
113

Chapter 6

Experiments

This chapter reports on the results of an empirical evaluation of the performance of LRA with
respect to both SRA [ÖU95, Özd95] and conventional reachability analysis (henceforth referred to
as CRA). These results provide empirical evidence of the potential significance of LRA as a(n)
(improved) relief strategy for verifying logical correctness properties of protocols.

6.1 Method of evaluation

How much can be gained by using a relief strategy like LRA (or SRA) as opposed to using CRA?
It is difficult to give a general answer to this question. Indeed, one can easily construct classes of
protocols for which nothing is gained whatsoever. Examples are protocols where the coupling
between the processes is so tight that two transitions from distinct processes are never simultaneously
executable. Such protocols are in fact purely sequential systems. In these cases, LRA (and SRA)
yields no reduction at all as it becomes equivalent to CRA. On the other hand, it is also rather easy
to find classes of protocols for which the reduction obtained by LRA (and SRA) can reach several
orders of magnitude. One should think here of cases where the reachable global state space of a
protocol grows exponentially when the number of processes in the protocol is increased, while the
reduced state space resulting from LRA (and SRA) grows just polynomially. A concrete example is
a protocol modeling a distributed sorting algorithm for k numbers using k + 1 parallel processes.
One process is used to initiate the sort by sending all the numbers to the next process in sequence,
and each of the other k processes carries out the pair-wise comparisons between the numbers it
receives from the preceding process. The number of reachable global states explored by CRA, and
the number of global states explored by LRA (and SRA) for detecting non-progress states and non-
executable transitions (i.e. l(∅, ∅)*-reachable global states) are given in Figure 6.1 for increasing k
(logarithmic scale). By a similar token, we can readily find examples of protocols for which the
reachable global state space grows in size when the capacity bound of some simplex channel is

Chapter 6!!Experiments 114

k

St
at

es

1

10

100

1000

10000

100000

1000000

1 3 5 7 9 11 13 15

CRA

LRA (SRA)

Figure 6.1!!Reduction by LRA (and SRA) for distributed sorting.

increased, while the reduced state space resulting from LRA (and SRA) remains the same. This is
illustrated by a simple “producer-consumer” protocol consisting of processes P1 = ({10}, 10, {a},
{(10, –a, 10)}) and P2 = ({20}, 20, {a}, {(20, +a, 20)}), and a simplex channel C12 with bound
B12 > 1. The full reachable global state space obtained with CRA, and the reduced global state space
obtained with LRA (and SRA) for detecting non-progress states, non-executable transitions and
unspecified receptions (i.e. the l(J, ∅)*-reachable global state space) for this protocol are shown in
Figure 6.2. The size of the full state space is proportional to the value of B12, while the reduced state
space is independent of B12. The full state space is in fact infinite when channel C12 is unbounded.

(·10, 20 Ò, ·eÒ) (·10, 20 Ò, ·aaÒ)(·10, 20 Ò, ·aÒ)

–a –a

+a +a

CRA:

LRA (SRA): (·10, 20 Ò, ·eÒ) {–a, +a}(·10, 20 Ò, ·aÒ)
{–a}

Figure 6.2!!Reduction by LRA (and SRA) for the “producer-consumer” protocol.

It is thus clear that an exaggerated impression of the performance of LRA (and SRA), or any
other relief strategy, could be suggested by a favorable choice of examples. In order to address this
concern of potential favoritism, Özdemir & Ural [ÖU95] evaluated the performance of SRA by
experimenting with a large number of protocols that were generated randomly with an automatic

Chapter 6!!Experiments 115

protocol synthesizer. The results of their empirical study appeared to be quite objective and
informative. Consequently, we have decided to conduct a similar study for LRA, taking advantage of
the automatic protocol synthesizer and the existing implementations of SRA and CRA to construct
and experiment with 400 such random protocols. In addition, we have experimented with a few
“real” protocols. The results of these experiments are discussed in Section 6.3, following a
description of the tool package we have used for our study.

6.2 The research tool package RELIEF

RELIEF is a research tool package for the automated verification of protocols specified in the
CFSM model. Built entirely in UNIX C, it has been under development since 1994. The initial
version of the package was created by Kadir Özdemir, in connection with his doctoral research on
SRA [Özd95]. The implementation of subsequent extensions and enhancements was carried out by
Tuong Nguyen [Ngu97].

The current version of RELIEF (version 3.5) has three main constituents, namely a protocol
analyzer, the aforementioned protocol synthesizer and a collection of empirical-study tools. The
protocol analyzer embodies the various state exploration techniques, including CRA, SRA, LRA and
also FRA. These can be engaged via a text-based and menu-driven user interface in order to analyze
protocols individually. The logical errors found are then reported, as are the numbers of global
states and transitions explored, and the actual space and time consumed by the selected technique.
The state exploration techniques can be engaged also via the empirical-study tools for the purpose
of generating a comparative report of the average performance of two techniques on a multitude of
protocols. The implementations of CRA, SRA, LRA and FRA all utilize the same data structures,
procedures and functions to store and access global states. Global states are stored only in main
memory to avoid serious run-time penalties for disk-access. Time is calculated as UNIX system
time plus user time.

The impartial construction of a set of sample protocols is facilitated in RELIEF by the automatic
protocol synthesizer, which constructs protocols as follows [ÖU95, Özd95] (see Figure 6.3). Using
a random number generator, it first builds an incomplete specification of a protocol by specifying
randomly (between preset parameter bounds) the number of processes in the protocol, and for each
process the number of process states, its message set and a partial, deterministic transition function
that defines only send transitions. The incomplete protocol is then subjected to CRA to augment it
with receive transitions. Precisely, whenever a ur-pair is encountered during the generation of the
reachable global states of the protocol, a receive transition for the ur-pair is defined with probability
0.75. This follows the idea behind so-called non-service oriented synthesis methods, whose aim is
to derive logically correct protocols from incomplete protocol descriptions (as opposed to service-

Chapter 6!!Experiments 116

oriented synthesis methods, which attempt to derive functionally correct protocols) [PS91]. The
reason for omitting about 25% of missing receive transitions is to allow the synthesized protocol to
exhibit each of the four types of logical errors. Indeed, if receive transitions were specified for all
ur-pairs, the resulting protocol could still have deadlocks and buffer overflows, but it would be free
from unspecified receptions and non-executable transitions. This implementation choice was
motivated in [Özd95] by the view that the synthesizer simulates in some sense a protocol designer,
and even an experienced designer cannot be expected to create error-free designs. Lastly, for the
purpose of the experiments, a lower and upper bound on the number of reachable global states of a
protocol are enforced during the synthesis process to rule out protocols with an insignificantly
small or an impractically large state space. For further details on the automatic protocol synthesizer
and the associated algorithms, one is advised to refer to [Özd95].

randomly specifying
number of processes

randomly specifying
messages

randomly specifying
send transitions

randomly specifying
process states

CRA

specifying missing
receive transitions

randomly omitting 25%
of receive transitions

ignoring protocols
that are too small/large

Incomplete
Protocol Specification

Synthesized
Protocol Specification

Figure 6.3!!The automatic protocol synthesizer in RELIEF.

6.3 Experimental results

LRA and SRA have been tested on a large number of protocols: 400 protocols were obtained with
the automatic protocol synthesizer described above, and three real protocols were taken from the

Chapter 6!!Experiments 117

literature. From the analytical comparison in Section 5.6 we already knew that LRA would perform
at least as good as SRA. The aim of our experiments was hence to determine the amount of
reduction in space and time that can be expected in practice when using LRA in place of SRA (or
CRA). All experiments were performed on a SPARC Classic with 48 megabytes of RAM. We first
discuss the results obtained with the 400 synthesized protocols.

6.3.1 Experiments with the synthesized protocols

It is of course not feasible, nor worthwhile, to detail all the synthesized protocols used for our
empirical study. Table 6.1 gives instead an overall summary of some of their principal attributes.
The 400 protocols are classified by the number of processes in a protocol, ranging from two to

Table 6.1!!Synopsis of the set of synthesized protocols.

Attributes n-process protocols
2 3 4 5 6 7 8

Number of protocols 66 57 63 58 56 60 40

Number of states per process avg
std

11.64
17.71

9.06
16.79

8.10
12.02

7.07
9.79

6.12
5.99

4.95
3.93

3.99
2.05

Number of send transitions per process state avg
std

2.18
1.62

1.46
1.72

1.06
1.68

1.01
1.54

0.81
1.06

0.76
1.06

0.64
0.71

Number of receive transitions per process state avg
std

0.68
0.51

0.66
0.49

0.67
0.50

0.66
0.49

0.65
0.44

0.65
0.42

0.63
0.34

Number of reachable global states (¥ 1000) avg
std

31.71
39.56

34.02
37.60

49.09
41.11

60.87
40.00

78.37
37.78

108.04
31.39

149.99
13.09

Number of global state transitions (¥ 1000) avg
std

69.21
86.17

100.77
125.80

171.29
151.56

210.95
154.59

319.40
176.05

483.39
156.45

744.27
87.49

Memory (megabytes) avg
std

1.67
2.08

1.84
2.07

2.67
2.26

3.31
2.21

4.26
2.09

5.94
1.74

8.28
0.77

Time (seconds) avg
std

5.72
7.83

9.03
11.90

16.09
15.19

22.52
17.29

36.27
20.87

62.17
21.42

160.95
20.38

Percentage of deadlock states avg
std

0.23
0.32

0.15
0.17

0.08
0.10

0.04
0.05

0.02
0.02

0.01
0.01

0.00
0.00

Percentage of non-progress states avg
std

3.46
1.98

1.90
1.54

1.04
1.19

1.12
1.23

0.34
0.59

0.13
0.19

0.04
0.06

Percentage of non-executable transitions avg
std

0.45
1.43

5.09
5.30

10.48
7.60

11.48
8.04

13.70
8.34

15.51
8.22

13.46
6.10

Percentage of ur-pairs avg
std

21.00
6.49

21.01
5.51

19.74
7.70

22.17
7.17

17.66
6.71

17.60
7.48

15.13
5.12

Percentage of bo-pairs avg
std

24.27
5.03

22.47
6.00

20.34
6.07

16.97
5.61

15.56
5.08

14.81
5.92

15.41
5.87

Chapter 6!!Experiments 118

eight processes. For each class of n-process protocols, the number of process states and the number
of send and receive transitions per process state (these are the structural attributes of the processes)
disperse quite well, and the same can be said for the number of global states and transitions of the
protocols explored by CRA (cf. rows 2 through 6 resp. in Table 6.1). This is observed from the
standard deviations for these attributes, which are fairly high relative to the averages. Table 6.1 also
gives an indication of the space and time consumed, and the logical errors detected by CRA for the
set of synthesized protocols (cf. rows 7 through 13 resp. in Table 6.1). In line with the formulation
of LRA in Chapter 5, we evaluate the performance of LRA with respect to SRA and CRA separately
for each of the four logical correctness properties.

Detecting non-progress states

Before contemplating the results for the detection of non-progress states, it is important to stress
that SRA does not support the option to carry out this verification task separate from the detection
of non-executable transitions. Recall from Section 5.6.1 that SRA uses the set sses(G) of selected
simultaneously executable sets in a global state G for detecting all non-progress states and all non-
executable transitions. LRA uses the subset xpleap(G) of sses(G) for this purpose, but it uses a
different (and smaller) subset pleap(G) = min(sses(G)) Õ xpleap(G) (see Proposition 5.54) when
the objective is to detect non-progress states alone. A comparison of the space and time required by
LRA and SRA for detecting just non-progress states is thus warranted, even though SRA actually
combines this task with detecting non-executable transitions.

Table 6.2!!LRA compared to SRA for detecting non-progress states.

Techniques Average reductions (%) per number of processes
2 3 4 5 6 7 8

SRA vs. CRA
states

transitions
space
time

49.61
52.83
49.36
45.54

57.79
55.61
57.82
45.01

64.64
58.17
64.63
39.79

68.63
62.72
68.69
40.98

76.99
69.62
77.07
41.36

82.87
78.26
82.92
20.88

88.49
83.92
88.47
62.59

LRA vs. CRA
states

transitions
space
time

55.94
65.49
55.70
56.15

64.65
74.76
64.70
64.48

72.36
81.77
72.41
72.36

75.68
85.02
75.81
75.78

83.54
90.76
83.68
83.52

89.56
94.79
89.66
89.62

94.10
97.36
94.15
95.07

LRA vs. SRA
states

transitions
space
time

12.56
26.84
12.52
19.48

16.25
43.14
16.31
35.41

21.83
56.42
22.00
54.09

22.47
59.82
22.74
58.96

28.47
69.59
28.83
71.90

39.05
76.03
39.46
86.88

48.74
83.58
49.26
86.82

Chapter 6!!Experiments 119

Table 6.2 shows the performance of LRA with respect to CRA and SRA for detecting non-
progress states. Given are average percentages of reduction, per class of n-process protocols, of the
number of global states stored and transitions explored, and of the actual amount of space and time
used. As one can see, the space reductions match the respective reductions in the number of stored
states. Hence, as expected, the memory allocated for data structures that accommodate the
computation of proper leap sets (or selected simultaneously executable sets in case of SRA) is
insignificant with respect to the overall memory requirements for state exploration.

The first two rows in Table 6.2 compare the performance of resp. SRA and LRA versus CRA.
The third row compares the performance of LRA directly versus SRA, i.e. the reductions obtained
with LRA are normalized with respect to those obtained with SRA. Evidently, where SRA already
yields substantial space and time reductions over CRA, LRA achieves significant further reductions
over SRA, especially in time. This is explained by the fact that the set pleap(G) can be much smaller
than sses(G), according to the combinatorics in Section 5.6.1. Consequently, LRA seems in general
to incur less run-time overhead (computing pleap(G) is cheaper than computing sses(G) as
witnessed by Proposition 5.54), and to explore fewer global state transitions and thereby to generate
fewer global states than SRA.

Both LRA and SRA tend to perform better as protocols contain more processes. Indeed, with an
increasing number of processes, the number of concurrently executable transitions at a global state
generally increases as well. More pragmatically, larger reductions can be expected for protocols
with higher degrees of parallelism (i.e. for so-called “loosely-coupled” protocols). A conceivable
measure for the degree of parallelism of a protocol is the average number of processes

Table 6.3!!Reductions in Table 6.2 arranged by concurrency level.

Techniques Average reductions (%) per
concurrency level

[0, 1] (1, 2] (2, 3] (3, 4]

SRA vs. CRA
states

transitions
space
time

47.63
44.69
47.45
31.70

67.22
62.41
67.26
37.76

85.66
82.47
85.68
50.99

94.91
95.52
94.86
88.18

LRA vs. CRA
states

transitions
space
time

54.03
64.76
53.88
53.49

74.48
83.62
74.56
74.55

92.11
96.30
92.18
92.85

97.98
99.22
97.96
98.32

LRA vs. SRA
states

transitions
space
time

12.22
36.29
12.24
31.90

22.15
56.42
22.30
59.11

44.98
78.89
45.39
85.41

60.31
82.59
60.31
85.79

Chapter 6!!Experiments 120

with executable transitions and no potentially executable transitions at a reachable global state. This
measure is defined as the concurrency level of a protocol [ÖU95, Özd95]. Table 6.3 organizes the
data in Table 6.2 by concurrency level. Observe that the performance of LRA improves steadily
with the level of concurrency, compared to CRA as well as to SRA. With respect to CRA, LRA
reaches reductions in space and time of up to two orders of magnitude. With respect to SRA, it still
reaches reductions in time of close to one order of magnitude, and reductions in space of over
50%. Suffice it to say that LRA can outperform SRA significantly, in both space and time, for the
detection of non-progress states in a protocol.

To complete the picture on detecting non-progress states, we have compared the performance of
LRA also against FRA. Since the applicability of FRA is limited to multi-cyclic protocols (see
Chapter 4), the comparison is based on the subset of synthesized protocols that are in fact multi-
cyclic. Bear in mind that FRA is actually not suited to detect all non-progress states in a multi-cyclic
protocol, but just the deadlock states (i.e. the non-progress states with all channels empty). Within
the set of 400 synthesized protocols we found 88 multi-cyclic protocols, including 66 2-process
protocols, 18 3-process protocols, three 4-process protocols and one 5-process protocol. Table 6.4
gives the average reductions obtained with LRA and FRA for these protocols. FRA clearly
outperforms LRA in space. The extra space reductions over LRA can be very impressive. On the
other hand, FRA may be slower than LRA. The time reductions in the table suggest that FRA incurs
quite a bit more run-time overhead than LRA (the time reductions reported do not incorporate the
time needed to determine whether a protocol is multi-cyclic, since this would be known for real
protocols). At least for protocols that manifest little concurrency, the time gained by

Table 6.4!!LRA compared to FRA for detecting deadlock states in multi-cyclic protocols.

Techniques Average reductions (%) per
number of processes concurrency level

2 3 4 5 [0, 1] (1, 2]

LRA vs. CRA
states

transitions
space
time

55.94
65.49
55.70
53.77

71.86
80.89
72.14
71.53

68.28
79.69
68.50
67.92

59.24
77.74
59.35
61.75

55.78
65.57
55.56
53.64

73.74
82.67
73.99
73.73

FRA vs. CRA
states

transitions
space
time

 77.02
 80.47
 76.69
 -80.85

92.41
94.89
92.50
49.88

94.23
96.29
94.44
62.29

97.46
98.07
97.60
86.35

 77.60
 81.04
 77.30
-76.30

93.27
95.48
93.35
57.90

FRA vs. LRA
states

transitions
space
time

 47.84
 43.41
 47.38
-291.20

 73.03
 73.26
 73.08

 -76.04

 81.81
 81.73
 82.35

 -17.55

93.77
91.33
94.10
64.31

 49.34
 44.93
 48.92
-280.28

 74.37
 73.92
 74.34
-60.26

Chapter 6!!Experiments 121

FRA due to the reduction in the number of explored transitions appears insufficient to make up the
time lost for computing fair transition-tuples in global states (cf. Definition 4.14). Nevertheless, the
space reductions by FRA can be so good that it is a technique to consider as the first choice when
verifying a multi-cyclic protocol.

Detecting non-executable transitions

The performance of LRA and of SRA on the set of synthesized protocols for the detection of non-
executable transitions (and non-progress states) are compared in Table 6.5. As before, the figures
indicate average percentages of reduction, and they are arranged by the number of processes in a
protocol and by the concurrency level of a protocol. Note that the reductions by SRA over CRA in
the first row of Table 6.5 are the same as in Table 6.2 and Table 6.3, since SRA employs the same
set sses(G) as just regarded for detecting non-progress states. For LRA we have considered two

Table 6.5!!LRA compared to SRA for detecting non-executable transitions.

Techniques Average reductions (%) per
 number of processes concurrency level

2 3 4 5 6 7 8 [0, 1] (1, 2] (2, 3] (3, 4]

SRA
vs.
CRA

states
transitions

space
time

49.61
52.83
49.36
45.54

57.79
55.61
57.82
45.01

64.64
58.17
64.63
39.79

68.63
62.72
68.69
40.98

76.99
69.62
77.07
41.36

82.87
78.26
82.92
20.88

88.49
83.92
88.47
62.59

47.63
44.69
47.45
31.70

67.22
62.41
67.26
37.76

85.66
82.47
85.68
50.99

94.91
95.52
94.86
88.18

LRA
vs.
CRA

states
transitions

space
time

51.85
57.94
51.60
49.08

60.17
65.57
60.19
54.73

67.28
72.66
67.27
58.78

71.31
76.69
71.38
62.50

79.34
83.78
79.43
69.79

84.98
88.49
85.03
75.43

90.56
92.87
90.55
82.23

50.04
56.15
49.87
44.37

69.77
75.03
69.81
61.59

87.81
90.93
87.84
79.83

95.63
97.26
95.58
92.36

LRA2
vs.
CRA

states
transitions

space
time

54.92
63.97
54.68
35.28

63.93
73.67
63.98
48.14

71.46
80.66
71.51
57.90

75.17
84.38
75.29
64.87

82.93
90.05
83.06
73.94

88.29
93.80
88.38
73.46

93.05
96.50
93.08
88.86

53.22
63.56
53.08
32.72

73.64
82.61
73.73
60.16

91.15
95.46
91.22
84.06

96.84
98.43
96.80
94.00

LRA
vs.
SRA

states
transitions

space
time

4.45
10.83
4.42
6.50

5.64
22.44
5.62
17.68

7.47
34.64
7.46
31.54

8.54
37.47
8.59
36.46

10.21
46.61
10.29
48.48

12.32
47.06
12.35
68.95

17.98
55.66
18.04
52.50

4.60
20.72
4.61
18.55

7.78
33.57
7.79
38.29

14.99
48.26
15.08
58.85

14.15
38.84
14.01
35.36

LRA2
vs.
SRA

states
transitions

space
time

 10.54
 23.62
 10.51
 -18.84

14.55
40.68
14.60
 5.69

19.29
53.77
19.45
30.08

20.85
58.10
21.08
40.48

25.81
67.25
26.12
55.56

31.64
71.48
31.97
66.46

39.62
78.23
39.98
70.22

10.67
34.12
10.71
 1.49

19.59
53.74
19.76
35.99

38.28
74.10
38.69
67.48

37.92
64.96
37.74
49.24

LRA2
vs.
LRA

states
transitions

space
time

 6.38
14.34
 6.36

-27.10

 9.44
23.53
 9.52

-14.56

12.78
29.26
12.95

 -2.13

13.45
32.99
13.66
 6.32

17.38
38.66
17.65
 13.74

22.04
46.13
22.38

 -8.02

26.38
50.91
26.77
37.31

 6.37
16.90
 6.40

 -20.94

12.80
30.36
12.98

 -3.72

27.40
49.94
27.80
20.97

27.69
42.70
27.60
21.47

Chapter 6!!Experiments 122

sets of results: the second row of Table 6.5 gives the reductions obtained by executing at each
generated global state G the leap sets in xpleap(G, J, K) with J = K = ∅ (see Definition 5.16 and
Definition 5.31), and the third row gives the reductions obtained by executing the leap sets in
xpleap-2(G, J, K) equally with J = K = ∅ (see Definition 5.46). In order to distinguish the two
versions, LRA based on xpleap-2(G, J, K) is henceforth called LRA2. LRA2 was proposed in
Section 5.5 as a refinement of LRA, based on the characteristics of a depth-first search, to enable
yet more reductions in the number of stored states and explored transitions for detecting non-
executable transitions, unspecified receptions and buffer overflows.

It is apparent from the first three rows of Table 6.5 that SRA, LRA and LRA2 can all produce
large savings over CRA for detecting non-executable transitions. The fourth and fifth row show the
reductions by LRA and LRA2 normalized with respect to SRA. LRA combines modest reductions
in space over SRA with more discrete reductions in time. LRA2 yields noticeable better space
reductions over SRA. It can sometimes be slower than LRA (and SRA), when the extra reduction in
the number of explored transitions is not sufficient to counteract the run-time overhead for
computing xpleap-2(G, ∅, ∅) instead of xpleap(G, ∅, ∅) (see Section 5.5), but for protocols with
higher concurrency levels this circumstance disappears. The last row of Table 6.5 confirms that
LRA2 is a worthy refinement of LRA (and thus of SRA) for the detection of non-executable
transitions in a protocol.

Detecting unspecified receptions

As explained in Section 5.6.2, when using SRA for detecting unspecified receptions (ur-pairs) in a
protocol, the protocol must first be preprocessed. In this preprocessing step, the given protocol is
augmented with extraneous receive transitions (see Definition 5.55) that involve a simplex channel
indexed in the selected subset J of channel indices. All ur-pairs wrt J in the original protocol are
then detected by applying SRA to the augmented protocol instead [ÖU95, Özd95]. In order to
detect the same ur-pairs with LRA, no protocol augmentation is required. State exploration is
carried out on the original protocol by executing at each generated global state G the leap sets in
xpleap(G, J, ∅), or those in xpleap-2(G, J, ∅) in case of the refined version LRA2 proposed in
Section 5.5.

Table 6.6 compares the average reduction performance of LRA and LRA2 against SRA for
detecting ur-pairs in the synthesized protocols. In every experiment, we fixed the index set J as the
complete set L of channel indices for each synthesized protocol P = (P, L). That is, the figures in
Table 6.6 indicate average reductions obtained by SRA, LRA and LRA2 for detecting all the ur-
pairs of a protocol in a single verification run. One can see that LRA and LRA2 achieve significant

Chapter 6!!Experiments 123

reductions over CRA in both space and time. SRA also yields good space reductions over CRA,but
at a potential expense of time. It tends to be increasingly slower as the number of processes or the
concurrency level of a protocol grows, slower even than CRA. Consequently, while LRA and LRA2
perform just moderately better than SRA in space, they can perform much better than SRA in time.
The increasing time overhead incurred by SRA can be related to the protocol augmentation required
before state exploration. First, there is the extra overhead for adding extraneous receive transitions
to the processes in a protocol. With more processes, more such transitions may need to be added
(see Figure 5.9). Second, and more importantly, during state exploration these extraneous receive
transitions may manifest themselves as potentially executable transitions at various global states.
This can cause a large increase of the number of selected simultaneously executable sets that are
computed and executed by SRA, as testified by the combinatorics at the end of Section 5.6.1 (this
number can be substantially larger than the number of leap sets executed by LRA or LRA2).

Table 6.6!!LRA compared to SRA for detecting ur-pairs.

Techniques Average reductions (%) per
 number of processes concurrency level

2 3 4 5 6 7 8 [0, 1] (1, 2] (2, 3] (3, 4]

SRA
vs.
CRA

states
transitions

space
time

49.54
52.62
49.30
43.49

50.37
40.39
50.47
27.81

48.69
23.19
48.75

 -10.17

50.87
19.51
50.94

 -24.87

55.43
9.22
55.60

 -76.87

62.94
19.16
63.00

 -77.96

71.44
26.82
71.39

-101.01

44.98
36.27
44.80
17.21

50.95
21.33
51.04

-25.76

68.12
32.39
68.17

-56.88

71.73
32.85
71.69

-96.20

LRA
vs.
CRA

states
transitions

space
time

51.77
57.81
51.53
47.72

53.78
58.04
53.87
44.20

52.27
57.00
52.35
35.87

54.28
58.79
54.39
36.30

58.83
62.95
59.03
34.72

65.31
69.15
65.43
41.15

74.57
77.67
74.58
59.60

47.27
52.96
47.10
39.10

54.26
58.70
54.37
36.64

71.22
74.80
71.32
53.36

75.76
79.48
75.74
55.50

LRA2
vs.
CRA

states
transitions

space
time

54.98
64.01
54.74
34.57

58.62
69.49
58.75
37.13

57.55
68.95
57.73
33.84

58.44
69.77
58.63
38.39

63.54
75.07
63.84
42.87

69.93
80.37
70.17
30.47

78.41
87.08
78.52
66.58

50.52
60.28
50.38
28.25

58.90
70.57
59.09
33.95

76.03
85.28
76.25
56.03

80.47
88.59
80.56
55.69

LRA
vs.
SRA

states
transitions

space
time

4.42
10.95
4.40
7.49

6.87
29.61
6.86
22.70

6.98
44.02
7.02
41.79

6.94
48.80
7.03
48.99

7.63
59.19
7.73
63.09

6.40
61.84
6.57
66.93

10.96
69.49
11.15
79.90

4.16
26.19
4.17
26.44

6.75
47.50
6.80
49.62

9.72
62.73
9.90
70.27

14.26
69.44
14.31
77.32

LRA2
vs.
SRA

states
transitions

space
time

10.78
24.04
10.73

 -15.78

16.62
48.82
16.72
12.91

17.27
59.58
17.52
39.95

15.41
62.44
15.67
50.66

18.20
72.54
18.56
67.70

18.86
75.72
19.38
60.93

24.40
82.34
24.92
83.37

10.07
37.67
10.11
13.33

16.21
62.59
16.44
47.48

24.81
78.23
25.38
71.97

30.92
83.01
31.33
77.42

LRA2
vs.
LRA

states
transitions

space
time

6.66
14.70
6.62

-25.15

10.47
27.29
10.58

 -12.67

11.06
27.79
11.29

 -3.17

9.10
26.64
9.30
3.28

11.44
32.71
11.74
12.48

13.32
36.37
13.71
-18.15

15.10
42.14
15.50
17.28

6.16
15.56
6.20

-17.82

10.14
28.74
10.34

 -4.25

16.71
41.59
17.19
5.72

19.43
44.40
19.87
0.43

Chapter 6!!Experiments 124

Detecting buffer overflows

The last comparison between LRA, LRA2 and SRA for the set of synthesized protocols concerns
the detection of buffer overflows (bo-pairs). Recall that LRA and LRA2 detect all bo-pairs wrt a
selected subset K of channel indices by executing at each generated global state G the leap sets in
respectively xpleap(G, ∅, K) and xpleap-2(G, ∅, K). SRA uses the set sses(G, K) instead, where
sses(G, K) ⊇ xpleap(G, ∅, K) (see Section 5.6.3). For each synthesized protocol P = (P, L), the
index set K was set to L to enable the detection of all bo-pairs of the protocol in a single verification
run. The results of the experiments are collected in Table 6.7. Observe that LRA and LRA2 yield
little or no extra space reductions over SRA for detecting bo-pairs. However, SRA achieves
respectable reductions in space over CRA only at a considerable expense of time, as it continually
explores more global state transtions than CRA. LRA and LRA2 clearly demonstrate a much better
time performance than SRA.

Table 6.7!!LRA compared to SRA for detecting bo-pairs.

Techniques Average reductions (%) per
 number of processes concurrency level

2 3 4 5 6 7 8 [0, 1] (1, 2] (2, 3] (3, 4]

SRA
vs.
CRA

states
transitions

space
time

4.58
-40.42

4.55
-40.04

15.81
 -51.21
15.64

 -69.35

 29.17
-50.62
 28.85

-100.52

 27.79
-60.66
 27.49

-143.94

 39.57
-67.15
 39.15

-206.75

 48.55
-61.65
 48.08

-321.49

 59.70
-47.42
 59.16

-206.17

7.38
-45.39

7.30
-58.21

27.83
-58.61
27.52

-140.88

50.39
-57.73
49.92

-246.64

 66.72
 -7.29
 66.23
-144.73

LRA
vs.
CRA

states
transitions

space
time

4.67
3.84
4.63

 -6.33

15.93
17.75
15.76
1.89

29.71
32.83
29.39
10.51

28.57
31.52
28.26
 2.30

40.55
44.13
40.12
11.37

48.69
51.79
48.19
19.23

61.61
64.72
61.03
44.94

7.46
7.44
7.37
-6.15

28.30
31.23
27.99
6.25

51.19
54.23
50.68
26.43

71.16
73.63
70.61
53.57

LRA2
vs.
CRA

states
transitions

space
time

4.83
8.72
4.79

-32.19

16.02
22.49
15.85

 -11.92

30.04
39.79
29.72
1.88

28.91
40.41
28.60
0.28

40.90
52.31
40.47
13.41

48.92
60.50
48.43

 -5.33

62.04
73.46
61.46
49.00

7.58
11.84
7.50

-27.24

28.50
38.10
28.19

 -3.67

51.60
64.10
51.10
20.60

72.22
83.11
71.68
57.20

LRA
vs.
SRA

states
transitions

space
time

0.09
31.52
0.08
24.07

0.14
45.61
0.14
42.07

0.76
55.40
0.76
55.37

1.08
57.38
1.06
59.95

1.62
66.57
1.59
71.11

0.27
70.18
0.21
80.84

4.74
76.07
4.58
82.02

0.09
36.34
0.08
32.91

0.65
56.64
0.65
61.08

1.61
70.98
1.52
78.78

13.34
75.42
12.97
81.03

LRA2
vs.
SRA

states
transitions

space
time

0.26
35.00
0.25
5.61

0.25
48.74
0.25
33.91

1.23
60.03
1.22
51.07

1.55
62.91
1.53
59.12

2.20
71.47
2.17
71.77

0.72
75.56
0.67
75.01

5.81
82.00
5.63
83.34

0.22
39.36
0.22
19.58

0.93
60.97
0.92
56.96

2.44
77.24
2.36
77.09

16.53
84.26
16.14
82.51

LRA2
vs.
LRA

states
transitions

space
time

0.17
5.07
0.17

-24.32

0.11
5.76
0.11

-14.08

0.47
10.36
0.47

 -9.64

0.48
12.98
0.47

 -2.07

0.59
14.64
0.58

 2.30

0.45
18.07
0.46

 -30.41

1.12
24.77
1.10

 7.37

0.13
4.75
0.14

-19.87

0.28
9.99
0.28

-10.58

0.84
21.56
0.85

 -7.92

3.68
35.95
3.64
7.82

Chapter 6!!Experiments 125

LRA in a nutshell

As a supplement to the detailed comparisons in the preceding tables, Figure 6.4 recapitulates the
performance of LRA as a whole, with respect to CRA. The average percentages of reduction by
LRA are arranged by concurrency level and by the different types of logical errors covered, viz.
non-progress states (type A), non-executable transitions (type B), unspecified receptions (type C)
and buffer overflows (type D). For every two adjacent bars with the same shade, the left bar depicts

Concurrency level

A
ve

ra
ge

 sp
ac

e
re

du
ct

io
n

(%
)

0

20

40

60

80

100

(0,1] (1,2] (2,3] (3,4]

Concurrency level

A
ve

ra
ge

 ti
m

e
re

du
ct

io
n

(%
)

-40

-20

0

20

40

60

80

100

(0,1] (1,2] (2,3] (3,4]

A A, B A, B, C, DA, B, C A, B, D

Figure 6.4!!LRA versus CRA for verifying logical correctness properties.

Chapter 6!!Experiments 126

the reduction by the basic version of LRA as defined in Section 5.1 through Section 5.4, and the
right bar depicts the reduction by the refined version LRA2 of LRA as defined in Section 5.5 (this
does not apply for the detection of non-progress states alone). Observe once more that, when the
error coverage is fixed, the performance in space and time of either version improves steadily with
increasing level of concurrency. Observe also that, merely natural, the performance drops with
increasing logical error coverage and a fixed level of concurrency. This is most perceptible when the
verification task comprises the detection of all buffer overflows, especially for protocols with a low
concurrency level. One should recall, however, that the detection of all buffer overflows and
unspecified receptions in a protocol can be divided into several independent and potentially smaller
subtasks (cf. Example 5.44 and Example 5.45). Executing these subtasks in parallel on different
processors will generally result in larger space and time reductions.

6.3.2 Experiments with real protocols

Table 6.8 through Table 6.10 contain the results of our experiments with three “real” protocols
taken from the literature. The first protocol is the CCITT X.21 interface specification of the call
establishment/clear procedure for connecting Data Terminal Equipment (DTE) to Data Circuit-
termination Equipment (DCE) in a public data network [CCITT76]. This specification can be
formalized in the CFSM model as a 2-process protocol that models the interactions between a DTE
and DCE [WZ78]. The second protocol is an alternating bit protocol for the transmission of data
between two users over two unreliable simplex channels. This protocol is specified in the CFSM

Table 6.8!!Experimental results for the X.21 call establishment/clear protocol.

Logical error coverage Technique States Transitions Space
(MB)

Time
(sec)

Types A, B, C and D
CRA
LRA
LRA2

29868
25649
25202

64903
56150
48332

1.42
1.22
1.20

10.58
9.85

11.33

Types A, B and D
SRA
LRA
LRA2

26085
25596
25124

76744
56019
48094

1.24
1.22
1.20

12.90
9.73

11.25

Types A, B and C
SRA
LRA
LRA2

16400
15926
15427

31680
29126
26666

0.79
0.77
0.74

6.45
5.90
6.33

Types A and B
SRA
LRA
LRA2

16397
15922
15443

31654
29110
26680

0.79
0.77
0.74

6.57
5.83
6.22

Type A LRA 15313 26237 0.74 5.48

Chapter 6!!Experiments 127

Table 6.9!!Experimental results for the alternating bit protocol.

Logical error coverage Technique States Transitions Space
(MB)

Time
(sec)

Types A, B, C and D
CRA
LRA
LRA2

135352
97068
96280

626608
462088
355461

6.84
4.91
4.87

64.68
58.02
66.85

Types A, B and D
SRA
LRA
LRA2

106232
86526
86525

1366696
411242
310607

5.37
4.41
4.41

190.57
52.37
59.73

Types A, B and C
SRA
LRA
LRA2

71200
63342
60466

389016
277920
251741

3.61
3.22
3.07

67.68
50.60
58.70

Types A and B
SRA
LRA
LRA2

71192
63708
60670

333886
265772
242855

3.61
3.24
3.08

61.65
49.62
54.38

Type A LRA 57898 223954 2.94 42.42

Table 6.10!!Experimental results for the cache coherence protocol.

Logical error coverage Technique States Transitions Space
(MB)

Time
(sec)

Types A, B, C and D
CRA
LRA
LRA2

37037
37037
37037

126152
126152
126152

1.90
1.90
1.90

32.52
32.35
32.80

Types A, B and D
SRA
LRA
LRA2

24858
19781
18797

156145
56901
36526

1.28
1.03
0.98

75.83
19.47
20.43

Types A, B and C
SRA
LRA
LRA2

26888
26857
26857

271472
88666
84610

1.37
1.37
1.37

111.08
22.72
22.68

Types A and B
SRA
LRA
LRA2

7120
6356
5572

14211
11749
7920

0.36
0.32
0.28

6.97
5.25
5.23

Type A LRA 5572 7619 0.28 3.53

model as a network of four communicating processes, viz. two processes to model the users and
two processes to model possible message loss from the channels between the users [Pac87]. The
third protocol is a cache coherence protocol originally described in 255 lines of a protocol
specification language called Promela [Hol91]. We have rewritten the Promela specification as a
protocol in the CFSM model. It consists of six communicating processes. Both the Promela
specification and its translation in the CFSM model are given in the appendix of this thesis. We

Chapter 6!!Experiments 128

have listed for each protocol the number of global states stored and transitions explored, and the
actual amount of space (in megabytes) and time (in seconds) consumed by CRA, and by SRA, LRA
and LRA2 for the different levels of logical error coverage they support. As in Figure 6.4, logical
errors of type A, B, C and D stand respectively for non-progress states, non-executable transitions,
unspecified receptions and for buffer overflows. Note that SRA is not listed in the first row of
Table 6.8 through Table 6.10 where the logical error coverage is type A, B, C and D. This is
because the implementation of SRA does not support the detection of both unspecified receptions
and buffer overflows together in a single verification run [Özd95]. SRA is also not listed in the last
row of Table 6.8 through Table 6.10 where the logical error coverage is type A only, because the
technique is not formulated for the detection of non-progress states separate from the detection of
non-executable transitions (recall the discussion before Table 6.2). LRA2 is not listed in this last
row either because it applies as a refinement of LRA for detecting logical errors other than non-
progress states (see Section 5.5).

6.4 Conclusion

In this chapter we have discussed the results of an empirical evaluation of the performance of LRA
with respect to SRA and CRA for the verification of logical correctness properties of protocols. In
order to eliminate potential favoritism, the three techniques were tested on several hundred protocols
that were generated randomly with an automatic protocol synthesizer. In addition, they were tested
on three real protocols taken from the literature. From all the experiments performed, we observed
that LRA can yield significant extra reductions over SRA in both space and time for the detection of
non-progress states in a protocol. For the detection of non-executable transitions, unspecified
receptions and buffer overflows, the space reductions by LRA over SRA may be less significant,
but the time reductions by LRA over SRA remain very good. We therefore conclude that LRA is a
useful improvement of SRA as a relief strategy for protocol verification. In particular, it is an
absolutely no-risk improvement of SRA: using LRA instead of SRA is at no cost whatsoever,
neither in space nor in time.

