
Chapter 2

Protocol design and analysis: the CFSM model

In this chapter we present a simple model for the specification and verification of communication
protocols: the communicating finite state machine (CFSM) model. The CFSM model lends itself to
reachability analysis, a state exploration technique which has been advocated for verifying general
properties of protocols such as absence of deadlocks, non-executable transitions, unspecified
receptions and unbounded channel growth [ZW+80, BZ83]. We address two principal limitations
of reachability analysis, viz. undecidability and state explosion.

2.1 Modeling protocols as networks of CFSMs

A communication protocol consisting of interacting processes can be modeled as a network of
communicating finite state machines (CFSMs). Each CFSM is an abstraction of one of the
processes in the protocol and communicates with the other CFSMs by sending and receiving
messages over error-free simplex channels, represented by FIFO queues.

Notation 2.1
Given a set A, |A| denotes its cardinality and A* denotes the set of strings of elements in A, including
the empty string e. Juxtaposition is used to denote concatenation of strings. For a string Y ŒA*, |Y|

denotes its length and front(Y) denotes the first element of Y; front(Y) is undefined if |Y| = 0. Also,
·aiÒi ŒA denotes an |A|-tuple (ai1

, ai2
,º, ai |A|

). !

Definition 2.2
Let I = {1, 2,º, n} be a finite index set with n ≥ 2. A protocol P is a pair (P, L), where

• P = {Pi | i ŒI} is a set of n processes,

• L Õ I ¥ I is an irreflexive incidence relation identifying a nonempty set of error-free simplex
channels {Cij | (i, j) ŒL}.

Chapter 2!!Protocol design and analysis: the CFSM model 9

Each process Pi ŒP is a quadruple (Si , si
0 , Mi , Di), where

• Si is a finite, nonempty set of process states,

• si
0 ŒSi is the initial state of Pi ,

• Mi =

(Mijj ŒIU » Mji) , with Mij a finite set of messages that Pi can send to process Pj ,

• Di =

Di jj ŒIU is a finite set of transitions, with Di j Õ Si ¥ ˜ M ij ¥ Si and ˜ M ij = {–x | x ŒMij} »
{+y | y ŒMji},

such that "j, k, l ŒI: (i) Si « Sj = ∅ if i ≠ j, (ii) Mij « Mk l = ∅ if (i, j) ≠ (k, l) and (iii) Mij = ∅ if (i,
j) œL.

Each error-free simplex channel Cij ((i, j) ŒL) is a perfect FIFO queue linking process Pi to
process Pj . The content ci j of Cij is a string of messages from Mij , i.e. ci j Œ Mij*. !

A protocol can be viewed as a finite directed graph in which the nodes correspond to processes and
the edges correspond to simplex channels. This graph implicitly defines the communication
topology of the protocol. Similarly, a process can be viewed as finite directed graph in which the
nodes correspond to process states and the edges correspond to transitions. Each transition
represents the occurrence of an event, being either the transmission or the reception of a message by
a process. Notice that processes need not be deterministic (i.e. any two transitions of the same
process can be such that they differ only in their third component).

Definition 2.3
The topology graph of a protocol P = ({Pi | i ŒI}, L), denoted by TGP , is the directed graph with
vertex set I such that there is an edge from i ŒI to j ŒI iff (i, j) ŒL. The process graph of a process
Pi = (Si , si

0 , Mi , Di) is the labeled directed graph with vertex set Si such that there is an edge labeled
m from s ŒSi to s¢ ŒSi iff (s, m, s¢) ŒDi . !

Definition 2.4
Let P = ({Pi | i ŒI}, L) be a protocol and t = (s, m, s¢) ŒDi a transition (at s), for some i ŒI. t is a
send transition iff m = –x, with x Œ

Mijj ŒIU . t is a receive transition iff m = +y, with y Œ

Mjij ŒIU . !

The states of a protocol as a whole, or global states, are defined as the composite of individual
process (or local) states and channel contents. A global state assigns to each process a process state
of this process, and to each simplex channel a sequence of messages in transit over this channel. A
special global state is designated as the initial global state.

Definition 2.5
Let P = ({Pi | i ŒI}, L) be a protocol. A global state G of P is a pair (S, C), where

Chapter 2!!Protocol design and analysis: the CFSM model 10

• S = ·si
G Òi ŒI with si

G ŒSi the process (or local) state of process Pi in G,

• C = ·ci j
G Ò(i, j) ŒL with ci j

G ŒMij* the content of simplex channel Cij in G.

The initial global state, denoted by G0, is the global state (·si
G 0 Òi ŒI , ·ci j

G0 Ò(i, j) ŒL) with si
G 0 = si

0 and
ci j

G0 = e, for all i ŒI and (i, j) ŒL. !

Processes can execute transitions at global states. A receive transition defined at (a process state
of) a global state can be executed when the message to be received resides at the front of the
respective queue. Although a send transition could similarly be considered executable if the
respective queue is not full, in the traditional CFSM model queues are not a priori bounded1. A
send transition defined at a global state is then always executable.

Definition 2.6
Let G be a global state of a protocol P = ({Pi | i ŒI}, L) and t = (s, m, s¢) ŒDi j a transition, for some
i, j ŒI. When s = si

G , t is said to be defined at G. t is executable at G iff t is defined at G and

• t is a send transition, or

• t is a receive transition with m = +y and front(cj i
G) = y.

The set of send and receive transitions from Di j that are executable at G are denoted by Xij
-(G) and

Xij
+(G) , respectively, and Xij(G) = Xij

-(G) » Xij
+(G) . !

Notation 2.7

Xi
-(G) =

Xij

-
j ŒIU (G) Xi

+(G) =

Xij
+

j ŒIU (G) Xi(G) = Xi
-(G) » Xi

+(G)

X-(G) = Xi
-

i ŒIU (G) X+(G) = Xi
+

i ŒIU (G) X(G) = X–(G) » X+(G) !

2.2 Reachability analysis

A protocol defined in the CFSM model is a closed system: starting at the initial global state it can
evolve and change its global state by executing transitions. A natural way to analyze the possible
behavior of a protocol is then to consider its set of reachable global states and the transitions that
occur between them. More specifically, the complete interaction domain of the protocol can be

1 In [BZ83] the use of unbounded channels is justified conceptually as follows: “The queues modeling the simplex channels
have unbounded capacity to represent protocols allowing an arbitrary number of messages in transit. In a physical
implementation all channels must be bounded, but the bound may be too large to be of practical use. Moreover, since
protocols are supposed to operate over different channels with different capacities, a channel of unbounded capacity is the
proper abstraction.”

Chapter 2!!Protocol design and analysis: the CFSM model 11

examined by exploring all possible ways in which the initial global state and the subsequent global
states can be perturbed. This approach is traditionally called reachability analysis or perturbation
analysis, and was first recognized by West and Zafiropulo [WZ78, Wes78] as a simple and easy-
to-automate technique for the verification of communication protocols.

Definition 2.8
Let G and H be global states of a protocol P = ({Pi | i ŒI}, L). G æ Æ æ H iff $t ŒXij(G), for some i, j
ŒI, such that one of the following two conditions holds:

• t = (si
G , –x, si

H) and ci j
H = ci j

G x, while all other elements of H are the same as those of G;

• t = (si
G , +y, si

H) and cj i
G = ycj i

H , while all other elements of H are the same as those of G.

H is the successor of G by t, also denoted as G t
æ Æ æ H. !

The relation æ Æ æ is a binary relation over the global states of a protocol. Informally, G æ Æ æ H
represents a perturbation of a global state G resulting in another global state H via the execution of
a single transition of one of the processes, while the other processes and the unaffected simplex
channels remain unchanged. This notion is naturally extended to sequences of transitions.

Definition 2.9
Let G and H be global states of a protocol P, and denote by *

æ Æ æ the reflexive and transitive closure
of æ Æ æ . H is reachable from G iff G *

æ Æ æ H. When G = G0, H is said to be reachable. The set of all
reachable global states of P is denoted by RP . For a sequence of transitions s = t1t2…tm , G s

æ Æ æ
* H

denotes the existence of global states Q0,…, Qm such that G = Q0 t1
æ Æ æ Q1 t2

æ Æ æ æ … tm
æ Æ æ æ Qm = H. !

Definition 2.9 formalizes the conventional reachability analysis, yielding the set of all reachable
global states of a protocol and the transitions between them. This is referred to as the reachable
global state space of the protocol, which can be viewed as a (possibly infinite) directed graph with
nodes and edges corresponding to reachable global states and global state transitions, respectively.

Definition 2.10
The reachability graph of a protocol P is the labeled directed graph with vertex set RP such that
there is an edge labeled t from G ŒRP to H ŒRP iff G t

æ Æ æ H. !

In practice, the reachable global state space of a protocol is computed by performing a
systematic search of all the global states that are reachable from the initial global state. Figure 2.1
gives a standard algorithm for such a search [Hol91]. This algorithm recursively explores all
successor states of all global states encountered during the search, starting from the initial global

Chapter 2!!Protocol design and analysis: the CFSM model 12

state, by executing all executable transitions at these states. It uses a work set W of global states to
be analyzed, and a set A of global states already analyzed. As pointed out in [Hol91], the order of
retrieval of states from set W is consequential: a depth-first search is performed if W is a stack, and
a breadth-first search is performed if W is a queue. A brief discussion on the particular benefits of
each search strategy, as related to protocol verification, is deferred until Section 2.4. Clearly, the
algorithm terminates only if the number of reachable global states is finite. Upon termination, set A
should contain exactly the reachable global states of the protocol. It is not difficult to prove that this
is indeed the case [AHU74].

/* A is the set of global states that have been analyzed. */
/* W is the set of global states that still need to be analyzed. */

/* Initialize: */
A = ∅

W = {G0}

/* Loop: */
while W ≠ ∅ do {

remove an element G from W
add G to A
for all t in X(G) do {

derive the successor H of G by t /* execution of transition t */
if H is NOT already in A or W then add H to W

}
}

Figure 2.1!!Standard perturbation algorithm.

2.3 Example: a simple network access protocol

As an example of a communication protocol, consider a system in which a client process seeks
access to a network through communication with a server process [ZW+80]. This simple network
access protocol can be specified in the CFSM model as follows:

• P = {P1, P2}, where Pi = (Si , si
0 , Mi , Di) (i = 1, 2) with

• S1 = {10, 11, 12}, S2 = {20, 21, 22};

• s1
0 = 10, s2

0 = 20;

• M1 = M2 = M12 » M21 = {AReq, ATer} » {APer, ARej};

• D1 = D12 = {t11 , t12 , t13 , t14 }, D2 = D21 = {t21 , t22 , t23 , t24 }, where

Chapter 2!!Protocol design and analysis: the CFSM model 13

t11 = {10, –AReq, 11} t21 = {20, +AReq, 21} (Access Request)

t12 = {11, +ARej, 10} t22 = {21, –ARej, 20} (Access Rejected)

t13 = {11, +APer, 12} t23 = {21, –APer, 22} (Access Permitted)

t14 = {12, –ATer, 10} t24 = {22, +ATer, 20} (Access Terminated)

• L = {{1, 2}, {2, 1}} (i.e. there are two error-free simplex channels C12 and C21).

C12

C21

P1 (Client Process)

10

11

12

–AReq+ARej

+APer

–ATer

start

P2 (Server Process)

20

21

22

+AReq –ARej

–APer

+ATer

start

Figure 2.2!!A network access protocol.

Process P1 models the client process and process P2 models the server process. The respective
process graphs are shown in Figure 2.2. Initially, each process is at its initial state (process states
10 and 20, respectively) and both simplex channels are empty. The only event that can occur in this
initial global state is the transmission of an Access Request message by P1 (transition t11). This
event causes P1 to move from state 10 to state 11 and the message “AReq” to be placed in channel
C12. At this point P1 cannot progress since only receive transitions are specified at state 10 while
channel C21 is still empty. With “AReq” in C12, however, process P2 can receive this message by
executing transition t21 . In doing so it moves from state 20 to state 21, and channel C12 becomes
empty again. Note that there is no assumption on the time a message spends in a channel, i.e. the
delay between the transmission and the reception of a message is variable and unspecified. P2 can
now continue by putting either “ARej” or “APer” in C21 (transition t22 or t23), corresponding to
rejecting or permitting network access, respectively. In either case, P2 reaches a state at which it
cannot execute any transition until P1 places a new message in channel C12. A further step-wise
analysis of the joint behavior of the two processes readily yields the complete reachable global state
space of the protocol, as shown by the reachability graph in Figure 2.3. It contains 8 global states

Chapter 2!!Protocol design and analysis: the CFSM model 14

and 10 transitions. An inspection of this graph quickly reveals that the contents of both simplex
channels remain finite, C12 holding at most two messages and C21 at most one message. Also, the
protocol seems to manifest a “healthy” cyclic behavior since it can eventually return to its initial
global state.

(·10, 20 Ò, ·e, eÒ)

(·11, 20 Ò, ·AReq, eÒ)

(·11, 21 Ò, ·e, eÒ)

(·11, 20 Ò, ·e, ARejÒ) (·11, 22 Ò, ·e, APerÒ)

(·12, 22 Ò, ·e, eÒ)

(·10, 22 Ò, ·ATer, eÒ)

(·11, 22 Ò, ·ATer-AReq, eÒ)

1
1t

2
1t

2
3t2

2t

1
2t

1
3t

1
4t

1
1t

2
4t

2
4t

Figure 2.3!!The reachability graph of the network access protocol in Figure 2.2.

2.4 Protocol verification by reachability analysis

For the network access protocol above, a simple “walkthrough” by simulating the processes
provides considerable insight of the behavior of this protocol. Inspecting the reachability graph is
easy because it is small. One must realize, however, that the 8 reachable global states emerge from a
potentially much larger number. Let us assume that simplex channel C12 holds at most two
messages from the set {AReq, ATer} and that simplex channel C21 holds at most one message
from the set {ARej, APer}. With processes P1 and P2 each having 3 process states, there are in fact
3 ¥ 3 ¥ (20 + 21 + 22) ¥ (20 + 21) = 189 syntactically distinct global states. Although 181 of these
states play no role in the behavior of the protocol (as they are not reachable from the initial global
state), this calculation demonstrates the potential exponential growth of states that may result from

Chapter 2!!Protocol design and analysis: the CFSM model 15

reachability analysis, even when assuming a very limited number of messages in the channels at any
time. As a consequence, analyzing the behavior of a protocol is generally much more complex. It
requires precise definitions of error conditions or correctness conditions in order to determine the
existence of design errors by examining the reachability graph constructed during reachability
analysis.

The correctness conditions commonly considered for protocols specified in the CFSM model
are defined in terms of erroneous transitions and (reachable) global states. It is usually desirable
that a protocol be free from non-executable transitions, i.e. transitions that cannot be executed at
any reachable global state. A non-executable transition compares to “dead code” in a computer
program and indicates a design error. Presumably, the protocol designer has included the transition
believing it would be used. The design needs to be reconsidered: the transition is either removed,
with no effect on the behavior of the protocol, or the transition is made executable by adding or
modifying other transitions.

Definition 2.11
Let P = ({Pi | i ŒI}, L) be a protocol and t Œ Dii ŒIU a transition. t is non-executable iff $/ G ŒRP :
t!ŒX(G). !

A protocol should generally also be free from deadlocks. A deadlock is a reachable global state in
which all channels are empty and none of the processes is ready to send a message. This is a
special case of a non-progress state, in which the channels need not be empty but no process is
able to execute a transition. A non-progress state normally testifies that the protocol has come to an
“unexpected halt”. The unexpected nature of halting is what indicates a design error. A deadlock
state can also be seen as a special case of a stable state. Stable states are reachable global states with
all channels empty and irrespective of the ability of processes to execute transitions. They can be
useful for detecting loss of synchronization [Wes78].

Definition 2.12
Let P = (P, L) be a protocol. A global state G ŒRP is a progress state iff X(G) ≠ ∅; otherwise, G is
a non-progress state. G is a stable state iff "(i, j) ŒL: ci j

G = e. G is a deadlock state iff it is a non-
progress state and a stable state. P progresses indefinitely iff "G ŒRP : G is a progress state. !

Finally, a protocol should generally not exhibit any unspecified reception states. An unspecified
reception state refers to a reachable global state in which a message at the front of some queue
cannot be received due to a missing (i.e. unspecified) receive transition. The design error here is a
case of “underspecification”, in contrast to a non-executable transition which signifies
“overspecification”.

Chapter 2!!Protocol design and analysis: the CFSM model 16

Definition 2.13
Let P = (P, L) be a protocol. A global state G ŒRP is an unspecified reception state iff $(j, i) ŒL:
front(cj i

G) = y and (si
G , +y, s) œDi . The pair (si

G , y) is called an unspecified reception (ur-pair for
short) for process Pi (in G). !

Note that a non-progress state is either a deadlock state or an unspecified reception state. In the
latter case one also speaks of a blocking unspecified reception state. The absence of both deadlocks
and unspecified receptions thus implies the absence of non-progress states.

The above correctness conditions have been used to verify whether the communication among
the processes in a protocol progresses indefinitely [Gou84], and whether the protocol itself is
complete and logically consistent [ZW+80]. This explains why they are also referred to as progress
properties or logical correctness properties. A protocol is often said to be logically correct when it
is free from deadlocks, unspecified receptions and non-executable transitions. Verifying the logical
correctness of a protocol by reachability analysis amounts to constructing the entire reachable
global state space of the protocol while checking each reachable global state against the respective
correctness conditions. The verification algorithm is thus the same as the standard perturbation
algorithm in Figure 2.1, apart from a few straightforward additions to report any violations of
logical correctness properties. As mentioned in Section 2.2, this algorithm allows a breadth-first
search as well as a depth-first search of the reachable global state space. The former has the
advantage of exposing the shortest path to an “error state” first. The latter has the advantage that it
does not require extra information to be stored in order to reconstruct a path to such a state: a path
is implicitly defined by the content of the stack. Also, as the depth of a search tree is usually much
smaller than its breadth, a depth-first search often requires considerably less memory to maintain
the set W of states to be analyzed [Hol91]. Saving memory in case of a depth-first search is further
possible by storing only the global states in the “current” search path. The set A of analyzed states
is then not needed. Of course, this is generally at the expense of running time for it can no longer
be determined whether a newly generated global state has already been encountered in a previous
search path. Redundant explorations of global states are thus likely to be carried out.

Example 2.14
Consider again the network access protocol in Section 2.3. It follows from the reachability graph in
Figure 2.3 that this protocol is logically correct. Indeed, there are no deadlock states since all the
reachable global states have an “outgoing” transition. Furthermore, all transitions are executable
since each transition appears at least once in the reachability graph. Finally, there are no unspecified
reception states since all the reachable global states which still contain a message at the front of an
incoming queue have an “outgoing” receive transition for that message. !

Chapter 2!!Protocol design and analysis: the CFSM model 17

Example 2.15
Consider the protocol depicted by Figure 2.4. Figure 2.5 illustrates part of its reachability graph
which consists of a total of 25 global states and 35 transitions. One can see that the protocol
contains at least one deadlock state and three unspecified reception states (one being a non-progress
state as well). By completing the reachability graph, one can further see that the three transitions
(22, +a, 23), (23, –d, 22) and (11, +d, 10) are non-executable transitions. !

C12

C21

P1

–a+d

–c+b

+b

+b

10

11

12

start

P2

20

21

–b

+a

+c

22

23

+a–d

start

Figure 2.4!!A protocol with design errors.

In principle, proving a protocol correct requires more than just verifying the absence of
deadlocks, unspecified receptions and non-executable transitions. A protocol may be logically
correct and yet not perform its intended functions. The traditional focus of reachability analysis is
nevertheless on general properties that are of interest to all protocols independent of their intended
functionality [BZ83, ZW+80], such as the ones defined. The differentiation between general
correctness requirements and functional, protocol-specific requirements appears natural and has
long been accepted. This is witnessed for example by the following citation, hinting at an analogy
between the syntactic correctness of a program and the logical correctness of a protocol [Rud88]:

“Just as successfully passing through a syntax-checking precompiler is no guarantee that a program written
in a high-level language will perform its intended function, validation of a protocol does not guarantee that
the protocol will perform its intended function.”

Here, “validation” actually means “verification” for the objective is to prove a protocol logically

Chapter 2!!Protocol design and analysis: the CFSM model 18

correct. Violations of logical correctness properties are thus interpreted as “syntactic” errors in the
protocol, while violations of functional requirements can be seen as “semantic” errors.

(·11, 20 Ò, ·a, eÒ) (·10, 21 Ò, ·e, bÒ)

(·10, 20 Ò, ·e, eÒ)

(·11, 21 Ò, ·a, bÒ)(·12, 20 Ò, ·ac, eÒ) (·11, 21 Ò, ·e, eÒ)

(·12, 21 Ò, ·ac, bÒ) (·12, 21Ò, ·a, eÒ)

(·12, 21Ò, ·c, eÒ)(·11, 22 Ò, ·e, bÒ)

(·12, 22 Ò, ·c, bÒ) (·12, 22 Ò, ·e, eÒ)

(11, –c, 12)

(10, –a, 11)

(11, –c, 12)

(20, –b, 21)

(10, +b, 11)

(20, –b, 21) (10, –a, 11)

(20, –b, 21)

(11, +b, 12)

(11, –c, 12) (11, +b, 12)

(12, +b, 11) (22, +c, 20)

(12, +b, 11)

(21, +a, 22)

(21, +a, 22)

(21, +a, 22)

(11, –c, 12)

deadlock
state

non-progress
state

unspecified reception
state

Figure 2.5!!The (partial) reachability graph of the protocol in Figure 2.4.

Logical correctness properties also classify as so-called safety properties. Safety properties are
intuitively characterized as stating that “bad things” never happen, as opposed to liveness
properties which state that “good things” do eventually happen [Lam77]. The violation of a logical
correctness property (e.g. the occurrence of a deadlock or unspecified reception) then corresponds
to a “bad thing” that is irremediable and takes place fundamentally after a finite sequence of
execution steps of a protocol. Liveness properties are typically used to claim that a protocol does
something useful, like performing its intended functions (e.g. faithful message transfer). Most
properties of this kind can be violated by infinite execution sequences only [Sis85, AS87]. We will
return in detail to the analysis of general safety and liveness properties in Chapter 7.

2.5 Challenges in reachability analysis

Reachability analysis has become an established technique for protocol verification, and several
notable “success stories” about applying this technique to complex, industrial-size protocols have

Chapter 2!!Protocol design and analysis: the CFSM model 19

been reported over the past 15 years (e.g., see [Rud92]). Nevertheless, there are two fundamental
problems with reachability analysis which render its use impractical, still, for most real protocols,
namely undecidability and state explosion.

2.5.1 Undecidability

In [BZ81], Brand and Zafiropulo showed that most properties of interest, such as logical
correctness properties, are in general undecidable for protocols specified in the CFSM model.
Undecidability stems from the potential unboundedness of the channels in the model. Even a
protocol consisting of two processes communicating over two channels with unbounded capacity
appears as powerful as a Turing machine. In essence, the halting problem reduces to the problem of
detecting (logical) design errors in a protocol by using the unbounded channels to simulate the tape
of a Turing machine [BZ81].

Despite this negative result, decidability of the verification problem is known for some classes
of protocols. Most eminently, reachability analysis decides the verification problem for all those
protocols whose channels are bounded.

Definition 2.16
Let P = (P, L) be a protocol and Cij a simplex channel, with (i, j) ŒL. Cij is bounded iff $K ≥ 0 "G
ŒRP : |ci j

G | £ K. !

Definition 2.17
A protocol P is bounded iff RP is finite. !

Clearly, from these two definitions a protocol is bounded iff all its simplex channels are bounded.
Although boundedness of channels is also undecidable in general, most common protocols do not
make use of the full generality of the CFSM model. Brand and Zafiropulo observe [BZ83, p. 329]:

“[…] many practical protocols do have all their channels bounded. Protocols with unbounded channels usually
use them in a simple manner, which makes them worth considering.”

Other classes of protocols for which the verification problem is decidable by reachability analysis
similarly originate from restricting the allowable sequences of messages that can be in transit at any
time. These classes are identified by, for instance, a language-like requirement on the contents of
each channel [Pac87, Fin88, Oku88], or by the boundedness of specific channels in combination
with a restricted communication topology [BZ83, GH85, PP90, CR93, LM94].

Lastly, for unbounded protocols one can elude undecidability to some degree by prescribing
bounds on the channel capacities. A protocol may then not be fully analyzable but it can be verified
correct by approximation [BZ83]. Precisely, by assigning to each simplex channel of a protocol an

Chapter 2!!Protocol design and analysis: the CFSM model 20

explicit bound on the maximum number of messages it may hold, and thereby preventing the
execution of send transitions involving full channels (cf. Definition 2.6), the reachability graph of
the protocol is guaranteed to be finite. Channels with prescribed capacity bounds will be referred to
as prebounded channels. For protocols with prebounded channels an additional logical correctness
property is of interest, namely freedom of buffer (or channel) overflows [WZ+80].

Definition 2.18
Let P = (P, L) be a protocol and denote by Bij the bound on a simplex channel Cij . A global state G
ŒRP is a buffer overflow state iff $(i, j) ŒL: |ci j

G | = Bij and (si
G , –x, s) ŒDi j , for some x ŒMij . The

pair (si
G , x) is called a buffer overflow (bo-pair for short) for process Pi in G. !

Buffer overflow states are thus reachable global states in which some process is ready to send a
message onto a full channel. Detecting the underlying bo-pairs is beneficial for several reasons. A
bo-pair may indicate that the prescribed bound on a channel is not sufficient and “restricts” the
behavior of a protocol in an adverse way or, conversely, it may reveal that the protocol is unbounded
which is likely to be a design error as well. Also, a bo-pair may indicate that a channel will overflow
in practice in case of a conforming protocol implementation where processes do not know the status
of their outgoing buffers. This would typically result in oblivious message loss.

2.5.2 State explosion

When a protocol is bounded it is theoretically possible to explore and analyze its entire reachable
global state space. In practice, however, even the state space of a bounded protocol may be
restrictively large for exhaustive search. As illustrated at the beginning of Section 2.4, simple
combinatorics affirm that the number of reachable global states may grow exponentially, a
phenomenon known as the state explosion problem. This problem comes into effect when the size
of the state space surpasses the amount of memory available for the search: exhaustive state
exploration becomes impractical.

Fortunately, the state explosion problem is not always unavoidable. It is well-known that many
protocols manifest a large number of reachable global states and transitions that are redundant for
verification purposes. Indeed, for nearly two decades much effort has been spent on devising
techniques that exploit this redundancy and thereby relieve the state explosion problem. Such relief
strategies enable the verification of properties of protocols by examining only part of their state
spaces. The next chapter provides an overview of existing relief strategies, in particular of those
pertaining to the CFSM model.

