pair wrt J, then (s, y) is a ur-pair in an l(J, K)*-reachable global state, for all K Õ L.

Proof:""By definition, (s, y) is a ur-pair wrt J in some reachable global state H. Let G0 s
æ Æ æ * H for

some transition sequence s. The theorem holds trivially if |s| = 0. For the case |s| > 0, the proof is
immediate from Lemma 5.38.(ii). "  

Theorem 5.42
If (s, x) is a bo-pair wrt K, then (s, x) is a bo-pair in an l(J, K)*-reachable global state, for all J Õ L.

Proof:""By definition, (s, x) is a bo-pair wrt K in some reachable global state H. Let G0 s
æ Æ æ * H for

some transition sequence s. The theorem holds trivially if |s| = 0. For the case |s| > 0, the proof is
immediate from Lemma 5.38.(iii). "  

The detection of all unspecified receptions in a protocol is thus guaranteed by choosing J = L and K
arbitrary, and vice versa for buffer overflows. Of course, for protocols whose channels are not
prebounded the detection of buffer overflows is immaterial and K should be set to empty.

Corollary 5.43
For a protocol P, indefinite progress, freedom of non-executable transitions, and freedom of
unspecified receptions (wrt J) and buffer overflows (wrt K) are decidable if L(J ,K)P

*  is finite. "  

It is obvious from the presentation that the task of detecting unspecified receptions and buffer
overflows in a protocol can be performed via multiple independent subtasks, simply by partitioning
the index set L of all channels. Surely, this is an important feature of the parameterized reachability
relation 

  
l (J, K)*

æ Æ æ æ æ æ æ * since in many cases each subtask utilizes a smaller number of l(J, K)*-reachable
global states and transitions than the corresponding full task. The memory needed for verification
may then be reduced further by executing the subtasks in sequence on a single processor, whereas
the time consumption may decrease by executing them in parallel at the expense of using multiple
processors.

Example 5.44
Figure 5.6 shows in part the l(J, K)*-reachability graph of the protocol of Example 5.6 for J = L =
{(1, 2), (2, 3), (3, 4), (4, 1), (4, 3)} and K = ∅ (empty channels in the states are omitted and dashed
arrows indicate incomplete paths). For each l(L, ∅)*-reachable global state Gk  in the figure, Table
5.2 lists the data used to calculate the set xpleap(Gk , L, ∅) of leap sets executed at Gk . The elements
of xpleap(Gk , L, ∅) are precisely the labels of the outgoing edges of the node labeled Gk . The
complete l(L, ∅)*-reachability graph of the protocol of Example 5.6 consists of 29 nodes and 69
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edges versus respectively 40 and 100 for the conventional reachability graph. State exploration by
LRA based on 

  
l (J, K)*

æ Æ æ æ æ æ æ * correctly determines that the protocol has no non-progress states and one
non-executable transition, viz. t12  = (10, +m41, 12). It also reveals all unspecified receptions, viz.
(21, m12), (30, m23), (30, m43), (31, m23) and (40, m34).

To illustrate the extra space reduction that can be obtained by dividing the task of detecting all
unspecified receptions into several independent subtasks, consider the partitioning of J = L into the
disjoint subsets J1 = {(4, 1), (1, 2)} (i.e. the incoming channels of processes P1 and P2), J2 =

{t22,t42}
{t31,t11}

{t11}{t31} {t21}

{t32,t42,t11}t42t32{   ,   }

{t41}

{t21}
{t11} {t31}

{t31}

{t41}

ur-pair
(30,       )43m

ur-pair
34m(40,       )

{t41,t11}
{t41,t21}

{t21,t42,t32}

ur-pair
(30,       )23m

ur-pair
(31,       )23m

{t21,t42}

{t32} {t32,t41}

ur-pair
(21,       )12m

(·10, 20, 31, 40 Ò, ·       Ò)34mG1 =

(·11, 20, 31, 41 Ò, ·      ,       ,       Ò)34m 43m12mG3 =

(·11, 21, 31, 40 Ò, ·      ,       ,       Ò)23m 43m12mG5 = (·10, 21, 31, 41 Ò, ·      ,       ,       Ò)34m 43m23mG6 =

(·10, 21, 30, 41 Ò, ·      ,       Ò)23m 43mG4 =

(·10, 20, 30, 41 Ò, ·       Ò)G2 = 43m

(·10, 20, 30, 40 Ò, · Ò)G0 =

Figure 5.6""The partial l(L , ∅ )*-reachability graph of the protocol of Example 5.6.

Table 5.2""Data for Figure 5.6.

Global state Gk X(Gk) P(Gk) wait(Gk, L, ∅) pleap(Gk, L, ∅)

G0 {t11, t2
1 , t3

1 , t4
1 } {t12 , t2

2 } I { { t11} , { t2
1 } , { t3

1 } , { t4
1 } }

G1 {t11, t2
1 , t4

1 } {t12 , t2
2 , t3

2 } {1, 2, 3} { { t4
1 } }

G2 {t11, t2
1 , t3

1 } {t12 , t2
2 , t4

2 } I { { t11} , { t2
1 } , { t3

1 } }

G3 {t2
1 , t2

2 , t3
2 , t4

2 } ∅ {1, 3} { { t2
1 , t4

2 } , { t2
2 , t4

2 } }

G4 {t11, t3
1 } {t12 , t4

2 } {1, 2, 4} { { t3
1 } }

G5 {t3
2 , t4

1 } ∅ {1, 2, 4} { { t3
2 } }

G6 {t11, t3
2 , t4

2 } {t12 } {1, 2} { { t3
2 , t4

2 } }
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{(2, 3), (4, 3)} (i.e. the incoming channels of process P3) and J3 = {(3, 4)} (i.e. the incoming
channel of process P4). We obtain the following results:

• the l(J1, ∅)*-reachability graph consists of 10 nodes and 18 edges (this graph is in fact the
same as the l*-reachability graph in Figure 5.5) – three ur-pairs are detected, including all those
for processes P1 and P2 (if any): (21, m12), (30, m23), (31, m23);

• the l(J2, ∅)*-reachability graph consists of 22 nodes and 51 edges – four ur-pairs are detected,
including all those for process P3: (21, m12), (30, m23), (31, m23) and (30, m43);

• the l(J3, ∅)*-reachability graph consists of 15 nodes and 32 edges – four ur-pairs are detected,
including all those for process P4: (21, m12), (30, m23), (31, m23) and (40, m34).

All five unspecified receptions are thus detected and since the l(J2, ∅)*-reachability graph is the
largest one constructed, it represents the total space required for this analysis. Only 22 instead of 29
nodes need be stored, i.e. additional space reduction is achieved at the expense of additional running
time (when using only one processor). "  

Example 5.45
Consider the protocol of Example 5.6 with a capacity bound of one message for each channel. Its
l(J, K)*-reachability graph is shown in part in Figure 5.7 for J = ∅ and K = L (empty channels in
the states are omitted and dashed arrows indicate incomplete paths). For every l(∅, L)*-reachable
global state Gk  in the figure, Table 5.3 provides the data used to calculate xpleap(Gk , ∅, L), the
elements of which match the labels of the outgoing edges of the node labeled Gk . The complete

(·10, 20, 30, 40 Ò, · Ò)G0 =

{t32} {t42}
{t22}{t21} {t42}{t32}

{t42} {t32}
{t21}

{t11} {t21}
{t11}

{t31,t41,t21}{t31,t41,t11}

bo-pair
34m(30,       )

t31 t41{   ,   }

{t11} {t21}

{t32} {t42}
{t11}

bo-pair
(40,       )43m

(·11, 20, 31, 41 Ò, ·      ,       ,       Ò)34m 43m12mG1 = (·10, 21, 31, 41 Ò, ·      ,       ,       Ò)34m 43m23mG3 =(·10, 20, 31, 41 Ò, ·      ,       Ò)34m 43mG2 =

(·10, 20, 30, 41 Ò, ·       Ò)34mG4 = (·10, 20, 31, 40 Ò, ·       Ò)G5 = 43m

G0 G0

Figure 5.7""The partial l(∅ , L)*-reachability graph of the protocol of Example 5.6 (with Bij = 1 for all (i, j) ŒL).
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Table 5.3""Data for Figure 5.7.

Global state Gk X(Gk) P(Gk) wait(Gk, ∅, L) pleap(Gk, ∅, L)

G0 {t11, t2
1 , t3

1 , t4
1 } {t12 , t2

2 } {1, 2} { { t3
1 , t4

1 } }

G1 {t2
1 , t2

2 , t3
2 , t4

2 } ∅ I { {t2
1 } , { t2

2 } , { t3
2 } , { t4

2 } }

G2 {t11, t2
1 , t3

2 , t4
2 } {t12 , t2

2 } I { {t11} , { t2
1 } , { t3

2 } , { t4
2 } }

G3 {t11, t3
2 , t4

2 } {t12 } I { { t11} , { t3
2 } , { t4

2 } }

G4 {t11, t2
1 , t4

2 } {t12 , t2
2 , t3

1 } I { { t11} , { t2
1 } , { t4

2 } }

G5 {t11, t2
1 , t3

2 } {t12 , t2
2 , t4

1 } I { { t11} , { t2
1 } , { t3

2 }}

l(∅, L)*-reachability graph of the protocol of Example 5.6 consists of 20 nodes and 45 edges
versus respectively 30 and 70 for the conventional reachability graph (which is different from the
previous examples due to the imposed channel bounds). Additional reductions are obtained when K
= L is partitioned into disjoint subsets, similar as in Example 5.44. Once again, the protocol is
found to have no non-progress states and one non-executable transition. Only three of five ur-pairs
are detected in this case, which is not unexpected since J = ∅. Lastly, two bo-pairs (30, m34) and
(40, m43) are detected as well, indicating that channels C34 and C43 require a bound larger than one
(a bound of two messages turns out to be sufficient here). "  

5.5 More reduction with a depth-first search

Thus far in this chapter no specific search technique has been assumed in the formulation of LRA.
In particular, the l(J, K)*-reachable (or l-reachable) global state space of a protocol can be searched
in depth-first order as well as in breadth-first order (given of course that the search space is finite).
As discussed in Chapter 2, a depth-first search uses a stack to trace the global states encountered
but not yet expanded during the search, while a breadth-first search uses a queue for this purpose.
In this section we explicitly assume a depth-first search (DFS) to accommodate a further reduction
of the number of global states and transitions explored for detecting non-executable transitions,
unspecified receptions and buffer overflows.

The use of a DFS can be turned into an opportunity to refine the l(J, K)*-reachability relation.
Essentially, it warrants a more accurate solution to the ignoring problem than the one given earlier in
terms of the set xpleap(G, J, K). Recall from the beginning of Section 5.3 that the ignoring problem
occurs when the progress of some processes is indefinitely deferred along a cycle in the l-
reachability graph. This cannot happen in the l(J, K)*-reachability graph since it is guaranteed that

  TT Œxpleap(G,J ,K )U  = X(G) for every l(J, K)*-reachable global state G  (cf. Proposition 5.33.(i)), and
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thus in particular for all such states that constitute a cycle in the l(J, K)*-reachability graph. Simple
graph-based reasoning shows, however, that it is sufficient to have in each cycle just one global state
with this property. Avoiding the ignoring problem then becomes a matter of detecting cycles during
state exploration, for which a DFS lends itself preeminently: a cycle is detected precisely when a
global state reached from the current global state already resides on the DFS stack [CLR90, Pel96].
This is translated into an extra condition for extending sets of proper leap sets, viz. for a global state
G the set pleap(G, J, K) is extended only if (1) wait(G, J, K) Ã I (as in Definition 5.31) and (2) at
least one element of pleap(G, J, K) leads from G to a global state on the DFS stack.

Definition 5.46
Let G be a global state of a protocol P to be expanded during the DFS, and let T be an arbitrary
element of pleap(G, J, K). Define

xpleap-2(G, J, K) = pleap(G, J, K) » {T » {t} | t ŒX(G) Ÿ act(t) Œwait(G, J, K)}

if wait(G, J, K) Ã I and $T ¢ Œpleap(G, J, K): G 
  

l (J, K)*
æ Æ æ æ æ æ æ 

¢ T  H Ÿ H is on the DFS stack

xpleap-2(G, J, K) = pleap(G, J, K)

otherwise. "  

The reachability relation resulting from the execution of the leap sets in xpleap-2(G, J, K) in
global states is referred to accordingly as l2(J, K)*-reachability and denoted by 

  
l 2( J, K)*

æ Æ æ æ æ æ æ æ *. The set of
l2(J, K)*-reachable global states of a protocol P (i.e. l2(J, K)*-reachable from its initial global state)
is denoted by L2(J, K)P

* . When J = K = ∅, we may drop these index sets from the notations, as in
Section 5.4. Under the assumption that it takes constant time to check whether a global state is on
the DFS stack (which can indeed be implemented efficiently by a simple hash-table look-up), the
extra cost incurred for computing xpleap-2(G, J, K) instead of xpleap(G, J, K) is O(|pleap(G, J, K)|) in
the worst case. On the other hand, it should be clear from the definitions that xpleap-2(G, J, K) Õ

xpleap(G, J, K), for any global state G. The l2(J, K)*-reachability graph of a given protocol is thus a
subgraph of its l(J, K)*-reachability graph. Furthermore, by construction, for every cycle in the l2(J,
K)*-reachability graph there exists at least one global state G  in that cycle for which

  TT Œxpleap- 2(G, J, K)U  = X(G).

Proposition 5.47
L2(J, K)P

*  Õ L(J ,K)P
*

Proof:""Since xpleap-2(G, J, K) Õ xpleap(G, J, K) for any global state G, it is immediate that every
l2(J, K)*-reachable global state is l(J, K)*-reachable. "  
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The next two lemmas come in place of Lemma 5.37 and Lemma 5.38 in Section 5.4.2, proving
that the l2(J, K)*-reachability graph of a protocol equally reveals all non-progress states, all non-
executable transitions, all unspecified receptions wrt J and all buffer overflows wrt K.

Lemma 5.48
Let G be a global state that is removed from the DFS stack during the construction of the l2(J, K)*-
reachability graph, with G s

æ Æ æ * H and s ≠ e, then there exist a sequence G  
  

l 2( J, K)*
æ Æ æ æ æ æ æ æ 

T1  G1 
  

l 2( J, K)*
æ Æ æ æ æ æ æ æ 

T2

…
  

l 2( J, K)*
æ Æ æ æ æ æ æ æ 

Tm  Gm with gi Œlin(Ti), transition sequences w, r and a global state H¢ such that

i) sw G≡H¢ g1g 2… gm  r, act(w) « act(s) = ∅ and |r| < |s|;

ii) (s, y) is a ur-pair wrt J in H fi (s, y) is a ur-pair (wrt J) in G or in H¢;

iii) (s, x) is a bo-pair wrt K in H fi (s, x) is a bo-pair (wrt K) in G or in H¢.

Proof:""We prove only part (i). Part (ii) and (iii) are derived from part (i) in exactly the same way as
Lemma 5.37.(ii) and (iii) are derived from Lemma 5.37.(i), particularly because the property of
xpleap(G, J, K) stated by Proposition 5.33.(iii) also holds for xpleap-2(G, J, K) (cf. the proof of
Lemma 5.37). Part (i) is visualized as follows:

¢ G 

¢ H 

G

H w *

s
*

r
*

  l 2(J, K)*
  T1T2KTm *

Analogous to the proof of Lemma 5.10, it can be shown that there exist T  ¢ Œpleap(G, J, K) Õ
xpleap-2(G, J, K) with g"¢ Œlin(T ¢), transition sequences w¢ and r¢, and a global state H¢ such that
sw¢ G≡H¢ g"¢r¢, act(w¢) « act(s) = ∅ and |r¢| £ |s|. In particular, T ¢ and w¢ are such that T ¢ \ first(s) is
minimal and w¢ Œlin(T ¢ \ first(s)), where first(s) = {t | t ŒDi Ÿ mt Œpref(s) Ÿ i œact(m)}. Clearly, if
T  ¢ \ first(s) Ã T ¢ then |w¢| < |g"¢| and thus |r¢| < |s|. Consequently, in this case the lemma holds by
letting m"= 1, T1 = T ¢, g1 = g"¢, w = w¢ and r = r¢.

Alternatively, if T ¢ \ first(s) = T  ¢ then w¢ ≡ g"¢ ≠ e and act(s) « act(T  ¢) = ∅. We must have
wait(G, J, K) Ã I because otherwise pleap(G, J, K) = 

  
{{t}}tŒX (G)U  and thus {t¢} Œpleap(G, J, K), with

t¢ the first transition of s, but |{t¢} \ first(s)| = 0 < |T ¢ \ first(s)| contradicting the minimality of T ¢ \
first(s). Definition 5.30 then states that "T Œpleap(G, J, K): act(T) = {i ŒI | i œwait(G, J, K)}, and
since act(s) « act(T ¢) = ∅ it follows further that "T Œpleap(G, J, K): act(s) « act(T) = ∅ and
act(s) Õ wait(G, J, K). In particular the first transition t¢ of s is therefore not in any element of
pleap(G, J, K). The proof now continues by induction on the order in which l2(J, K)*-reachable
global states are removed from the DFS stack. Two cases can arise when removing G from the stack:
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• some T Œpleap(G, J, K) leads to a global state that is already on the DFS stack

Remark that this case covers in particular the induction basis where G is the first state removed
from the DFS stack: each set in pleap(G, J, K) executed in G leads back to a global state on the
DFS stack since any other global state would have been removed before G (a characteristic of a
depth-first search). According to Definition 5.46, some element of pleap(G, J, K), say T  ″, is
extended to form xpleap-2(G, J, K). Now choose T1 = T ″ » {t¢} (t¢ is the first transition of s),
then T1 Œxpleap-2(G, J, K), T1 \ first(s) = T ″ \ first(s) = T ″ and act(T1) « act(s) = act(t¢). The
lemma holds again by letting m = 1, g 1 Œlin(T1), w Œlin(T ″) and s = t¢r, viz. sw G≡H¢ g 1r for
some global state H¢, act(w) « act(s) = ∅ and |r| < |s|.

• no T Œpleap(G, J, K) leads to a global state that is already on the DFS stack

Let T1 = T ¢ and G 
  

l 2( J, K)*
æ Æ æ æ æ æ æ æ 

T1  G1. Since T1 Œpleap(G, J, K), G1 is not on the DFS stack and when
added it will be removed before G itself is removed (a characteristic of a depth-first search). We
also know that act(s) « act(T1) = ∅ and hence s can still be executed from G1. But this means
that the induction hypothesis can be applied to G1, viz. there exist a sequence G1

  
l 2( J, K)*

æ Æ æ æ æ æ æ æ 
T2 …

  
l 2( J, K)*

æ Æ æ æ æ æ æ æ 
Tm  Gm with gi Œlin(Ti), transition sequences w¢ and r¢, and a global state H¢

such that sw¢ G1≡H¢ g 2… gm  r¢, act(w¢) « act(s) = ∅ and |r¢| < |s|. It follows that g 1sw¢ G≡H¢

s g1w¢ G≡H¢ g1g 2… gm  r¢ and act(g1w¢) « act(s) = ∅. The lemma thus holds with w = g 1w¢ and
r"= r¢. "  

Lemma 5.48 differs from Lemma 5.37 mainly in stipulating the existence of a sequence of leap sets
that satisfies the three stated properties, instead of a single leap set. Notice indeed that the sequence
sought in Lemma 5.48 is guaranteed to be of length one when applying the lemma to the l(J, K)*-
reachability graph of a protocol.

Lemma 5.49
Let G be a global state that is removed from the DFS stack during the construction of the l2(J, K)*-
reachability graph, with G s

æ Æ æ * H and s ≠ e, then there exist a sequence of leap sets W  with
h"Œlin(W), a transition sequence w and a global state H¢ such that G 

  
l 2( J, K)*

æ Æ æ æ æ æ æ æ *W  H¢ and

i) sw G≡H¢ h;

ii) (s, y) is a ur-pair wrt J in H fi $W¢ Œpref(W): G 
  

l 2( J, K)*
æ Æ æ æ æ æ æ æ *¢ W  G¢ and (s, y) is a ur-pair in G¢;

iii) (s, x) is a bo-pair wrt K in H fi $W¢ Œpref(W): G 
  

l 2( J, K)*
æ Æ æ æ æ æ æ æ *¢ W  G¢ and (s, x) is a bo-pair in G¢.

Proof:""By repeated application of Lemma 5.48, akin to the proof of Lemma 5.38. "  

Lemma 5.49 is in effect identical to Lemma 5.38. Hence, the results stated in theorems 5.39-5.42
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also hold for the l2(J, K)*-reachability relation (see the proofs of these theorems). We summarize
with a corollary.

Corollary 5.50
For a protocol P, indefinite progress, freedom of non-executable transitions, and freedom of
unspecified receptions wrt J and buffer overflows wrt K are decidable if L2(J, K)P

*  is finite. "  

Example 5.51
The l2*-reachability graph (i.e. J = K = ∅) of the protocol of Example 5.6 is shown in Figure 5.8,
as part of the l*-reachability graph already given in Figure 5.5. The dashed nodes and edges
indicate the l*-reachable global states and transitions that are no longer explored, i.e. the l2*-
reachability graph consists of only 9 nodes and 13 edges versus 10 nodes and 18 edges for the l*-
reachability graph. Observe that this difference is due in particular to the global states G0 and G5,
where xpleap-2(Gk) Ã xpleap(Gk) since the proper leap sets in these states do not close a cycle on
the “current” DFS stack. "  

{t21,t32,t4
2}

{t22,t32,t42}

{t22,t31,t41}

{t21,t31,t41}

t31 t41{   ,   }{t32,t42,t11}

t42t32{   ,   }

{t32,t42,t21}

{t32,t42,t11}

t42t32{   ,   }

{t31,t41,t21}{t31,t41,t11} t31 t41{   ,   }

t42t32{   ,   }

t42t32{   ,   }
t31 t41{   ,   }

G 9

t31 t41{   ,   }

{t31,t41,t11}

(·10, 20, 30, 40 Ò, · Ò)G0 =

G5 = (·10, 21, 30, 40 Ò, ·       Ò)23m

(·11, 20, 31, 41 Ò, ·      ,       ,       Ò)34m 43m12mG1 =

(·11, 20, 30, 40 Ò, ·       Ò)12mG4 =

(·10, 20, 31, 41 Ò, ·      ,       Ò)34m 43mG2 = G3 = (·10, 21, 31, 41 Ò, ·      ,       ,       Ò)34m 43m23m

(·11, 21, 31, 41 Ò, ·      ,       ,       ,       Ò)34m 43m23m12mG7 =

(·11, 21, 30, 40 Ò, ·      ,       Ò)12m 23mG9 =34m 43m(·11, 22, 31, 41 Ò, ·      ,       Ò)G8 =

(·11, 22, 30, 40 Ò, · Ò)G6 =

Figure 5.8""The l2(∅ , ∅ )*-reachability graph of the protocol of Example 5.6.
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5.6 Related work: LRA versus simultaneous reachability analysis

LRA borrows ideas from earlier work by Itoh & Ichikawa [II83] and by Özdemir & Ural [ÖU94,
ÖU95, Özd95]. Their respective relief strategies also entail the concurrent execution of transitions
at global states and tackle the issue of potentially executable transitions (cf. Section 4.1.2 and
Section 5.1). Itoh & Ichikawa proposed a technique to explore only the reduced implementation
sequences of a protocol, which constitute a subset of all the possible protocol executions (see
Chapter 3). This technique is limited to the detection of non-progress states, however, and it
imposes constraints on the structures of the processes in a protocol. All the processes are required
to synchronize on their initial (process) states after a finite number of execution steps and no
process is allowed to have a cyclic execution that does not pass through its initial state [II83]. The
latter amounts to eluding any embedded cycles in the process graph of a process, which is clearly
restrictive in practice for even a simple data transfer protocol usually exhibits such cycles (e.g. the
retransmission part of the sender in an alternating bit protocol).

Özdemir and Ural generalized the idea of executing sets of concurrent transitions as a relief
strategy for detecting all four types of logical errors, and without confining any of the protocol
attributes [ÖU94, ÖU95, Özd95]. Their so-called simultaneous reachability analysis (SRA) thus
applies to protocols in the CFSM model with an arbitrary number of processes, an arbitrary
communication topology and arbitrary process structures. SRA is certainly the technique closest to
LRA and, in fact, LRA has largely emerged as an incremental improvement of SRA [SU95b].
Similar to LRA, SRA governs the execution of leap sets in global states, called simultaneously
executable sets in [ÖU95, Özd95], in order to detect non-progress states, non-executable transitions,
unspecified receptions and buffer overflows in a protocol. This section gives an analytical
comparison between the two techniques. An empirical comparison is included in Chapter 6. For
ease of presentation we take LRA as defined in Section 5.1 through Section 5.4. It should be clear
that the results established are then valid also for the refined, “depth-first search” version of LRA
discussed in Section 5.5.

5.6.1 Detecting non-progress states and non-executable transitions

Unlike LRA, SRA does not support the option to carry out the detection of non-progress states
separate from the detection of non-executable transitions. Where LRA employs the set pleap(G) in
a global state G  for detecting non-progress states alone (see Section 5.1), and the extended set
xpleap(G) for detecting non-progress states and non-executable transitions (see Section 5.2), SRA
always employs the set sses(G) Õ leap(G) of so-called selected simultaneously executable sets for
the detection of these two types of logical errors [ÖU95, Özd95].
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Definition 5.52
Let G be a global state of a protocol P = ({Pi | i ŒI}, L). The set sses(G) of selected simultaneously
executable sets in G is defined as follows:

sses(G) = {T | T Œleap(G) Ÿ act(T) ⊇ {i ŒI | Xi(G) ≠ ∅ Ÿ Pi(G) = ∅} } "  

Informally, every selected simultaneously executable set in a global state G obeys the following
two rules: (1) it must contain an executable transition from each process with executable and no
potentially executable transitions at G, and (2) it may contain an executable transition from any
process with both executable and potentially executable transitions at G. The leap sets in pleap(G)
and xpleap(G) also adhere to the first rule, but not to the second rule. Indeed, by definitions 5.4 and
5.16, every leap set in pleap(G) or in xpleap(G) contains at most one transition from among the
processes with potentially executable transitions at G, whereas a leap set in sses(G) can have
multiple transitions from such processes. The difference between the three sets is further illustrated
in Example 5.53, and expressed formally by Proposition 5.54.

Example 5.53
For the protocol of Example 5.6, X(G0) = {t11 , t21 , t31 , t41 } and P(G0) = {t12 , t22 }. We already derived
pleap(G0) = { {t31 , t41 } } and xpleap(G0) = { {t31 , t41 }, {t31 , t41 , t11 }, {t31 , t41 , t21 } }, and now sses(G0)
= { {t31 , t41 }, {t31 , t41 , t11 }, {t31 , t41 , t21 }, { t31 , t41 , t11 , t21 } }. The additional selected simultaneously
executable set {t31 , t41 , t11 , t21 } contains more than one transition from among the processes with
potentially executable transitions at G0. "  

Proposition 5.54
For a set of sets S, let min(S) = {s ŒS | $/  s¢ ŒS: s¢ Ã s}, then

pleap(G) = min(sses(G)) Õ xpleap(G) Õ sses(G)

Proof:""It is not difficult to see that sses(G) can be defined equivalently in terms of the “wait-set”
wait(G) (see Definition 5.4) as follows:

sses(G) = { T | T Œleap(G) Ÿ act(T) ⊇ {i ŒI | i œwait(G)} }

if wait(G) Ã I

sses(G) = leap(G)

otherwise.

The proposition is then immediate by the definitions of pleap(G) and xpleap(G) (Definition 5.4 and
Definition 5.16, respectively). "  
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As a direct consequence of Proposition 5.54, for any protocol both the l-reachability graph and
the l*-reachability graph are subgraphs of the corresponding “simultaneous reachability graph”
resulting from SRA. LRA thus explores at most as many global states and transitions as SRA for
detecting non-progress states and non-executable transitions. In general LRA can be expected to
perform significantly better than SRA. This is evident especially for protocols with state spaces that
manifest a wide distribution of potentially executable transitions. Consider for instance a global
state G where k1 is the number of processes with executable transitions and without potentially
executable transitions at G, and where k2 is the number of processes with both executable and
potentially executable transitions at G (0 £ k1, k2 £ n). Assume for simplicity that all these processes
have the same number m of executable transitions at G. The cardinalities of pleap(G), xpleap(G)
and sses(G) are then as follows:

| pleap(G)| = mk 1 if k1 > 0 (i.e. wait(G) Ã I)
| pleap(G)| = k2·m otherwise

| xpleap(G)| = | pleap(G)| + k2·m if k1 > 0
| xpleap(G)| = | pleap(G)| otherwise

|sses(G)| = | pleap(G)| + | pleap(G)| · j
k2( ) m j

j =1
k2Â

= | pleap(G)| + | pleap(G)| · ((m + 1)k 2 – 1) if k1 > 0

|sses(G)| = | pleap(G)| + j
k2( ) m j

j =2
k2Â

= | pleap(G)| + ((m + 1)k 2 – 1 – k2·m ) otherwise

One can see that the size of sses(G) grows very rapidly for increasing k2 : |sses(G)| – |pleap(G)| is
exponential in k2 whereas |xpleap(G)| – |pleap(G)| is only linear in k2. Overall, SRA may thus
compute and execute a significantly larger number of leap sets during state exploration than LRA.
In the next chapter we will evaluate empirically the impact of this on the number of global states and
transitions explored by SRA and LRA for detecting non-progress states and non-executable
transitions, and on the actual space and time consumed by both techniques.

5.6.2 Detecting unspecified receptions

The detection of unspecified receptions by SRA proceeds in two stages. A given protocol is first
augmented with extra receive transitions. These transitions are guaranteed to be non-executable and
hence they do not alter the behavior of the protocol. State exploration is then carried out for the
augmented protocol in the exact same way as described above, namely by executing selected
simultaneously executable sets in global states [ÖU95, Özd95].



Chapter 5!!Leaping reachability analysis 109

Definition 5.55
Let P = ({Pi | i ŒI}, L) be a protocol, and denote by @i j a new unique message from process Pi to
process Pj such that @i j œ  MiiŒIU , for each (i, j) ŒL. The triple (s, +@i j , s), with s ŒSj  , is said to be
an extraneous receive transition for P iff Mij ≠ ∅ and there exists no (sj  , +y, ¢ s j ) ŒDj such that sj
= s and y ŒMij . "  

for all (i,j) in J do
if Mij ≠ ∅ then

for all s in Sj do
if there is no receive transition at s

that involves a message from Mij
then add (s,@ij,s) to P

Figure 5.9""Constructing ¢ P J .

A protocol P is augmented with respect to J Õ  L  by adding to P every extraneous receive
transition (s, +@i j , s) for which (i, j) ŒJ. Denote the resulting protocol by ¢ P J . As illustrated in
Figure 5.9, constructing ¢ P J  takes O( |Sj|( i, j)ŒJÂ ) time, where |Sj| is the number of process states of
process Pj  . It is clear that all extraneous receive transitions are non-executable, since no matching
send transitions are specified. Therefore, RP = R ¢ P J

 for any J. The application of SRA to ¢ P J
instead of P now reveals all unspecified receptions (ur-pairs) wrt J in P [ÖU95, Özd95]. Recall
from Section 5.4 that LRA uses the set xpleap(G, J, ∅) for this purpose. In comparing the two
techniques we arrive at the following proposition.

Proposition 5.56
Let G be a global state of a protocol P, and G¢ the corresponding global state of ¢ P J , then

pleap(G, J, ∅) = min(sses(G¢)) Õ xpleap(G, J, ∅) Õ sses(G¢)

Proof:""Similar to the proof of Proposition 5.54, we show that sses(G¢) is defined in terms of the
“wait-set” wait(G, J, ∅) as follows:

sses(G¢) = { T | T Œleap(G) Ÿ act(T) ⊇ {i ŒI | i œwait(G, J, ∅)} }

if wait(G, J, ∅) Ã I

sses(G¢) = leap(G)

otherwise.

The inclusion xpleap(G, J, ∅) Õ sses(G¢) is then immediate by definition of pleap(G, J, ∅) and
xpleap(G, J, ∅) (see Definition 5.30 and Definition 5.31, respectively).
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We need to prove that {i ŒI | i œwait(G, J, ∅)} = {i ŒI | Xi(G¢) ≠ ∅ Ÿ Pi(G¢) = ∅} (see
Definition 5.52), or equivalently, that wait(G, J, ∅) = {i ŒI | Xi(G¢) = ∅ ⁄ Pi(G¢) ≠ ∅}, where
wait(G, J, ∅) = {i ŒI | Xi(G) = ∅ ⁄ Pi(G) ≠ ∅ ⁄ $(j, i) ŒJ: cj i

G  = e} (see Definition 5.30). For this
it is sufficient to show that the following two claims hold true:

i) Xi(G¢) = ∅ iff Xi(G) = ∅;

ii) Pi(G¢) ≠ ∅ iff Pi(G) ≠ ∅ ⁄ $(j, i) ŒJ: cj i
G  = e.

Remark that G and G¢ are the same global state (viz. with the same process states and the same
channel contents), except for possible extraneous receive transitions defined at process states in G¢

as a result of the augmentation. Since these transitions are non-executable it follows directly that
Xi(G¢) = Xi(G), which proves claim (i). Regarding claim (ii), for the “only-if” part suppose that
Pi(G¢) ≠ ∅ and let t ŒPi(G¢). It is clear that t ŒPi(G) if t is not an extraneous receive transition,
while $(j, i) ŒJ: cj i

¢ G  = cj i
G  = e if t is an extraneous receive transition. For the “if” part, Pi(G) ≠ ∅

implies that Pi(G¢) ≠ ∅. The only case left is then that Pi(G) = ∅ Ÿ $(j, i) ŒJ: cj i
G  = e. In this case

P has no receive transition at si
G  involving a message from Mji because otherwise Pi(G) ≠ ∅.

Hence, (si
G , +@j i , si

G ) is an extraneous receive transition for P and, moreover, this transition is
potentially executable at G¢ since cj i

G  = e. Again, Pi(G¢) ≠ ∅. "  

As before, simple combinatorics testify that the difference in size between xpleap(G, J, ∅) and
sses(G¢) can be substantial. We conclude from Proposition 5.56 that the l(J, ∅)*-reachability graph
obtained by LRA for the original protocol P is a subgraph of the simultaneous reachability graph
obtained by SRA for the augmented protocol ¢ P J . Taking into account also the computational
overhead associated with the augmentation procedure, SRA will thus utilize more space and time for
detecting ur-pairs than LRA.

Example 5.57
The extraneous receive transitions for the protocol of Example 5.6 (see Figure 5.2) are:

(21, +@12, 21) (30, +@23, 30) (30, +@43, 30)

(22, +@12, 22) (31, +@23, 31) (40, +@34, 40)

Augmenting this protocol wrt J = {(2, 3), (4, 3)} is accomplished by adding the three transitions
(30, +@23, 30), (31, +@23, 31) and (30, +@43, 30). The application of SRA to the augmented
protocol then yields a simultaneous reachability graph consisting of 25 nodes and 84 edges. In
contrast, the l(J, ∅)*-reachability graph of the original protocol consists of 22 nodes and 52 edges
(see Example 5.44). "  
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5.6.3 Detecting buffer overflows

Before comparing SRA and LRA for the detection of buffer overflows (bo-pairs), we should first
point out that the objectives of both techniques are actually different. While LRA aims at detecting
all bo-pairs that cause a channel overflow, SRA aims at identifying just the overflowed channels
[ÖU95, Özd95]. For the latter it suffices to detect only one bo-pair (if any) per channel. Although
not explicitly stated in [ÖU95, Özd95], we do recognize that SRA lends itself also for detecting all
the bo-pairs in a protocol. Further left unmentioned in [ÖU95, Özd95] is the fact that this can be
done for multiple channels at once, i.e. in a single verification run. It is stated instead that the
detection of all overflowed channels necessitates the application of SRA once for every channel in
the protocol. Nevertheless, when we take the same general objective of detecting all bo-pairs with
respect to an index set K of channels (cf. Section 5.4) for both LRA and SRA, the argument in
favor of LRA is once again that the l(∅, K)*-reachability graph of any given protocol is guaranteed
to be a subgraph of the simultaneous reachability graph resulting from SRA for detecting these bo-
pairs. In the rest of this section we substantiate also this claim.

In order to determine the possibility of an overflow for a specific channel Cj k , SRA employs the
following subset of leap sets in a global state G [ÖU95, Özd95] (cf. Definition 5.52):

{T Œleap(G) | act(T) ⊇ {i ŒI | Xi(G) ≠ ∅ Ÿ Pi(G) = ∅ Ÿ (i = k fi cjk
G  = e)}

Accordingly, we provide a more general definition to deal with a set K of channels instead of just a
single channel.

Definition 5.58
Let G be a global state of a protocol P = ({Pi | i ŒI}, L) and K Õ L. Define the set sses(G, K) of
selected simultaneously executable sets wrt K in G as follows:

sses(G, K) = {T Œleap(G) | act(T) ⊇ {i ŒI | Xi(G) ≠ ∅ Ÿ Pi(G) = ∅ Ÿ "(j, i) ŒK: cj i
G  = e} } "  

We establish that xpleap(G, ∅, K) is included in sses(G, K), for any K, and this proves that LRA
outperforms SRA for the detection of bo-pairs.

Proposition 5.59
xpleap(G, ∅, K) Õ sses(G, K)

Proof:""Notice that {i ŒI | Xi(G) ≠ ∅ Ÿ Pi(G) = ∅ Ÿ "(j, i) ŒK: cj i
G  = e} Õ I \ wait(G, ∅, K) = {i

ŒI | Xi(G) ≠ ∅ Ÿ Pi(G) = ∅ Ÿ "(j, i) ŒK: Xij
+(G)  = ∅} (see Definition 5.30), in particular because

Xij
+(G)  = ∅ if cj i

G  = e. The set sses(G, K) can hence be defined equivalently as follows:
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sses(G, K) = { T | T Œleap(G) Ÿ act(T) ⊇ {i ŒI | i œwait(G, ∅, K) Ÿ "(j, i) ŒK: cj i
G  = e} }

if wait(G, ∅, K) Ã I

sses(G, K) = leap(G)

otherwise.

The inclusion xpleap(G, ∅, K) Õ sses(G, K) follows then readily by definition of pleap(G, ∅, K)
and xpleap(G, ∅, K). "  

5.7 Summary

In this chapter we have developed a relief strategy, named leaping reachability analysis (LRA), for
the verification of logical correctness properties of protocols defined in the CFSM model. We
proved that, for any given protocol in this model, LRA maintains the power of conventional
reachability analysis to detect all non-progress states (including deadlocks), all non-executable
transitions, all unspecified receptions and all buffer overflows. Yet, in contrast to conventional
reachability analysis where transitions are executed one at a time, LRA employs the concurrent
execution of transitions at global states. By executing concurrent transitions collectively as sets, it
“leaps” through the state space of a protocol and may thereby reduce significantly the number of
global states and transitions explored. The potential impact of LRA is thus a large decrease in
memory and time needed for verifying logical correctness properties.

LRA has been inspired to a large extent by earlier work of Özdemir & Ural on simultaneous
reachability analysis (SRA) [ÖU94, ÖU95, Özd95]. In fact, we propose LRA as an incremental
improvement of SRA. SRA similarly employs the execution of sets of concurrent transitions to
verify the same four logical correctness properties, and is arguably the first relief strategy applicable
to protocols in the CFSM model without confining any of the protocol attributes (viz. the number
of processes in a protocol, its communication topology and the individual process structures).
Through an analytical comparison we have shown that, for any protocol, the “reduced” reachability
graph resulting from LRA is a subgraph of the one resulting from SRA, for each of the four logical
correctness properties. Thus, LRA never explores more global states or transitions than SRA.
Moreover, LRA never incurs more run-time overhead, and even eliminates the need for a protocol
augmentation in detecting unspecified receptions. Using LRA instead of SRA is therefore a no-risk
improvement. In the next chapter we will complement the analytical results with an empirical
evaluation of the performance of LRA, with respect to SRA and conventional reachability analysis.


