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Abstract. The Use Case Map (UCM) notation allows the description of complex
software-driven systems in terms of high-level causal scenarios. By superimpos-
ing scenario paths on a structure of abstract components, UCMs provide an inte-
grated view of behavior and structure at the system level. This paper presents
interesting features of UCMs in relation with several types of diagrams defined
in UML. It also shows how UCMs can bind scenarios and structures at the archi-
tectural level, how they help visualizing dynamic systems, how they enable
architectural reasoning, and how they help bridging the conceptual gap between
use cases and sequence, activity, and statechart diagrams.

1  Int roduction

Complex software-driven systems are of many kinds, including object-oriented, agent-
based, real time, and distributed systems. They are characterized by many of the fol-
lowing attributes, which make them difficult to understand both in terms of technical
and management complexity: large scale, concurrency, decentralized control, timeli-
ness, dependability, diverse and feature-rich functionality, fluidity of run-time organi-
zation, and evolutionary requirements [12][25]. Such systems are often encountered in
the areas of telecommunications, defense, aerospace, and industrial control [6].

The Unified Modeling Language (UML) is a general-purpose modeling language
for specifying, visualizing, constructing and documenting the artifacts of software sys-
tems (in particular object-oriented and component-based systems), as well as for busi-
ness modeling and other non-software systems [27]. It includes many concepts and
notations useful for the description and documentation of multiple models, and it
enjoys a strong support from academic and industrial communities.

An important feature of UML, use cases are defined as sequences of actions a sys-
tem performs that yield observable results of value to a particular user (actor) [27].
Notations for scenarios and use cases, as well as design processes based on them, have
become very popular over the last few years [16][30]. For instance, the Rational Uni-
fied Process is a methodology based on UML that is use-case driven, i.e., where use
cases bind together five types of models (requirements, analysis, design, implementa-
tion, and testing) [22]. These models describe partial representations of the system.
UML 1.3 allows the description of complex software-driven systems and models
through the use of nine different diagram techniques. Each diagram provides a view of
a model from the aspect of a particular stakeholder, and each diagram must be seman-
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tically consistent with all the others. In this paper, these diagrams are categorize
two sets. The first set, called behavioral diagrams, focuses mainly of functional and
dynamic aspects of systems. It is comprised of five types of UML diagrams:

• Use case diagrams: Show actors and use cases together with their relationsh
They describe system functionalities from the user’s point of view.

• Sequence diagrams: Describe patterns of interaction among objects, arranged
a chronological order. They originate from Message Sequence Charts [20].

• Collaboration diagrams: Show generic structure and interaction behavior of t
system.

• Statechart diagrams: Show the state space of a given context, the events 
cause the transitions of one state to another, and the actions that result.

• Activity diagrams : Capture the dynamic behavior of a system in terms of ope
tions. They focus on flows driven by internal processing.

The second set, called structural diagrams, relates more to components and static cha
acteristics of systems. It includes these four types of UML diagrams:

• Class diagrams: Capture the vocabulary of a system. They show the entities 
system and their general relationships.

• Object diagrams: Snapshots of a running system. They show object instan
(with data values) and their relationships at some point in time.

• Component diagrams: Show the dependencies among software components
• Deployment diagrams: Show the configuration of run-time processing elemen

and the software components, processes, and objects that live on them.
UML includes several implicit links between these two sets of diagrams (e
sequence and collaboration diagrams can use the entities defined in class diag
However, UML does not emphasize any first-class and compact way of descr
large-scale units of behavior that emerge from the collective efforts of many sy
components (e.g., transactions spanning a network) [12].

This paper describes a diagraming technique called Use Case Maps (UCMs) [8] as
a means to link behavior and structure in an explicit and visual way. UCMs are 
class architectural entities that describe causal relationships between responsibilities,
which are bound to underlying organizational structures of abstract components. This
paper attempts to illustrate how UCMs can help bridging the conceptual gap bet
the use cases in the use case model and other behavioral diagrams (sequence
chart, and activity) in the analysis and design models. At the same time, UCM pro
a bird’s-eye view of activities from behavioral diagrams allocated to organization
components (and objects) in structural diagrams. This enables architectural reas
throughout the evolution of a system design.

Although this paper does not intend to be a tutorial on the UCM notation (the in
ested reader is invited to consult [8][11][13][28] for further details), it illustrates s
eral UCM features of potential interest to the UML community. Section 2 provide
overview of the notation, through a simple telephony system example, and its rel
to use cases. Sections 3 and 4 present several relations between UCMs and, 
tively, behavioral diagrams and structural diagrams. Recent and future delevopm
related to UCMs are discussed in Section 5, then a conclusion follows.
Use Case Maps and UML for Complex Software-Driven Systems p. 2
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2  Use Case Maps

2.1  Basics of the Notation

Use Case Maps are used to emphasize the most relevant, interesting, and critica
tionalities of a system. Responsibilities along causal paths can be internal to a co
nent or be observable. UCMs can represent specific scenarios, or else be a
(generic) and cover multiple scenario instances. With UCMs, scenarios are expr
above the level of messages exchanged between components, hence they are no
sarily bound to a specific organizational structure. UCMs provide a path-centric 
of system functionalities and improve the level of reusability of scenarios.

Figure 1(d) shows a simple UCM where a user (Alice) attempts to establish a tele
phone call with another user (Bob) through some network of agents. Each user has
agent responsible for managing subscribed telephony features such as Originatin
Screening (OCS). Alice first sends a connection request (req) to the network through
her agent. This request causes the called agent to verify (vrfy) whether the called party
is idle or busy (conditions are italicized). If he is, then there will be some status up
(upd) and a ring signal will be activated on Bob’s side (ring). Otherwise, a message
stating that Bob is not available will be prepared (mb) and sent back to Alice (msg).

A scenario starts with a triggering event and/or a pre-condition (filled circle labe
req) and ends with one or more resulting events and/or post-conditions (bars), i
case ring or msg. We call route a path that links a cause to an effect. Intermedia
responsibilities (vrfy, upd, mb) have been activated along the way. Think of responsib
ities as tasks or computational functions to be performed. In this example, the resp
bilities are allocated to abstract components (boxes Alice, AgentA, Bob and AgentB),
which could be seen as objects, processes, agents, databases, or even roles, a
persons. We call such superposition a bound map.

The construction of a UCM can be done in many ways. For example, one may
by identifying the responsibilities (Figure 1(a)), although not necessarily with d
grams like this one. They can then be allocated to scenarios (Figure 1(b)) or to co
nents (Figure 1(c)). Components can be discovered along the way. Eventually, th
views are merged to form a bound map (Figure 1(d)).

Fig. 1. Use Case Maps construction.
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(a) Scenario responsibilities (b) Path allocation

(c) Component allocation (d) Bound map
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Figure 1(d) is quite a simple diagram, yet it conveys a lot of information in a c
pact form, and it allows for requirements engineers and designers to use two d
sions (structure and behavior) to evaluate architectural alternatives for their syste

2.2  Additional Notation

To introduce further notation elements, new features can be added to this bas
case. Figure 2 abstracts from the component instances introduced in Figure 1
components do not refer to Bob and Alice any longer, but they refer to more generic ca
origination and termination roles (for both users and agents). Dashed componen
called slots and may be populated with different instances at different times. They
represent roles of a particular class of components. In [8][11], Buhr introduce
architectural notation with different types of components and richer semantics (a
processes, passive objects, groupings, pools of objects, interrupt service req
agents, mutex, etc.). He also discusses how to relate such components to clas
objects. Since their definition would be outside the scope of this paper, the next e
ples will provide only but a few intuitive descriptions. The nature of the compone
involved here does not really impact the UCM features emphasized in this paper.

The middle part of Figure 2 shows an enhanced version of the UCM in Figure
that represents a whole class of related use case instances. It is referred to as troot
map because this UCM possesses containers (called stubs) for sub-maps (called plug-
ins). Stubs are of two kinds:

• Static stubs: represented as plain diamonds (see stub ST), they contain only one
plug-in, hence enabling hierarchical decomposition of complex maps.

Fig. 2. More complex call connection and new notation elements.
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• Dynamic stubs: represented as dashed diamonds (see stub SO), they may contain
several plug-ins, whose selection can be determined at run-time according
selection policy (often described with pre-conditions). It is also possible to sel
multiple plug-ins at once (sequentially or in parallel), although the composi
then requires to be detailed outside the UCM diagram.

Path segments coming in and going out of stubs have been identified on the roo
(italicized labels). Although they are not required to be shown visually, their pres
helps to achieve unambiguous bindings of plug-ins to stubs. For instance, the ori
ing dynamic stub SO has two plug-ins (ORIGINATING and OCS). The start point of the
ORIGINATING plug-in (in1) is bound to the incoming path segment in1, and the end
point out1 is bound to the outgoing segment out1. Figure 2 makes use of similar label
for a clear binding relation between plug-ins and stubs, but in general names are 
ent and the relation has to be described explicitly.

The OCS plug-in shows a new component (the passive object OCSlist) that repre-
sents a list of screened numbers that the originating user (UserO) is forbidden to con-
tact. If UserO is subscribed to the Originating Call Screening service, then the O
plug-in is selected instead of the ORIGINATING plug-in. In this case, the called numbe
is checked against the list (chk). If the call is denied, a relevant message is prepared
be sent back to the originating party (md).

The TERMINATING plug-in improves on the original UCM by allowing the upda
(upd) and the ring result to be accompanied, concurrently, by the preparation of a
back signal to be prepared and sent back to the originating party (mrb). Concurrency is
represented here by an AND-fork. The notation allows for alternative paths (OR-
and OR-join, as in the TERMINATING plug-in), concurrent paths (AND-fork and AND-
join), shared responsibilities, exception paths, timers, failure points, error hand
and (a)synchronous interactions between paths, to name but a few elements.

By selecting plug-ins for the stubs in the integrated view, one can obtain a flatt
map, which still contains multiple possible end-to-end scenarios. Once stubs
defined at key points on a path, it becomes easy to add new plug-ins, which coul
resent new features in our example. Existing maps and plug-ins can further be de
posed or extended (e.g., when a radically different service is added) with new 
and new static and dynamic stubs.

2.3  UCMs and Use Cases in the Puzzle

A UML use case defines a set of use case instances, which are sequences of ac
system performs that yield observable results of value to a particular actor [22].
cases are usually described in plain text, although this representation can on oc
be substituted by other behavior description techniques such as activity diagrams
echarts, or pre/post-conditions. When describing the interactions between the s
and the relevant external actors, a use case generally considers the system as 
box where the internals are not shown. There exists a large conceptual gap betwe
cases and their realization in terms of behavioral diagrams where the system’s int
are refined with sub-components. Reasoning about this gap and the big picture 
the current UML diagrams is often puzzling since much mental effort is require
integrate many details from many diagrams of different styles.
Use Case Maps and UML for Complex Software-Driven Systems p. 5
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Figure 3 (adapted from [12]) presents the current UML pieces of the puzzle,
Use Case Maps as the missing piece. UCMs reduce the effort required to put the
pieces together and understand the big picture. UCMs should not be seen solely
extra step but more importantly as a rational, gray-box, and traceable progression from
use cases, where the focus is on system behavior (black-box), to more detailed b
ioral diagrams, where the focus is eventually put on component behavior (glass-
We use the term “gray-box” to represent that some design information is visible.

Fig. 3. UCMs as a missing piece of the puzzle.

In addition, the UCM notation contains features for expressing dynamic situat
that span whole systems in a compact form. Firstly, dynamic organizations of co
nents can be expressed using slots, pools, and dynamic responsibilities (not disc
here) at the system level, while abstracting from code construction and deploy
aspects. Secondly, time-varying scenario patterns are representable using stu
plug-ins, as shown in Figure 2.

This paper does not claim that bridging the aforementioned conceptual gap o
expressing dynamic situations is impossible with current UML diagrams and 
cesses. However, Use Case Maps represent a unique perspective that seems a
geous for solving this puzzle and visualizing the big picture. The next sections fu
illustrate several of these advantages in terms of existing UML diagrams.

UML structural 
diagrams

Present classes, 
objects, components, 

and processing 
elements, as well as 
their relationships. 
Although they may 
be used to imply 

behavior (by indicat-
ing associations), 

they do not describe 
actual behavior.

UML use cases

Provide textual 
descriptions of 

functionalities as seen 
by external actors 

(black-box).

Use Case Maps

Project gray-box visual 
descriptions of system-level 
behavior directly onto struc-
tures of abstract components 

(not necessarily classes).

UML behavioral diagrams

Describe behavior in a way 
that is detailed and focused 
on the components, hence 
making the system difficult 
to understand (glass-box).

Provide a visual represen-
tation of use cases in

terms of causal sequences
of responsibilities along

paths.

     Provide a framework
for making detailed

design decisions to be
expressed in UML terms.

Visually associate 
behavior with 

structure at the system 
level.
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3  UCMs and Behavioral Diagrams

3.1  UCMs and Use Case Diagrams

Use case diagrams show actors and use cases together with their relationships
are particularly relevant to capture functional requirements or existing functional
in the use case model, but they can be used in other types of models as well. 

UML use cases are black-box descriptions, while UCMs are more gray-box as
show some of the details inside the system (e.g., topology of abstract compon
internal flow of actions, etc.). Like use cases, UCMs use signals, events, or mes
when communicating with actors outside the system (especially at start points an
points), while they may use other communication semantics when communic
with elements inside the system. No premature decision that would overspecif
system should be taken at this level of abstraction. These decisions are left for
models that make use of more appropriate notations, e.g., sequence diagrams.

UML use case diagrams have access to three types of relationships betwee
cases, namely include, extend, and generalization [22]. To a great extent, the UCM
notation appears comprehensive enough to represent, in a compact way, use c
well as these relationships:

Include relationship: its purpose is to help clarify a use case by isolating and enca
lating complex details (so they do not obscure the real meaning of the use case), 
improving consistency (by factoring behavior included in several base use cases)

Inclusion can be achieved by placing a static stub on the path of a base use
This stub hides the details contained in its plug-in (the inclusion use case), an
plug-in can be reused in multiple stubs, hence improving consistency among
UCMs. The location of the inclusion point is stated visually on the path, and m
static stubs can be used to represent multiple inclusions. For example, see stub ST and
plug-in TERMINATING in Figure 2.

Extend relationship: the goal of extensions is to show that part of a use case is (po
tially) optional, that a subflow is executed only under certain (sometimes exceptio
conditions, or that there may be a set of behavior segments of which one or s
may be inserted at an extension point in a base use case.

This relationship can be expressed in UCM terms with OR-forks, which may h
more than two (possibly guarded) alternatives. The denied path of the OCS plug-in and
the busy path of the TERMINATING plug-in (Figure 2) are both extensions of the
respective base use cases. Using visual hints like path labeling, color, shading, or
ness, UCMs can emphasize the original base case (to distinguish the basic fl
events from the alternative or exceptional ones), which otherwise could be lost int
details. As an illustration, the allowed path of the OCS plug-in (in bold) represents th
base case, as opposed to the denied path which is the extension. The UCM notatio
also provides other visual clues for exceptional, time-out, and error-handling path

Dynamic stubs represent another level of extension relationships. Such stubs
have a default behavior (a plug-in that often contains an empty path), which ca
overridden by other plug-ins. The conditions under which a plug-in other than
Use Case Maps and UML for Complex Software-Driven Systems p. 7
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default one is chosen are described in the selection policy. For instance, the stubSO in
Figure 2 has a default plug-in (ORIGINATING) whose selection will be overridden in
favor of the OCS plug-in when the subscriber’s OCS feature is active.

UML use cases explicitly define extension points where additional behavior ca
added. There is no such concept in UCMs, as any path segment is an implicit po
potential extension (e.g., for an OR-fork), except perhaps for dynamic stubs, whic
explicit extension points.

Use Case Generalization: generalization is used when two or more use cases h
commonalities in behavior, structure, and purpose. The shared part can the
described in a new parent use case specialized by child use cases.

UCM scenarios that share common segments and purposes can be inte
together with a combination of OR-forks and OR-joins, or more likely with multip
dynamic stubs. The parent UCM represents the common parts in the original use 
and it contains dynamic stubs for the parts where the behaviors diverge (the 
become plug-ins). A child UCM is constituted of a parent UCM whose stubs are o
pied by the appropriate plug-ins. However, generalization from multiple parents (
tiple inheritance) would require the parent UCMs to be integrated together be
defining the plug-ins and how child UCMs would use them.

As an example, a Basic Call UCM could be represented as a flattened version of 
root map of Figure 2 where the default ORIGINATING plug-in occupies stub SO and
TERMINATING occupies ST. An OCS Call UCM would however use the OCS plug-in in
stub SO. Both the Basic Call and the OCS Call would be child UCMs of their par
UCM (the root map), whose structure and behavior has been inherited and modif

3.2  UCMs and Interaction Diagrams

UML defines two types of interaction diagrams. Sequence diagrams show the explicit
sequence of stimuli along vertical time axis (called lifelines) and are better for 
time specifications and for complex scenarios. Collaboration diagrams show the rela-
tionships among instances and are better for understanding all of the effects on a
instance and for procedural design. They essentially cover similar concepts, but i
ferent forms. This section focuses mainly on sequence diagrams.

Use Case Maps can help deriving interaction diagrams (in the analysis and d
models) from use cases (in the use case model). UCMs do not explicitly define 
sage exchanges between components, but messages need to be constructed in
way that the causal relationships between responsibilities from different compon
are satisfied. There are usually many ways to do so, depending on the available
faces, communication channels, and protocols.

The causal path <req, vrfy, upd, ring>, which represents the base use base extrac
from the UCM in Figure 1(d), will serve as an example. In Figure 4(a), this sequen
bound to the same component substrate, to which explicit communication cha
(lines) have been added, hence constraining the potential senders and receivers 
message. Different decisions about the protocols and control can lead to multiple
tions.
Use Case Maps and UML for Complex Software-Driven Systems p. 8



icate
How-
tion),
ible
propri-
needs

harts
ence
20],
nce,

ructs,

5]. It
nt of

vior.
s seg-
 to be
e, the

ferent
at cross
grams
ently)
Fig. 4. Admissible sequence diagrams derived from a UCM path.

Figure 4(b) shows a situation where the four concurrent entities commun
through simple protocols, resulting in straightforward exchanges of messages. 
ever, if a more complex protocol is used between the two agents (e.g., a negotia
and if the control is attributed differently, then Figure 4(c) might be an admiss
sequence diagram derived from the same causal path. Whichever is the most ap
ate depends on design decisions that are not taken at the UCM level, but which 
to be documented in the appropriate model for a better traceability.

Several papers have illustrated the derivation of valid Message Sequence C
(MSCs) from Use Case Maps [1][4][5]. Basic MSCs are similar in nature to sequ
diagrams. In [7], the authors introduce a mapping of UCMs to High-Level MSCs [
a notation that allows the recursive structuring of MSCs with constructs for seque
concurrency, alternative, iteration, and others (basic MSCs do have similar const
but for messages, not sub-MSCs).

3.3  UCMs and Statechart Diagrams

This state machine formalism is an object-based variant of Harel’s Statecharts [1
incorporates several concepts similar to those defined in ROOMcharts, a varia
statecharts defined in the ROOM modeling language [24].

With statechart diagrams, the focus definitely becomes component beha
UCMs do not replace these diagrams, but they can guide their construction. Path
ments from (possibly many) UCM scenarios that are bound to a component need
integrated together to determine the component logic and states. At the same tim
synthesis needs to cover the causal relationships between responsibilities in dif
components that are refined in terms of message exchanges. Path segments th
component boundaries also help describing component interfaces. Statechart dia
may be influenced by the available classes of objects defined (possibly independ

BobAlice

(a) A bound causal path

vrfy
req idle

ring

AgentA AgentB

upd

Alice BobAgentA AgentB

(b) A first possible sequence diagram

req
msg1

ring

vrfy and upd 
performed here

Alice BobAgentA AgentB

(c) A second possible sequence diagram
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msg2
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msg3

msg4
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in the class diagram. There is a mapping required between the UCM abstract co
nents and the objects, processes, and modules for which state machines ar
structed. Again, this synthesis procedure can result in many valid solutions, henc
design decisions need to be motivated (possibly by requirements outside the U
and documented in the appropriate models.

Figure 5(a) presents the UCM paths crossing the component AgentB from
Figure 1(d). A potential statechart for this path is illustrated in Figure 5(b), wh
responsibilities, guards, and messages have been mapped respectively to states
tional transitions, and plain transitions. This particular example assumes that a
have their own threads and are initially awaiting a specific message. Obviously, d
ent assumptions and requirements will lead to different statechart diagrams.

Fig. 5. Potential statechart diagram derived from UCM paths

The mapping from UCM paths to statechart diagrams is not always so straigh
ward. For instance, the components of Figure 2 would require more complex s
charts in order to integrate multiple plug-ins (AgentO), to integrate multiple path
sources and destinations (AgentO), and to cover concurrent paths (AgentT).

Moving directly from Use Case Maps to state machines usually represents 
step. Often, sequence diagrams can be used as an intermediate step. Decisions
to the refinement of inter-component causal relationships would then be made 
sequence diagram level. State machine still need to integrate these sequences t
in order to cover the different roles played by each component.

A method that generates communicating finite state machines (ROOMcharts) 
UCMs is presented in [20]. High-level MSCs are used as an intermediary step. U
can also lead to other types of communicating entities. In [1][2][5], the authors us
formal algebraic language LOTOS [18] to model the component-based behavior of t
system, while agent behaviors (for high-level prototypes) are generated in [9][10].

3.4  UCMs and Activity Diagrams

An activity diagram is a special case of a state diagram whose purpose is to foc
flows driven by internal processing (as opposed to external events in ordinary s
chart diagrams), hence it is essentially used to represent the state machine of a
dure or a business workflow. Activity diagrams focus more on sequences of ac
and on conditions than on the components performing those actions.

Activity diagrams share many concepts (and even notation elements) with b
Use Case Maps. UCM responsibilities are similar to activities. Both notations sup

(a) Paths crossing AgentB

vrfy

busy

idle

AgentB

upd

mb

causescaused

causes

by msg1

msg2

ring

wait vrfy

mb

upd

msg1
[idle]

[busy]

ring

msg2

(b) A potential statechart
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UCM
agrams
sequences of actions, as well as alternatives and concurrency. Start points an
points also have similar purposes.

A complex activity may be refined into another activity diagram, just like UCM
use static stubs for path decomposition. However, stubs appear to be more ge
they allow for multiple incoming and outgoing paths, and dynamic stubs permits
use of many plug-ins (refinements) whose selection is based on some policy. 
stubs proved to be a very useful artifact for expressing dynamic behaviors and 
tures in complex systems.

One of the strengths of UCMs resides in their ability to bind responsibilities
components. Activity diagrams are usually not used in that way, although they su
such mapping to a limited extent. An activity diagram may be divided visually i
swimlanes, each separated from neighboring swimlanes by vertical solid lines on 
sides. Each swimlane represents responsibility for part of the overall activity, and
eventually be implemented by one or more objects. Each action is assigned t
swimlane, and transitions may cross lanes. There is no significance to the routin
transition path. Swimlanes can be interpreted as components in their simplest 
they are one-dimentional and do not show in any way how components relate to
other (e.g., by their relative position, or their very nature). UCMs provide an integr
bird’s-eye view that includes this information. Such a view is almost essential
understanding how behavior, represented as paths and (dynamic) responsib
affect and modify the run-time structure of components in dynamic systems.

4  UCMs and Structural Diagrams

4.1  UCMs and Component-Based Diagrams

A UML component diagram is a graph of components connected by dependency r
tionships. Components may also be connected to components by physical contai
representing composition relationships. UML deployment diagrams show the configu-
ration of run-time processing elements and the software components, processe
objects that live on them. UML object diagrams present snapshots of running system
in terms of object instances and their relationships at a particular moment in time

The default UCM component notation, as defined by Buhr and Casselman in [
abstract enough to represent many important aspects found in these three ty
UML structural diagrams. They can illustrate containment and other dependencie
of different types (passive, active, etc.), and even represent run-time instances (w
data). However, their main strength resides in the ability to describe dynamic struc
with static diagrams. With the help of slots, pools (of components) and UCM p
with dynamic responsibilities, components can be created or destroyed, moved ar
made visible to other components, and so forth. UCMs with such components
express, in an apparent static and concise way, complex dynamic issues that wou
erwise need to be stated with many snapshots of UML component-based diagram

This does not prevent one from using another structural notation underneath 
paths. Such paths can be used on top of several types of component-based di
such as the ones in UML or the like.
Use Case Maps and UML for Complex Software-Driven Systems p. 11
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4.2  Architectural Reasoning with UCMs

Use Case Maps allow for the early evaluation of architectural alternatives by actin
a link between function (use cases) and form (structure). By decoupling the func
from the structure, one can play on one aspect concurrently as well as independe
the other. The previous UCMs illustrated different paths on the same structure of 
ponents. UCMs also enable one to reuse the same paths on different alternative
tures. For example, Figure 6(a) reuses the same causal path as Figure 4(a), bu
different set of components. Here, no communicating agents are involved. Instea
responsibilities are allocated to more traditional telephony components such 
Switch and a service node (SN), with different dependencies (e.g., communicatio
links). This will in turn lead to yet another different set of valid sequence diagrams
different state machines further down the design cycle.

Fig. 6. Admissible sequence diagrams derived from a UCM path.

As they can easily be decoupled from structures, UCM paths improve the reus
ity of scenarios and lead to behavior patterns that can be utilized across a wide ra
applications. On many occasions, UCMs may provide helpful visual patterns that 
ulate thinking and discussion about system issues and that may be reused [11].

Note also that the evaluation of architectural alternatives is done at a high lev
abstraction, without any early commitment to messages and protocols as in seq
diagrams. Such diagrams require more efforts that could be wasted when the un
ing structure is modified.

Architectural reasoning also needs to cope with evolving system requirem
Complex systems are seldom built from scratch. Instead, they evolve to accep
technology and to accept new features. As shown by Velthuijsen [29], the additio
new features is non-monotonic; they can and will change the operation of exi
functionalities. New technology can also change the assumptions on which functi
ities are based. Use Case Maps provide mechanisms (e.g., stubs and plug-ins) fo
dling the non-monotonic nature of system evolution. Moreover, it has been shown
UCM practice can distinguish between chained decomposition (e.g., small scale
objects, threads, processes, modules, packages, etc.) and layering (e.g., operating sys-
tems, communication stacks, network middleware, etc.) [8][11][12]. The distinc
between these two architectural concepts help coping, among other things, wit
scalability and the maintainability of systems.

BobAlice

(a) Path bound to a new structure

vrfy
req idle

ring

Switch

SN

Alice BobSwitch SN

(b) A possible sequence diagram

req
msg5

ring

msg6

upd

vrfy here
upd here
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5  Discussion

5.1  Semantics and Tools for UCMs

The semantics of Use Case Maps and well-formedness rules are defined in ter
hypergraphs [21]. A textual linear form for UCMs, expressed in XML [31], has a
been defined [3]. This form is suitable for input to different tools and for genera
documentation. Having this XML Document Type Definition also enables an ea
integration of UCMs with upcoming standards for UML such as the XML Metadata
Interchange (XMI) [17] and the UML eXchange Format (UXF) [26].

The UCM Navigator, a tool for constructing and editing Use Case Maps, makes
of the hypergraph semantics and rules to provide sound transformations that ensu
construction of correct maps [21]. This tool supports the path notation and Buhr’s 
ponent notation, and it uses the XML form as its file format. Nested stubs and plu
can be created, responsibilities can be easily bound to components, notation exte
for agent systems and performance modeling are supported, documentation in
enabled PostScript is generated, and the tool is available for X11R5 on three plat
(Linux, Solaris, and HP-UX).

5.2  UCMs for Formal Validation and Verification

Although UCMs possess a semi-formal semantics, they can be used to guide the 
ation of more formal models and specifications for complex systems. Over the y
much work has been done on the derivation of LOTOS specifications [18] from UCMs
[1][5]. LOTOS is an algebraic language that can formalize the ordering of events fo
in UCMs, even in the absence of a component structure. This enables formal ve
tion and verification of requirements, specifications, and designs, something that 
from many (OO) case tools. Other target formalisms include ROOM [7][24] and s
SDL [2][19]. Note also that there exists recent work on how ROOM models can
used to implement LOTOS specifications [1][14].

UCMs are currently used in several projects, some of which addressing is
related to dynamic agencies [9][10] (where UCMs proved to be strong at descr
complex agent relationships), the avoidance and detection of undesirable intera
between telephony features [5][9][10], the generation of functional test suites, an
description of standards for emerging mobile telephony services [1][2][4].

Performance modeling is yet another application of UCMs. In [23], performa
becomes a property of paths, rather than a non-functional property of a whole sy
as it is usually considered to be. The notation was extended to include timesta
time constraints, event distributions, associations of processes and tasks to devic
Both the XML form and the UCM Navigator support these extensions. Integra
other types of non-functional requirements is also under study.

5.3  Integrating UCMs and UML

UML is intended to be broadly applicable without extensions, because they migh
be universally understood, supported, and agreed upon. Instead, UML profiles provide
a standard way to use UML in a particular area without having to extend or mo
UML [27]. A profile is a predefined set of stereotypes, tagged values, constraints
Use Case Maps and UML for Complex Software-Driven Systems p. 13
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notation icons that collectively specialize and tailor UML for a specific domain or p
cess (e.g., Objectory Process profile and Business Engineering profile). A profile 
not extend UML by adding any new basic concepts. Instead, it provides conven
for applying and specializing standard UML to a particular environment or domain

Integrating the UCM concepts in UML could be achieved to some extent by ta
ing an appropriate profile. Although this would not require any modification to 
UML standard, many of the most interesting UCM concepts would not be easily 
ered with current UML diagrams and semantics. 

A second and obvious option would consist in adding the UCM notation to the
of UML diagrams. Although this looks simple and sound, this would also add to
redundancy that already exists among a somewhat large collection of UML diagra

The extension of existing diagramming techniques (e.g., activity diagrams) 
semantics to support original UCM concepts could represent a third option.

Finally, the substitution (or the reorganization) of one or more UML diagrams
UCMs may also be considered as a potential option, which might however be diff
to realize due to the existing (legacy) investment in the current standard and tools

The best and most appropriate option is still a research topic. Nevertheless, it s
important that standardization of these UCM concepts be achieved, independen
the selected option. UML is certainly an excellent candidate where such standa
tion could occur in the near future.

6  Conclusion

Use Case Maps relate very much to existing UML diagramming techniques, yet
help filling the conceptual (gray-box) gap that exists between use cases and beha
diagrams. They also represent an interesting viewpoint for architectural reasoning
ticularly in the context of complex and dynamic software-driven systems where
behavior emerging from multiple components is often difficult to visualize. 

This paper illustrated some of the most important concepts behind the UCM n
tion and usage. UCMs establish a useful linkage between behavioral diagram
structural diagrams at the system level, while allowing people to work independe
on these two dimensions. Architectural reasoning is promoted early in the design 
through the use of stubs, plug-ins, and dynamic components. Unbound UCM 
become reusable scenario patterns that can be bound to multiple underlying co
nent structures. Though they are defined at an abstraction level higher than th
exchanges of messages, UCM can guide the generation of detailed diagrams
sequence diagrams and statechart diagrams) and even formal specifications.

As the UCM notation becomes used in different projects, it becomes more s
and robust. Tools started to emerge, and a UCM User Group was initiated at the b
ning of the year [28]. UML could benefit from many concepts found in UCMs. T
best place for this piece of the puzzle however still remains to be clarified.
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