

Internet Telephony Services for Presence

With SIP and Extended CPL

Dongmei Jiang

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of

the requirements for the degree of

Master of Computer Science

Under the auspices of the

Ottawa-Carleton Institute for Computer Science

University of Ottawa

Ottawa, Ontario, Canada

December 2003

© Dongmei Jiang, Ottawa, Canada, 2003

 i

Abstract

Internet Telephony is the next generation of telephony with many new features and low

cost. Because of the explosion of new features, it has become critical to control and

manage these features. The main challenge in Internet Telephony is service

programming. The Call Processing Language (CPL) is a solution for end users to

describe and control their services in Internet Telephony. Current CPL focuses on call

processing services only. It is not adequate for the definition of many types of new

services, such as the combination of telephony services with email, instant messaging,

presence etc. This thesis extends CPL to describe new Internet Telephony services

including presence services and call processing services related to presence. In the thesis,

the presence system is systematically described in a three-layer architecture. End user’s

presence services and system basic services are clearly separated in the architecture.

Presence information, as the basis of presence services, is extended from traditional

“online” and “offline” indicators to include broader meaning, such as location, phone line

status, role and availability status etc. Through CPL extensions for presence, user’s new

presence services and new presence related call processing services are illustrated by

using various examples. A simulation system is implemented to demonstrate the Internet

Telephony services specified in extended CPL. End users can create and modify their

own services via the Graphic User Interfaces (GUIs) and access their services at any

location through the Internet. The simulation system is verified with various test cases.

Keywords: Feature, Service, Policy, Internet Telephony, Presence, SIP, CPL, PIDF

 ii

Acknowledgements

I would like to thank my supervisor, Dr. Luigi Logrippo, for his guidance with this

research. His encouragement and support are very much appreciated.

I would like to thank all members in the LOTOS group at the University of Ottawa, in

particular Jacques Sincennes, Romelia Plesa, and Yiqun Xu, for their constructive

discussions.

I want to thank Dr. Ramiro Liscano and Mr. Tom Gray for their precious advices and

suggestions. The initial idea for this work was given to me by Dr. Liscano.

I appreciate the financial support from CITO, Mitel, NSERC, Ontario Ministry of

Training, Colleges and Universities, and the University of Ottawa.

Finally, I would like to thank my husband, Ping, my son, Dajian, for their understanding

and patience throughout the years.

 iii

Table of Contents

Abstract …………………………………………………..…………………………… i

Acknowledgements …………………………………………………………………… ii

Table of Contents ……………………………………………………………………... iii

Acronyms ……………………………………………………………………………… vii

List of Figures …………………………………………………………………………. ix

List of Tables ………………………………………………………………………….. xii

Chapter 1 Introduction ………………………………………………………………… 1

 1.1 Background and Motivation ………………………………………………………. 1

 1.1.1 Internet Telephony…………………………………………………………….. 1

 1.1.2 Programming Internet Telephony Services in CPL ………………………….. 3

 1.1.3 CPL Limitations ……………………………………………………………… 4

 1.2 Thesis Objectives ………………………………………………………………….. 4

 1.3 Thesis Organization ……………………………………………………………….. 6

 1.4 Related Work ……………………………………………………………………… 7

Chapter 2 Internet Telephony Services with SIP and CPL ………………………… 9

 2.1 Introduction ………………………………………………………………………. 9

 2.2 Internet Telephony Features with SIP …………………………………………….. 9

 2.2.1 SIP is a Signaling protocol …………………………………………………… 10

 2.2.2 SIP is on Application Level …………………………………………………. 10

 2.2.3 SIP Components …………..………………………………………………… 11

 2.2.4 SIP Methods and Messages ………..………………………………………... 11

 2.2.5 SIP Features ……… ………………………………………………………... 14

 2.3 End User Services Specified in CPL ……..………………………………………. 19

 2.3.1 Introduction to CPL ………..………………………………………………... 19

 2.3.2 CPL Structure …………..…………………………………………………… 19

 2.3.3 CPL Available Tags ………..……………………………………………….. 22

 2.3.4 End User Services in CPL …………………………..………………………. 23

 iv

 2.4 Service Mobility through CPL ………..…………………………………………. 25

 2.5 CPL Limitations ……………………………………..…………………………… 26

 2.6 Conclusion ………..……………………………………………………………… 26

Chapter 3 Presence System …………………………………………………………….. 27

 3.1 Introduction …………………………..…………………………………………... 27

 3.2 Concepts ………………………………..………………………………………… 28

 3.2.1 Functional Architecture …………………………..………………………… 30

 3.2.2 Physical Architecture ………………………………..……………………… 31

 3.2.3 SIP Operations for Presence ……………………………………..………… 33

 3.3 Presence System Service Scenarios ………………………………………………. 34

 3.3.1 To Send a Subscription Request …………………………………………….. 35

 3.3.2 To Process a Watcher’s Request ……………………………………………... 37

 3.3.3 To Receive a Notification Response ………………………………………… 39

 3.3.4 To Register or Update Presence Information (Edge device server case) …… 40

 3.3.5 To Register or Update Presence Information (Presence server case) ……….. 42

 3.4 The Use of SIP in Presence Systems …………………………………...………… 44

 3.4.1 Why Choose SIP as the Presence System Protocol ………………………… 44

 3.4.2 SIP Extensions for Presence ………………………………………………… 45

 3.5 Basic Service Limitations ……………………………………………………….. 50

 3.6 Conclusion ………………………………………………………………………. 50

Chapter 4 Extensions of Presence Information and CPL ……………………………. 51

 4.1 End User Services in a Presence System ………………………………………….. 51

 4.2 Motives for Choosing CPL Extensions for Presence ……………………………... 53

 4.3 Extensions of Presence Information ………………………………………………. 54

 4.3.1 Extensions of Presence Information …………………………………………. 55

 4.3.2 XML Schema for the Extensions of Presence Information ………………….. 57

 4.3.3 Presence Documents in PIDF ………………………………………………... 60

 4.4 CPL Extensions for Presence ……………………………………………………… 62

 4.4.1 Four New Top-level Actions ………………………………………………… 63

 v

 4.4.2 Five Operations ……………………………………………………………… 65

 4.4.3 Presence-switch ……………………………………………………………… 67

 4.4.4 XML DTD of CPL Extensions for Presence ………………………………… 70

 4.5 End User Services Specified in Extended CPL …………………………………… 73

 4.5.1 Presence Extensions ………………………………………………………….. 73

 4.5.2 Outgoing-subscription services ………………………………………………. 73

 4.5.3 Incoming-subscription Services ……………………………………………… 76

 4.5.4 Outgoing-notification Services ………………………………………………. 79

 4.5.5 Incoming-notification Services ………………………………………………. 81

 4.6 Call Processing Services Related to Presence …………………………………….. 83

 4.6.1 Outgoing-call Services ……………………………..………………………. 84

 4.6.2 Incoming-call Services …………..…………………………………………. 87

 4.7 Conclusion ………………………………………………………………………… 92

Chapter 5 Simulation System ………………………………………………………….. 93

 5.1 Introduction ………………..……………………………………………………... 93

 5.2 Simulation System Design ………………………………………………………... 93

 5.2.1 System Introduction …………………………………………………………. 94

 5.2.2 System Structure …………………………………………………………….. 95

 5.2.3 Database Design ……………………………………………………………... 96

 5.2.4 Java File Organization ……………………………………………………….. 97

 5.3 Presence System …………………………………………………………………... 98

 5.3.1 Introduction ………………………………………………………………….. 98

 5.3.2 The Relationship between the GUI and Presence Services ………………….. 100

 5.3.3 Presence Services …………………………………………………………….. 100

 5.4 Policy System ……………………………………………………………………... 109

 5.4.1 Introduction …………………………………………………………………... 109

 5.4.2 The Relationship between the GUI and Services ……………………………. 110

 5.4.3 Policy Management ………………………………………………………….. 112

 5.4.4 Policy Services ………………………………………………………………. 113

 5.5 Call Processing System …………………………………………………………… 118

 vi

 5.6 End User Services …………………………………………………………………. 120

 5.6.1 Sharon’s Specific Services ……………...……………………………………. 120

 5.6.2 Sharon’s Services Specified in CPL …………………………………………. 121

 5.6.3 Use Case Tests for Sharon’s Policies …………………………………………124

 5.7 Conclusion ………………………………………………………………………... 130

Chapter 6 Summary and Future Work ……………………………………………….. 131

 6.1 Contributions of the Thesis ………………………………………………………... 131

 1. Describe an Architecture and Protocols for Presence System (Section 3.1 - 6) 131

 2. Extend Presence Information (Section 4.3) ……………………………………... 132

 3. Extend CPL for Presence (Section 4.4) …………………………………………. 132

 4. Describe User New Services Related to Presence (Section 4.5 - 6) …………….. 132

 5. Implement a Software Simulation System (Section 5.1 - 4) …………………….. 133

 6.2 Future Work ……………………………………………………………………….. 133

 1. Improvement of the Simulation System ………………………………………… 133

 2. Further Research on Presence System …………………………………………... 133

 3. Combing Call-handling Services with Other Services ………………………….. 134

 4. Broaden Internet Telephony as One Type of Internet Service ….………………. 134

REFERENCES ………………………..………………………………………………… 135

APPENDIX A: Formal Definition of “application/pidf+xml” ………….……………. 138

APPENDIX B: The XML DTD for CPL ………………………….…………………… 140

 vii

Acronyms

API Application Programmer’s Interface

BS Base Station

BSC Base Station Controller

CPIM Common Profile for Instant Messaging

CRLF Carriage-Return Line-feed

CPL Call Processing Language

CPP Common Profile for Presence

DNS Domain Name Server

DTD Document Type Declaration

GUI Graphic User Interface

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task Force

IN Intelligent Network

ITU International Telecommunications Union

JDBC Java Database Connection

JPEG Joint Photographic Experts Group

MIME Multipurpose Internet Mail Extension

MS Mobile Station

MSC Mobile Station Switch Center

PA Presence Agent

PDA Personal Digital Assistant

PIDF Presence Information Data Format

PLMN Public Land Mobile Network

P-PA Presentity Side Presence Agent

P-SIP Presentity Side SIP

PSTN Public Switched Telephone Network

PUA Presence User Agent

 viii

RTCP Real Time Control Protocol

RTP Real Time Protocol

SCP Service Control Point

SIP Session Initiation Protocol

SMTP Simple Mail Transfer Protocol

SSP Service Switching Point

TCP Transmission Control Protocol

UAC User Agent Client

UAS User Agent Server

UDP User Datagram Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

W-PA Watcher Side Presence Agent

W-SIP Watcher Side SIP

XML Extensible Markup Language

 ix

List of Figures

Figure 2.1 Internet Telephony Protocols……….…………………………………………. 10

Figure 2.2 SIP Personal Mobility ………………………………………………………… 15

Figure 2.3 MSC of SIP Personal Mobility………………………………………………… 16

Figure 3.1 Presence System Architecture in a three-layer Model ………………………… 29

Figure 3.2 A Process on an Outgoing-SUBSCRIBE ……………………………………… 36

Figure 3.3 A Process on an Incoming-SUBSCRIBE and Outgoing-NOTIFY. …………… 37

Figure 3.4 A Process on an Incoming-NOTIFY……………………………………...…… 39

Figure 3.5 A Process on Registration or Updating (edge device server case)……….… … 41

Figure 3.6 A Process on Registration or Updating (presence server case)… ……….….… 43

Figure 3.7 A SIP Message Flow in a Presence System ……………………………...…… 45

Figure 4.1 Service Model in a Presence System ……………………………………..…… 52

Figure 4.2 Stephen’s Presence Document in PIDF ………………………………..……… 61

Figure 4.3 Stephen’s Presence Document in IETF Standard ……………………...……… 62

Figure 4.4 Syntax of the Extended CPL Node …………………………………………… 64

Figure 4.5 Syntax of Node “subscribe”…………………………… ……………………… 65

Figure 4.6 Syntax of Node “notify”…………………………………………………..…… 66

Figure 4.7 Syntax of Node “call”…………………………………………………..……… 66

Figure 4.8 Syntax of Node “approve……………………………………………………… 67

Figure 4.9 Syntax of Node “accept” ……………………………………………………… 67

Figure 4.10 Syntax of Node “presence-swich” and Node “presence” …………….……… 69

Figure 4.11 Definition of CPL Extensions for Presence …………………………………. 72

Figure 4.12 Screening Outgoing-subscriptions based on Time ………………………...… 74

Figure 4.13 Screening Outgoing-subscriptions based on Address & Presence Status …… 74

Figure 4.14 Forwarding Outgoing-subscriptions based on Address & Time …………..… 75

Figure 4.15 Screening Incoming-subscriptions based on Address …………………..…… 76

Figure 4.16 Screening Incoming-subscriptions based on Time ………………….….….… 76

Figure 4.17 Screening Incoming-subscriptions based on Address & Presence Status….… 77

Figure 4.18 Conditionally Approving Incoming-subscriptions …………………………… 78

Figure 4.19 Forwarding Incoming-subscriptions …………………………………….…… 78

 x

Figure 4.20 Screening Outgoing-notifications…………………….………………….…… 79

Figure 4.21 Controlling Outgoing-notification Rate ……………………………….…….. 80

Figure 4.22 Screening Incoming-notifications …………………………………………… 81

Figure 4.23 Forwarding Incoming-notifications based on Presence Status ……………… 82

Figure 4.24 Automatic calls based on Address and Presence Status ………………..…… 83

Figure 4.25 Screening Outgoing-calls based on Callee’s Presence Status …………….… 84

Figure 4.26 Screening Outgoing-calls based on Caller’s Presence Status ….………….… 85

Figure 4.27 Screening Outgoing-calls based on third Party’s Presence Status…………… 85

Figure 4.28 Forwarding Outgoing-calls based on Address and Presence Status……….… 86

Figure 4.29 Screening Incoming-calls based Callee’s Presence Status ………………..… 87

Figure 4.30 Screening Incoming-calls based on Caller’s Presence Status …………..…… 88

Figure 4.31 Forwarding Incoming-calls based on Callee’s Presence Status …………….. 89

Figure 4.32 Forwarding Incoming-calls based on Callee’s Presence Status …………….. 89

Figure 4.33 Forwarding Incoming-calls based on callee’s Presence Status ……………… 90

Figure 4.34 End User Policies in a three-layer Architecture ………………………...…… 91

Figure 5.1 Simulation System ……………..…………………………………….………. 94

Figure 5.2 Architecture of Simulation System ……….……………………………..…… 95

Figure 5.3 Database Schema Relationship Diagram ……………………………………… 96

Figure 5.4 Hierarchy for all Packages.………………….....………………………….…… 98

Figure 5.5 Presence System ………………………………………….…………… ……… 99

Figure 5.6 Presence Management………………….……………………………..…….…. 101

Figure 5.7 New Presence…………………………………………….…… ………………. 102

Figure 5.8 Presence Management Display………………………………………………… 103

Figure 5.9 Add Presentity …………………………………………… ………….…..…… 104

Figure 5.10 Presence Management Display …………………….……………….……. …. 104

Figure 5.11 Add Watcher…………………………………………………..…………..…... 105

Figure 5.12 Presence Management Display ……………….……………..……………..… 106

Figure 5.13 Update Presence ………..……………………………………………………. 107

Figure 5.14 Presence Management Update ………………………………….. ……….…. 108

Figure 5.15 Policy System…………………………………………………………….… .. 109

Figure 5.16 Policy Management ………………..………………… …………..…………. 110

 xi

Figure 5.17 Policy Management with Six Types of Policies……………..……..………… 111

Figure 5.18 Update Account…………………………………….…………...……………. 113

Figure 5.19 Policy Management Update………………………………….…………... …. 114

Figure 5.20 Add Policy……………………………………………………… ……………. 115

Figure 5.21 Policy Management Display……………………………………......……..….. 116

Figure 5.22 Update Policy………………………………..………………………….……. 117

Figure 5.23 Policy Management Update…………………………………….……...….….. 117

Figure 5.24 Call Processing System …………..…………………………………….….… 119

Figure 5.25 Message ………..………………………………………………………..…… 119

Figure 5.26 Policy Management Display …………………………………………… … … 121

Figure 5.27 File “Sharon-p.cpl” ………………………………………………….……….. 122

Figure 5.28 File “Sharon-c.cpl”………………………………………………….………… 124

Figure 5.29 Add Presentity for Testing Policy “SOUT1”……………………….………… 125

Figure 5.30 Message for “SOUT1” Test Result……………...………………….………… 125

Figure 5.31 Update Presence for Testing Policy “NOUT1”……………………….……… 126

Figure 5.32 Message for “NOUT1” Test Result…………………………… ………….…. 127

Figure 5.33 Call Processing System for Testing Policy “OUT1”….……………………… 128

Figure 5.34 Message for “OUT1 Test Result …………………………… ………..…….. 128

Figure 5.35 Call Processing System for Testing Policy “IN1”………….…………….. …. 129

Figure 5.36 Message for “IN2” Test Result…………………………… ………….……… 129

 xii

List of Tables

Table 2.1 SIP Request Methods ……………………………………...…………………… 12

Table 2.2 SIP Response Status Codes…………………..……………………….………… 12

Table 2.3 A SIP Request Message .………………………………….…...………..……… 13

Table 2.4 CPL Structure …………………...……………..……………………………… 20

Table 2.5 Uploading CPL Scripts via SIP Registration Method ………………..………… 21

Table 2.6 Current Available Tags in CPL…………………………………………………. 22

Table 2.7 Screening Incoming-calls based on Address…………………..….…………… 23

Table 2.8 Time-of-day Routing …………………………...……………………………… 24

Table 3.1 F1: SIP SUBSCRIBE Message ………….………………………..…………… 46

Table 3.2 F2: SIP 200 OK Message ………………….…………..….…………………… 47

Table 3.3 F3: SIP NOTIFY Message …..………………………………………………… 47

Table 3.4 F4: SIP 200 OK Message …………………….………..…………..…………… 48

Table 3.5 F5: SIP NOTIFY Message …………….. ….………………..……………….… 49

Table 3.6 F6: SIP 200 OK Message (for updating notification)………..……….………… 49

Table 4.1 XML Schema for Presence Extensions………………………………………… 58

Table 4.2 XML Schema for Presence Extensions (in IETF standard format) ……………. 59

Table 4.3 Namespace Declarations for Extended CPL……………………………….…… 72

Table 5.1 Relationship between the GUI and Presence Services…………………….…… 100

Table 5.2 Relationship between the GUI and Policy Services ……….……….……..…… 111

Table 5.3 Policy Type ………………………………..…………………………………… 112

Table 5.4 Sharon’s Policies ………………………………………………………….…… 120

Chapter 1 Introduction

1

Chapter 1 Introduction

1.1 Background and Motivation

1.1.1 Internet Telephony

According to the International Telecommunications Union - Telecommunications

Standardization Sector’s (ITU-T’s) definition [1], a service is offered by an

administration to its customers in order to satisfy a specific (set of) telecommunication

requirement(s), while a feature is the smallest part of a service that can be perceived by

the service user. A policy is a specific service or a specific feature that can be defined by

a user. In actual usage and in most references, feature and service are not strictly

distinguished. Generally speaking, service is a broader term, which may include a set of

features. Feature is defined to be the smallest functional unit that can be sold to users.

Telephone business started from basic call connection services with in-band signaling

that are not efficient and not secure. Then out-of-band signaling, i.e. common channel

signaling that separates signaling channels from voice channels, totally changed the

architecture of the telephony system. SS7 [2], as an example of common channel

signaling protocol, makes the system more efficient so that many advanced telephony

features can be offered. After that, the intelligent network (IN) [3] was developed. IN

utilizes the elements in SS7 and offloads much intelligence from switches i.e. from

Service Switch Points (SSPs) to Service Control Points (SCPs). Due to the use of

powerful SCPs, new services were created more easily and call processing was handled

more efficiently. Later on, much effort was put in migrating voice from circuit-switched

networks to packet-switched networks. In recent years, Internet Telephony [4] has

become a much more attractive solution. It enhances existing telephony features and

creates a number of new features with the integration of Internet services. Internet

Chapter 1 Introduction

2

Telephony is considered as the next-generation uniform communication model, which

will finally phase out the Public Switched Telephone Network (PSTN) [5].

One major difference between PSTN and the Internet Telephony is that the Internet

Telephony signaling protocol, Session Initiation Protocol (SIP) [6], is built on top of

existing data communication network. This makes it natural and easy to combine voice

services and data services. This combination results in many new features that are not

realizable in PSTN. Internet Telephony can have PSTN features together with computer

features and Internet features. Some of the advantages of using Internet Telephony are as

follows:

Low-cost voice calls: Internet users usually pay flat fees for monthly access. On the

Internet, there is actually no such concept of long-distance as in PSTN. High long-

distance call fees will be dramatically reduced. The main reason is that in the Internet

there is no resource reservation as in PSTN.

Sound grading: PSTN has only one sound quality (4KHz). Internet can have many

levels of sound quality as long as bandwidth is available.

Video telephony: Real time video delivery has been already achieved on the Internet.

This could be easily adapted to realize video telephony.

More powerful call processing: An end user can program his specific services to

process his calls. These services can be based on time, language, priority, address etc.

They can also be based on a user’s presence status (i.e. the user’s ability or willingness to

communicate). A user can reject anonymous calls and can forward his incoming calls to

his voice mail if he is not available at the moment.

Web-based call centers: SIP addresses can be embedded in web pages. Customers could

initiate calls just by clicking on those SIP numbers. While they are talking with the

service staff, they can browse the web pages at the same time. Also the service staff could

Chapter 1 Introduction

3

feed customers relevant information pages or guide the customers to make orders step by

step.

Real-time billing: With PSTN, a user can only check his bill when the bill comes to his

mailbox next month. Real-time billing is just not possible since billing process is so

complicated in PSTN. With Internet Telephony, the end devices (computers) have

enough computational power, which enables them to access the billing gateway directly

to get the billing information in a real-time fashion.

Much industrial and research interest has been generated by the developments in Internet

Telephony. These developments are a complete change compared to PSTN. The key

point of Internet Telephony is the provision of new services. It can combine telephony

services with web, email, instant messaging, presence, text chat, interactive games etc.

Because of the explosion of new features, it has become critical to control and manage

them. The main challenge in Internet Telephony is service programming [7]. The Call

Processing Language (CPL) is a solution for end users to describe and control their

services in Internet Telephony [8].

1.1.2 Programming Internet Telephony Services in CPL

Due to its safe, efficient, flexible, simple and extensible properties, CPL is designed for

end users to describe and control services in Internet Telephony [9]. As a programming

language, CPL only contains switches and triggers to perform different actions. However,

CPL is not a Turing-complete language, it dose not provide loops or recursion and it

cannot call external programs. It does not have its own variables and can only access

limited resources for safety considerations. End users can create and update CPL scripts

and enable them at any time. CPL uses the syntax of the Extensible Markup Language

(XML) [10], which makes CPL easy to extend because of the simplicity and extensibility

of XML.

Chapter 1 Introduction

4

CPL is signaling protocol independent, which means that it can work either with H.323

[11] or with SIP. In this thesis, only the SIP signaling protocol is used. CPL is based on

SIP and CPL scripts reside on SIP servers or intelligent agents to describe and control

end user services.

SIP is defined in RFC2543 (March 1999) [12] and modified in RFC3261 (June 2002)

[13] as “an application-layer control protocol that can establish, modify and terminate

multimedia sessions or calls”. The basic information about SIP will be reviewed in

chapter 2, which is necessary to understand CPL. Based on SIP, CPL can be discussed in

detail, such as where the services live, what the programs can control, when the programs

are executed, what information the programs provide, what resources the programs can

have access to, who can create the programs, how the programs are instantiated, etc.

1.1.3 CPL Limitations

The major advantage of Internet Telephony is the provision of new services. Current CPL

is not adequate for the definition of many types of desirable new services since it focuses

on call handling services only. It cannot describe services that combine web, email,

instant messaging, presence, text chat etc. These limitations can be remedied by

extending CPL. CPL and CPL extensions together can describe many Internet Telephony

features.

1.2 Thesis Objectives

Presence, also known as presence information, conveys the willingness and ability of a

user to communicate across a set of devices with others on the network [14]. RFC 2778

[15] defines a model and terminology for describing systems that provide presence

information. In the model, a presence system is a presence service that accepts, stores,

and delivers presence information to the interested parties.

Chapter 1 Introduction

5

Many new services in Internet Telephony are the combination of telephony services with

presence services. In order to describe these combined services, this thesis needs to start

by describing presence systems and presence services. After that, it should propose an

approach to allow end users to program these services by themselves. A demonstration

system is the best way to show these new services in Internet Telephony. The system

should allow end users to write their specific services easily through Graphic User

Interfaces (GUIs). The specific objectives of the thesis are listed as follows:

Objective 1: Describe presence system

The current research on presence is just at the beginning. There are no complete

definitions or descriptions of presence systems. In order to describe the combination of

telephony services with presence services, the first objective is to systematically describe

presence systems and explain the basic concepts of such systems. We need to clarify the

relation of SIP services and presence services. In order to describe end user specific

presence services, we need to separate presence system services from end user services.

Objectives 2: Extend presence information

Presence information is the basis for presence services. In the past, presence was only

limited to “on-line” and “off-line” indicators. The notion of presence can be much

broader. It can include the location of a user, the role that the user is currently taking or

the user’s willingness to communicate etc. These extensions of presence information will

much enrich presence related services. We need to explore the basic procedures to extend

presence information. We need to explain how to define the extensions of presence

information, how to write presence documents, how to declare the extensions in the

presence documents, etc.

Objective 3: Describe user specific presence related services

We need a language to describe end user specific presence related services. Such a

language can be obtained by extending CPL for presence. In this way, presence services

as well as call processing services related to presence can be specified in extended CPL

naturally.

Chapter 1 Introduction

6

Objective 4: Demonstrate Internet Telephony services

We need to implement a simulation system to demonstrate Internet Telephony services,

which include presence services, call handling services and their combinations. These

end user specific services are specified in extended CPL. End users should be able to

create and modify these services through Graphic User Interfaces (GUIs).

1.3 Thesis Organization

Chapter 1: Introduction

This chapter reviews the development of telephony features and illustrates new features

in Internet Telephony. CPL and its purpose are introduced. The objectives and

organization of the thesis are described.

Chapter 2: Internet Telephony Services with SIP and CPL

This chapter reviews Internet Telephony services with SIP and CPL. Basic concepts of

SIP and CPL are described. Personal mobility, a major feature of SIP, is discussed. As

well, service mobility, which is the characteristic of Internet Telephony that allows users

to find the same services anywhere, has been introduced.

Chapter 3: Presence System

Presence systems and the basic concepts of presence systems are introduced in the

framework of a three-layer architecture. The location of end user specific services is

identified in the architecture. Basic services of presence systems are described through

various scenarios. How SIP backs up presence services is illustrated. The limitations of

basic services of presence systems are discussed.

Chapter 4: Extensions of Presence Information and CPL

This chapter describes presence related services for end users. These services are

specified in extended CPL. The reasons why extended CPL is chosen to describe end user

Chapter 1 Introduction

7

services in presence systems are discussed. How to extend presence information and how

to extend CPL for presence are described in detail. With CPL extensions, presence

services, call handling services related to presence and their combinations are illustrated

through various examples.

Chapter 5: Simulation System

The Java implementation of the system described in chapter 3 and chapter 4 is discussed

in this chapter. The simulation system is capable of demonstrating presence services, call

processing services and their combinations. These services, specified in extended CPL

can be created and modified by end user themselves through Graphic User Interfaces

(GUIs).

Chapter 6: Summary and Future Work

This chapter gives the conclusion of the thesis and discusses the potential future work.

1.4 Related Work

Internet Telephony Signaling Protocol, SIP:

Currently, there are two main sets of standards for Internet Telephony [11]. One standard

is the Session Initiation Protocol (SIP) provided by the Internet Engineering Task Force

(IETF), the group that standardizes protocols used on the Internet. The other standard is

the H.323 suite of protocols developed by the International Telecommunication Union-

Telecommunications Standards Sector (ITU-T). Both standards provide mechanisms for

customer call establishment, modification and teardown to support advanced services.

According to [11], compared to H. 323, the SIP protocol is more flexible in adding new

advanced services.

Chapter 1 Introduction

8

The SIP standard was first published as IETF RFC2543 [12] in 1999 and was updated by

RFC3261 [13] in June 2002. Later, SIP extensions for presence were added to the SIP

standard by IETF Draft [14] in January 2003. A book on the SIP standard [28] was

published in 2001.

End User Service Description and Controlling, CPL:

The key point in Internet Telephony is service programming. The Call Processing

Language (CPL) framework and requirements were established by IETF RFC 2824 [18]

in May 2000. The definition of CPL (version 6) was published in IETF Internet Draft [9]

in January 2002 and was updated by Internet Draft [27] in August 2003. The current

research work on CPL will be reviewed in chapter 2 in detail.

CPL Extensions for Presence:

The research on presence system is a very new topic and no journal papers exist. A model

for presence and instant messaging was established by IETF RFC 2778 [15] in February

2000. A Presence Event Package for SIP was defined in IETF Internet Draft [14] in

January 2003. Presence Information Data Format (PIDF) was published in IETF Internet

Draft [21] in May 2003.

XiaoTao Wu was the first researcher who proposed the idea to extend CPL for presence

and published the idea in IETF Internet Draft [16]. He added the capabilities to describe

presence system services and the focus was on the basic system services instead of end

user specific services.

Based on his work, we have systematically described basic concepts of presence systems

and their services in a three-layered architecture. System services and end user specific

services are clearly separated. In order to be able to provide more powerful presence

services, we have extended presence information. As well, we have added more

capabilities in CPL extensions for presence so that we can describe new presence services

and call handling services, which are based on presence information.

Chapter 2 Internet Telephony Services with SIP and CPL

 9

Chapter 2 Internet Telephony Services with SIP

and CPL

2.1 Introduction

This chapter introduces Internet Telephony services with the Session Initiation Protocol

(SIP) and the Call Processing Language (CPL). Section 2.2 introduces basic concepts of

SIP and discusses personal mobility, a major feature of SIP. Section 2.3 introduces basic

concepts of CPL and explains how to use CPL to describe end user services. Section 2.4

introduces service mobility, which is the characteristic of Internet Telephony that allows

users to find the same services anywhere. Section 2.5 discusses CPL limitations and

section 2.6 is the conclusion of this chapter.

2.2 Internet Telephony Features with SIP

Internet Telephony refers to real-time voice or multimedia communications that are

transported via the Internet. The signaling protocol SIP plays a most important role in

Internet Telephony. SIP can establish, modify and terminate multimedia sessions and

calls. With SIP, it is possible to create many new services with the integration of

telephony services with web, email, instant messaging, presence, text chat, interactive

games, etc. The creation of new features depends on the power of the signaling protocol,

SIP.

 Chapter 2 Internet Telephony Services with SIP and CPL

 10

2.2.1 SIP is a Signaling Protocol

SIP is defined in RFC2543 (March 1999) [12] and modified in RFC3261 (June 2002)

[13]. SIP is defined as “an application-layer control protocol that can establish, modify

and terminate multimedia sessions or calls”.

SIP is modeled on two important protocols, Simple Mail Transfer Protocol (SMTP) and

Hypertext Transfer Protocol (HTTP). The use of textual messages makes SIP simple and

efficient.

2.2.2 SIP is on Application Level

SIP is defined on top of transport layer, as shown in Figure 2.1. It can use either

Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) to send

messages. This provides much flexibility of implementing different services according to

the different requirements. SIP messages can convey arbitrary signaling payload: session

description, instant messages, presence document, Joint Photographic Experts Groups

(JPEGs) and any MIME (Multipurpose Internet Mail Extensions) type. Complex services

could be built on top of SIP, for example, a CPL script to reject calls from unknown

callers (see section 2.4).

Figure 2.1 Internet Telephony Protocols [17]

CPL Scripts

Chapter 2 Internet Telephony Services with SIP and CPL

 11

SIP is just one of the protocols supporting Internet Telephony. From the functional point

of view, SIP mainly readies the IP addresses and port numbers ready to establish a

session. The media/data packets, which are delivered and controlled by other protocols

such as Real Time Protocol (RTP) and Real Time Control Protocol (RTCP), most

probably will take different paths.

2.2.3 SIP Components

From the architectural point of view, SIP works as a client/server model, just like HTTP.

A SIP system has two types of components: user agents and network servers. From a

protocol point of view, there are two types of user agents, user agent client (UAC) and

user agent server (UAS). UAC works for callers to initiate the calls and UAS works for

callees to answer the calls. Between UAC and UAS, there may exist two different

servers: proxy servers and redirect servers. A proxy server acts on behalf of the UAC

and forwards the request to UAS or other servers. A redirect server receives the requests

and responds to the client directly to tell it which server it should contact next. The whole

SIP system is configured so that all these operational details are transparent to end users.

The registrar is another important SIP server. It accepts REGISTER request from

clients. This registration information is the basis to provide location service, which is the

key to achieve mobility as will be discussed in section 2.2.5.

2.2.4 SIP Methods and Messages

SIP has two types of messages: request and response. Request messages are specified in

six basic SIP methods defined in RFC2543 [12] (see Table 2.1). Response messages are

specified in six classes of response codes (see Table 2.2).

Chapter 2 Internet Telephony Services with SIP and CPL

 12

Method Description

INVITE Request to set up a session

ACK
Message from client to indicate that a successful response to an INVITE has

been received

OPTIONS A Query to a server about its capabilities

BYE A call is being released by either party

CANCEL
Cancel any pending requests. Usually sent to a Proxy Server to cancel

searches

REGISTER Used by client to register a particular address to the SIP server

 Table 2.1 SIP Request Methods

Code Description Examples

1xx Informational – Request received, continuing to

process request

180 Ringing

181 Call is Being Forwarded

2xx Success – Action was successfully received,

understood and accepted

200 OK

3xx Redirection – Further action needs to be taken in order

to complete the request

300 Multiple Choices

302 Moved Temporarily

4xx Client Error – Request contains bad syntax or cannot

be fulfilled at this server

401 Unauthorized

408 Request Timeout

5xx Server Error – Server failed to fulfill an apparently

valid request

503 Service Unavailable

505 Version Not Supported

6xx Global Failure – Request is invalid at any server 600 Busy Everywhere

603 Decline

Table 2.2 SIP Response Status Codes [13]

Chapter 2 Internet Telephony Services with SIP and CPL

 13

An example of a SIP request message is displayed in Table2.3. The message consists of a

start line, one or more header fields (headers), empty line, carriage-return line-feed

(CRLF) (indicating the end of the headers), and an optional message body.

Message Description

INVITE sip: uB@lucent.com SIP/2.0

Via: SIP/2.0/UDP lucent.com: 4545

From: User A

 <sip: dongmei@site.uottawa.ca>

To: User

 B <sip:sharon@site.uottawa.ca>

Call-ID: 34567@uottawa.ca

Cseq: 1 INVITE

Content-Type: application/sdp

Content-Length: 187

v=0

o=user1 53655765 2353687637 IN IP4

128.3.4.5

c=IN IP4 224.2.0.1/127

m=audio 3456 RTP/AVP 0

METHOD, URL

Protocol, host:port

from_user@source

to_user@destination

localid@host

seq# method

type of body media

length of body

v=0

origin_user, timestamp, timestamp

…… host

destination address

media type, port, …… payload

types

 Table 2.3 A SIP Request Message

The SIP response message is similar to the SIP request message except the start line. The

start line is a request-line for a request message and it is a status-line for a response

message. In the status-line, the SIP version is followed by a response code. For an

example, status-line, “SIP/2.0 200 OK”, indicates the SIP response message is “200 OK”

Start

Line

Headers

Message

Body

Chapter 2 Internet Telephony Services with SIP and CPL

 14

written in SIP version 2.0. “200 OK” means the corresponding SIP request message is

successfully received, understood and accepted.

2.2.5 SIP Features

There is no doubt that all the telephony features realized already in PSTN can be realized

with SIP [17]. Moreover, SIP could introduce a whole line of new services on the basis of

functionalities such as call forking, personal mobility, integration of computers and

networks etc. Most these new services are definitely not possible in PSTN. Many added-

value services have more web flavor than telephony flavor. Mobility deserves more

efforts to discussion since it is involved in many advanced features. We can classify

mobility into three different categories:

Terminal Mobility: Terminals can move among sub networks (wireless cell phones).

Personal Mobility: A person can use different devices and different addresses. The

network identifies the user by its unique identification rather than by terminals (SIP

phones).

Service Mobility: A user can have the same services from different locations and devices

(Internet telephones: services mobility through CPL will be discussed in section 2.5).

Both Public Land Mobile Network (PLMN) wireless telephony and Internet telephony

with SIP can realize mobility, but in different ways. In the PLMN, the mobility is

Terminal Mobility. The network recognizes wireless phones/mobile stations. The system

consists of Mobile Stations (MS), Base Stations (BS), Base Station Controllers (BSC)

and Mobile Station Switch Centers (MSC) to support mobility feature. Handoff

procedure must be handled carefully. This is really a complicated system. With SIP

instead, the mobility is achieved by the user’s registration to SIP servers using the

REGISTER method. The network locates and recognizes the user through its location

service based on the information in the Registrar server. SIP users could log on several

 Chapter 2 Internet Telephony Services with SIP and CPL

 15

different end devices with different addresses at different locations at the same time. As

long as he/she registers with the same SIP identification, the network knows where the

user can be reached. This is personal mobility. Service mobility will be discussed in

section 2.5.

Personal Mobility allows Internet telephony users to be mobile with one published SIP

address. Customers can use different phones or computers at the same or different

locations. Fig 2.2 shows an example of personal mobility from [17] and Fig. 2.3 shows

the possible scenario in the form of a message sequence chart. The numbers in Fig. 2.3

are corresponding to the step numbers in the Fig. 2.2.

Suppose that user Bob works at Lucent and has an office at Lucent Technologies. He has

published a single SIP address, bob@lucent.com, which is registered in the Lucent SIP

server. Bob is also an assistant professor at Columbia University, where he has a lab and

an office.

 Figure 2.2 Personal Mobility [17]

 Chapter 2 Internet Telephony Services with SIP and CPL

 16

Figure 2.3 MSC of SIP Personal Mobility

Description:

(In this description, the numbers in parentheses indicate the steps in Fig. 2.2)

User Agent
Jack@att.com

User Agent
bob@office.columbia.edu

User Agent
bob@lab.columbia.edu

Sip Server
Lucent.com

Sip Server
Columbia.edu

1. REGISTER bob@columbia.edu as forward address for bob

4. INVITE bob@lucent.com

Policy DB

5. get policies
6. INVITE bob@columbia.edu

Policy DB

7. get policies
8. INVITE bob@lab.columbia.edu

 180 Ring

10. INVITE bob@lucent.com
 11. 500 Server Error (loop error)

12. 500 Server Error (loop error)

13. 200 14. 200 OK 15. 200 OK
 ACK

16. Two-way talk with Real Time Protocol
 ACK ACK

100 Trying

100 Trying

 180 Ring 180 Ring

9. INVITE bob@office.columbia.edu

CANCEL
200 OK

2. REGISTER bob@lab.columbia.edu
3. REGISTER bob@office.columbia.edu

Chapter 2 Internet Telephony Services with SIP and CPL

 17

1. Bob leaves Lucent to Columbia. When he arrives at Columbia University, he

registers to Lucent SIP server with his Columbia address: bob@columbia.edu as a

forwarding address (1).

2. He registers the lab machine - bob@lab.columbia.edu and the office machine -

bob@office.columbia.edu to the Columbia SIP server (2, 3). He previously set his

lab’s computer to forward calls to his Lucent address, bob@lucent.com, but he

forgets this. We will see later that this errorous setting will introduce an error

message and will be detected. But this will not influence the proper function of

forwarding.

3. When bob is at his office in Columbia, Jack initializes a call placed to Bob’s

public address bob@lucent.com at Lucent Technologies location (4).

4. The Lucent SIP server checks its registration and policy in the database and

decides to forward the request to bob@columbia.edu. By looking up

columbia.edu in the Domain Name Server (DNS) and the main Columbia SIP

server address is obtained and the request is forwarded to it (5, 6).

5. The Columbia SIP server looks up Bob@columbia.edu in the database and finds

out two end devices listed under the address (7), so it forks and sends a call

request to lab and office machine (8, 9) to cause them to ring. This is called call

forking.

6. The lab phone agent sends the request to the Lucent SIP server by its previous

configuration (10). Using the loop detection capability in SIP, the Lucent server

detects the loop error occurred and sends an error response back to the lab

machine (11). In turn, it returns an error code to the Columbia server (12).

Chapter 2 Internet Telephony Services with SIP and CPL

 18

7. Bob answers the phone call in his office. The machine sends an acceptance back

to the Columbia SIP server (13). After having received both responses back, the

SIP server forwards the call acceptance back to the Lucent SIP server (14).

8. The Columbia SIP server forwards the request back to the original caller, Jack

(15). All the SIP session states in both Lucent SIP server and Columbia SIP server

can be destroyed now.

9. The call is setup and processed by Internet intermediate servers between Jack and

Bob (16). Jack and Bob talk on the phone.

This example illustrates three interesting features of SIP. First, it shows that with only

one SIP address published, through proper registration and configuration, the network

can automatically try all possible locations to reach a user. This is the idea of Personal

Mobility we discussed before. Second, the SIP call forking feature allows a call to be

forwarded to multiple end devices if those devices are registered under the callee’s phone

address in a SIP server. Third, the SIP loop detection feature is demonstrated in the

Description of step 6. This is really hard to implement in PSTN. In this case, it does not

matter if Bob pick up one phone or not. With the SIP loop detection feature, any loops

involved in a call can be detected and reported to the corresponding SIP server.

To describe and control additional Internet Telephony services for end users, CPL can be

used because CPL works on top of SIP (see Fig 2.1). SIP INVITE messages only deliver

incoming or outgoing call requests. CPL scripts are responsible for processing the calls

initiated in SIP INVITE messages. CPL services will be introduced in section 2.4.

Chapter 2 Internet Telephony Services with SIP and CPL

 19

2.3 End User Services Specified in CPL

2.3.1 Introduction to CPL

Internet Telephony is rich in end user services. In order to describe and control end user

services in Internet Telephony, the Call Processing Language (CPL) was developed. The

Framework and Requirements of CPL, “RFC2824”, was issued in May 2000 [18]. J.

Lennox and H. Schulzrinne wrote current CPL specification in January 2002 [9].

CPL [9] was designed for end users to create and control services in Internet Telephony.

It works on top of SIP or H.323 and it is very safe for non-professional users because it

does not have variables and it can only access limited resources. CPL uses the syntax of

the Extensible Markup Language (XML) [10] and this makes CPL simple and easy to

extend. CPL allows end users to create and update their own services constantly. It is a

programming language in itself as will be explained later.

2.3.2 CPL Structure

A CPL script represents a tree of decisions. In CPL terms, this is represented in terms of

tags of nodes and links. Each node or link corresponds to a tag in CPL. A node specifies

an action to take or a decision to make. A link specifies the result of an action and

displays which decision was made.

Chapter 2 Internet Telephony Services with SIP and CPL

 20

CPL Structure in XML version Explanations

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL
1.0//EN" "cpl.dtd">

 <subaction id="voicemail">
 services related to voicemails
 </subaction>

 <subaction id=“email”>
 services related to emails
 </subaction>

 <incoming>
 services dealing with incoming calls
 </incoming>

 <outgoing>
 services dealing with outgoing calls
 </outgoing>
</cpl>

Specify XML version
Specify DTD to be used
for validation

< -- The script can
 have zero or more
 nodes <subaction>
 with different id
 specifying how to
 deal with voicemail
 or email,

 zero or one node
 <incoming> specifying
 how to deal with
 incoming calls,

 zero or one node
 <outgoing> specifying
 how to deal with
 outgoing calls.
!-- >

 Table 2.4 CPL Structure

There are three types of tags at the highest-level: “subaction”, “incoming” and

“outgoing” that each represents a tree itself. The “incoming” tree is executed for

incoming calls and the “outgoing” tree is executed for outgoing calls. “subaction” tree

can be called by either the “incoming” tree or the “outgoing” tree. They are placed at the

root of the CPL script so that they can be called from inside the incoming or outgoing

tree. The corresponding tree structure in the XML version is shown in Table 2.4.

CPL processing begins at the incoming or the outgoing tag, the server traverses tree,

making decisions or performing actions. There is an implicit global variable in CPL,

which is the list of locations. Tags “proxy” and “redirect” use the location list. Tags

“location”, “lookup” and location-filter can modify the location list.

Chapter 2 Internet Telephony Services with SIP and CPL

 21

SIP Registration Explanations

REGISTER sip:sip.example.com SIP/2.0

From: Sharon User <sip:sharone@example.com>

To: "S. User" <sip:sharone@example.com>

CSeq: 18 REGISTER

Expires: 1800

Call-ID: 39485832@sharonspc.example.com

Contact: sip:sharon@sharonspc.example.com

Accept: application/cpl+xml

Authorization: Basic am9lOnBhc3N3b3JkAFBX

Content-Type: application/cpl+xml

Content-Length: 137

Content-Disposition: script

Content-Action: add

<cpl>

 <incoming>

 <address-switch field="origin" subfield="user">

 <address is="anonymous">

 <reject/>

 </address>

 </address-switch>

 </incoming>

</cpl>

Register to the SIP server, “sip:

sip.emaple.com” for user Sharon.

Sharon has the published SIP

address,

“sip:sharone@example.com”.

Sharon contact address is

“sip:sharon@sharonspc.example.com

”.

The registration includes the

following CPL script.

The CPL script is included in the

SIP Registration method.

Anonymous calls are rejected (see

Table 2.7).

 Table 2.5 Uploading CPL Scripts via SIP Registration Method

CPL is designed for end users to control their Internet Telephony services. Beside end

users, administrator and third parties can also write CPL scripts for services. These

services written in CPL can reside on a SIP server, an application server or an intelligent

agent. The CPL scripts can be uploaded with a SIP REGISTER (see Table 2.5). CPL

scripts can also be uploaded to a server with the aid of end user graphic tools. A user

graphic tool is implemented and described in chapter 5 in this thesis. Services written in

CPL are suited for call routing services, call screening services, call logging services etc.

When a SIP INVITE message arrives, the CPL script governs its processing if it matches

the script. The incoming or outgoing part of the CPL script is invoked, depending on

whether it is an incoming or outgoing INVITE. CPL execution terminates when final

Chapter 2 Internet Telephony Services with SIP and CPL

 22

action is taken in the CPL script. Since CPL scripts only react INVITE messages, CPL

can only be used for pre-call services like routing and screening.

2.3.3 CPL Available Tags

Table 2.6 lists current available tags in CPL. Definitions of these tags can be found in the

reference paper [9].

CPL Available Tags Explanations

Decisions
address-switch
string-switch
time-switch
priority-switch
language-switch

Signaling actions
proxy
redirect
reject

Other actions
mail
log

Management tags
incoming
outgoing
subaction
sub

Location modifiers
location
lookup
remove-location

Decisions based on
the addresses present in the original call request
free-form strings present in a call request
the time and/or date the script is being executed
the priority specified for the original call
the languages in which caller wishes to communicate

Cause signaling events on SIP server
forward a call to the current location list
direct the caller to try the call to the current location list
reject the call attempt

Cause non-signaling events on SIP server
notify a user of the CPL script status through electronic mail
log call information to non-volatile storage

Management actions
action triggered by SIP INVITE for incoming calls
action triggered by SIP INVITE for outgoing calls
subaction definitions
subaction references

Explicit locations
add literally-specified locations to the current location list
obtain locations from outside sources
remove locations from the location list

Table 2.6 Current Available Tags in CPL

Chapter 2 Internet Telephony Services with SIP and CPL

 23

2.3.4 End User Services in CPL

End users can have many kinds of pre-call services. We give some examples to show

how to use CPL to describe these services.

Screening services:

As mentioned, current CPL defines five switches. They are address-switch, string-switch,

time-switch, priority-switch and language-switch. End users can have screening services

based on any of the above switches or any of their combinations. As an example, an end

user can reject calls from anonymous callers. This service is based on caller’s addresses.

The screening service in CPL is shown in Table 2.7. In the service, incoming calls will be

rejected if the user’ name is unavailable in the caller’s addresses.

Screening Service in CPL Explanations

<?xml version="1.0" ?>

<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL

1.0//EN" "cpl.dtd">

<cpl>

 <incoming>

 <address-switch field="origin"

 subfield="user">

 <address is="anonymous">

 <reject/>

 </address>

 </address-switch>

 </incoming>

</cpl>

xml declaration

cpl definition declaration: cpl

version 1.0 at the access URI

tag <cpl>

an address based decision: check

the user in the original address

if the caller is anonymous with

unavailable name

the action “reject” is taken and

the script stops

tag <address> closed

tag <address-switch> closed

tag <incoming> closed

tag <cpl> closed

 Table 2.7 Screening Incoming-calls based on Address

Chapter 2 Internet Telephony Services with SIP and CPL

 24

Forwarding services:

End users can have forwarding services based on time, address, language, priority or any

combination of these. An end user can forward incoming calls to different locations

according to his schedule. The service of routine forwarding in CPL is shown in Table

2.8. In the service, user Bob deals with his incoming calls differently by time. He

forwards his incoming calls to his office phone in work hours and to his voice mail

outside of work hours.

Screening Service in CPL Explanations

<?xml version="1.0" ?>

<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL

1.0//EN" "cpl.dtd">

<cpl>

 <incoming>

 <time-switch tzid="America/New_York"

tzurl="http://example.com/tz/America/New_York">

 <time dtstart="20000703T090000"

 duration="PT8H" freq="weekly"

 byday="MO,TU,WE,TH,FR">

 <proxy/>

 </time>

 <otherwise>

 <location

url="sip:bob@voicemail.example.com">

 <proxy/>

 </location>

 </otherwise>

 </time-switch>

</incoming>

</cpl>

xml declaration

cpl declaration: cpl version 1.0

 accessible at the specified URI

cpl contents start

deal with incoming-calls

check the current time in the time

zone, “New-York” at the accessible URI

if the time is in work hours (8 hours

starting at 9:00am, Monday to Friday

every week)

proxy the call to the default address,

which is the callee (the user)

tag <time> closed

if time condition above is not

satisfied, assign the specified url to

the location list

proxy the call to the location list

tag <location> closed

tag <otherwise> closed

tag <time-switch> closed

tag <incoming> closed

tag <cpl> closed

 Table 2.8 Time-of-day Routing

Chapter 2 Internet Telephony Services with SIP and CPL

 25

2.4 Service Mobility through CPL

Service Mobility is harder to achieve. It must be based on Terminal Mobility and/or

Personal Mobility. The difficulties are due to the fact that it requires that the service

definition be device independent and standardized. As well, a subset of the content of

services the user has defined or is subscribed to at his/her home servers must be somehow

copied to the servers or end devices that are currently used by the user.

In the example of section 2.3.5, Bob works at Lucent and has an office at Lucent

Technologies. He has published a single SIP address, bob@lucent.com, which is

registered in the Lucent SIP server. Bob is also an assistant professor at the University of

Columbia, where he has a lab and an office. Bob has call processing services as described

in Fig. 2.2. These services are written in CPL and have been uploaded into the Lucent

SIP server in some way.

When Bob works at Lucent, and when his incoming calls arrive at the Lucent SIP server,

the SIP server executes CPL scripts: anonymous incoming calls will be rejected; other

calls will be forwarded to his office on work hours and to his voice mail out of work

hours.

After Bob has arrives at Columbia University, he registers to the Lucent SIP server with

his Columbia address: bob@columbia.edu as forwarding addresses and registers his

office machine -- bob@office.columbia.edu to the Columbia SIP server.

When a call is placed to bob’s public address bob@lucent.com at the Lucent

Technologies location, the Lucent SIP server checks its registration and policy in the

database and decides to forward the request with a copy of his policies (services in CPL)

to bob@columbia.edu. By looking up columbia.edu in the Domain Name Server (DNS)

to obtain the address of the main Columbia SIP server, the request and the copy of bob’s

policies are forwarded to the address. Columbia SIP server receives bob’s call processing

policies and executes the policies: anonymous incoming calls will be rejected; other calls

Chapter 2 Internet Telephony Services with SIP and CPL

 26

will be forwarded to his office on work hours and to his voice mail out work hours. The

office phone address is found by looking up the database of the Columbia SIP server.

Therefore, end users can have service mobility through the mobility of end user’s policies

written in CPL. If services are related to time, and the user’s current location and original

location are in different time zones, the end user can get his original policies, correct the

time in the policies and re-upload them to his original SIP server, where his single

published SIP address, bob@lucent.com, is registered. Of course, some tools will be

provided to do time change automatically for the user in the future. In this way, Bob can

get exactly the same services at different locations.

2.5 CPL Limitations

As mentioned, current CPL only deals with call handling upon arrival of a SIP INVITE

messages. Also, it does not consider any integrated telephony services concerning web,

email, instant messaging, presence, text chat, interactive games etc. These services will

be considered in CPL extensions. CPL and CPL extensions together can describe many

more services for end users in Internet Telephony. Some of these extensions will be

discussed in this thesis.

2.6 Conclusion

This chapter has introduced basic concepts of SIP and CPL. Personal mobility, a major

feature of SIP, has been described. Services described in CPL have been illustrated. As

well, service mobility via CPL has been introduced. The limitations of CPL have been

discussed at last.

Chapter 3 Presence System

 27

Chapter 3 Presence System

3.1 Introduction

Presence, also known as presence information, conveys the willingness and the ability of

a user to communicate across a set of devices with other users on a network [14]. RFC

2778 [15] defines a model and terminology for describing systems that provide presence

information. In the model, a presence system is a presence service that accepts, stores,

and delivers presence information to the interested parties i.e. watchers or subscribers.

Session Initiation Protocol (SIP) [13] is chosen as the presence protocol when a presence

service is provided over Internet. By using SIP, the presence service is compliant with

other Internet telephony services because SIP is particularly well suited as a presence

protocol and makes the presence service global and reusable.

Note that the services described in this chapter have been discussed in principle in [14].

The architectural model including the three-layer model and the exact message exchange

needed to realize these services, are described here for the first time. End user’s presence

services and system basic services are clearly separated in the thesis.

In this chapter, section 3.2 introduces basic concepts of presence systems in a three-layer

architecture. Section 3.3 details the presence system service scenarios. The use of SIP in

presence systems is described in section 3.4. Section 3.2 and 3.3 describe our own work,

while section 3.4 describes the existing SIP extensions for presence. Section 3.5 discusses

the limitations of basic services in presence systems. Section 3.6 is the conclusion of this

chapter. This chapter lays the groundwork for presence in SIP and the next chapter will

show how extended CPL can be integrated to SIP.

Chapter 3 Presence System

 28

3.2 Concepts

A presence system has two main entities, a presentity and a watcher. A presentity, also

named a notifier, is the logical entity that projects its presence information to the

interested parties i.e. the watchers. A watcher, also named a subscriber, is the logical

entity that sends subscription requests to the presentity and receives presence information

from the presentity. An end user can be a presentity to his watchers and a watcher to his

presentities at the same time. The presentity accepts, stores, and delivers presence

information to the interested watchers. Both a presentity and a watcher have a key

component, the Presence Agent (PA), which is responsible for sending or receiving

subscription requests and notification responses when a watcher and a presentity

communicate with each other. Fig. 3.1 displays the presence system architecture in a

three-layer model. SIP services reside in the lowest layer (i.e. Layer 1). SIP servers

provide SIP services to support presence services. Presence services include basic

system services (i.e. the system default services) and end user specific services. The

basic services reside in the second layer (i.e. Layer 2). The PA, assisted by the presence

user agent (PUA), works with the SIP server to provide the presence system services. The

end user specific services are supported by the basic services. They reside in the third

layer (i.e. Layer 3).

The architecture shown in Fig. 3.1 is described in its functional components and physical

components. A physical component can include different functional components. A

physical component itself has no functionalities. We will first review the functional

architecture of the system and then review its physical architecture.

Chapter 3 Presence System

 29

 : Agents

 : Policy Server

 : SIP Server

 : Edge Presence Server

 : Presence Server

 : Watcher Server

Figure 3.1 Presence System Architecture in a three-layer Model

Watchers Presentity

SIP Server
(SS)

Presence Agent
SIP User Agent

(W-PA)

Policy
Server

SIP Server
(W-SIP)

 Presence Agent
SIP User Agent

(P-PA)

Presence
User
Agent
(PUA)

Policy
Server

SIP Server
(P-SIP)

SIP SUBSCRIBE

SIP NOTIFY

Functional Components

Layer 1:
SIP Service

Layer 2:
Presence
System
Service

Layer 3:
End User
Service

Physical Components

from end devices

SIP Registrar

Chapter 3 Presence System

 30

3.2.1 Functional Architecture

Presence User Agent (PUA):

A Presence User Agent (PUA) is an agent working together with a presence agent for a

presentity. A PUA manipulates presence information and pushes the presence data

provided by end devices into the presence system for its presentity.

For example, if a presentity has a phone, the PUA takes care of the phone. Upon the

request of its presence agent, the PUA gets the phone status information and sends it to

its presence agent.

A PUA works for only one presentity, however, a presentity can have multiple PUAs to

take care of more than one device such as a phone, cell phone or Personal Digital

Assistant (PDA), each of which independently generates a component of the overall

presence information for the presentity. The PUAs push data into the presence system,

but the PUAs themselves are outside of the presence system. They do not send or receive

SIP SUBSCRIBE or SIP NOTIFY messages [14].

Presence Agent (PA):

A presence agent (PA) is a SIP user agent that is responsible for sending and receiving

SUBSCRIBE requests; generating, sending and receiving NOTIFICATION responses.

The PA is a key component in a presence system.

A presentity side presence agent (P-PA) has knowledge of the presence state of a

presentity. It can generate notifications and can also access presence data manipulated by

PUAs for the presentity.

A PA is always addressable with a SIP Uniform Resource Identifier (URI) [19] that

uniquely identifies the presentity. For an example, a P-PA SIP URI,

“sip:dongmei@site.uottawa.ca” identifies presentity “dongmei” at the domain

“site.uottawa.ca” in the “sip” protocol. A PA uses the SIP REGISTER method to register

Chapter 3 Presence System

 31

the address listed in the “To” header (as shown in Table 2.5 in chapter 2) to its SIP

server. In this way, A SIP server identifies the P-PA’s current communication addresses.

A P-PA works for one presentity only; however, a presentity can have multiple P-PAs

with each of them handling some subsets of all active subscriptions for the presentity. For

the case of multiple P-PAs, a P-PA manager is needed to manage these P-PAs. For

simplicity, this thesis concerns the case of a presentity with only one P-PA. A P-PA can

access a resource containing all of its watchers’ URIs. A watcher side presence agent (W-

PA) can access a resource containing all of its presentities’ URIs.

A P-PA also works for the presentity as a notifier [20]. It supports the presence event

package that is delivered in SIP NOTIFY messages. This will be discussed in detail in

section 3.3.

3.2.2 Physical Architecture

Watcher Server:

A watcher server is a physical entity on the watcher side. It can act as either a presence

agent or as a SIP server for SUBSCRIBE requests and NOTIFY responses [14].

When the watcher server acts as a presence agent, it is aware of the acceptable format of

the presence document. When the presence server acts as a SIP server, the SUBSCRIBE

requests are proxied to the P-PAs of its presentities and the NOTIFY responses are

received from its presentities.

According to Fig. 3.1, there are two possible architectures for the presentity [14]. We call

them presence server and edge presence server architectures. In the case of Edge presence

server, presence data is stored locally in PUA and it can be accessed faster. In the case of

presence server architecture, the presence data are centrally stored, controlled and

managed in the database of the SIP registrar server.

Chapter 3 Presence System

 32

Presence Server:

A P-PA can co-locate with its SIP proxy/register to form a presence server. The presence

server is a physical entity on the presentity side. It can act as either a presence agent or as

a SIP server for SUBSCRIBE requests and NOTIFY responses.

When the presence server acts as a presence agent, it is aware of the presence information

of the presentity through some non-SIP protocol means. When the presence server acts as

a SIP server, the SUBSCRIBE requests are delivered to the P-PA of its presentities and

NOTIFY responses are proxied to the W-PAs of its watchers.

If it acts as a presence server, a P-PA gets presence information that is pushed by PUAs

and is stored in the registration database. The P-PA co-locating with the proxy/registrar

can access the database to get the presence information. The P-PA must be informed of

presence info changes in the database.

Edge Presence Server:

Another possibility is that the P-PA co-locates with its PUAs to form an edge presence

server. The edge presence server is a physical entity. It is aware of the presence

information of the presentity because it co-locates with the entities that manipulate the

presence status of its presentity.

If it acts as an edge presence server, a P-PA gets presence information. The PUAs

maintain the presence states and report all changes to the P-PA directly. The P-PA can

get the presence information and assemble it into a presence document. The document

will be delivered in a SIP NOTIFY message, which will be discussed in detail in section

3.3.

SIP Server:

The SIP server works on the first layer to back up the PAs in a presence system. It is a

physical entity that provides SIP services, for an example, sending SIP SUBSCRIBE

requests and receiving SIP NOTIFY responses on the watcher side; receiving SIP

Chapter 3 Presence System

 33

SUBSCRIBE requests and sending SIP NOTIFY responses on the presentity side. The

use of SIP will be described in section 3.4.2. SIP servers physically realize the presence

system protocol, SIP.

Policy Server:

The policy server is the server that manages end user specific presence services (i.e.

policies). The policy server works on the third layer. The management includes creating,

storing, updating, deleting, searching, and fetching presence policies for end users.

3.2.3 SIP Operations for Presence

There are two SIP extension messages for presence i.e. SIP SUBSCRIBE and SIP

NOTIFY. A SIP SUBSCRIBE message is a request message to a presentity sent by a

watcher. A SIP NOTIFY message is the presentity’s final response sent to the watcher.

The “final” means that the response contains the presentity’s presence information

required by the watcher.

SUBSCRIBE Operation:

The SIP SUBSCRIBE operation is a request operation initiated by a W-PA and sent by

the watcher side SIP server (W-SIP Server). In order to get presence information of a

presentity, the SUBSCRIBE request is prepared by the W-PA. The W-PA identifies the

destination presentity by using a SIP URI. W-SIP server receives the SIP URI and sends

a SIP SUBSCRIBE request message to the presentity.

The SIP SUBSCRIBE message contains the SIP URI of the presentity and the required

format of presence information. The SIP SUBSCRIBE operation initiates a presence

service “dialog” between the W-PA and the P-PA. If the request is approved, the water is

registered successfully to the presentity.

Chapter 3 Presence System

 34

NOTIFY Operation:

The SIP NOTIFY operation is a final response operation initialized by a P-PA and sent

by presentity side SIP server (P-SIP server).

After a P-PA gets the SIP SUBSCRIBE message from its P-SIP server, it must

authenticate and authorize the subscription request before it sends the final response back

to the watcher. This authentication must be done using one of the mechanisms defined in

[13]. The authorization is done under the guide of the system and end user policies. This

will be described in Section 3.4.

To respond to a watcher request, the P-PA prepares a presence document and identifies

the destination watcher using SIP URI. The P-PA sends the document with the watcher’s

SIP URI to its P-SIP server. After the P-SIP server receives the notification information,

it sends a SIP NOTIFY message to the destination watcher. The SIP NOTIFY message

contains the SIP URI of the watcher and the presence information of the presentity. This

SIP NOTIFY operation is the final response to the watcher’s request.

A SIP NOTIFY operation can be induced by any of the following events:

1. A presentity registers its presence information.

2. The presence information is updated.

3. A watcher subscription request is approved.

3.3 Presence System Service Scenarios

As mentioned in section 3.2, presence systems have two types of participants, watchers

and presentities. A watcher can send a subscription request to a presentity and get the

Chapter 3 Presence System

 35

presentity’s presence information. The presentity can process the watcher’s request and

notify the watcher of its presence information.

In this section, how the components of the presence system play together to support the

presence services will be described in the system service scenarios. There are five main

scenarios to illustrate the basic services of presence systems. The parts in italic are related

to end user policies that will be discussed in detail in Chapter 4. In this chapter, we will

only mention the use of these policies in the system service scenarios. Chapter 4, together

with this chapter, will illustrate all the presence services including basic services and user

specific services.

There are two different ways for a P-PA to get presence information. In the case of the

edge presence server described in section 3.4.2 and section 3.4.4, the P-PA co-locates

with PUAs. In the case of the presence server, described in section 3.4.5, the P-PA co-

locates with a SIP proxy/registrar.

Note that in some cases, we make distinction between major and minor steps. For

example, in Fig. 3.2, Step 1 consists of four sub-steps 1-1 to 1-4. When steps in one

scenario follow of steps in another, we continue the number of steps. For example, step 3

in Fig. 3.3 is the same as step 3 in Fig. 3.2.

3.3.1 To Send a Subscription Request

Upon request from the watcher to subscribe to the presentity on its presence information,

the W-PA will check the out-going subscription policies and then will ask SIP server to

send a SIP SUBSCRIBE to the presentity (see Fig. 3.2).

Chapter 3 Presence System

 36

Watcher

Figure 3.2 A Process on an Outgoing-SUBSCRIBE

Description:

(In this description, the numbers in parenthesis indicate the steps shown in Fig. 3.2)

1. A W-PA prepares a subscription request and sends the request to its W-SIP

server. The request includes the SIP URI address of the W-PA, the SIP URI

address of the destination P-PA, the expiration time of the request dialog etc. As

the system default, the watcher does not have any policies for the outgoing-

subscription request, as seen in step (2).

If the watcher does have its own policies for outgoing subscription requests, the

W-PA processes the outgoing request according to the policies i.e. steps (1-1), (1-

2), (1-3) and (1-4) are taken before step (2) is taken. Please refer to section 4.5.2.

Presence Agent
SIP User Agent

(W-PA)

 Policy Server

SIP Server
(W-SIP)

2. request
 3. SIP SUBSCRIBE

In-Notification Policies Out-Subscription Policies

1-1 get policies

1-2 get policies
1-3 policies

1-4 policies

Layer 1:
SIP Service

Layer 2:
Presence
System
Service

Layer 3:
End User
Service

from user

Chapter 3 Presence System

 37

2. After the W-SIP server receives the request from its W-PA, it sends a SIP

SIBSCRIBE message to the destination P-PA that is identified by its SIP URI, as

seen in step (3).

3.3.2 To Process a Watcher’s Request

In the case of a watcher’s request, the P-PA may have to approve it, subject to the

incoming-subscription policies. If the request is approved, then the P-PA will ask the

PUA for presence information, and will send it back with the SIP NOTIFY message,

subject to outgoing-notification policies (see Fig. 3.3).

Presentity

Figure 3.3 A Process on an Incoming-SUBSCRIBE and Outgoing-NOTIFY

Description:

(In this description, the numbers in parenthesis indicate the steps in Fig. 3.3)

Presence Agent
SIP User Agent

(P-PA)

Presence
User Agent

(PUA)

Policy Server

SIP Server
(P-SIP)

8. notify

5-1. get In-Sub-Policies
In-Subscription

Policies

Out-Notification
Policies

5-2. get In-Sub-Policies

5-3. In-Sub-Policies

5-4. In-sub-Policies

6-1. Get Pre-Info

6-2. Pre-Info

7-1. get Out-Notif-Policies

7-4. Out-Notif-Policies

7-2. get Out-Notif-Policies

7-3. Out-Notif-Policies

4. subscribe
9. SIP NOTIFY

3. SIP SUBSCRIBE

Layer 1:
SIP Service

Layer 2:
Presence
System
Service

Layer 3:
End User
Service

Chapter 3 Presence System

 38

1. After a P-SIP server receives a watcher’s subscription request, the P-SIP server

disposes of the request information and passes it to the P-PA of the presentity, as

seen in step (4).

2. The P-PA authenticates the watcher after it receives the resolved request

information. In the case of system default, the presentity itself does not have any

authorization policies for requests. The watcher is approved.

If the presentity does have his own authorization policies for incoming

subscription requests, the P-PA processes the request according to the policies,

as shown in steps (5-1), (5-2), (5-3) and (5-4). Please refer to section 4.5.3.

3. If the subscription request is approved, the P-PA fetches presence information

from its PUA, see steps (6-1) and (6-2). In the case of system default, the

presentity itself does not have any policies for the outgoing-notification

responses. The P-PA writes a presence document in Presence Information Data

Format (PIDF) [21]. The PIDF is the required format described in the previously

received SIP SUBSCRIBE message. The P-PA sends the presence document

together with the SIP URI of the request W-PA to its P-SIP server, as seen in step

(8).

If the P-PA cannot get the presence information because of some reasons, such as

that the presentity has not registered its presence information or the subscription is

not approved, the P-PA wraps the information of notice to a blank presence

document and sends the document with the SIP URI of the request W-PA to its P-

SIP server, as seen in step (8).

If the presentity does have policies for outgoing-notifications, the P-PA processes

the outgoing response according to the policies, i.e. steps (7-1), (7-2), (7-3) and

(7-4) are taken before step (8) is taken. If the watcher’s request is rejected, the P-

Chapter 3 Presence System

 39

PA wraps the information of rejection to a blank presence document and sends

the document with the SIP URI of the request W-PA to its P-SIP server, as shown

in step (8). Please refer to section 4.5.4.

4. After the P-SIP server receives presence information, it sends a SIP NOTIFY

message to the requesting W-PA identified by its SIP URI. The SIP URI of the

W-PA is written into the “To” field and the SIP URI of P-PA is written into the

“From” field in the SIP NOTIFY message in step (9).

3.3.3 To Receive a Notification Response

The W-SIP server receives the SIP NOTIFY and passes it to the W-PA, The W-PA will

provide service subject to incoming-notification policies (see Fig. 3.4).

 Watcher

Figure 3.4 A Process on an Incoming-NOTIFY

Presence Agent
SIP User Agent

(W-PA)

 Policy
Server

SIP Server
(W-SIP)

Out-Subscription
Policies

In-Notification
Policies

11-1. get In-Notif-Policies
11-4. In-Notif-Policies

11-2. get In-Notif-Policies

11-3. In-Notif-Policies

10. NOTIFY
9. NOTIFY

12. INVITE

13. INVITE Layer 1:
SIP Service

Layer 3:
End User
Service

Layer 2:
Presence
System
Service

Chapter 3 Presence System

 40

Description:

(In this description, the numbers in parenthesis indicate the steps in Fig. 3.4)

1. After a W-SIP server receives a SIP NOTIFY message sent by its P-SIP server, as

seen in step (9), the W-SIP server resolves the SIP NOTIFY message and passes

it to the W-PA, as shown in step (10).

2. In the case of system default, the watcher does not have any policies for incoming

notifications. The W-PA receives the notification and displays the presence

information of the presentity.

If the watcher does have his policies for incoming notifications, the W-PA

processes the notification message according to the policies, i.e. steps (11-1), (11-

2), (11-3) and (11-4) are taken. Please refer to section 4.5.5.

3.3.4 To Register or Update Presence Information (edge device server case)

The following procedure is executed when the presentity registers to the system or the

end devices detect a change in user status. This could be a change of location, a change in

availability of user or an action such as picking up the phone. The P-PA will be informed

that the change has occurred and then can ask to update the presence information. The P-

PA will then notify its registered watchers, subject to its policies (see Fig. 3.5).

Chapter 3 Presence System

 41

 Presentity

 : Edge Presence Server

Figure 3.5 A Process on Registration or Updating (edge device server case)

Description:

(In this description, the numbers in parenthesis indicate the steps in Fig. 3.5)

1. When an end device of a presentity registers or updates presence status to its

PUA, as seen in steps (1-1) and (1-2), the PUA records the presence information

and informs its P-PA, as seen in steps (1-3) and (1-4).

Presence Agent
SIP User Agent

(P-PA)

Presence

User
Agent
(PUA)

 Policy Server

SIP Server
(P-SIP)

4.notify

In-Subscription
Policies

Out-Notification
Policies

2-2. Pre-Info

2-1. Get Pre-Info

3-1. get Out-Notif-Policies 3-4. Out-Notif-Policies

3-2. get Out-Notif-Policies

3-3. Out-Notif-Policies

1-1.Update/ Register

5. SIP NOTIFY

End
Devices

1-3. Informs 1-2. OK

1-4. OK

Layer 1:
SIP Service

Layer 2:
Presence
System
Service

Layer 3:
End User
Service

Chapter 3 Presence System

 42

2. After the P-PA receives the notice, it fetches presence information from its PUA,

as shown in steps (2-1) and (2-2) and prepares notification information. We

assume that the presentity itself does not have any policies for the outgoing

notification responses. The P-PA writes a presence document for its presentity in

PIDF [21]. The PIDF is the required format in the previously received SIP

SUBSCRIBE request message. The P-PA sends the document together with the

SIP URI of the request W-PA to its P-SIP server, as seen in step (4).

If the presentity does have policies for outgoing-notifications, the P-PA deals with

the outgoing responses according to the policies i.e. steps (3-1), (3-2), (3-3) and

(3-4) are taken before step (4) is taken.

3. After the P-SIP server receives presence information, it sends a SIP NOTIFY

message to the request W-PA, as seen in step (10).

3.3.5 To Register or Update Presence Information (presence server case)

This case is the same as the one in the previous section. However, a different architecture

is assumed. Instead of having an edge presence server, we have a presence server (see

Fig. 3.6).

Chapter 3 Presence System

 43

Presentity

 : Presence Server

Figure 3.6 A Process on Registration or Updating (presence server case)

Description:

(In this description, the number in parenthesis indicates the steps in Fig. 3.6)

1. End devices of a presentity register or update the presence information in the

PUA, as shown in steps (1-1), (1-2). The PUA registers or updates presence

information to the presence registrar for its presentity, as seen steps (1-3) and (1-

4). The registrar saves the presence information in its database and informs the P-

PA of the PUA, as seen in steps (1-5) and (1-6).

Presence Agent
SIP User Agent

(P-PA)

Presence User
Agent
(PUA)

Policy Server

SIP Server
(P-SIP)

4. notify

In-Subscription
Policies

Out-Notification
Policies

2-2. Pre-Info

2-1. get Pre-InfoI

3-1. get Out-Notif-Policies 3-4. get Out-Notif-Policies

3-2. get Out-Notif-Policies

3-3. Out-Notif-Policies

1-1.Register/Update

 1-2. OK

5. SIP NOTIFY

End
Devices

Registrar

1-4. OK
1-5. Inform

1-3.Register/Update

1-6. OK
Layer 1:
SIP Service

Layer 2:
Presence
System
Service

Layer 3:
End User
Service

Chapter 3 Presence System

 44

2. After the P-PA is informed, the P-PA fetches presence information from the

database in the registrar, as seen in steps (2-1) and (2-2), and prepares a

notification message. We assume that the presentity itself does not have any

policies for the outgoing-notification response. The P-PA writes a presence

document in PIDF [21]. The PIDF is the required format in the previously

received SIP SUBSCRIBE messages sent by its watchers. The P-PA sends the

document together with the SIP URI of the request W-PA to its SIP server, as

shown in step (4).

If the presentity does have policies for the outgoing notification, the P-PA needs

to process the outgoing responses according to the policies, i.e. steps (5), (6), (7)

and (8) are taken before step (4) is taken.

3. After the P-SIP server receives presence information, it sends a SIP NOTIFY

message to the request W-PA, as shown step (5).

3.4 The Use of SIP in Presence Systems

The Session Initiation Protocol (SIP) plays the role of the presence system protocol,

which is a very important role in the physical architecture. SIP is an application-layer

control protocol that can establish, modify and terminate presence service dialog sessions

in presence systems.

3.4.1 Why Choose SIP as the Presence System Protocol

SIP is used as the presence system protocol when a presence service is provided over the

Internet. There are at least two main reasons for choosing SIP as the presence protocol.

First, presence as one of the Internet telephony services is compliant with other Internet

services if the SIP presence protocol is used. Secondly, the use of SIP offers presence

users access to the SIP network. The SIP network allows a watcher’s subscription request

Chapter 3 Presence System

 45

to be routed to the server on which the watcher’s registration is hosted. This SIP

connectivity makes the presence service global and reusable.

3.4.2 SIP Extensions for Presence

SIP extensions for presence include two SIP messages, i.e. SIP SUBSCRIBE and SIP

NOTIFY [14]. Watchers’ requests and presentities’ responses are physically delivered in

the two types of messages, the SIP SUBSCRIBE messages and SIP NOTIFY messages.

The SIP message flow, as shown in Fig. 3.7, describes message passing between a W-SIP

server and a P-SIP server. It is assumed that the watcher has previously been authorized

to subscribe to this presentity resource at the presence server and that the PUA is

responsible for informing the presence server of the change of presence status through

some non-SIP means.

 Watcher Server Presence Server PUA

 | |non SIP registration|
 | |<------------------ |
 | F1 SIP SUBSCRIBE | |
 |-------------------------->| |
 | F2 SIP ACK-200 OK | |
 |<--------------------------| |
 | F3 SIP NOTIFY | |
 |<--------------------------| |
 | F4 SIP ACK-200 OK | |
 |-------------------------->| |
 | | |
 | | Updated presence |
 | |<------------------ |
 | | |
 | F5 SIP NOTIFY | |
 |<--------------------------| |
 | F6 SIP ACK-200 OK | |
 |-------------------------->| |

 Watcher/Subscriber Presentity/Notifier
 sip:watcher@watcherhost.example.com sip:presentityResource@example.com

 Figure 3.7 A SIP Message Flow in a Presence System [14]

The presence server can access presence information after the PUA registers the presence

information for its presentity.

Chapter 3 Presence System

 46

F1 SIP SUBSCRIBE:

The SIP SUBSCRIBE message describes a watcher’s subscription request to its

presentities. It contains the SIP URI of its destination P-PA, its expiration time and the

acceptable data format of the presentity’s presence document.

The SIP SUBSCRIBE message is initialized by the W-PA and sent by the W-SIP server.

The W-PA is identified by “sip:wtcher@watcherhost.example”. The P-PA is identified

by “sip:presentityResource@example.com” (see Fig. 3.1).

F1: SIP SUBSCRIBE Message Explanations

SUBSCRIBE sip:presenceResource@example.com SIP/2.0
Via:SIP/2.0/TCP
watcherhost.example.com;branch=z9hG4bKnashds7
To: <sip:presentityResource@example.com>
From: <sip:watcher@example.com>;tag=xfg9
Call-ID: 2010@watcherhost.example.com
CSeq: 17766 SUBSCRIBE
Max-Forwards: 70
Event: presence
Accept: application/cpim-pidf+xml
Contact: <sip:watcher@watcherhost.example.com>
Expires: 600
Content-Length: 0

sip version2.0

Presentity SIP URI
Watcher SIP URI

presence event package
required format of presence doc
contact address
expiration time

 Table 3.1 F1: SIP SUBSCRIBE Message

F2 SIP 200 OK:

After the presence server receives the SIP SUBSCRIBE request message from the

watcher server, the presence server informs the watcher server that the subscription

request was successfully received. This F2 200 OK message is a response to F1 SIP

SUBSCRIBE, so they have the same consequence number i.e. “17766 SUBSCRIBE”.

They have the same Call-ID, “2010@watcherhost.example.com” because they are in

the same conversation dialog (see Fig. 3.2).

Chapter 3 Presence System

 47

F2: SIP 200 OK Message Explanations

SIP/2.0 200 OK
Via: SIP/2.0/TCP watcherhost.example.com;branch=z9hG4bKnashds7
 ;received=192.0.2.1
To: <sip:watcher@example.com>;tag=xfg9
From: <sip:presentityResource@example.com>;tag=ffd2
Call-ID: 2010@watcherhost.example.com
CSeq: 17766 SUBSCRIBE
Event: presence
Expires: 600
Contact: sip:server.example.com
Content-Length: 0

SIP version 2.0

destination SIP URI
P-PA SIP URI
Subscribe sequence

presence event
expiration time
contact address

 Table 3.2 F2: SIP 200 OK Message

F3 SIP NOTIFY:

F3: SIP NOTIFY Message Explanations

NOTIFY sip:watcher@watcherhost.example.com SIP/2.0
Via: SIP/2.0/TCP server.example.com;branch=z9hG4bKna998sk
From: <sip:presentityResource@example.com>;tag=ffd2
To: <sip:watcher@example.com>;tag=xfg9
Call-ID: 2010@watcherhost.example.com
Event: presence
Subscription-State: active; expires=599
Max-Forwards: 70
CSeq: 8775 NOTIFY
Contact: sip:server.example.com
Content-Type: application/cpim-pidf+xml
Content-Length: ……

 [PIDF Document in format “application/cpim-pidf+xml”]
 ……

SIP version 2.0

P-PA SIP URI
Watcher SIP URI
Dialog ID
presence event

Notify sequence 8775

content format

presence document

 Table 3.3 F3: SIP NOTIFY Message

A SIP NOTIFY message describes the final response to the watcher’s subscription

request sent by the presence server. This final response message contains presence

information of the presentity in the PIDF [21] i.e. “application/cpim-pidf+xml”. Call-ID

“2010@watcherhost.example.com” shows that the F3 SIP NOTIFY message is in the

Chapter 3 Presence System

 48

same dialog as F1 SIP SUBSCRIBE and F2 SIP 200 OK. The dialog has 599 seconds left

to be alive (see Fig. 3.3).

The PIDF, as a common presence data format for Common Profiles for Presence (CPP)-

compliant presence protocols, allows presence information to be transferred across CPP-

compliant protocol boundaries without modification, with the added benefits of security

and performance. The PIDF will be described in detail in chapter 4.

F4 SIP 200 OK:

After the watcher server receives the notification message from the presence server, it

sends SIP 200 OK message to inform the presence server that the notification message is

received (see Fig. 3.4).

F4: SIP 200 OK Message Explanations

SIP/2.0 200 OK
Via: SIP/2.0/TCP server.example.com;branch=z9hG4bKna998sk
 ;received=192.0.2.2
From: <sip:watcher@example.com>;tag=xfg9
To: <sip:presentityResource@example.com>;tag=ffd2
Call-ID: 2010@watcherhost.example.com
CSeq: 8775 NOTIFY
Content-Length: 0

SIP version 2.0

Watcher SIP URI
Destination SIP URI
Dialog ID
Notify sequence 8775

 Table 3.4 F4: SIP 200 OK Message

F5 SIP NOTIFY:

When the presence server is informed by a PUA that the presence status is updated, it

sends the updated presence information to the watchers of the presentity. In this SIP

NOTIFY message, the updated presence information is written in the same format,

“application/cpim-pidf+xml”, as the previous notification message. This message initiates

a new notification sequence identified by number 8776 and the dialog has 543 seconds

left to be alive (see Fig. 3.5).

Chapter 3 Presence System

 49

F5: SIP NOTIFY Message Explanations

NOTIFY sip:watcher@watcherhost.example.com SIP/2.0
Via: SIP/2.0/TCP server.example.com;branch=z9hG4bKna998sl
From: <sip:presentityResource@example.com>;tag=ffd2
To: <sip:watcher@example.com>;tag=xfg9
Call-ID: 2010@watcherhost.example.com
CSeq: 8776 NOTIFY
Event: presence
Subscription-State: active; expires=543
Max-Forwards: 70
Contact: sip:server.example.com
Content-Type: application/cpim-pidf+xml
Content-Length: ...

 [PIDF Document in format “application/cpim-pidf+xml”]
 …….

SIP version 2.0

P-PA SIP URI
destination SIP URI
Dialog ID
Consequence notify 8776
presence event
dialog can last 543 seconds

contact address
content format

content

 Table 3.5 F5: SIP NOTIFY Message

F6: SIP 200 OK Message Explanations

SIP/2.0 200 OK
Via: SIP/2.0/TCP server.example.com;branch=z9hG4bKna998sl
 ;received=192.0.2.2
From: <sip:presentityResource@example.com>;tag=ffd2
To: <sip:watcher@example.com>;tag=xfg9
Call-ID: 2010@watcherhost.example.com
CSeq: 8776 NOTIFY

SIP version 2.0

P-PA SIP URI
Destination SIP URI
Dialog ID
Notify sequence 8776

 Table 3.6 F6: SIP 200 OK Message

F6 SIP 200 OK:

 After the watcher server receives the new notification, the watcher informs the presence

server by sending a new SIP 200 OK message to it (see Table 3.6).

In this SIP 200 OK message, the consequence number “8776 NOTIFY” illustrates that

the F5 200 OK message is in the NOTIFY sequence identified by number “8776”.

Chapter 3 Presence System

 50

3.5 Basic Service Limitations

Throughout the illustrations and discussions in this chapter we can see that the SIP

presence system offers the same basic services to all its users, which include

1. Store and manage presence information for a presentity.

2. Send a watcher’s subscription request.

3. Receive a watcher’s subscription request and send a notification back to the

watcher.

4. Send notifications to all watchers when presence information is registered.

5. Send notifications to all watchers when presence information is updated.

None of the above services concerns end users’ specific needs. However, end users

would like to have their specific services. For example, Tom may wish to reject all the

watcher requests after working hours, Alice would like the notification to Tom not to

occur more than every 10 minutes etc. The basic presence system described in this

chapter cannot offer these services. We will extend CPL and presence information to

include these new services in Chapter 4.

3.6 Conclusion

The basic concepts of SIP presence systems were introduced in a three-layer architecture

in this chapter. The use of SIP in the presence systems was described and scenarios were

illustrated. End user’s presence services and system basic services were clearly separated.

The basic services in presence systems have some limitations. In chapter 4, we will

discuss these limitations and will show how additional services can be provided to end

users through the extensions of CPL and presence information.

Chapter 4 Extensions of Presence Information and CPL

 51

Chapter 4 Extensions of Presence Information
and CPL

There are two types of services in a presence system, system basic services and end user

services. The system basic services are independent of physical end users. This means

that the presence system provides exactly the same services to all of its users. These basic

services have been discussed in chapter 3.

In a presence system, end user specific services are also called end user policies. End

users can write their own policies in CPL for specific needs. In this chapter, we illustrate

how to extend presence information to get rich presence information in the presence

services and how to extend CPL to describe user specific presence related services. New

services provided through the extensions are illustrated through various examples.

Section 4.1 describes the end user specific services in the three-layer model for presence

service. Section 4.2 discusses the reason why Extended CPL is chosen to describe end

user services in a presence system. Section 4.3 illustrates how to extend presence

information. The CPL extensions for presence are described in section 4.4. User specific

presence services specified in extended CPL are illustrated in section 4.5. Section 4.6

shows new call processing services related to presence and Section 4.7 is the conclusion

of this chapter. The work presented in this chapter is our own contribution, based on the

existing SIP and CPL described in chapter 2 and chapter 3.

4.1 End User Services in a Presence System

End user policies define specific services for physical end users. End user policies reside

in the high layer and basic system services reside in the low layer, see the service model

in Fig. 4.1. End user policies use the basic system services. End users have the basic

system services in common and have their specific services in difference.

Chapter 4 Extensions of Presence Information and CPL

 52

The basic system services shown in Fig. 4.1 have been described in chapter 3. These

services include: watchers can send subscription requests to presentities; presentities

approve these requests and send final notifications back to the watchers.

Figure 4.1 Service Model in a Presence System

In the real world, end users need not only the basic services but also their own specific

services, as shown in Fig. 4.1. These specific services are desirable for end users but are

not included in the presence systems described in chapter 3.

Here we give an example to show what these policies may be. Sharon is a user of a

presence system. She works as a consultant for a company and as a professor for a

university as well. As an end user of the presence system, Sharon likes to have the

following policies:

1. Sharon only approves subscription requests in the time slots 8:30-12:00am and

12:30-5:00pm, Monday to Friday.

2. Sharon rejects all subscription requests written in Japanese.

SIP Server Service
Request

Responses

 Service Logic

Basic System Services

Personal Policies

get basic services

get personal services

Chapter 4 Extensions of Presence Information and CPL

 53

3. Sharon rejects all subscription requests from her company when she takes the role

of “professor”.

4. Sharon rejects all subscription requests from the university when she takes the

role of “consultant”.

5. When the presence information is updated, Sharon notifies her watchers

differently. Her company watchers are notified when Sharon takes the role of

“consultant” and her university watchers are notified when Sharon takes the role

of “professor”.

6. When Sharon’s presence information is updated, the frequency of the above

notifications should be less than every 5 minutes.

7. When Sharon takes the role of “consultant”, she would like to have an automatic

call to the boss of her company as soon as her boss comes to his office.

This kind of services can be applied in some organizations, such as governments,

military, universities etc.

4.2 Motives for Choosing CPL Extensions for Presence

We know that CPL is designed for end users to describe their services in Internet

telephony. The current CPL specification focuses on call handling. It does not support

any presence related services. To support these services, we can either create a new

language or extend CPL. Extending CPL is a better choice than creating a new language

due to the following three reasons. First, many existing CPL components can be reused.

These components are still very useful for end users in a presence system. Second, CPL

extensions for presence are not tied to any particular presence protocols so that they are

compliant with the Common Profile for Instant Messaging (CPIM) [22] and the presence

Chapter 4 Extensions of Presence Information and CPL

 54

event package for SIP [14]. Last, components defined in CPL extensions for presence can

be reused in call handing systems. Actually, CPL extensions can be used to describe the

combined services of presence systems and call handling systems.

4.3 Extensions of Presence Information

Presence information is the basis of presence related services. In the past, presence has

been limited to “on-line” and “off-line” indicators. The notion of presence in this thesis is

much broader. It can be a location of a user, the role that a user is currently taking or a

user’s willingness to communicate etc. These extensions of presence information will

much enrich presence related services.

Users in different organizations may need different presence information. The presence

information can be extended or defined by users in XML. There are two primary formats

to describe the structure of an XML document. The first one, the Document Type

Declaration (DTD), is part of the original XML specification. The second format is the

XML schema. Presence documents are in Presence Information Data Format (PIDF) [21]

using XML syntax. The extensions of presence information can be defined in either of

the two formats.

A presence document written in PIDF declares that the definition format, DTD or XML

schema, is used. The format is used when validating the presence document at loading

time. The definition format file is identified by a name and a corresponding URI. The

format file must be public and accessible through the URI when the presence document

needs validation.

As an example of presence extensions, four new presence parameters are introduced in

section 4.3.1. Section 4.3.2 defines the extensions of presence information. Section 4.3.3

illustrates a presence document containing extended presence information. The presence

Chapter 4 Extensions of Presence Information and CPL

 55

documents in PIDF are included in and delivered with SIP NOTIFY messages to

watchers.

4.3.1 Extensions of Presence Information

RFC2779 [23] requires that PIDF have means of extending presence data. These

extensions merely allow protocols and applications to define richer presence data. They

should not change the structure or semantics of the PIDF bodies.

As an example of the extensions of presence information, four presence parameters are

defined as follows.

Location:

 Parameter “location” indicates a user’s current location. The parameter value can be

“office”, “meeting room” or “car” etc. These locations must be equipped with sensors in

a network. The sensors can identify and monitor the users who have registered in the

network.

For an example of location change, if a user i.e. a presentity leaves his office to go to the

meeting room, the sensor in his office notices that the user is not in the office and the

sensor in the meeting room notices that the user appears in the meeting room. A monitor

of the sensor network notices the location change of the user and the monitor can inform

the user’s P-PA directly. The sensor network works as a PUA and as an end device for

the presence system. After the P-PA gets the notice of location change, it notifies all

watchers of the user. The system scenario has been described in section 3.3.4.

 Phone Line Status:

Parameter “lineStatus” indicates if the user i.e. a presentity is occupying a telephone line

or not. It has two values, “on” and “off”. Value “on” indicates that the user is on a phone

and value “off” indicates that the user is not on any phone. If a user changes phone line

Chapter 4 Extensions of Presence Information and CPL

 56

status from “on” to “off” or vice versa, the user’s PA is informed. The PA then notifies

all watchers of the user.

Availability:

Parameter “availability” indicates whether a user i.e. a presentity likes to communicate

with others. The value “yes” indicates that the user likes to communicate with others and

“no” indicates that the user does not like to communicate with others currently. On status

“yes”, other users have a higher possibility to get a successful communication to the user,

while on status “no”, other users have a lower possibility to get a successful

communication with the user.

Availability is a status revealing the willingness of a presentity to communicate with

others. It is not the presentity’s communicating ability. On status “no”, the user does not

wish to communicate with other people currently, but he can still communicate with

others if necessary. For example, he can still answer emergency phone calls. If the

availability status is changed from “yes” to “no”, the user’s PA is informed. The PA then

notifies all watchers of this change.

Role:

 Parameter “role” indicates the position status of a user. A user can have multiple role

values when the user takes more than one position simultaneously. For example, Sharon

works as a consultant for a company and as a professor for a university. She has two

roles, “consultant” and “professor”. When the role of a user is changed from one value to

another, the user’s PA is informed. The PA then notifies all watchers of the user.

If the above four parameters are all independent and the XML schema of presence

extensions defines 3 locations, 3 phone line status values, 3 availability values and 6 role

values, an end user can have a maximum of 3x3x3x6 = 162 possible presence status. In

fact, the number of presence status may be much less than 162 because of some

constrains. For an example, if “lab” is a location value, a constrain case for Sharon might

Chapter 4 Extensions of Presence Information and CPL

 57

be that she cannot work in a student “lab” when she is taking the role “consultant” for her

company.

4.3.2 XML Schema for the Extensions of Presence Information

The XML schema for the extensions of presence information is shown in Table. 4.1. The

schema defines four parameters for presence extensions. The first parameter, “location”,

has three values: “office”, “meeting room” and “car”. The second parameter,

“lineStatus”, has two values: “on” and “off”. The third parameter, “role”, has five values:

“doctor”, “consultant”, “professor”, “student” and “nurse”. The last parameter,

“availability”, has two values: “yes” and “no”.

The schema is for a company “example.com” with namespace of “epidf”. The URI of the

namespace is “urn:example-com:pidf-status-type”. The schema can be accessed through

the namespace URI when a presence document needs validation.

Although the existing PIDF definition allows arbitrary elements to appear in the <status>

element, it may be sometimes desirable to standardize extension status elements. The

URN “urn:ietf:params:xml:ns:pidf:status” has been defined as a namespace URI for

extensions standardized by the Internet Engineering Task Force (IETF), and new values

in this namespace must be defined by a standards-track RFC.

We suppose that an RFCxxxx defines the above extensions of presence information. The

schema file of the extensions should be in the namespace

“urn:ietf:params:xml:ns:pidf:status”. The RFC defining the extensions should register an

extension name, “pre-ex1”, within the namespace with the Internet Assigned Numbers

Authority (IANA). The new XML schema is shown in Table. 4.2.

Chapter 4 Extensions of Presence Information and CPL

 58

XML schema Schema Explanations

<?xml version="1.0" encoding="UTF-8"?>
 <xs:schema targetNamespace="urn:example.com:pidf-
status-type"

 xmlns:epidf="urn:example.com:pidf-status-type"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xs:simpleType name="location">
 <xs:restriction base="xs:string">
 <xs:enumeration value="office"/>
 <xs:enumeration value="meeting room"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="lineStatus">
 <xs:restriction base="xs:string">
 <xs:enumeration value="on"/>
 <xs:enumeration value="off"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="role">
 <xs:restriction base="xs:string">
 <xs:enumeration value="doctor"/>
 <xs:enumeration value="consultant"/>
 <xs:enumeration value="professor"/>
 <xs:enumeration value="student"/>
 <xs:enumeration value="nurse"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="avilability">
 <xs:restriction base="xs:string">
 <xs:enumeration value="yes"/>
 <xs:enumeration value="no"/>
 </xs:restriction>
 </xs:simpleType>

 </xs:schema>

namespace definition with URI

schema name is “epidf”

URI of the XML schema

definition of “location”
location is a string parameter
value can be “office”
value can be “meeting room”

definition of “lineStatus”
lineStatus is a string parameter
value can be “on”
value can be “off”

definition of “role”
role is a string parameter
value can be “doctor”
value can be “consultant”
value can be “professor”
value can be “student”
value can be “nurse”

definition of “availability”
availability is a string parameter
value can be “yes”
value can be “no”

 Table 4.1 XML Schema for Presence Extensions

Chapter 4 Extensions of Presence Information and CPL

 59

XML schema Schema Explanations

<?xml version="1.0" encoding="UTF-8"?>
 <xs:schema
targetNamespace="urn:ietf:params:xml:ns:pidf:status"

 xmlns:pre-ex1="urn:ietf:params:xml:ns:pidf:status"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xs:simpleType name="location">
 <xs:restriction base="xs:string">
 <xs:enumeration value="office"/>
 <xs:enumeration value="meeting room"/>
 <xs:enumeration value="car"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="lineStatus">
 <xs:restriction base="xs:string">
 <xs:enumeration value="on"/>
 <xs:enumeration value="off"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="role">
 <xs:restriction base="xs:string">
 <xs:enumeration value="doctor"/>
 <xs:enumeration value="consultant"/>
 <xs:enumeration value="professor"/>
 <xs:enumeration value="student"/>
 <xs:enumeration value="nurse"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="avilability">
 <xs:restriction base="xs:string">
 <xs:enumeration value="yes"/>
 <xs:enumeration value="no"/>
 </xs:restriction>
 </xs:simpleType>

 </xs:schema>

namespace definition with URI

schema name is “pre-ex1”

URI of XML schema

definition of “location”
location is a string parameter
value can be “office”
value can be “meeting room”
value can be “car”

definition of “lineStatus”
lineStatus is a string parameter
value can be “on”
value can be “off”

definition of “role”
role is a string parameter
value can be “doctor”
value can be “consultant”
value can be “professor”
value can be “student”
value can be “nurse”

definition of “availability”
availability is a string parameter
value can be “yes”
value can be “no”

 Table 4.2 XML Schema for Presence Extensions (in IETF standard format)

Chapter 4 Extensions of Presence Information and CPL

 60

4.3.3 Presence Documents in PIDF

The paper “Presence Information Data Format (PIDF)” [21] is specified as a common

presence data format for Common Profile for Presence (CPP)-compliant presence

protocols. The PIDF defined in this paper also defines a new media type,

"application/pidf+xml", to represent the XML MIME entity for PIDF, where

“application” is the name of MIME media type and “pidf+xml” is the MIME subtype.

The formal definition of the “application/pidf+xml” for PIDF is shown in Appendix A.

According to Ref. [21], presence information consists of presentity URL, presentity

human readable comments and one or more presence tuples. A presence tuple consists of

a status, an optional communication address, relative priorities of contact addresses,

timestamp of the changed tuple and optional human readable comments.

Tuples, i.e. ordered sets of values, provide a way of segmenting presence information.

Protocols or applications may choose to segment the presence information associated

with a presentity for a number of reasons. For an example, components of the full

presence information for a presentity come from distinct devices or different applications

on the same device, and/or components are generated at different times. Tuples should be

preferred over other manners of segmenting presence information, such as creating

multiple PIDF instances.

Fig. 4.2 displays a presence document. The presentity, Stephen, is identified by the URI

"sip:stephen@example.com”. The document contains the following presence

information: 1) Stephen works as a doctor. 2) He is at his office. 3) He is talking on his

phone. 4) He can accept instant message. 5) He likes to take other phone calls currently.

The document is written in XML version, “1.0”. The structure of presence information is

defined in two different namespaces. One namespace is default identified by the URI,

“urn:ietf:params:xml:ns:pidf”; the other namespace for presence extensions, “epidf”, is

identified by the URI, "urn:example-com:pidf-status-type”. The root element of the

document is <presence>. The element <presence> contains three elements, they are

<tuple>, <tuple> and <note>. The first tuple identified as “ab22f3” has five elements,

Chapter 4 Extensions of Presence Information and CPL

 61

they are <status>, <contact>, <note>, <note> and <timestamp>. The status contains five

elements, they are <basic> and four extension elements, i.e. <location>, <lineStatus>,

<role> and <availability>. These extension elements are defined in the namespace, where

“epidf” is identified by the URI “urn:example-com:pidf-status-type”. The second tuple,

identified as "ef10g9", has two elements only, i.e. <status> and <contact>. The status

includes only one element, i.e. <basic>. Element <basic> indicates whether instant

messages are acceptable. Value “open” indicates that they are acceptable and value

“closed” indicates that they are not acceptable. The thesis focuses on presence and not on

instant messaging.

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"
 xmlns:epidf="urn:example.com:pidf-status-type"
 entity="sip:Stephen@example.com">

 <tuple id="ab22f3">
 <status>
 <basic>open</basic>
 <epidf:location> office </epidf:location>
 <epidf:linestatus> on </epidf:linestatus>
 <epidf:role> doctor </epidf:role>
 <epidf:availability> no </epidf:availability>
 </status>
 <contact priority="0.8">>Stephen@example.com</contact>
 <note xml:lang="en">Don't Disturb Please!</note>
 <note xml:lang="fr">Ne derangez pas, s'il vous plait</note>
 <timestamp>2003-11-01T16:49:29Z</timestamp>
 </tuple>

 <tuple id="ef10g9">
 <status>
 <basic>open</basic>
 </status>
 <contact priority="0.6">mailto:Stephen@example.com</contact>
 </tuple>
 <note>I'll attend conference in Ottawa next week</note>
 </presence>

 Figure 4.2 Stephen’s Presence Document in PIDF

If the presence extensions are defined by a RFCxxxx and the schema of the extensions is

stored in the namespace with URI of “urn:ietf:params:xml:ns:pidf:status”, the above

presence document in PIDF is modified as shown in Fig. 4.3.

Chapter 4 Extensions of Presence Information and CPL

 62

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"

 xmlns:tns=" urn:ietf:params:xml:ns:pidf:status"
 entity="sip:Stephen@example.com">
 <tuple id="ab22f3">
 <status>
 <basic>open</basic>
 <tns:location> office </tns:location>
 <tns:linestatus> on </tns:linestatus>
 <tns f:role> doctor </tns:role>
 <tns f:availability> no </tns:availability>
 </status>
 <contact priority="0.8">>Stephen@example.com</contact>
 <note xml:lang="en">Don’t Disturb Please!</note>
 <note xml:lang="fr">Ne derangez pas, s'il vous plait</note>
 <timestamp>2003-11-01T16:49:29Z</timestamp>
 </tuple>

 <tuple id="ef10g9">
 <status>
 <basic>open</basic>
 </status>
 <contact priority="0.6">mailto:Stephen@example.com</contact>
 </tuple>
 <note>I'll attend conference in Ottawa next week</note>

 </presence>

 Figure 4.3 Stephen’s Presence Document in IETF Standard

The presence document in PIDF is included in and delivered with SIP NOTIFY messages

to Stephen’s watchers, which are discussed in chapter 3.

 4.4 CPL Extensions for Presence

CPL extensions for presence are designed to describe presence services for end users.

These extensions can also be used when describing call processing services related to

presence in Internet Telephony.

Chapter 4 Extensions of Presence Information and CPL

 63

In the CPL extensions for presence, we define four top-level actions to identify the types

of CPL scripts, six new operations and a presence-switch to support the services whose

decisions are based on the presence status of a presentity.

4.4.1 Four New Top-level Actions

Top-level actions are actions triggered by signaling events when they arrive to the SIP

server. In current CPL, there are two top-level actions, “incoming” and “outgoing”, for

SIP INVITE messages in call handlings. Similarly, in a presence system, in order to

identify the types of CPL scripts for SIP SUBSCRIBE and SIP NOTIFY messages, we

define four new top-level actions in CPL extensions. They are “incoming-subscription”

and “outgoing-subscription” for SIP SUBSCRIBE messages, and “incoming-notification”

and “outgoing-notification” for SIP NOTIFY messages.

“Incoming-subscription” is the action performed when a SIP SUBSCRIBE message

arrives and the message’s destination is the script owner i.e. the presentity. The action is

written in a CPL script of a presentity and is executed when the presentity receives a

subscription message.

“Outgoing-subscription” is the action performed when a SIP SUBSCRIBE message

arrives and the message’s originator is the script owner i.e. the watcher. The action is

written in a CPL script of the watcher and is executed when the watcher sends a

subscription message.

“Incoming-notification” is the action performed when a SIP NOTIFY message arrives

and the message’s destination is the script owner i.e. the watcher. The action is written in

a CPL script of the watcher and is executed when the watcher receives a notification

message.

“Outgoing-notification” is the action performed when a SIP NOTIFY message arrives

and the messages’s originator is the script owner i.e. the presentity. The action is written

Chapter 4 Extensions of Presence Information and CPL

 64

in a CPL script of the presentity and is executed when the presentity sends a notification

message to a watcher.

In the processing of a presence service in CPL, the location set of CPL is initialized to

empty in cases of “incoming-subscription” and “incoming-notification”; and the location

set is initialized to the destination address in case of “outgoing-subscription” and

“outgoing-notification”.

There are a total of six top-level actions in Extended CPL. Actions of “incoming” and

“outgoing” are used in describing call processing services. Actions of “incoming-

subscription”, “outgoing-subscription”, “incoming-notification” and “outgoing-

notification” are used in describing presence related services. The syntax for the extended

node of CPL is given in Fig. 4.4.

Tag: cpl
Parameters:
 xmls namespaces containing CPL definition files at URIs

Sub-tags:
 ancillary See CPL Section 10 [9]
 subaction See CPL Section 9 [9]
 outgoing Top-level actions to take on outgoing-calls
 incoming Top-level actions to take on incoming-calls

 incoming-subscription
 Top-level actions to take on incoming-subscription requests

 Outgoing-subscription
 Top-level actions to take on outgoing-subscription requests

 Incoming-notification
 Top-level actions to take on incoming-notification responses

 Outgoing-notification
 Top-level actions to take on outgoing-notification responses

Figure 4.4 Syntax of the Extended CPL Node

Chapter 4 Extensions of Presence Information and CPL

 65

4.4.2 Five Operations

Three signaling operations and two non-signaling operations are defined in the thesis.

The three signaling operations are “subscribe”, “notify” and “call”. The two non-

signaling operations are “approve” and “accept”.

The Subscribe operation causes the SIP server to send a SIP SUBSCRIBE message to

the specified presentity. The syntax of node “subscribe” is given in Fig. 4.5.

Node: subscribe
Outputs: noanswer Next node if subscription was not answered
 before timeout

 redirection Next node if subscribe attempt was redirected
 failure Next node if call attempt failed
 default Default next node for unspecified outputs

Parameters: timeout Time to try before giving up on the
 subscription attempt

 recurse Whether to recursively look up redirections
 ordering What order to try the location set in.

 Output: noanswer
Parameters: none

 Output: redirection
Parameters: none

 Output: failure
Parameters: none

 Output: default
Parameters: none

Figure 4.5 Syntax of Node “subscribe”

The Notify operation causes a SIP server to send a SIP NOTIFY message to the specified

watcher. The NOTIFY message contains a presence document in PIDF. The syntax of

node “notify” is given in Fig. 4.6.

Chapter 4 Extensions of Presence Information and CPL

 66

 Node: notify
 Outputs: noanswer Next node if notification was not answered
 before timeout
 redirection Next node if notification was redirected
 failure Next node if notification failed
 default Default next node for unspecified outputs
 Parameters: timeout Time to try before giving up on the call
attempt
 recurse Whether to recursively look up
redirections
 ordering In what order to try the location set.

 Output: noanswer
 Parameters: none

 Output: redirection
 Parameters: none

 Output: failure
 Parameters: none

 Output: default
 Parameters: none

 Figure 4.6 Syntax of Node “notify”

The Call operation includes an “accept” operation. It makes the W-PA to accept the

notification and initiates a new call automatically for the watcher. The watcher i.e. the

owner of the CPL script becomes a caller in this case. The operation causes the SIP

server to send a SIP INVITE message to a specified callee. The operation “call”

immediately terminates the execution of the CPL script, so this node has neither output

nor next node. The syntax of the node “call” is given in Fig. 4.7.

 Node: call
 Outputs: None
 Next node: None
 Parameters: None

 Figure 4.7 Syntax of Node “call”

Chapter 4 Extensions of Presence Information and CPL

 67

The Approve operation tells a PA of a presentity that the watcher request is approved

with a limited duration. The PA then starts to prepare the notification message. The

syntax of node “approve” is shown in Fig. 4.8. The operation “approve” immediately

terminates the execution of the CPL script, so the node has neither output nor next node.

 Node: approve
 Outputs: None
 Next node: None
 Parameters: duration

Figure 4.8 Syntax of Node “approve”

The Accept operation makes a PA of a watcher to accept the received notification. The

displaying of presence information is refreshed. The “accept” operation immediately

terminates the execution of the CPL script, so the node has neither output nor next node.

The syntax of node “accept” is shown in Fig. 4.9.

 Node: accept
 Outputs: None
 Next node: None
 Parameters: None

Figure 4.9 Syntax of Node “accept”

4.4.3 Presence-switch

In current CPL, switches represent choices that a CPL script can make, based on an

attribute of the original call request. A switch followed by conditions indicates a type of

condition. Each condition corresponds to a node output. The output points to the next

node to execute if the condition is true. When the script is executed, the conditions are

checked in the order that they are presented in the script. The output of the first matching

node is taken. The information on which a choice is based is carried in the SIP message

or is easy to obtain.

“presence-switch” allows an end user to make decisions based on the presence status of a

presentity. The presentity may be the user himself or somebody else. The presence

Chapter 4 Extensions of Presence Information and CPL

 68

information is carried in the current SIP NOTIFY message otherwise the presence

information can be obtained by some means through a presence system.

Node “presence switch” and node “presence”:

A “presence-switch” allows a user to make a decision based on presence status of a

presentity. The syntax of node “presence-switch” and node “presence” are shown in Fig.

4.10.

Node “presence-switch” has two mandatory parameters, “presentity” and “timeout”.

Parameter “presentity” identifies a presentity, and parameter “timeout” gives the CPL

server a time limit to try before giving up retrieving presence information. The value of

parameter “presentity” is a URI of the presentity. A CPL server can reject the CPL script

while loading if its parameters cannot be resolved. If the parameter, either “presentity” or

“timeout”, is not present, the server automatically sets the default value for them. The

default “presentity” is the current user and the default of “timeout” depends on physical

servers.

Node “presence” is next to node “presence-switch”. It specifies a presence status to verify

whether the presentity matches the status or not. Four presence parameters, “location”,

“lineStatus”, “role” and “availability” for presence extensions have been shown in Table.

4.1. In this case, the presence node can have a minimum of one and a maximum of four

presence parameters. Node “presence” has three possible output nodes, “success”,

“unmatched” and “failure”. Node “success” is taken if the presentity exactly matches the

presence status specified in node “presence”. Node “unmatched” is taken if the retrieval

of the presentity’s presence information succeeds but the presentity does not exactly

match the specified status. Node “failure” is taken if the retrieval of the presence

information fails for some reasons including the case of timeout. If an output is not

present in the script, the execution of the script terminates and a default behavior is

performed automatically. Clients should specify the three outputs “success”,

“unmatched” and “failure” in that order, so that their scripts comply with the XML DTD

that will be discussed in subsection 4.4.4.

Chapter 4 Extensions of Presence Information and CPL

 69

Node: presence-switch
Next node: presence specific presence status to match
Parameters: presentity URI of a presentity
 timeout time to try before giving up retrieving presence info

Node: presence
Output success next node if the presence status is exactly matched
 unmatched next node if the presence status is not exactly matched
 failure next node if the retrieving of presence info has failed

Parameters: location location of a presentity
 “office”, value of “location”
 ……

 lineStaus phone line status.
 “on”, value of “lineSatus”
 “off”, value of “lineSatus”

 role position status.
 “professor”, value of “role”
 ……

 availability status of willingness to communicate with others
 “yes”, value of “availability”
 “off” , value of “availability”

Output: success
Parameters: none
Output: unmatched
Parameters: none
Output: failure
Parameters: none

 Figure 4.10 Syntax of Node “presence-switch” and Node “presence”

Chapter 4 Extensions of Presence Information and CPL

 70

4.4.4 XML DTD of CPL Extensions for Presence

The definition of CPL extensions for presence is saved in the file “cplPresence.dtd” and

the file can be accessed at the URI,

“http://www.site.uottawa.ca/~djiang/theis/cplPresence.dtd”. The definition of CPL is

saved in the file “cpl.dtd” and the file can be accessed at the URI,

“http://www.site.uottawa.ca/~djiang/theis/cpl.dtd”. The XML definition file “cpl.dtd” for

CPL is given in Appendix B. The XML definition file containing CPL extensions for

presence “cplPresence.dtd” is shown in Fig. 4.11.

The switch nodes are modified to:

<!-- Switch nodes -->
<!ENTITY % Switch 'address-switch|string-switch|time-switch|
 priority-switch|presence-switch' >

<!-- Switches: choices a CPL script can make. -->

 <!-- All switches can have an 'otherwise' output. -->
 <!ELEMENT otherwise (%Node;) >

 <!-- All switches can have a 'not-present' output. -->
 <!ELEMENT not-present (%Node;) >

 <!-- Presence-switch makes choices based on presence infomation. -->
 <!ELEMENT presence-switch (presence*, (not-present, presence*)?,
 otherwise?) >
 <!-- <not-present> must appear at most once -->

 <!ATTLIST presence-switch
 presentity CDATA #REQUIRED
 timeout CDATA #IMPLIED
 >

 <!ELEMENT presence (success?,unmatched?,failure?)>

 <!ATTLIST presence
 location CDATA #IMPLIED
 lineStatus CDATA #IMPLIED
 role CDATA #IMPLIED
 availability CDATA #IMPLIED

 > <!— at least one and at most four of the above attributes must
 appear -->

 <!ELEMENT success (%Node;) >
 <!ELEMENT unmatched (%Node;) >
 <!ELEMENT failure (%Node;) >

 The signaling nodes are modified to

Chapter 4 Extensions of Presence Information and CPL

 71

 <!-- Signalling action nodes -->
 <!ENTITY % SignallingAction ‘proxy|redirect|reject|
 call|subscribe|notify' >

 The other action nodes are modified to

 <!-- Other actions -->
 <!ENTITY % OtherAction 'mail|log|approve|accept' >

 The new added signaling nodes are defined as:
 <!ELEMENT subscribe (approve?,pending?,reject?,
 noanswer?,default?)>

 <!ATTLIST subscribe
 timeout CDATA #IMPLIED
 recurse (yes|no) "yes"
 ordering CDATA "parallel"
 >
 <!ELEMENT approve (%Node;) >
 <!ELEMENT pending (%Node;) >
 <!ELEMENT reject (%Node;) >
 <!ELEMENT noanswer (%Node;) >
 <!ELEMENT default (%Node;) >

 <!ELEMENT notify (success?,noanswer?,redirection?,
 failure?,default?) >
 <!ATTLIST notify
 timeout CDATA #IMPLIED
 recurse (yes|no) "yes"
 ordering CDATA "parallel"
 >
 <!ELEMENT success (%Node;) >
 <!ELEMENT noanswer (%Node;) >
 <!ELEMENT redirection (%Node;) >
 <!ELEMENT failure (%Node;) >
 <!ELEMENT default (%Node;) >

 The new added other action nodes are defined as:

 <!ELEMENT approve EMPTY >
 <!ATTLIST approve
 duration CDATA #IMPLIED
 >

 <!ELEMENT accept EMPTY >

 The new added SubActions are defined as:

 <!ENTITY % SubActions 'subscribe?,notify?,call?,approve?,
 accept?' >
 <!ELEMENT subscribe (%Node;)>
 <!ELEMENT notify (%Node;)>
 <!ELEMENT call (%Node;)>
 <!ELEMENT approve (%Node;)>

Chapter 4 Extensions of Presence Information and CPL

 72

 <!ELEMENT accept (%Node;)>

 The TopLevelActions are modified to:

 <!ENTITY % TopLevelActions 'outgoing?,incoming?,
 incoming-subscription?, outgoing-subscription?,
 incoming-notification?,outgoing-notification?' >
 <!ELEMENT outgoing (%Node;, %SubActions;)>
 <!ELEMENT incoming (%Node;, %SubActions;)>
<!ELEMENT incoming-subscription (%Node;, %SubActions;)>
<!ELEMENT outgoing-subscription (%Node;, %SubActions;)>
<!ELEMENT incoming-notification (%Node;, %SubActions;)>
<!ELEMENT outgoing-notification (%Node;, %SubActions;)>

Figure 4.11 Definition of CPL Extensions for Presence

An example of how a CPL script declares the namespaces of Extended CPL is shown in

Table. 4.3. In the example, Stephen approves Mary’s subscription request

unconditionally. Element <incoming-subscription> is defined by CPL extensions in the

namespace named “cplPresence”. The namespace can be accessed at

“http://www.site.uottawa.ca/~djiang/thesis/cplPresence.dtd”.

A CPL script Script Explanations
<?xml version = “1.0” encoding = “UTF-8”>

<cpl xmlns = ”http://www.site.uottawa.ca/
 ~djiang/thesis/cpl.dtd”
xmlns:cplPresence ="http://www.site.uottawa.ca/
 ~djiang/thesis/cplPresence.dtd ">

 <cplPresence:incoming-subscription>
 <address-switch field =“origin”>
 <address is =
“sip:mary@site.uottawa.ca”>
 <cplPresence:approve/>
 </address >
 </address-switch>
 </cplPresence:incoming-subscription >
</cpl>

<!–

actions “incoming-subscription”
and action “approve” are
defined in namespace
“cplPresence” and the
namespace can be accessed at

 http://www.site.uotta
wa.ca/~djiang/thesis/
cplPresence.dtd”

--!>

 Table 4.3 Namespace Declarations for Extended CPL

Note that all CPL extensions that we have described are compatible with standard CPL.

Chapter 4 Extensions of Presence Information and CPL

 73

4.5 End User Services Specified in Extended CPL

In a new presence system with CPL extensions, beside the presence system basic services

described in chapter 3, end users can benefit of many new services for their own special

needs. Assuming that the CPL definitions can be accessed at URL,

“http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd” and CPL extensions for presence can

be accessed at “http://www.site.uottawa.ca/~djiang/thesis/cplPresence.dtd”, these new

services are classified and described with examples as follow:

4.5.1 Presence Extensions

Presence information can contains not only a line indicator but also indicators of phone

line status, location, role and availability status etc.

Mary is a watcher of a presentity, Stephen. Mary can know the following presence

information of Stephen: Stephen is in his office working as a professor; he is talking with

somebody on the phone and he does not like to answer phone calls currently. Stephen’s

presence status can be listed with the following parameters and values:

Location: “office”
Role: “professor”
LineStatus: “on”
Availability: “no”

4.5.2 Outgoing-subscription Services

Screening services:

 An end user can have his specific screening services for outgoing-subscription requests.

The screening services can be based on address, time, language, priority, string, presence

status or any combinations.

Chapter 4 Extensions of Presence Information and CPL

 74

 Stephen sets an outgoing-subscription screening policy for security reason. All of his

subscription requests will be blocked after working hours on workdays. Through the

policy, nobody can use Stephen’s presence service after working hours. The policy in

CPL is shown in Fig. 4.12. The decision in the policy is based on time.

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">

<cplPresence:outgoing-subscription>
 <time-switch tzid="America/New_York"
 tzurl="http://zones.example.com/tz/America/New_York">
 <time dtstart="20000703T170000" duration="PT14H"
 freq="weekly" byday="MO,TU,WE,TH,FR">
 <reject/>
 </time>
 </time-switch>
 </cplPresence:outgoing-subscription>
</cpl>

 Figure 4.12 Screening Outgoing-subscriptions based on Time

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">

<cplPresence:outgoing-subscription>
 <address-switch field =“original-destination”>
 <address is = “sip:presenceServices@example.com”>

 <cplPresence:presence-switch presentity =
 “sip:Sharon@example.com”>
 <cplPresence:presence role = "consultant">
 <cplPresence:success>
 <cplPresence:subscribe/>
 </cplPresence:success>

 <otherwise>
 <reject/>
 </otherwise>
 </cplPresence:presence>
 </cplPresence:presence-switch >

 </address >
 </address-switch>
</cplPresence:outgoing-subscription>
</cpl>

Figure 4.13 Screening Outgoing-subscriptions based on Address & Presence Status

Chapter 4 Extensions of Presence Information and CPL

 75

Sharon works as a “consultant” for a company and as a “professor” for a university.

Sharon can benefit of the presence services of the company only when she is taking the

role of “consultant”, mostly in afternoons. Sharon writes a self-imposed policy i.e. an

outgoing-subscription screening policy. The policy is shown in Fig. 4.13. In the policy,

she can send a successful subscription request only when she takes the role of

“consultant” for the company; otherwise the request is screened out. The policy is based

on combined decisions of address and presence status.

Forwarding services:

Stephen knows that Sharon works as a consultant for a company between 9:00am and

12:00am on workdays. Stephen’s requests will be automatically forwarded to Sharon’s

URI of her company between 9:00am and 12:00am on workdays. Stephen’s policy is

shown in Fig. 4.14.

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">

<cplPresence:outgoing-subscription>
 <address-switch>
 <address is="sip:Sharon@site.uottawa.ca">

 <time-switch tzid="America/New_York"
 tzurl="http://zones.example.com/tz/America/New_York">
 <time dtstart="20000703T090000" duration="PT3H"
 freq="weekly" byday="MO,TU,WE,TH,FR">
 <location url="sip:Sharon@example.com">
 <proxy/>
 </location>

 </time>
 </time-switch>

 </address>
 </address-switch>
</cplPresence:outgoing-subscription>

</cpl>

 Figure 4.14 Forwarding Outgoing-subscriptions based on Address & Time

Chapter 4 Extensions of Presence Information and CPL

 76

4.5.3 Incoming-subscription Services

Screening services:

An end user can have screening services for incoming-subscription requests. These

screening services can be based on address, time, language, priority, string, a presence

status or any combinations.

Sharon rejects subscription requests from Mary unconditionally. The incoming-

subscription screening service is based on address. Sharon’s policy is shown in Fig. 4.15.

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">

<cplPresence:incoming-subscription>
 <address-switch field="origin">
 <address is="sip:mary@example.com">
 <reject/>
 </address >
 </address-switch>
 </cplPresence:incoming-subscription>
</cpl>

 Figure 4.15 Screening Incoming-subscriptions based on Address

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">

<cplPresence:incoming-subscription>
 <time-switch tzid="America/New_York"
 tzurl="http://zones.example.com/tz/America/New_York">
 <time dtstart="20000703T170000" duration="PT16H"
 freq="weekly" byday="MO,TU,WE,TH,FR">
 <reject/>
 </time>
 </time-switch >
</cplPresence:incoming-subscription>

</cpl>

 Figure 4.16 Screening Incoming-subscriptions based on Time

Chapter 4 Extensions of Presence Information and CPL

 77

The incoming-subscription service based on time is shown in Fig. 4.16. Sharon rejects

subscription requests after working hours.

Screening based on the combination of address and presence status is shown in Fig. 4.17.

Sharon rejects subscription requests from Peter if she is working as a professor for a

university.

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">

<cplPresence:incoming-subscription>
 <address-switch field="origin">
 <address is="sip:peter@example.com">
 <cplPresence:presence-switch presentity =
 “sip:Sharon@example.com”>
 <cplPresence:presence role = "professor">
 <cplPresence:success>
 <reject/>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch>
 </address>
 </address-switch>
</cplPresence:incoming-subscription>
</cpl>

Figure 4.17 Screening Incoming-subscriptions based on Address & Presence status

Conditionally approving services:

The approving services of a presentity can be based on address, time, language, priority,

presence status or any combinations.

In the example shown in Fig. 4.18, Sharon only accepts her boss’s subscription requests

from 9:00am to 5:00pm, Monday to Friday.

Chapter 4 Extensions of Presence Information and CPL

 78

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">

<cplPresence:incoming-subscription>
 <address-switch field =“origin”>
 <address is = “sip:SharonBoss@example.com”>
 <time-switch tzid="America/New_York"
 tzurl="http://zones.example.com/tz/America/New_York">

 <time dtstart="20000703T090000" duration="PT8H"
 freq="weekly" byday="MO,TU,WE,TH,FR">
 <cplPresence:approve/>
 </time>

 <otherwise>
 <reject/>
 </otherwise>

 </time-switch >
 </address>
 </address-switch>
</cplPresence:incoming-subscription>
</cpl>

 Figure 4.18 Conditionally Approving Incoming-subscriptions

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">

<cplPresence:incoming-subscription>
 <address-switch field="origin">
 <address is="sip:peter@example.com">
 <cplPresence:presence-switch presentity =
 “sip:Sharon@example.com”>
 <cplPresence:presence role = "professor">
 <cplPresence:success>
 <location url="sip:Sharon@site.uottawa.ca">
 <proxy />
 </location>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch>
 </address>
 </address-switch>

</cplPresence:incoming-subscription>
</cpl>

 Figure 4.19 Forwarding Incoming-subscriptions

Chapter 4 Extensions of Presence Information and CPL

 79

Forwarding services:

A presentity can forward a subscription request to another URL. The URL can be the

URL of himself or somebody else. The forwarding services can be based on address,

time, language, message priority, presence status or any combinations.

The example for the forwarding service is shown in Fig. 4.19. In the policy, Peter’s

requests to Sharon will be automatically forwarded to her URI at the university if she is

working as a professor for the university.

4.5.4 Outgoing-notification Services

Screening services:

A presentity can refuse to notify a watcher if he wants to hide his currently updated

presence status. The service for privacy can be based on address, time, presence status or

any combinations.

In the policy shown in Fig. 4.20, Peter is a watcher of Sharon. All of Sharon’s watchers

except Peter will be notified when Sharon makes a phone call. Sharon blocks Peter from

knowing that she is on the phone.

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">
<cplPresence:outgoing-notification>
 <address-switch field="origin-destination">
 <address is="sip:peter@example.com">
 <cplPresence:presence-switch presentity =
 “sip:Sharon@example.com”>
 <cplPresence:presence lineStatus = "on">
 <cplPresence:success>
 <reject/>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch>
 </address>
 </address-switch>
</cplPresence:outgoing-notification>
</cpl>

 Figure 4.20 Screening Outgoing-notifications

Chapter 4 Extensions of Presence Information and CPL

 80

Notification frequency services:

When presence information is updated too frequently, a presentity can control the

frequency of notifications. This service can be based on address, time, language, priority,

presence status of a presentity or any combinations.

In the following example shown in Fig. 4.21, the notification frequency from Sharon to

Stephen is no more than once every five minutes if the presence information of Sharon is

updated more frequently than every five minutes.

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">

<cplPresence:outgoing-notification>

 <address-switch field="origin-destination">
 <address is="sip:peter@example.com">

 <time-switch tzid="America/New_York"
 tzurl="http://zones.example.com/tz/America/New_York">
 <time dtstart="20000703T090000" duration="PT8H"
 freq="weekly" byday="MO,TU,WE,TH,FR" byminute="5">
 <cplPresence:notify/>
 </time>
 </time-switch>

 </address>
 </address-switch>

</cplPresence:outgoing-notification>

</cpl>

 Figure 4.21 Controlling Outgoing-notification Rate

If we combine the situation shown in Fig. 4.23 with the situation shown in Fig. 4.24, a

presentity can notify his watchers differently. When Sharon’s presence information is

updated, she can refuse to notify Peter when she is on her phone. She can notify Stephen

with a frequency of less than every five minutes. She can notify her mum unconditionally

etc.

Chapter 4 Extensions of Presence Information and CPL

 81

4.5.5 Incoming-notification Services

Screening service:

A watcher can have incoming-notification screening services. The services can be based

on address, time, language, priority, presence status or any combinations.

Peter is unlikely to accept too frequent notifications from Sharon when Sharon’s presence

status changes too frequently. Peter can accept a maximum of one notification every 5

minutes. The example is shown in Fig. 4.22.

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">

<cplPresence:incoming-notification>
 <address-switch field="origin">
 <address is="sip:Sharon@example.com">
 <time-switch tzid="America/New_York"
 tzurl="http://zones.example.com/tz/America/New_York">
 <time dtstart="20000703T090000" duration="PT8H"
 freq="weekly" byday="MO,TU,WE,TH,FR" byminute="5">

 <cplPresence: accept/>
 </time>
 </time-switch>

 <otherwise>
 <reject/>
 </otherwise>

 </address>
 </address-switch>
</cplPresence:incoming-notification>
</cpl>

 Figure 4.22 Screening Incoming-notifications

Forwarding services:

A watcher can forward a notification to another location. The location can be a location

of the watcher himself or of somebody else. The forwarding services can be based on the

address, time, language, priority, presence status or any combinations.

Chapter 4 Extensions of Presence Information and CPL

 82

Peter forwards all of his incoming-notifications to the computer in his office when he is

in the office. The example is shown in Fig. 4.23.

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">

<cplPresence:incoming-notification>
 <cplPresence:presence-switch presentity = “sip:peter@example.com”>
 <cplPresence:presence location = "office">
 <cplPresence:success>
 <location url="sip:peter@innet.example.com">
 <proxy/>
 </location>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch>
</cplPresence:incoming-notification>
</cpl>

 Figure 4.23 Forwarding Incoming-notifications based on Presence Status

Automatic phone call:

A watcher can make an automatic phone call on the basis of address, time, language,

priority, presence status or any combinations.

Peter would make an automatic call to Sharon as soon as Peter receives Sharon’s

notification and knows that Sharon is in her office. The policy is shown in Fig. 4.24.

All of the above examples are end user services described in Extended CPL. This gives

an idea of what the end user services might be in a presence system. These services are

classified into four types. The four types are outgoing-subscription, incoming-

subscription, outgoing-notification and incoming-notification. These services can be

based on time, address, priority, language, string, presence status or any combinations.

With CPL extensions for presence, end users can benefit of many services with much

flexibility.

Chapter 4 Extensions of Presence Information and CPL

 83

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">

<cplPresence:incoming-notification>
 <address-switch field="origin">
 <address is="sip:Sharon@example.com">

 <cplPresence:presence-switch presentity =
“sip:Sharon@example.com”>
 <cplPresence:presence location = "office">
 <cplPresence:success>

 <location url="sip:Sharon@example.com">
 <cplPresence:call/>
 </location>

 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch>

 </address>
 </address-switch>
</cplPresence:incoming-notification>

</cpl>

 Figure 4.24 Automatic Calls based on Address and Presence Status

 4.6 Call Processing Services Related to Presence

Presence services can be widely used in a call processing system. These services will

much enrich end user features in Internet Telephony. With CPL extensions for presence,

end users can get not only the current features described in [9] but also many new

services related to presence. In this section, some new services are classified and

illustrated through various examples.

Chapter 4 Extensions of Presence Information and CPL

 84

4.6.1 Outgoing-call Services

Screening services:

Outgoing-call screening services can be based on address, time, language, priority, string,

presence status or any combinations.

Sharon does not like her outgoing calls forwarded to voice mail. If her boss’s availability

status is “no”, it is most likely that her call to the boss is forwarded to voice mail. Sharon

blocks her calls to her boss when the boss is talking on his phone and his availability

status is “no”. The example is shown in Fig. 4.25.

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">

<outgoing>
 <address-switch field =“original-destination”>
 <address is = “sip:SharonBoss@example.com”>

 <cplPresence:presence-switch presentity=
 “sip:SharonBoss@example.com”>
 <cplPresence:presence lineStatus = "on" availability = "no">
 <cplPresence:success>
 <reject/>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch >

 </address >
 </address-switch>

</outgoing>
</cpl>

 Figure 4.25 Screening Outgoing-calls based on callee’s Presence Status

Sharon is a consultant for a company and a professor for a university. She can benefit of

the telephone services of the company for free only when she is taking the role of

“consultant”.

Chapter 4 Extensions of Presence Information and CPL

 85

She needs a self-imposed outgoing-call screening services. She can successfully use the

telephone services only when she is working as a consultant for the company, otherwise

her calls for the services will be blocked automatically. The policy is shown in Fig. 4.26.

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:cplPresence ="http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd ">
<outgoing>
 <address-switch field =“original-destination”>
 <address is = “sip:companyServices@example.com”>
 <cplPresence:presence-switch presentity =
 “sip:Sharon@example.com”>
 <cplPresence:presence role = "consultant">
 <cplPresence:success>
 <proxy/>
 </cplPresence:success>
 </cplPresence:presence>
 <otherwise>
 <reject/>
 </otherwise>
 </cplPresence:presence-switch >
 </address >
 </address-switch>
</outgoing>
</cpl>

 Figure 4.26 Screening Outgoing-calls based on Caller’s Presence Status

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:presence = “http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd”>

<outgoing>
 <address-switch field =“original-destination”>
 <address is = “sip:secretary@example.com”>
 <cplPresence:presence-switch presentity = “sip:CEO@example.com”>
 <cplPresence:presence location = "office">
 <cplPresence:success>
 <proxy/>
 </cplPresence:success>
 </cplPresence:presence>
 <otherwise>
 <reject/>
 </otherwise>
 </cplPresence:presence-switch >
 </address >
 </address-switch>
</outgoing>
</cpl>

 Figure 4.27 Screening Outgoing-calls based on third party’s Presence Status

Chapter 4 Extensions of Presence Information and CPL

 86

Sharon needs her CEO’s signature for her promotion application form. A secretary keeps

Sharon’s official form. Sharon sets an outgoing-call screening service. If the CEO’s is in

his office, she can call the secretary successfully to remind her to get CEO’s signature,

otherwise her call is blocked. Sharon’s policy is shown in Fig. 4.27. Through the policy,

Sharon can get the CEO’s signature as soon as possible without disturbing the secretary

unnecessarily.

Forwarding services:

Outgoing-call forwarding services can be based on address, time, language, priority,

string, presence status or their combinations.

In the example shown in Fig. 4.28, Sharon works for a university when she is taking the

role of “professor”, and she works for a company when she is taking the role of

“consultant”. Stephen’s calls to Sharon are automatically forwarded to her URI at the

company when she is working for her company.

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:presence = “http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd”>

<outgoing>
 <address-switch field =“original-destination”>
 <address is = “sip:Sharon@site.uottawa.ca”>

 <cplPresence:presence-switch presentity =
 “pre:Sharon@example.com”>
 <cplPresence:presence role = "consultant">
 <cplPresence:success>
 <location url="sip:Sharon@example.com">
 <proxy/>
 </location>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch >

 </address >
 </address-switch>
</outgoing>

</cpl>

 Figure 4.28 Forwarding Outgoing-calls based on Address and Presence Status

Chapter 4 Extensions of Presence Information and CPL

 87

4.6.2 Incoming-call Services

Incoming-call services can be based on address, time, language, priority, string, presence

status or any combinations. The presentity can be a caller, a callee or a third party.

Screening services:

Sharon works for her company, “example.com”, only when she takes the role of

“consultant” and works for her university only when she takes the role of “professor”.

Sharon writes the incoming-call screening policy shown in Fig. 4.29. In the policy, all

calls from her company will be blocked unless she takes the role of “consultant”.

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:presence = “http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd”>

<incoming>
 <address-switch field =“origin”>
 <address contains = “example.com”>

 <cplPresence:presence-switch presentity =
 “sip:Sharon@example.com”>
 <cplPresence:presence role = "consultant">
 <cplPresence:success>
 <proxy/>
 </cplPresence:success>
 </cplPresence:presence>

 <otherwise>
 <reject/>
 </otherwise>
 </cplPresence:presence-switch >

 </address >
 </address-switch>

</outgoing>
</cpl>

 Figure 4.29 Screening Incoming-calls based Callee’s Presence Status

Sharon is very cautious. She writes a safe policy for her boyfriend, Mike. She will not

take Mike’s call when he is driving in his car in working hours. Sharon’s policy is shown

in Fig.4.30.

Chapter 4 Extensions of Presence Information and CPL

 88

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:presence = “http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd”>

<incoming>
 <address-switch field =“origin”>
 <address is = “sip:Mike@example.com”>

 <time-switch tzid="America/New_York"
 tzurl="http://zones.example.com/tz/America/New_York">
 <time dtstart="20000703T090000" duration="PT8H"
 freq="weekly" byday="MO,TU,WE,TH,FR">

 <cplPresence:presence-switch presentity =
 “sip:Mike@example.com”>
 <cplPresence:presence location = "car">
 <cplPresence:success>
 <reject/>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch >
 </time>
 </time-switch>

 </address >
 </address-switch>

</outgoing>
</cpl>

 Figure 4.30 Screening Incoming-calls based on Caller’s Presence Status

Forwarding services:

Sharon likes to forward all her incoming-calls to her voice mail when she is talking on

her phone in her office with her availability status “no”. She likes to deal with these voice

mails at a later time. Her policy is shown in Fig. 4.31.

Chapter 4 Extensions of Presence Information and CPL

 89

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:presence = “http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd”>

<incoming>
 <cplPresence:presence-switch presentity = “sip:Sharon@example.com”>
 <cplPresence:presence location = “office” lineStatus = “on”
 availability = “no”>
 <cplPresence:success>
 <location url=“sip:SharonVoiceMail@example.com”>
 <proxy/>
 <location>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch >
</incoming>
</cpl>

 Figure 4.31 Forwarding Incoming-calls based on Callee’s Presence Status

Dan works for a call center and he is ranked as number one on customer services. Tom is

ranked as number 2 and Mary is ranked as number 3. According to the center’s policy,

one employer can only serve one call at a time and Dan has the highest priority to take a

customer’s phone call, followed by Tom and then Mary and so on. The centers set the

incoming-call policies. Dan’s policy is shown in Fig. 4.32 and Tom’s policy is shown in

Fig 4.33.

<cpl xmlns = "http://www.ietf.org/rfc/rfcxxxx.txt"
 xmlns:presence = “http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd”>

<incoming>
 <cplPresence:presence-switch presentity = “sip:dan1@example.com”>
 <cplPresence:presence lineStatus = "on">
 <cplPresence:success>
 <location url=“sip:tom2@example.com”>
 <proxy/>
 </location>
 </cplPresence:success>
 </presence:presence>
 </presence:presence-switch >
</incoming>
</cpl>

 Figure 4.32 Forwarding Incoming-calls based on Callee’s Presence Status

Chapter 4 Extensions of Presence Information and CPL

 90

<cpl xmlns = ”http://www.site.uottawa.ca/~djiang/thesis/cpl.dtd”
 xmlns:presence = “http://www.site.uottawa.ca/~djiang/thesis/
 cplPresence.dtd”>

<incoming>
 <cplPresence:presence-switch presentity = “sip:tom2@example.com”>
 <cplPresence:presence lineStatus = "on">
 <cplPresence:success>

 <location url=“sip:mary3@example.com”>
 <proxy/>
 <location>

 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch >
</incoming>
</cpl>

 Figure 4.33 Forwarding Incoming-calls based on Callee’s Presence Status

Chapter 4 Extensions of Presence Information and CPL

 91

 Watcher or Caller

 Presentity or Callee

 Presence related process User
 Call related process policies

 Figure 4.34 End User Policies in a three-layer Architecture

 Policy Server

SIP Server
(W-SIP)

Outgoing-
Call

Policies

SUBSCRIBE INVITE

Incoming-
Notification

Policies

NOTIFY

 Presence Agent (W-PA) / User Agent

SIP NOTIFY

SIP INVITE

Get presence policy Get call processing policy

 Policy Server

SIP Server
(P-SIP)

Outgoing-
Notification

Policies

SUBSCRIBE INVITE NOTIFY

 Presence Agent (P-PA) / User Agent

SIP NOTIFY

SIP INVITE

Incoming-
Call

Policies

Get presence policy Get call processing policy

Incoming-
Subscription

Policies

Outgoing-
Subscription

Policies

SIP SUBSCRIBE
Layer 1:
SIP Service

Layer 3:
End User
Service

Layer 2:
System
Service

Layer 3:
End User
Service

Layer 2:
System
Service

Layer 1:
SIP Service

SIP SUBSCRIBE

Chapter 4 Extensions of Presence Information and CPL

 92

We have seen that extended CPL can be used in describing end user services in presence

systems and call processing systems. These policies are written in Extended CPL and are

put in policy servers. These servers are responsible of validating CPL scripts when they

are loaded. PAs and UAs of end users can access these policies through the policy server

at running time. The position of these policies is shown in Fig. 4.34. As a caller, the user

can have outgoing-call policies; as a callee, the user can have incoming-call policies; as a

watcher, the user can have outgoing-subscription policies and incoming-notification

policies; as a presentity, the user can have incoming-subscription policies and outgoing-

notification policies.

4.7 Conclusion

CPL and presence information extensions are discussed in this chapter, which includes

explanations on why end user services in a presence system are described in extended

CPL, and how to extend presence information and CPL for presence. The new system

with CPL extensions for presence is presented through various application examples, and

presence related services in a call processing system are also illustrated. Chapter 5

presents the implementation of a simulation system for Internet Telephony based on these

principles.

Chapter 5 Simulation System

 93

Chapter 5 Simulation System

5.1 Introduction

Basic services in presence systems were described in Chapter 3. End user’s specific

presence services and call processing services related to presence were discussed in

Chapter 4. In this chapter, a simulation system of these Internet Telephony services will

be presented.

The system design is introduced section 5.2. Presence system, policy system and call

processing system are described in section 5.3, section 5.4 and section 5.5 respectively.

End user specific presence services and call processing services are illustrated in section

5.6. Section 5.7 is the conclusion of this chapter.

5.2 Simulation System Design

This simulation system provides a demonstration of Internet Telephony services specified

in Extended CPL. These services include presence services and call processing services

that might be related to presence. End users can specify policies that describe these

services through Graphic User Interfaces (GUIs). These policies are translated into

Extended CPL and saved in files automatically by the system. End users can access

identical services through the Internet at any location.

The system is implemented in the Java programming language because of its suitability

for web applications. This simulation is a web-based application that makes it accessible

anywhere through the Internet.

Chapter 5 Simulation System

 94

Note that, since our system is a simulation system, rather than an implementation, no

perfect mapping will be established between the components of Fig. 4.34 and our system.

To demonstrate the theory described chapter 3, 4 and 5, we have only provided some

functionalities of these components in our simulation system.

5.2.1 System Introduction

The simulation contains three subsystems: the presence system, the call processing

system and the policy system (see Fig. 5.1). Each system name, followed by its

functionalities, is a link to the system GUI. The three systems can either be independent

of each other or cooperate with each other.

Figure 5.1 Simulation System

The presence system provides presence services, the call processing system provides call-

handling services and the policy system allows end users to manage their specific

services, both for presence and for call handling. In either the presence system or the call

processing system, services are provided according to the users’ policies. If users don’t

have any policies, only basic system services (i.e. default services) will be provided.

Chapter 5 Simulation System

 95

5.2.2 System Structure

Figure 5.2 Architecture of Simulation System

The architecture of the simulation system is shown in Fig. 5.2. The architecture contains

four parts: the Internet browsers, the web server, the database server and the database.

The Internet browsers let users enter their requests and display request results. The web

server holds Java servlets that are the central controllers that manage the system services.

The Database server holds DBAgent. DBAgent works as an agent for the Database

“MySQL” and has many methods to operate on the database. The database contains all

service-required information. When an end user requests a service, request information is

entered in the GUIs via the Internet browsers. The Java servlets accept the request

information through Hyper Text Transfer Protocol (HTTP) and deliver it to the database

agent. The database agent connects to the database “MySQL” via the Java Database

Connection (JDBC). It gets the required data from the database and sends it back to the

Java servlets. The Java servlets process the data and display the readable service results at

the user’s browser via HTTP.

The advantage of choosing this architecture is that the database agent and the Java

servlets can reside on different computers. The database server and the web servers can

Database:
MySQL

JDBC

Browser

Browser

Browser

 Presence
 Policy
 Call

Servlets
Policy info
Presence info
Personal info

Database
Server

HTTP

WEB Server

DBAgent
MYSQL

Chapter 5 Simulation System

 96

be at different locations. End users can get the identical services anywhere through the

Internet.

5.2.3 Database Design

Figure 5.3 Database Schema Relationship Diagram

The database shown in Fig. 5.3 has five tables. Table “users” stores registered users’

information for the presence system. Table “presence” stores presence information of

presentities. Table “watcherpresentity” stores name pairs of watchers and presentities.

Table “phoneusers” stores the personal information of registered telephone users. Table

“policy” stores the policy information of registered phone users. The relations among the

five tables are:

+ theuser

PK: user

PK: presentity
Ref: user in users

PK: watcher, presentity
Ref: user in phoneusers

PK: policyID
FK: user Ref: user in phoneusers

1

1

PK: user
Ref: user in
phoneusers

+ theuser 1

has

Chapter 5 Simulation System

 97

1. In table “presence”, the primary key “presentity” refers to “user”, the primary key

in table “users”. One user in the table “users” can have one presentity in table

“presence”.

2. In table “watcherpresentity”, the primary key, “watcher” and “presentity”, refers

to “user”, the primary key in table “users”. One user in table “user” can have

either multiple watchers or multiple presentities in table “watcherpresentity”.

3. In table “users”, the primary key “user” references “user”, the primary key in

table “phoneusers” and vice-versa. One user in table “users” corresponds to the

same user in table “phoneusers” and vice-versa.

4. In table “policy”, the primary key is “policyID”. The foreign key “user”

references “user”, the primary key in table “phoneusers”. One user in table

“phoneusers” can have multiple policyIDs in table “policy”. Each policyID stands

for one policy.

Based on the database design, one user can have only one unique name registered in the

simulation system. The user can be a watcher, a presentity or can be a presentity and a

watcher at the same time. If the user is a presentity, the presence information displays his

current presence status. The user can have one phone account; however, he/she can have

multiple policies.

5.2.4 Java File Organization

Each Java file is a Java class under a package. The simulation software structure is shown

in Fig. 5.4. There are three packages in the software: a root package “cpl” and two sub-

packages “cpl.app” and “cpl.web”. Root package “cpl” contains the class “DBAgent” and

the two sub-packages. The DBAgent acts as the front end for the database. It has generic

methods to perform several database operations. Package “cpl.web” contains the Java

servlets that work as controllers. The Java servlets process service requests and return

Chapter 5 Simulation System

 98

service results back to users’ browsers via HTTP. Package “cpl.app” contains the Java

classes that are responsible for policy processing tasks. Each name, either a package

name or a class name, is a link to the detail description. The Java Application

Programmer’s Interfaces (Java APIs) are included in the documents that are available

with the simulation software.

Figure 5.4 Hierarchy for all Packages

5.3 Presence System

5.3.1 Introduction

The presence system offers presence services to users. A user can be a watcher, a

presentity or both at the same time. As a watcher, a user can manage his presentities; as a

presentity, the user can manage his watchers and notify them of his presence information.

Chapter 5 Simulation System

 99

The root GUI of presence system is shown in Fig. 5.5. A new user has to register to the

system to get an account before he can login to the system. The new user needs to fill in

his name and password at registration and the personal information that is required for

login to the system. After the user has registered to the system, the system sets an account

for the user in the system database.

Through the GUI “presence system”, a registered user can send a subscription request to

a presentity. The required information is the user’s name, password and the presentity’s

name. The user name and password are used for authorization and the presentity’s name

is used to identify the destination of the request.

Figure 5.5 Presence System

Chapter 5 Simulation System

 100

5.3.2 The Relationship between the GUI and Presence Services

On the GUI for presence management (see Fig. 5.6), each button connects to a service of

the presence system. For example, the button “add watcher” allows the current user to

approve an incoming subscription request from the specified watcher. The button “adding

presentity” allows the user to send out a subscription request to the specified presentity.

The relationship between the GUI buttons and their corresponding services is listed in

Table 5.1.

GUI Button Presence Service

Presence information
create presence
edit
delete

watchers
add watcher
delete watcher

presentities
add presentity
delete

Register presence information to the system
Update presence information in the system
Remove presence information from the system

Process an incoming subscription request from the watcher
Terminate the watcher’s presence service

Send out a subscription request to the presentity
Un-subscribe to the presentity’s presence service

Table 5.1 Relationship between the GUI and Presence Services

5.3.3 Presence Services

The simulation system offers the following presence services:

1) register and create an account for a new user;

2) register, modify and remove presence information for a presentity;

3) add and remove watchers for a presentity (multiple watchers are allowed);

4) add and remove presentities for a watcher (multiple presentities are allowed).

Chapter 5 Simulation System

 101

Figure 5.6 Presence Management

After a user has logged into the system, the presence system displays the GUI “Presence

Management”, as shown in Fig. 5.6. The presence system provides several services to

end users via the GUI. For example, user Sharon can request some services as described

in the following scenarios:

Scenario 1: Sharon registers her presence information

Sharon clicks the button “create presence” and the system displays the GUI “New

Presence” (see Fig. 5.7). Through the GUI, Sharon fills the following presence

information in office hour (i.e. 8:00am to 4:00pm):

1) Location: “office” (She is in her office);

2) Line Status: “on” (She is talking on her phone);

3) Role: “doctor” (She works as a doctor currently);

4) Availability Status: “no” (She does not want to communicate with others currently).

Chapter 5 Simulation System

 102

After her presence information is submitted, as a presentity, Sharon has successfully

registered her presence information to the system (see Fig. 5.8).

Figure 5.7 New Presence

(Sharon registers her presence information via the GUI)

Chapter 5 Simulation System

 103

Figure 5.8 Presence Management Display

(Sharon’s presence information has been registered)

Scenario 2: Sharon sends her subscription request to Stephen

In order to know Stephen’s presence information, Sharon clicks the button “add

presentity”. After the presence system displays the GUI “Add Presentity”, Sharon fills

“Stephen” in the blank cell “Presentity” and submits the request (see Fig. 5.9). So

Stephen has been added on Sharon’s presentity list as shown in Fig. 5.10.

In Fig. 5.10, Stephen’s presence information is filled by using data provided by Stephen.

At this point, we assume that Stephen has no policies (see section 5.6) and only basic

system services are provided in this aspect.

Chapter 5 Simulation System

 104

Figure 5.9 Add Presentity

(Sharon sends her subscription request to Stephen)

Figure 5.10 Presence Management Diaplay

(Stephen has been added to Sharon’s presentity list)

Chapter 5 Simulation System

 105

Scenario 3: Sharon approves Edward’s subscription request

To approve Edward’s request, Sharon clicks the button “add watcher”. The GUI “Add

Watcher” is displayed. Sharon fills “Edward” in the blank cell “Watcher” as shown in

Fig. 5.11.

After the request is submitted, Stephen is on Sharon’s watcher list (see Fig. 5.12).

Figure 5.11 Add Watcher

 (Sharon approves Edward’s request)

Chapter 5 Simulation System

 106

Figure 5.12 Presence Management Display

(Edward has been added to Sharon’s watcher list)

Scenario 4: Sharon changes her presence status

To change her presence status, Sharon clicks the button “edit” for the presence

information. The GUI “Update Presence” is displayed. Sharon changes her location from

“office” to “meeting room”, as shown in Fig. 5.13.

After the request is submitted, Sharon’s presence information is updated (see Fig. 5.14).

In reality, we can expect that such updates will be performed automatically, by

information received from sensors positioned in the environment.

Chapter 5 Simulation System

 107

Figure 5.13 Update Presence

(Sharon’s location is changed from “office” to “meeting room”)

Chapter 5 Simulation System

 108

Figure 5.14 Presence Management Update

(Sharon’s presence status displays she is in meeting room)

Sharon also can cancel her presence service relative to a presentity by clicking the button

“delete” corresponding to the presentity. In a similar way, Sharon can terminate a service

offered to a watcher by clicking the button “delete” corresponding to the watcher.

Chapter 5 Simulation System

 109

5.4 Policy System

5.4.1 Introduction

The policy system provides policy management services. A user can manage his phone

account and his specific services (i.e. policies) in the policy system. He can create and

modify his phone account; and he can create, modify and remove his policies.

A user has to register to the policy system to obtain an account before he can use the

system. To get the account, the user Sharon, for example, needs a unique name, a unique

logic phone (published phone) and a maximum of three physical phones. Each phone is

identified by a unique URI. Sharon requests her phone account as shown in Fig. 5.15.

Sharon’s logic phone is identified by “sharon@example.com”. She has three phone

devices identified by “Sharon@dep1.example.com”, “Sharon@site.uottawa.ca” and

sharon@voicemail.example.com, respectively.

Figure 5.15 Policy System

(Sharon registers her personal information to the policy system)

Chapter 5 Simulation System

 110

After the registration, Sharon logins to the policy system and sees her phone account

information as shown in Fig. 5.16.

Figure 5.16 Policy Management

5.4.2 The Relationship between the GUI and Services

The policy system provides several services via the GUI “Policy Management”. In Fig.

5.17, each button on the GUI corresponds to a service in the system. The relationship

between the buttons and the services is shown in Table. 5.2.

Chapter 5 Simulation System

 111

Figure 5.17 Policy Management with Six Types of Policies

GUI Button Policy Service

Personal Account
Create account
Edit
Delete

Policies
Add policy
Display
Edit
Delete

Create CPL files
Call processing policy
Presence policy

Register the user to the system
Update the user’s phone account in the system
Remove the user from the system

Specify a new policy by the user
Display the policy
Modify the policy
Remove the policy

Save a file in extended CPL to describe call processing services
Save a file in extended CPL to describe presence services

Table 5.2 Relationship between the GUI and Policy Services

Chapter 5 Simulation System

 112

5.4.3 Policy Management

There are six types of policies in the policy system as listed in Table 5.3. An end user can

have a maximum of six types of policies; each type may contain multiple policies. There

may be some conflicts among these policies inside one type. For example, Stephen likes

to forward his incoming calls to his voice mail from 9:00 am to 10:00 am every morning

on workdays. Stephen likes to take his wife’s calls unconditionally. The two incoming

call policies conflict if Stephen’s wife calls at 9:30. In order to solve such conflicts, the

simulation system gives a number to each policy in each type. The policy with the highest

priority is numbered “1”. The policy with the second highest priority is numbered “2”

and so on (see Fig. 5.12).

Action Tag in CPL Policy Type Name Explanation

incoming IN-Call Deal with incoming call

outgoing OUT-Call Deal with outgoing call

incoming subscription IN-Subs Deal with incoming subscription request

outgoing subscription OUT-Subs Deal with outgoing subscription request

incoming notification IN-Notif Deal with incoming notification

Outgoing notification OUT-Notif Deal with outgoing notification

 Table 5.3 Policy Type

In the processing of one type service, the policies are checked in the order of priority

within the type. The highest priority policy is checked first. As soon as a policy matches

the criteria, the remaining policies are ignored. If Stephen gives a higher priority to the

policy for his wife’s calls, he can take his wife’s calls at 9:30 am. The forwarding policy

with the lower priority is ignored in this case. Usually specific policies will be given

higher priority than more general ones. A system for detecting CPL policy conflicts was

studied in [24]. The research on feature interactions in traditional telecommunications

systems can be found in [25] [26].

Chapter 5 Simulation System

 113

5.4.4 Policy Services

There are two main types of services: personal account management and policy

management.

In the policy system, most services are provided via the GUI “Policy Management”

except for account creation, which is offered via the GUI “Policy System”. Several main

services of the system are illustrated in the following scenarios for user Sharon:

 Figure 5.18 Update Account

(Sharon modifies her phone account information)

Scenario 1: Sharon modifies her phone account

Sharon clicks button “edit” for her phone account, the system displays the GUI “Update

Account”. Referencing her original account information, Sharon changes her physical

phone#1 from “sharon@dep1.example.com” to “sharon@dep3.example.com”, as shown

in Fig. 5.18. After the request “Update Account” is submitted, Sharon’s account has been

updated (see Fig. 5.19).

Chapter 5 Simulation System

 114

Figure 5.19 Policy Management Update

(Sharon’s phone#1 is changed to “Sharon@dep3.example.com”)

Scenario 2: Sharon creates her policies

Sharon clicks the button “add policy”, the system displays the GUI “Add Policy” (see

Fig. 5.20).

Chapter 5 Simulation System

 115

Figure 5.20 Add Policy
(Sharon creates her forwarding policy for incoming calls)

Sharon would like to have a service (policy) to forward all her incoming calls to her voice

mail when she is talking on her phone, unwilling to answer other phone calls. Sharon

specifies her policy as follows:

Policy type: incoming call/IN

Policy priority: 1

Policy name: IN1

Caller: Stephen

Time: don’t care

Line Status: on

Availability: no

Action: proxy

Destination: Sharon’s voice mail

This service is based on Sharon’s presence status. According to the policy, Stephen’s

incoming calls will be forwarded to Sharon’s voice mail when she is talking on her phone

unwilling to answer other phone calls. The instructions displayed on the GUI “Add

Policy” provide online help to users for specifying their policies correctly.

Chapter 5 Simulation System

 116

After Sharon’s incoming call handling policy#1 is submitted, the policy “IN1” has been

added into her policy list (see Fig. 5.21).

Figure 5.21 Policy Management Display

(Sharon’s incoming call policy “IN1” has been created successfully)

Scenario 3: Sharon modifies her policies

Sharon clicks the button “display/edit” for policy “IN1”, the system displays the GUI

“Update Policy” as shown in Fig. 5.22. Sharon changes caller “Stephen” to “Edward” in

the policy “IN1”. After Sharon submits the policy, she sees that the policy “IN1” has

been updated (see Fig. 5.23).

Chapter 5 Simulation System

 117

 Figure 5.22 Update Policy

 (Sharon changes the caller “Stephen” to “Edward”)

Figure 5.23 Policy Management Update

(The caller is changed to “Edward” in Sharon’s policy “IN1”)

Chapter 5 Simulation System

 118

Scenario 4: Sharon saves her policies in Extended CPL as files

The system can translate end user’s services into CPL and CPL extensions and then save

them in files for the users. A service system, either the presence system or the call

processing system, can recognize and provide these services specified in Extended CPL.

Sharon clicks the button “call processing policies”, the system saves Sharon’s policies in

type “IN” and “OUT” into a file named “Sharon-c.cpl” in the system. In the file, these

policies are ordered by policy type.

If Sharon clicks the button “presence policies”, the system saves Sharon’s policies in

types “IN-Subs”, “OUT-Subs”, “IN-Notif” and “OUT-Notif” into a file named “Sharon-

p.cpl” in the system. These policies are ordered by policy type in the file.

In conclusion, the policy system offers an end user the following operations:

1). Create a phone account for a new user;

2). Create policies in six types for an authorized user;

3). Add, remove, modify and display policies for an authorized user;

4). Create and save a file in Extended CPL to describe presence services;

5). Create and save a file in Extended CPL to describe call processing services.

5.5 Call Processing System

The call processing system offers call processing services to users. The home GUI “Call

Processing System” is shown in Fig. 5.24.

Chapter 5 Simulation System

 119

Figure 5.24 Call Processing System

In the call processing system, a registered user can make a phone call to another

registered user. For example, user Sharon likes to make a call to Stephen. She fills her

name, password, callee (Stephen) in her request form and submits her call as shown in

Fig. 5.24. As a system default service, her call to Stephen is connected with no policies

applied (see Fig. 5.25).

Figure 5.25 Message

(Sharon’s call is connected without any policies applied)

Chapter 5 Simulation System

 120

5.6 End User Services

The simulation system offers both basic services and end user specific service. Basic

presence services and basic call processing services have been described in section 5.3

and section 5.5 respectively. This section will illustrate the end user’s specific services.

5.6.1 Sharon’s Specific Services

Suppose that Sharon works at “example.com” in New York, U.S.A. She is an end user of

the simulation system. She would like to have the presence services and call processing

services listed in Table 5.4.

Service (Policy) Name Description

Presence Policy
Outgoing Subscription
Blocking #1

Incoming Subscription
Rejection #1

Outgoing Notification
Controlling #1

Call processing Policy
Outgoing Call
Blocking #1

Outgoing Call
Forwarding #2

Incoming Call
Rejection #1

Incoming Call
Forwarding #2

SOUT1

SIN1

NOUT1

OUT1

OUT2

IN1

IN2

Blocks outgoing subscription requests outside of work
hours.

Rejects Stephen’s incoming subscription requests if
Sharon is on the phone

Blocks notifications to Stephen if Sharon is on her phone

Blocks calls to Stephen when Sharon does not like to
communicate with others during work hours.

Her calls to Stephen are automatically forwarded to
Stephen’s cell phone in lunchtime.

Rejects incoming calls from Stephen at night.

Forward incoming calls to her voice mail if she is talking
on her phone while her availability status is “no”.

 Table 5.4 Sharon’s Policies

Chapter 5 Simulation System

 121

How to create a policy has been described by scenario 2 in section 5.4. Sharon repeats the

same procedure in scenario 2 for each policy application. After all these policies are

complete, the summary of Sharon’s policies is displayed in Fig. 5.26. These policies are

ordered by policy type. Inside each type, policies are ordered by policy numbers: the

smaller the policy number, the higher the priority.

Figure 5.26 Policy Management Display

(Sharon has created seven policies)

5.6.2 Sharon’s Services Specified in CPL

The scenario 4 in section 5.4 describes how the simulation system saves a user’s services

in extended CPL into files. Sharon just follows the procedures in scenario 4 and gets two

separate files with extension “cpl”. The File “Sharon-p.cpl” contains Sharon’s presence

services specified in Extended CPL (see Fig. 5.27). The file “Sharon-c.cpl” contains

Sharon’s call processing services specified in Extended CPL (see Fig. 5.28). We assume

that CPL is defined in the default name space that can be accessed at the URI

Chapter 5 Simulation System

 122

"http://www.site.uottawa.ca/~djiang/cpl.dtd"; and CPL extensions for

presence are defined in the name space “cplPresence” which can be accessed at the URI
"http://www.site.uottawa.ca/~djiang/cplPresence.dtd".

<?xml version="1.0" ?>
<cpl xmls="http://www.site.uottawa.ca/~djiang/cpl.dtd"
 xmls:cplPresence="http://www.site.uottawa.ca/~djiang/cplPresence.dtd">

<!-- ************ Incoming Subsciption Policies ************ -->
<cplPresence: incoming subscription>

 <!-- ---- Policy # 1 – SIN1 ------ -->
 <address-switch field = "orgin">
 <address is = "sip:stephen@example.com">
 <cplPresence:presence-switch presentity="sip:sharon@example.com">
 <cplPresence:presence lineStatus = "on" >
 <cplPresence:success>
 <reject/>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch >
 </address >
 </address-switch >
</cplPresence:incoming subscription>

<!-- ************ Outgoing Subscription Policies ************ -->
<cplPresence:outgoing subscription>

 <!-- ---- Policy # 1 -- SOUT1 ------ -->
 <time-switch tzid="America/New-York"
 tzurl="http://example.com/tz/America/New_york">
 <time dtstart="20030101T180000" duration = "PT14H" freq = "weekly"
 byday = "MO, TU, WE, TH, FR">
 <reject/>
 </time>
 </time-switch >
</cplPresence:outgoing subscription>

<!-- ************ Outgoing Notification Policies ************ -->
<cplPresence:outgoing notification>

 <!-- ---- Policy # 1 -- NOUT1 ------ -->
 <address-switch field = "orgin">
 <address is = "sip:stephen@example.com">
 <cplPresence:presence-switch
 presentity="sip:sharon@example.com">
 <cplPresence:presence lineStatus = "on" >
 <cplPresence:success>
 <reject/>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch >
 </address >
 </address-switch >
</presence: outgoing notification>
</cpl>

Figure 5.27 File “Sharon-p.cpl”

Chapter 5 Simulation System

 123

<?xml version="1.0" ?>
<cpl xmls="http://www.site.uottawa.ca/~djiang/cpl.dtd"
 xmls:cplPresence="http://www.site.uottawa.ca/~djiang/cplPresence.dtd">

<!-- ************ Incoming Call Policies ************ -->
<incoming>

 <!-- ---- Policy # 1 -- IN1 ------ -->
 <address-switch field = "orgin">
 <address is = "sip:stephen@example.com">
 <time-switch tzid="America/New-York"
 tzurl = "http://example.com/tz/America/New_york">
 <time dtstart="20030101T180000" duration = "PT14H" freq = "weekly"
 byday = "MO, TU, WE, TH, FR">
 <reject/>
 </time>
 </time-switch >
 </address >
 </address-switch >

 <!-- ---- Policy # 2 -- IN2 ------ -->
 <time-switch tzid="America/New-York"
 tzurl = "http://example.com/tz/America/New_york">
 <time dtstart="20030101T090000" duration = "PT8H" freq = "weekly"
 byday = "MO, TU, WE, TH, FR">
 <cplPresence:presence-switch
 presentity="sip:sharon@example.com">
 <cplPresence:presence lineStatus = "on" availability = "no">
 <cplPresence:success >
 <location url = "sip:sharon@voicemail.example.com">
 <proxy/>
 </location>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch >
 </time>
 </time-switch >
</incoming>

<!-- ************ Outgoing Call Policies ************ -->
<outgoing>

 <!-- ---- Policy # 1 -- OUT1 ------ -->
 <address-switch field = "orgin">
 <address is = "sip:stephen@example.com">
 <time-switch tzid="America/New-York"
 tzurl = "http://example.com/tz/America/New_york">
 <time dtstart="20030101T090000" duration = "PT8H" freq = "weekly"
 byday = "MO, TU, WE, TH, FR">
 <cplPresence:presence-switch
 presentity="sip:sharon@example.com">
 <cplPresence:presence availability = "no" >
 <cplPresence:success >
 <reject/>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch >
 </time>
 </time-switch >
 </address >
 </address-switch >

Chapter 5 Simulation System

 124

 <!-- ---- Policy # 2 -- OUT2 ------ -->
 <address-switch field = "orgin">
 <address is = "sip:stephen@example.com">
 <time-switch tzid="America/New-York"
 tzurl = "http://example.com/tz/America/New_york">
 <time dtstart="20030101T120000" duration = "PT1H" freq = "weekly"
 byday = "MO, TU, WE, TH, FR">
 <cplPresence:presence-switch
 presentity="sip:sharon@example.com">
 <cplPresence:presence lineStatus = "off" >
 <cplPresence:success >
 <location url = "sip:stephen@mobilePhone.example.co">
 <proxy/>
 </location>
 </cplPresence:success>
 </cplPresence:presence>
 </cplPresence:presence-switch >
 </time>
 </time-switch >
 </address >
 </address-switch >
</outgoing>

</cpl>

Figure 5.28 File “Sharon-c.cpl”

5.6.3 Use Case Tests for Sharon’s Policies

In this section, the simulation system will test if it can offer Sharon’s services according

to Sharon’s policies. Our test cases are chosen as examples and do not try to be

exhaustive. Four test cases are shown as follows:

Case 1: SOUT1 – Outgoing Subscription Blocking

The policy “SOUT1” is that Sharon blocks all outgoing subscription requests outside of

work hours.

Chapter 5 Simulation System

 125

Figure 5.29 Add Presentity for Testing Policy “SOUT1”
(Sharon sends a subscription request to Stephen at night)

Sharon sends a subscription request to Stephen at night, as shown in Fig. 5.29. Her

request result is shown in Fig.5.30. Sharon’s subscription request is rejected according to

her outgoing subscription policy “SOUT1”.

Figure 5.30 Message for “SOUT1” Test Result
(Sharon’s request is rejected according to her policy “SOUT1”)

Chapter 5 Simulation System

 126

Test case 2: NOUT1 – Notification controlling

The policy “NOUT1” is that Sharon blocks notifications to Stephen when she is on the

phone.

Stephen is a watcher of Sharon. During work hours, Sharon changes her line status from

“off” to “on”, when she picks up her phone to make a call to somebody (see Fig. 5.31).

The event processing results are shown in Fig. 5.32. When Sharon’s line status is

changed from status “off” to status “on”, Stephen is not notified. Sharon prevents

Stephen from knowing that she is on her phone, according to her policy “NOUT1”.

 Figure 5.31 Update Presence for Testing Policy “NOUT1”

(Sharon makes a phone call i.e. line status is changed from “off” to “on”)

Chapter 5 Simulation System

 127

Figure 5.32 Message for “NOUT1” Test Result
(Stephen is not notified when Sharon makes a phone call, according to
Sharon’s policy NOUT1)

Test case 3: OUT1 - Screening outgoing call

The policy “OUT1” is that Sharon forbids herself from calling Stephen when her

availability status is “no” during work hours. This policy can be treated as a self-imposed

restriction.

When Sharon’s availability status is “no” in work hours, she submits a call to Stephen, as

shown in Fig. 5.33. Her call processing result is shown in Fig. 5.34. Her call is rejected

according to her outgoing call policy “OUT1”.

Chapter 5 Simulation System

 128

Figure 5.33 Call Processing System for Testing Policy “OUT1”
(Sharon makes a call to Stephen in office hour)

Figure 5.34 Message for “OUT1” Test Result
(Sharon’s call is rejected according to her policy “OUT1”)

Chapter 5 Simulation System

 129

Test case 4: IN2 - Forwarding incoming call

The policy “IN2” is that Sharon forwards all incoming calls to her voice mail if she is

talking on her phone with her availability status “no”.

When Sharon is talking on her phone, unwilling to take other phone calls, Stephen makes

a call to Sharon, as shown in Fig. 5.35. Stephen’s call processing result is shown in Fig.

5.36. Stephen’s call is forwarded to Sharon’s voice according to Sharon’s policy “IN2”.

Figure 5.35 Call Processing System for Testing Policy “IN2”
(Stephen makes a call Sharon)

Figure 5.36 Message for “IN2” Test Result
(Stephen’s call is forwarded to Sharon’s voice mail according to
Sharon’s policy “IN2”)

Chapter 5 Simulation System

 130

5.7 Conclusion

This chapter introduces and describes a simulation environment of Internet Telephony

services specified in CPL and CPL extensions. The system design ideas and the system

structure have been discussed in the chapter. Three subsystems are described

individually: the presence system, the call processing system and the policy system. Basic

services, either in the presence system or in the call processing system, are described

through system service scenarios. End user’s specific services are illustrated and tested in

the simulation system.

The simulation system presented in this chapter shows the results that could be obtained

by fully implemented presence system and call processing system, which would require

much more work. Our own main contribution i.e. the CPL extensions discussed in

chapter 4, were fully implemented, and the extensions of presence information, excluding

the parameter “role” (section 4.3.1) were included in the simulation system.

Chapter 6 Summary and Future Work

 131

Chapter 6 Summary and Future Work

This chapter reviews the contributions of the thesis and discusses the further work related

to the topic.

6.1 Contributions of the Thesis

This thesis focuses on Internet Telephony end user services including call processing

services and presence services specified in CPL and CPL extensions. For the first time,

the basic concepts of presence systems are systematically described; end user’s specific

services and system basic services are clearly separated. Presence information is extended

from only “online” and “offline” indicators to a much broader meaning including

“location”, “role”, “lineStatus” and “availability”. CPL is extended to be able to describe

presence related services. Through CPL extensions, end users can have their own specific

presence services and new call processing services related to presence. We have

developed a simulation system to demonstrate Internet Telephony services specified in

CPL and its extensions. The simulation system allows end users to specify their services

through Graphic User Interfaces (GUIs) and access their services at any locations through

the Internet. The thesis contributions include:

1. Describe an architecture and protocols for Presence System

(Section 3.1 - 6)

For the first time, presence systems and presence services are described systematically in

this thesis. End user services and system basic services are clearly separated in a three-

layer architecture. In the architecture, SIP services reside in the lowest layer to support

presence system services. The presence services include system basic services as well as

end user specific services. Basic services reside in the second layer and are displayed in

Chapter 6 Summary and Future Work

 132

various scenarios. End user specific services reside in the third layer, and this leads to the

next three contributions.

2. Extend Presence Information (Section 4.3)

The richness of presence information is the basis for presence services. We have

extended presence information from traditional “online” and “offline” indicators to a

much broader meaning including “location”, “role”, “lineStatus” and “availability”. The

whole procedure of the extensions is demonstrated through an example. Our

contributions include how to define the extensions of presence information, how to write

presence documents in Presence Information Data Format (PIDF) and how to declare the

extensions in the presence documents.

3. Extend CPL for Presence (Section 4.4)

In order to describe user specific services related to presence, it is necessary to extend

CPL for presence. In the extensions, we have defined four top-level actions, five new

operations and a presence-switch. The four top-level actions identify four types of

services i.e. the watcher’s “outgoing-subscription” request processing, the presentity’s

“incoming-subscription” request processing, the presentity’s “outgoing-notification”

response processing and the watcher’s “incoming-notification” response processing. The

presence-switch provides a set of new services that are processed based on a presentity’s

presence status. The new services can be either presence services or call processing

services.

4. Describe User New Services Related to Presence (Section 4.5 - 6)

With the CPL extensions for presence, end user’s presence services and call handling

services can be processed based on time, address, language, priority, string (in CPL) and

presence status of a presentity (in CPL extensions). These new services have been

illustrated through various examples.

Chapter 6 Summary and Future Work

 133

5. Implement a Software Simulation System (Section 5.1 - 4)

We have implemented a software simulation system to demonstrate Internet Telephony

services. The software allows end users to specify their own services including presence

services as well as call processing services through the system’s Graphic User Interfaces

(GUIs). These services are automatically saved as files in extended CPL by the system.

End users can access their services anywhere through the Internet.

6.2 Future Work

Several research topics can be pursued in the future in order to improve, enhance and

broaden the research on Internet Telephony services, which may include:

1. Improvement of the Simulation System

In the software that we have implemented (see section 6.1), the presence information

contains a maximum of three parameters i.e. the location, the phone line status and the

status of willingness to communicate. The software is easily extended to contain more

parameters such as “role”, i.e. the presentity’s working status. Some examples concerning

the use of role were given in section 4.3.1.

A user’s presence based services, either presence services or call processing services, can

only be based on his own presence status in the simulation system. The system can be

easily extended to provide these services based on the presence status of any presentity of

the user.

2. Further Research on Presence Services

The system we propose is limited concerning the flexibility provided to the watchers. We

could envisage extensions where a watcher could express his preferences: stating which

Chapter 6 Summary and Future Work

 134

parts of presence information he is interested in, when and how often he likes to receive

the presence information, in which language the presence information should be written,

etc. These preferences will be written in the watcher’s SIP SUBSCRIBE request and sent

to his presentity. After the presentity’ presence agent (P-PA) receives the request, it will

provide the presence services according to the watcher’s preferences if these preferences

do not conflict with the presentity’s policies.

3. Combining Call-handling Services with Other Services

This thesis outlines a new approach to describe services that combine call processing

services with presence services through CPL extensions. The approach can be extended

to other combined services, such as combining call processing services with Email

services, instant Messaging services. By extending CPL for email and for instant

messaging, end users can have more kinds of combined services. For an example, an

email or an instance message can be automatically sent to a callee if a caller gets no

answer from the callee.

4. Broaden Internet Telephony as One Type of Internet Service

Internet Telephony services are provided over the Internet. What are the differences and

similarities of Internet Telephony compared to other Internet services? If Internet

Telephony services are seen as part of the family of the Internet services, new research

topics will arise, such as how to combine these services with others, how to manage these

Internet services, how to establish service standards, etc. This will be a very interesting

research area.

 References

 135

References

[1] “ITU-T Terms and Definitions Database”. Access June 1, 2003,

 http://www.itu.int/sancho/index.asp

[2] “SS7 Tutorial”. Access June 1, 2003, http://www.pt.com/tutorials/ss7/

[3] “Intelligent Networks (IN)”. Access June 10, 2003, http://www.iec.org/online/tutorials/in/

[4] Mahhub Hassan, Alfandika Nayandoro and Mohammed Atiquzzaman, “Internet Telephony:

 Services, Technical Challenges and Products”, IEEE Communications Magazine, vol.38, no.4,

 pp96-103, April 2000

[5] “Understanding Telecommunications”. Access September 20, 2003,

 http://www.ericsson.com/support/telecom/part-b/index.shtml

[6] J. Rosenberg, H. Schulzrinne, G. Camarillo etc. “RFC3261 SIP: Session Initiation protocol”.

 Internet Engineering Task Force, RFC 3261, June 2002. [rfc3261]

[7] J. Lennox, H. Schulzrinne “Programming Internet Telephony Services”. Mar. 18, 1999.

 Access February 2002, http://www.site.uottawa.ca/~djiang/research/CPL/cpl.html

[8] Jonathan Rosenberg “Programming Internet telephony with CPL and CGI” Bell laboratory,

 Oct.1999. Access February 10, 2002, http://www.site.uottawa.ca/~djiang/research/CPL/cpl.html

[9] J.Lennox and H.Schulzrinne, “CPL: A language for User Control of Internet telephony Service”.

 Internet Engineering Task Force, Internet Draft, January 15, 2002. [draft-ietf-iptel-cpl].

 Access September 20, 2002, http://www.ietf.org/IP-drafts/draft-ietf-Internet telephony-cpl-06.txt

[10] Extensible Markup Language (XML), Access June 5, 2003, http://www.w3.org/XML/

 References

 136

[11] Ismail Dalgic and Hanlin Fang, “Comparison of H.323 and SIP for IP Telephony Signalling”,

 Proc. Of Photonics East, Boston, Massachusetts, Sep. 1999.

[12] M. Handley, H. Schulzrinne, E. Schooler, J. Rosenberg “RFC2543 SIP: Session Initiation

 Protocol”. Internet Engineering Task Force, RFC 2543, March 1999. [rfc2543]

[13] J. Rosenberg, H. Schulzrinne, G. Camarillo etc. “RFC3261 SIP: Session Initiation Protocol”.

 Internet Engineering Task Force, RFC 3261, June 2002. [rfc3261]

[14] SIMPLE WG, J. Rosenberg of dynamicsoft, “A Presence Event Package for the Session Initiation

 Protocol (SIP)”, Internet Engineering Task Force, Internet Draft, January 31, 2003,

 Access May 5, 2003, http://www.ietf.org/internet-drafts/draft-ietf-simple-presence-10.txt

[15] M. Day, J. Rosenberg, and H. Sugano, “A model for presence and instant messaging”,

 Internet Engineering Task Force, RFC 2778, Feb. 2000.

[16] XiaoTao Wu, et al. “CPL Extensions for Presence” Internet Engineering Task Force, Internet

 Draft, June 1, 2000, Access May 1, 2002,

 http://www.site.uottawa.ca/~djiang/research/CPL/CPL-Extension/draft-wu-cpl- presence-00.txt

[17] Henning Schulzrinne and Jonathan Rosenberg, “The Session Initiation Protocol : Providing

 Advanced Telephony Services across the Internet“, Bell Labs Technical Journal, Vol. 3 no. 4,

 pp. 144-160, Oct.-Dec. 1998

[18] J.Lennox and H.Schulzrinne,“Call processing language framework and requirements”.

 Internet Engineering Task Force, RFC 2824, May 2000. [rfc2824]

[19] “W3C Architecture Domain, Naming and Addressing: URIs, URLs, …”

Access July 5, 2003 http://www.w3.org/Addressing/#background

 References

 137

[20] A. B. Roach of dynamicsoft, “Session Initiation Protocol (SIP)-Specific Event Notification”.

 Internet Engineering Task Force, RFC 3265, June 2002. [rfc3265]

[21] H. Sugano, S. Fujimoto etc. “Presence Information Data Format (PIDF)”, Internet Engineering

 Task Force, Internet Draft May 2003, Access June 5, 2003

 http://www.potaroo.net/ietf/ids/draft-ietf-impp-cpim-pidf-08.txt

[22] J. Peterson, “Common Profile for Instant Messaging (CPIM)” Internet Engineering Task

 Force, Internet Draft, Feb, 2001. Access May, 2002

 http://www.ietf.org/internet-drafts/draft-ietf-impp-im-02.txt

[23] M. Day, S. Aggarwal, G. Mohr and J. Vincent, “Instant messaging / presence protocol

 requirements”. Internet Engineering Task Force, RFC 2779, Feburary 2000. [rfc2779]

[24] Yiqun Xu’s thesis, “Detecting Feature Interactions and Feature Inconsistencies in CPL”,

 University of Ottawa, September 2003, Access December 5, 2003,

 http://lotos.csi.uottawa.ca/ftp/pub/Lotos/Theses/

[25] M. Calder, E. Magill, M. Kolberg, S.Reiff-Marganiec. “Feature Interaction: A Critical

 Review and Considered Forecast”. Computer Networks, Volume 41/1, 2003.

[26] J. Cameron and H. Velthuijsen, “Feature Interactions in Telecommunications Systems”.

 IEEE Communications Magazine, Vol. 31, no. 8, 18-23, August 1993.

[27] J. Lennox, X. Wu and H. Schulzrinne, “CPL: A language for User Control of Internet telephony

 Service”. Internet Engineering Task Force, Internet Draft, August, 2003. [draft-ietf-iptel-cpl].

 Access December 20, 2003, http://www.ietf.org/internet-drafts/draft-ietf-iptel-cpl-08.txt

[28] Book “Understanding the Session Initiation protocol” by Alan B. Johnston,

 Artech House, @2001.

Appendix A: Formal definition of “application/pidf+xml”

 138

Appendix A:
Formal Definition of “application/pidf+xml” [21]

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:ietf:params:xml:ns:pidf"
 xmlns:tns="urn:ietf:params:xml:ns:pidf"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <!-- This import brings in the XML language attribute xml:lang-->
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>

 <xs:element name="presence" type="tns:presence"/>

 <xs:complexType name="presence">
 <xs:sequence>
 <xs:element name="tuple" type="tns:tuple" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="note" type="tns:note" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="entity" type="xs:anyURI" use="required"/>
 </xs:complexType>

 <xs:complexType name="tuple">
 <xs:sequence>
 <xs:element name="status" type="tns:status"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="contact" type="tns:contact" minOccurs="0"/>
 <xs:element name="note" type="tns:note" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="timestamp" type="xs:dateTime" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 </xs:complexType>

 <xs:complexType name="status">
 <xs:sequence>
 <xs:element name="basic" type="tns:basic" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="basic">
 <xs:restriction base="xs:string">
 <xs:enumeration value="open"/>
 <xs:enumeration value="closed"/>
 </xs:restriction>
 </xs:simpleType>

Appendix A: Formal definition of “application/pidf+xml”

 139

 <xs:complexType name="contact">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:attribute name="priority" type="tns:qvalue"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="note">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:simpleType name="qvalue">
 <xs:restriction base="xs:decimal">
 <xs:pattern value="0(.[0-9]{0,3})?"/>
 <xs:pattern value="1(.0{0,3})?"/>
 </xs:restriction>
 </xs:simpleType>

 <!-- Global Attributes -->
 <xs:attribute name="mustUnderstand" type="xs:boolean" default="0">
 <xs:annotation>
 <xs:documentation>
 This attribute may be used on any element within an optional
 PIDF extension to indicate that the corresponding element must
 be understood by the PIDF processor if the enclosing optional
 element is to be handled.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
</xs:schema>

Appendix B: The XML DTD for CPL

 140

Appendix B:
The XML DTD for CPL [9]

<?xml version="1.0" encoding="US-ASCII" ?>

<!-- Nodes. -->
 <!-- Switch nodes -->
 <!ENTITY % Switch 'address-switch|string-switch|language-switch|
 time-switch|priority-switch' >

 <!-- Location nodes -->
 <!ENTITY % Location 'location|lookup|remove-location' >

 <!-- Signalling action nodes -->
 <!ENTITY % SignallingAction 'proxy|redirect|reject' >

 <!-- Other actions -->
 <!ENTITY % OtherAction 'mail|log' >

 <!-- Links to subactions -->
 <!ENTITY % Sub 'sub' >

 <!-- Nodes are one of the above four categories, or a subaction.
 This entity (macro) describes the contents of an output.
 Note that a node can be empty, implying default action. -->
 <!ENTITY % Node '(%Location;|%Switch;|%SignallingAction;|
 %OtherAction;|%Sub;)?' >

 <!-- Switches: choices a CPL script can make. -->

 <!-- All switches can have an 'otherwise' output. -->
 <!ELEMENT otherwise (%Node;) >

 <!-- All switches can have a 'not-present' output. -->
 <!ELEMENT not-present (%Node;) >

<!-- Address-switch makes choices based on addresses. -->
<!ELEMENT address-switch (address*, (not-present, address*)?,
 otherwise?) >
 <!-- <not-present> must appear at most once -->
 <!ATTLIST address-switch
 field CDATA #REQUIRED
 subfield CDATA #IMPLIED >

<!ELEMENT address (%Node;) >
 <!ATTLIST address
 is CDATA #IMPLIED
 contains CDATA #IMPLIED
 subdomain-of CDATA #IMPLIED >
 <!-- Exactly one of these three attributes must appear -->

Appendix B: The XML DTD for CPL

 141

<!-- String-switch makes choices based on strings. -->
<!ELEMENT string-switch (string*, (not-present, string*)?,
 otherwise?) >
 <!-- <not-present> must appear at most once -->
 <!ATTLIST string-switch
 field CDATA #REQUIRED >

<!ELEMENT string (%Node;) >
 <!ATTLIST string
 is CDATA #IMPLIED
 contains CDATA #IMPLIED >
 <!-- Exactly one of these two attributes must appear -->

<!-- Language-switch makes choices based on the originator's preferred
 languages. -->

<!ELEMENT language-switch (language*, (not-present, language*)?,
 otherwise?) >
<!-- <not-present> must appear at most once -->

<!ELEMENT language (%Node;) >
 <!ATTLIST language
 matches CDATA #REQUIRED >

<!-- Time-switch makes choices based on the current time. -->
<!ELEMENT time-switch (time*, (not-present, time*)?, otherwise?) >
 <!ATTLIST time-switch
 tzid CDATA #IMPLIED
 tzurl CDATA #IMPLIED >

<!ELEMENT time (%Node;) >
<!-- Exactly one of the two attributes "dtend" and "duration"
 must occur. -->
<!-- The value of "freq" is (daily|weekly|monthly|yearly). It is
 case-insensitive, so it is not given as a DTD switch. -->
<!-- None of the attributes following freq are meaningful unless freq
 appears. -->
<!-- The value of "wkst" is (MO|TU|WE|TH|FR|SA|SU). It is
 case-insensitive, so it is not given as a DTD switch. -->
 <!ATTLIST time
 dtstart CDATA #REQUIRED
 dtend CDATA #IMPLIED
 duration CDATA #IMPLIED
 freq CDATA #IMPLIED
 until CDATA #IMPLIED
 count CDATA #IMPLIED
 interval CDATA "1"
 bysecond CDATA #IMPLIED
 byminute CDATA #IMPLIED
 byhour CDATA #IMPLIED
 byday CDATA #IMPLIED
 bymonthday CDATA #IMPLIED
 byyearday CDATA #IMPLIED

Appendix B: The XML DTD for CPL

 142

 byweekno CDATA #IMPLIED
 bymonth CDATA #IMPLIED
 wkst CDATA "MO"
 bysetpos CDATA #IMPLIED >

<!-- Priority-switch makes choices based on message priority. -->
<!ELEMENT priority-switch (priority*, (not-present, priority*)?,
 otherwise?) >
<!-- <not-present> must appear at most once -->
<!ENTITY % PriorityVal '(emergency|urgent|normal|non-urgent)' >
<!ELEMENT priority (%Node;) >

 <!-- Exactly one of these three attributes must appear -->
 <!ATTLIST priority
 less %PriorityVal; #IMPLIED
 greater %PriorityVal; #IMPLIED
 equal CDATA #IMPLIED >

<!-- Locations: ways to specify the location a subsequent action
 (proxy, redirect) will attempt to contact. -->

<!ENTITY % Clear 'clear (yes|no) "no"' >

<!ELEMENT location (%Node;) >
 <!ATTLIST location
 url CDATA #REQUIRED
 priority CDATA #IMPLIED
 %Clear; >
 <!-- priority is in the range 0.0 - 1.0. Its default value SHOULD
 be 1.0 -->

<!ELEMENT lookup (success?,notfound?,failure?) >
 <!ATTLIST lookup
 source CDATA #REQUIRED
 timeout CDATA "30"
 use CDATA #IMPLIED
 ignore CDATA #IMPLIED
 %Clear; >

<!ELEMENT success (%Node;) >
<!ELEMENT notfound (%Node;) >
<!ELEMENT failure (%Node;) >

<!ELEMENT remove-location (%Node;) >
 <!ATTLIST remove-location
 param CDATA #IMPLIED
 value CDATA #IMPLIED
 location CDATA #IMPLIED >

<!-- Signalling Actions: call-signalling actions the script can
 take. -->

<!ELEMENT proxy (busy?,noanswer?,redirection?,failure?,default?) >

Appendix B: The XML DTD for CPL

 143

 <!-- The default value of timeout is "20" if the <noanswer> output
 exists. -->
 <!ATTLIST proxy
 timeout CDATA #IMPLIED
 recurse (yes|no) "yes"
 ordering (parallel|sequential|first-only) "parallel" >

 <!ELEMENT busy (%Node;) >
 <!ELEMENT noanswer (%Node;) >
 <!ELEMENT redirection (%Node;) >
 <!-- "failure" repeats from lookup, above. -->
 <!ELEMENT default (%Node;) >
 <!ELEMENT redirect EMPTY >
 <!ATTLIST redirect
 permanent (yes|no) "no" >

 <!-- Statuses we can return -->
 <!ELEMENT reject EMPTY >
 <!-- The value of "status" is (busy|notfound|reject|error), or a SIP
 4xx-6xx status. -->
 <!ATTLIST reject
 status CDATA #REQUIRED
 reason CDATA #IMPLIED >

 <!-- Non-signalling actions: actions that don't affect the call -->

 <!ELEMENT mail (%Node;) >
 <!ATTLIST mail
 url CDATA #REQUIRED >

 <!ELEMENT log (%Node;) >
 <!ATTLIST log
 name CDATA #IMPLIED
 comment CDATA #IMPLIED >

<!-- Calls to subactions. -->

<!ELEMENT sub EMPTY >
 <!ATTLIST sub
 ref IDREF #REQUIRED >

<!-- Ancillary data -->
<!ENTITY % Ancillary 'ancillary?' >
<!ELEMENT ancillary EMPTY >

<!-- Subactions -->
<!ENTITY % Subactions 'subaction*' >
<!ELEMENT subaction (%Node;)>
 <!ATTLIST subaction
 id ID #REQUIRED >

<!-- Top-level actions -->

Appendix B: The XML DTD for CPL

 144

<!ENTITY % TopLevelActions 'outgoing?,incoming?' >
 <!ELEMENT outgoing (%Node;)>
 <!ELEMENT incoming (%Node;)>

<!-- The top-level element of the script defined for extensions. -->
<!ELEMENT cpl (%Ancillary;,%Subactions;,%TopLevelActions;) >
 <!ATTLIST cpl
 xmlns %URI; #REQUIRED>

