
1

On the Notions of Abstraction, Consistency, and Design
in the ODP Framework of Viewpoints

Kazi Farooqui, Luigi Logrippo,
Department of Computer Science,

University of Ottawa,
Ottawa K1N 6N5, Canada.

(Internet: farooqui|luigi@csi.uottawa.ca)

Abstract
One of the most fundamental systems analysis and design principle is that of “abstraction”. Essentially, the
purpose of abstraction is to clarify or highlight some features of a problem by concealing others. The set of
viewpoints identified in the ODP architecture is merely a pragmatic classification of concerns. A viewpoint
leads to a representation of the system with emphasis on a specific set of concerns, and the resulting represen-
tation is an abstraction of the system, i.e., a description which recognizes some distinctions that are relevant
to the concern and ignores others. The viewpoint models exhibit very subtle concepts with respect to the
notion of abstraction and consistency between them. They offer a very powerful structuring paradigm suitable
for a design activity. In this paper we explore the notion of abstraction, consistency between viewpoint mod-
els, and the role of viewpoint models in the design process framework. The correct understanding of the rela-
tionship between viewpoint models and their role in design activity is crucial for the construction of ODP
development tools.

Keywords: Viewpoint modelling, enterprise model, information model, computational model, engineering model,
technology model, viewpoint consistency, design process framework.

1.0 Viewpoint Model: System Abstraction
Different abstract models of a (distributed) system are appropriate from different viewpoints. In order to man-

age the complexity involved, it is necessary to consider a system from different viewpoints, rather than attempt to
capture the whole picture at once [1,2]. Each viewpoint focuses on different concerns (or aspects) of the system; the
whole picture is the summation of different viewpoints.

The ODP viewpoints should not be seen as architectural layers, but rather as different abstractions of the same
system, and should all be used to completely analyze the system. With this approach, consistent and complete system
models may be described and developed based on concepts and methods still to be designed for individual view-
points.

Specifying a distributed system in each of the viewpoints allows an otherwise large and complex specification of
a (distributed) system to be separated into manageable pieces, each focussed on the issues relevant to different mem-
bers of the design team.

2.0 Abstraction Principle in the ODP Framework of Viewpoints
A viewpoint is not necessarily an abstraction of another and there is no hierarchy (or layering) between view-

points. However, each viewpoint in some way or the other acknowledges the concerns expressed in other viewpoints
but with a lesser emphasis (or detail) [3]. For example, the interaction between application components can be dis-
cussed inseveral viewpoints. In a particular viewpoint, the detail of interactions between objects is simultaneously
increased and decreased. There is a more detailed description of the interaction in the terminology selected for that
viewpoint. There will be a less detailed description of interaction in the terminology selected for all other viewpoints.
In terms of type systems [4,5], this detail is reduced to a single name for each viewpoint. Thisname is taken to stand
for the attributes of objects in a viewpoint other than the one currently considered [6].

In the computational viewpoint, for example, it is not possible to elaborate on the names that stand for attributes
of objects that are discussed in other viewpoints [6]. For instance, the attributes of engineering objects (which enable,
regulate, and hide distribution) are treated in the computational model asabstractions of the distribution (interaction)
requirement between application components.

Each viewpoint-model is self-contained and complete. The difference between the models is not how much of
the system they describe, but rather what aspects of the system they emphasize.

2

3.0 Viewpoint Languages
The Reference Model of ODP [7,8,9,10] defines a set of five viewpoint models and then identifies key generic

functions which are related to these models. A set ofconcepts, structures, andrules, is given for each of the view-
points, providing a “language” for the specification of the system in that viewpoint [9].

The specification of a (distributed) system in any viewpoint is based on the concepts of that viewpoint and satis-
fies the structuring rules specified for the viewpoint. For example, thecomputational language is based on the con-
cepts of activity, operations, environment constraints, computational interface, computational object, etc. and
contains the structuring rules such as interface binding rules, interface subtyping rules, invocation rules, activity
rules, portability rules, etc. [9].

Any existing language can, in principle, be used for specification of a system from a particular viewpoint pro-
vided that those specifications can be interpreted in terms of relevant viewpoint concepts. What is required is to map
the viewpoint-specific concepts and rules onto the formal syntax and semantics of the language.

Since ODP viewpoints are used to model different aspects of a distributed system, the language requirements for
modelling the concerns in different viewpoints vary considerably from one viewpoint to another.

It is desirable to use a single formal language for the specification of all the viewpoint models. This would facili-
tate transformations and consistency checks between viewpoints to be developed within the single framework of the
semantic model of the language. However, it is interesting to note that different modelling techniques are required to
represent the specific system view in each of the viewpoints. This means that the whole system is described by the
integrated view of the different viewpoints and therefore, by different models.

This approach immediately points to another important aspect that needs further investigation and studies: the
definition of a methodology that allows to correlate the objects defined by means of different techniques in different
viewpoints in order to make consistent the overall system model.

4.0 Consistency between Viewpoints
As mentioned before, a single model of a (distributed) system would be overwhelming in complexity. Therefore,

we need a way to separate concerns such that we can check consistency between alternate specifications of the same
system. Hence, theviewpoint concept - each viewpoint looks at the whole system, but uses modelling concepts spe-
cific to a defined subset of modelling concerns.

Viewpoint specifications correspond to alternate views of the same system. Since each viewpoint encompasses
the whole system, we can assert consistency (between viewpoints) by identifying matching terms (concepts) in the
correspondingviewpoint specifications.

Figure 1. Consistency between Viewpoints

System
Design
Issue

A Concept/Constraint/
Property in the

terminology of V1

Transformation Consistency

The same Concept/
Constraint/Property in the
terminology of V2 OR
A mechanism to achieve that
Property or Constraint.

Viewpoint
V1

Viewpoint
V2

3

A concept in a viewpoint may be represented by multiple concepts in another viewpoint; similarly multiple con-
cepts in a viewpoint may be represented by a single (or fewer) concept(s) in another viewpoint. Additionally, con-
cepts in one viewpoint (specification) may be abstractions or refinements of concepts in another.

Any complete specification of a system should include not only the viewpoint specifications but also the map-
ping between them.

Although different viewpoints address different concerns, there is a common ground between them. The frame-
work of viewpoints must treat this common ground consistently, in order to relate viewpoint models and to make it
possible to assert correspondence between the representations of the same system in different viewpoints. As men-
tioned in [11], achieving consistency may not be an easy job. Changes to requirements in one of the viewpoint models
may require adapting requirements in other models. Moreover, the required adaptations may be quite complex; it is
desired to define transformations such that minimal changes to other viewpoint models are necessitated as a result of
a change in one of the models.

It may be noted that the viewpoint models are both a source of requirements and constraints on the design of a
(distributed) system, and any changes to one of these models affects the specifications in other models. Although it
may be argued that enterprise and information viewpoints are a source of design requirements, and computational,
engineering, and technology viewpoints are a source of constraints on the system design, the design requirements and
constraints originate from across all viewpoint models (albeit to different degree). The issue is identifying the require-
ments and constraints in all viewpoints and satisfying them in the system design. The design template may be seen as
a unification of (and consistent with) all the viewpoint models.

Figure 2. ODP Viewpoints: Source of Design Requirements and Constraints.

As mentioned in [12], the viewpoint models have a direct impact on the design. The more the prescription in the
enterprise and information specification, the less freedom of interpretation of design requirements. Similarly, the
more the prescription in computational, engineering, and technology specification, the less freedom the design has in
its choice of components and their configuration.

Specifications from different viewpoints may be checked for consistency (by applying some transformations) in
order to ensure that incompatible or otherwise contradictory requirements are not placed in individual viewpoint
models.

Formally, one can identify the relationship or consistency constraints that must be satisfied to demonstrate that a
specification of a (distributed) system in one viewpoint language is consistent with the specification of the same (dis-

� � � � � � � � � � � � 	 � �
 � � � � � � � � � � � � 	 � �

� � � � � � � 	 �
� � � � �

� � � � �
 � � 	 � �
� � � � �

� �
 � � � � � 	 � � � �
� � � � �

� � � 	 � � � � 	 � �
� � � � �

� � � � � � � � � �
� � � � �

� � 	 � � � �
 � � � � �

4

tributed) system in other viewpoint languages. The consistency rules specify valid transformations of a specification
in one viewpoint to a specification in another.

The consistency constraints ensure that the specification of the system in different viewpoints are not in conflict
with respect to the structuring rules of the corresponding viewpoints. However, consistency constraints are not suffi-
cient to ensure exact equivalence of the specifications. As stated in [9], equivalence is not decidable, in general, since
to do so requires the validation of assertions relating to the meaning of concepts (terms) in each specification.

5.0 Viewpoint Modelling
This section presents a brief and informal review of what is involved inviewpoint modelling before dwelling into

the issue of their use insystem design. It is apparent that viewpoints can be thought of as constituencies of concerns
involved in the system specification process. The system specification concerns that are addressed in the individual
viewpoints are outlined below. It is not intended to give a ‘formal’ treatment to the concepts that arise in a viewpoint.
Instead individual concerns specific to a viewpoint are itemized1 in order to relate them in inter-viewpoint consis-
tency exercise performed in section 7.

5.1 Enterprise Modelling: The enterprise modelling deals with the objectives of the system. The main concerns
addressed in the enterprise modelling are:
(Purpose + Scope + Role + Policies + Obligation) of SYSTEM

Enterprise Modelling allows us to make statements such as:
ER1: What is thepurpose of the system (or its components) in the enterprise.
ER2: What is thescopeof the system (or its components) in the enterprise.
ER3: What is therole of the system (or its components) in the enterprise.
ER4: Whatpoliciesare associated to the system (or its components) in the enterprise.
ER5: What are theobligationsof the system (or its components) in the enterprise.
ER6: What are thedistributionrequirements of the system (or its components).
ER7: What are theinteractionsbetween the system and its environment.
ER8: What are the application-specificrequirementsof the enterprise from the system.

The enterprise specificationis composed of a combination of these kinds of statements. These statements are made
with respect to the system or its components, calledenterprise objects. The specification from this viewpoint captures
requirements that justify and orient (impact) the design of the system. The enterprise specification is at the most
abstract level of detail suitable for representing user concerns and requirements.

5.2 Information Modelling: The information modellingdeals with aspects related to information content of the
enterprise. The concerns addressed in the information viewpoint are:
Identification of (Information Objects + Quality Attributes of Information Objects + Manipulations on Information
Objects + Rules/constraints for Information manipulation + Relationship between Information Objects + Semantics
of information stored and exchanged between components + Information Flows) of SYSTEM.

Information objectsare information elements or structures of information. Information objects define the subset of
the information content of the enterprise.

The specification of the system from the information viewpoint consists of the following statements:
IN1: What are theinformation objectsof the system.
IN2: What are thequality attributesof the information objects of the system.
IN3: Whatmanipulations/processing can be performed on the information objects of the system.
IN4: What are therules andconstraints for information manipulation
IN5: What is therelationshipbetween information objects.
IN6: Whatsemantics a human would associate with the information stored in and exchanged between information

1. Although, some of the items overlap w.r.t. their scope, the intention is to relate them with the concerns in
other viewpoint(s).

5

objects.
IN7: What are thesources, sinks, andinformation flows in the system.

5.3 Computational Modelling: Thecomputational modelling deals with the functional decomposition of the system
into components, calledcomputational objects, which are candidates for distribution and identification of interactions
between these components. It consists of:

Identification of (Computational Objects + Activities that occur within Computational Objects + Interfaces of Com-
putational Objects + Operations of Computational Interfaces + Behavior observable at Computational Interface +
Role of Computational Interfaces + Environment Constraints associated with Computational Objects and their Inter-
faces + Interactions between Computational Interfaces) of SYSTEM.

Thecomputational modelling activity consists of the following concerns:
CO1: What are thecomputational objects of the system.
CO2: Whatactivitiesoccur within the computational objects of the system.
CO3: What are theinterfacesof computational objects of the system.
CO4: Whatoperationscan be invoked to/from the computational interfaces.
CO5: Whatbehavioris observable at the computational interfaces.
CO6: What is theroleof the computational interface.
CO7: Whatenvironment constraintsare associated with the computational objects and their interfaces.
CO8: Whatinteractions are possible between computational objects (interfaces).

5.4 Engineering Modelling: Theengineering modelling deals with the infrastructure required to support the system
components and interaction between them. It is concerned with:

Identification of (Infrastructure Objects and their configuration required to support the distribution of components) of
SYSTEM.
Infrastructure objects areengineering objects which are either obtained from computational objects or provide spe-
cific distribution support functionality.

5.5 Technology Modelling: Thetechnology modellingis concerned with the identification of technology artifacts to
support the system or its components.

6.0 Design Methodology based on ODP Viewpoints
As mentioned in [13], there are a number of ways to interpret the concept ofviewpoints. The basic interpretation

of a viewpoint is that of aconstituencyframework - expression of concerns of different players involved in system
development. This section and the following one presents two alternatives of using viewpoints in adesign process
framework.

Although there is no (explicit) ordering or hierarchy between viewpoints, the issue in thedesign process frame-
work relates to theconsistency between viewpoints. The specification in a given viewpoint must reflect the require-
ments posed in other viewpoints and not contradict them.

The design process frameworkis used to illustrate the relationships that can be identified between viewpoints,
and is not intended to suggest that other relationships are unsuitable. The design process interpretation ascribes to
each viewpoint a different role in the design process.

Although, as suggested in section 8, the viewpoints can be used at all stages of the design of the system in order
to ensure consistency between viewpoint specification during the design process, some viewpoints play a predomi-
nant role (than other viewpoints) in particular phases of system design. In particular some stages of system design tra-
jectory are heavily dependent on the specifications in some viewpoint(s) than others. Of particular importance is the
observation that some viewpoint specification(s) capture much details of a certain stage of design trajectory than oth-
ers.

In particular, the system specification in one viewpoint is based upon requirements expressed in some other
viewpoint(s). This relationship between viewpoints, which is related to the concerns in different phases of system
design, is illustrated in figure 3.

The system design process potentially involves all the viewpoint specifications. One specification may be

6

responsible for the generation of other specifications through the application of appropriate transformations.
The viewpoints can be used to structure the specification of a (distributed) system, and can be related to a design

methodology. As outlined in [7], design of the system can be regarded as a process that may be subdivided into
phases related to different viewpoints. These phases and their relationship to the ODP viewpoints are shown in figure
3.

In the figure, the four major phases in the system design trajectory are considered:requirement capture (and
analysis), functional specification, (detail) design, implementation. This corresponds to the three major design steps
identified in the classical waterfall model described in [14] and [15]. The phases related to testing and maintenance
are not shown. Each of the viewpoints can be used as problem analysis technique as well as a solution space of the
relevant issues of the problem domain.

Apart from their use in the (parallel and) alternate system specification, the use of the viewpoints can be orga-
nized to assist the design trajectory from requirements specification to final design and implementation.

1.Requirement capture and analysis: The classical “waterfall” model of the software life cycle [14], [15], begins with
requirement analysis and definition phase. According to the model, the system’s services, constraints and goals are
established, in this phase, by consultation with system users. This is precisely the concern of the enterprise view-
point in the ODP framework of viewpoints.

The enterprise view covers the enterprise objectives of an information system. It focuses on therequirements,
objectives, and therole of the system within the organization. It is the most abstract of the ODP framework of view-
points stating high-level enterprise requirements. This allows the designer to develop a closed (i.e., bounded) model
which represents all the real world requirements which the designer must incorporate, later in the design trajectory,
into the final realization of the system.

The classical “waterfall” model identifies a single phase corresponding to “system design”. For complex (dis-
tributed) systems, it is not possible to achieve an implementable design in a single step from requirement specifica-
tion. The ODP framework of viewpoints allows the identification (and specification) of an intermediate design step-
thearchitecturalor functionaldesign of the system which is followed by a detailed design of the system.

2.Functional specification (architectural design): This step consists of decomposition of system intofunctional or
architecturalcomponents and identification of interconnections between them using the requirement definition as
the base. The interaction requirements of the functional components are identified. This is the domain of the compu-
tational viewpoint. The computational specification of the system contains detailed design constraints (reflected in
terms of environment constraints associated with computational objects, computational interfaces, and interactions
between them). This forms the basis for the detailed system design in the next step.

Apart fromfunctional decomposition, it is also possible to specify the system based on its information content
[16,17,18]. This activity, referred to asinformation modelling is concerned with the semantics of information, infor-
mation processing activities, and information flow in the system. Theconceptual decomposition of the system is
performed as part of information modelling.

Although the information model does not directly impact the system design process, the computational view-
point plays a central role in the design process. While the computational viewpoint helps in thefunctional decompo-
sition of the system, the information viewpoint enables theconceptual decomposition of the system. Together they
help in constructing the architectural specification of the system. For example, the information model ascribes
meaning to the information that is exchanged in interactions betweenfunctional components identified in the com-
putational model.

3.(Detail) design: The detailed design step fills in the gap of the architectural design by completing the design step
corresponding to some special system requirements such asdistribution of the system. Thefunctionalor architec-
tural components identified in the previous design step need to interact in order to perform the objectives of the sys-
tem identified in the enterprise viewpoint. The components required to support the interactions between
architectural components and the configuration of the supporting components are identified in the engineering
viewpoint. The functionality of the supporting components is consistent with the requirements of interaction (envi-
ronment constraints) between thearchitectural components identified in the computational view. Moreover the
identifiedarchitectural components may be decomposed, in the final design step, to enable mapping onto an imple-
mentable design.

7

Figure 3. Viewpoints in System Design Process

� � � � � � ! " # � $ � % & ' (

� � � � � � !) � & (' � * $ & ' (

+ & ' � , � $ (

- & ! � � % * ' $ � &) � % , � ' * ' $ � & * .

+ & / $ & � $ & /

0 � 1 & � . � / 2

" # � $ � % & ' 3 & * . 2 ($ (

3 � � 1 $ ' � ' � � * . 4 ($ / &

� 2 (' % 4 ($ / &

- % , . % & ' * ' $ � &

� � 5 6 � � 7 6
� � 8 6 � � 9 6
� � : 6 � � ; 6
� � <

� � 7 6 � � :

� = > 6
� = 5 6
� = 7 6
� = ; ?

� � : 6
� � < ?

� @ > 6 � @ 5 6
� @ 7 6 � @ 8 6
� @ 9 6 � @ : 6
� @ ; 6 � @ < ?

� � � � � � � � � �
� � � � 	 � �

� � � � � � � � � �

� � � � � � � � � �

� � � � 	 � �

� � � � 	 � �

= A B � � � � 	 � � � � 	 � � � � � � � � C 	 � � 	 � � � � C � � � � � � �
 � � � � � � � � � � � � � D 	 � C � � 	 � �
	
 � � � � � � � � � � 	 E � � � 	 � � 	 � � � � � � � 	 � � � 	 � � D 	 � C � � 	 � � ?

8

4.Implementation: The implementation phase corresponds to giving technology mappings to the system design
obtained in the previous step. The identified system components (functional components and supporting compo-
nents) are mapped onto the available technology artifacts. This step relates to software coding using programming
languages, embedding into computer systems, and identification of communication protocols (networks) for con-
necting system components.

However, from an application designers perspective, the issues related to enterprise and information viewpoint are
only visible in terms of application requirements they generate; issues related to related to engineering and technol-
ogy viewpoint are invisible, buried somewhere in the distribution support environment being used. As shown in fig-
ure 4, the computational model plays an important role in bridging the gap between requirements and solutions.

Figure 4. Computational Model: Bridge the gap between requirements and solution

While the enterprise viewpoint is the ultimate source of (design) requirements, the technology viewpoint is the final
source of (design) constraints (what can be implemented with the available technical artifacts). The enterprise and
technology viewpoints together delimit the design space for the designer of a (distributed) system.

However, it should be noted that the specification of the system in one viewpoint should be consistent with the system
specification in all other viewpoints during all phases of design trajectory.

7.0 Viewpoint Consistency in the Design Process Framework
In the following we identify the consistency relations between viewpoint models and show how the statements

made in a viewpoint specification impact the system specification in another viewpoint, as illustrated in figure 3. This
mapping process is not meant to give a ‘formal’ interpretation but to informally explain the relationship between each
of these models.

Enterprise and Computational Specifications: The enterprise specification is the source of design requirements.
Hence it has a direct impact on other viewpoint models.
With respect to the enterprise concerns identified in section 5.1, the following enterprise concerns affect the architec-
tural design of the system (specified in the computational viewpoint):
ER2: Thescope of the system (or its components) in the enterprise helps in the identification and subsequent delimit-

� � � � 	 � �
 � � �
� �
 � 	 �

� � � � � 	 � �
� �
 � 	 �

A � 	 � � �
F � �

� � � � � � � 	 � � � � � � � � � � �
 � � 	 � � � � � � �

� �
 � � � � � 	 � � � �
� � � � �

� � � 	 � � � � 	 � � � � � � �

9

ing of the functionality of computational objects.
ER3: Therole of the system (or its components) in the enterprise decides what activities will be performed by compu-

tational objects. These roles may be reflected at computational interfaces. This mapping need not be one-to-
one, for example, some roles (of enterprise objects) may be distributed amongst computational objects.

ER4: Thepermissions andprohibitions of the system (or its components) in the enterprise has an impact on the con-
straints on the activities performed by computational objects and on the interactions between them.

ER5: Theobligations of the system (or its components) in the enterprise are to perform some enterprisefunctions;
this decides the processing (or behavior) of the computational objects.

ER6: Thedistribution requirements of the system (or its components) decides the interfaces of computational objects.
ER7: Theinteractions between the system and its environment identify the computational objects that constitute the

man machine interface.
ER8: The (special)requirements of the enterprise from the system have an influence on whatenvironment constraints

(such as security, distribution transparency, communication QoS, etc.) are associated with computational
objects or their interfaces.

Enterprise and Information Specification: The enterprise requirements also impacts the information modelling of the
system. Apart from establishing the “ownership” of information, i.e., which enterprise roles are associated with man-
aging which information, there is also the issue of associating information with enterprise (business) functions. The
latter has an impact on the design process, for example having identified the enterprise functions it is possible to
define the information associated with it. The resulting information specification will get refined as it is decided
exactly what information objects the computational specification will deal with.
The information viewpoint must capture information about the system sufficient to allow the roles, policies, etc., of
the enterprise model to be performed, for example, how various enterprise roles are held and by which objects.
There are few rules that apply to the consistency between enterprise and information viewpoint because there are few
prescriptive rules in these languages (compared to computational and engineering viewpoints).
ER3: Therole of the system (or its components) in the enterprise decides what manipulations can be performed on

the information objects.
ER6: Thedistribution requirements of the system (or its components) decide the source, sink, and information flows,

in the information model of the system.

Information and Computational Specification: The information model defines the overall state for the part of the sys-
tem being modelled. The aspects of the computational specification which affect the information objects should be
consistent with the information specification.
The computational viewpoint describes how the information described in the information viewpoint is processed in
the computational objects and which information, modelled, in the information viewpoint, is exchanged between
computational interfaces (for example, as arguments to operation invocations).
Similarly, the computational type system[9] requires that operation and termination names be known to the recipi-
ents. However, it does not guarantee that the recipients agree on the semantics of the names. The agreement on the
semantics of the exchanged information is performed in the information model.
IN1: The information objects of the system are processed (or manipulated) by computational objects. There is not

necessarily a one to one correspondence between information and computational objects. Moreover, the infor-
mation objects may correspond to computational objects that perform information processing or to the compu-
tational objects that store information.

IN2: Thequality attributes of information objects may require additional environment constraints to be associated
with computational objects or their interfaces.

IN3: Themanipulations/processing that can be performed on information objects affects the exact nature of computa-
tional operations that are possible within the computational objects. This should be consistent with enterprise
requirement ER3.

IN7: The sources and sinks ofinformation flows helps identify client and server roles of computational objects and
their interfaces.

Computational and Engineering Specification: The computational specification has a direct impact on engineering
specification. The engineering model of the system animates its computational model. A detailed discussion of the
relationship between computational and engineering models is given in [19].

10

CO1: Thecomputational objects can be mapped directly, or refined into (a number of) basic engineering objects.
CO2: Theactivities of the BEOs are the one’s of the corresponding computational objects.
CO3: Thecomputational interfaces may map onto single BEO or onto an interface of a BEO. The computational

interfaces cannot be decomposed.
CO4: Theoperations invoked to or from BEO interfaces correspond to computational operations.
CO5: The computationalbehavior must be preserved in transformation to engineering specification.
CO6: Since computational interfaces cannot be decomposed, there is an interface to BEOs corresponding to computa-

tional interface with the identicalrole.
CO7: The computational interactions are performed in a distribution transparent manner. The environment con-

straints associated with computational object and their interfaces are the main source of requirements that
decide the composition of structures of supporting objects within the channel between BEOs.

CO8: All computational interactions must be preserved as interactions between interfaces of BEOs.

Enterprise and Engineering Specification: Although, in general, it must be ensured that engineering specification is
consistent with the enterprise specification, there are certain enterprise concerns which have a direct impact on the
engineering design. They are:
ER6: Thedistribution requirements of the system have a direct bearing on the location of basic engineering objects.
ER8: The (special)requirements of the enterprise decide the distribution transparency, communication, and other

supporting objects within the channel between BEOs.

Information and Engineering Specification: The information viewpoint defines the types of information exchanged
and therefore determines the required communication service for exchanging information objects. Moreover, policies
concerning distribution transparency are specified in the information viewpoint.

Information, Computational, Engineering to Technology Specification: The mappings to technology artifacts are
identified for information objects, computational objects, and engineering objects. The technology mappings from
information, computational, and engineering specifications include:
1. Information objects can be realized as databases (or parts thereof).
2. Computational objects (application components) can be realized as technology objects such processes, computer

programs, etc.
3. Engineering objects (protocol objects, transparency objects) can be mapped on to technology objects such as proto-

col software modules, transparency software modules, etc.

8.0 Recursive use of Viewpoints in System Design
This section illustrates how viewpoints can be usedrecursively in the design of (distributed) system and of its

components.
The viewpoint models can be used at different levels of granularity. They can be used on the large scale to spec-

ify complete systems, or on the small scale to talk about system components. As discussed below, the process is
recursive.
The methodology is based on the recursive use of viewpoints for the development of the specification of (distributed)
systems in different stages of design trajectory. In this methodology the ODP concept of viewpoint is treated as a
“design or analysis tool” that aids in the identification and refinement of system into its constituent components. The
starting point are the enterprise policy statements relevant to the (distributed) system, and then the other viewpoints
are used to determine the constituent (or supporting) objects of the system. The same procedure is then applied recur-
sively on the constituent (or supporting) objects until the specified objects are detailed enough to be mapped to the
real resources (i.e., a mapping is found to technology artifacts in the technology viewpoint).

Similarly, objects identified in a given viewpoint specification can be specified from different viewpoints. For
example anengineering object, say atransparency object, can be specified using the enterprise viewpoint (its objec-
tives), information viewpoint (information requirements for that part of the system), computational viewpoint (the
computational activities, interfaces, and interactions associated with that object), engineering viewpoint (supporting
objects, if any, required for complete realization of that object), and technology viewpoint (what technical artifacts
can be used for the realization of that object).

11

Figure 5. Recursive Use of ODP Viewpoints in System Design

SYSTEM
under
design

Viewpoint Selection
(Designer Driven)

Is the System� G H � � � 	 D �
> ? I � � � � � 6
5 ? � � � � � 6
7 ? � � � � 6
8 ? I � � 	 � 	 � 6
9 ? @ G � 	 � � � 	 � �
� �
 � � � � � � �
 � � � 	 E � � ?

� � � � 	 � � � � 	 E J
� � � 	 � � � � B> ? � � � � �
 � � 	 � �
� G H � � � K � @ L

5 ?
 � � 	 � � � � � 	 � �� � � @ 6
7 ? � � � � � � �
 � � J
	 � � � � � 	 � � � � � @ ?

8 ? � �
 � � � 	 � � � � @

� �
 � � � � � � �
9 ? � � � � �
 � � 	 � �M � C

 � � � 	 E � � ?

� � � � � � � � � 	 J

> ? � �
 � � � � � 	 � � � �
@ G H � � � 65 ? � �
 � � � � � 	 � � � �
� � � � � � � � � 6

7 ? � � D 	 � � �
 � � �� � � � � � 	 � � 6
8 ? � � � � � � � � 	 � �
� �
 � � � � � � �

� � � � � � � �
 � � J
	 � 	 � � 	 � � � B

 � � � 	 E � � ?

� � � � 	 � � � � � � J
� � � � � � � � � � 	 � � �
� � � � � � � �
K � 	 � � 	 G � � 	 � � L
� � � � �
 � �
	 � � �
 � � � � � �
� �
 � � � � � � �
 � � � 	 E � � ?

� � � � � � � � � � J
� � � � � � � 	 � � � �
� � � � � � � � �

K � �
 � � � � � � L
	 � � � � 	 E � � ?

+ & ' � , � $ (
N � O . . $ & /

- & ! � � % * ' $ � &
N � O . . $ & /) � % , � ' * ' $ � & * .

N � O . . $ & /
+ & / $ & � $ & /
N � O . . $ & /

0 � 1 & � . � / 2
N � O . . $ & /

P 	 � C � � 	 � �
 � � � � � 	 � � � 	 � � D 	 � C � � 	 � � � � � 	 E �
� � � � � � � 6 � � � � � � � � 6 � � � � � � � ?

Q � � � � � � � � � � � � �
 � � 	 � 	 � � R � � � � � � � 	 � � � � � � �
 � � �
 � � � 	 � � � � 	 	 � � � � � 	 � � ?

� � � � � � �
 K � � � 	 � � �
 � � � � � � L � �
 � � � � � � �
 � � � 	 E � � � � �
 � � � D 	 � C � � 	 � � ?

� � � � � � � � �
 K � � � 	 � � �
 � � � � � � L
 � � � � �
� � � � � � � � � � � � � � � � � ?

� @ = �

� � � � � � � �
 � � �
 6 � �
� �
 � � � � � � 6 � �
� � � � �
 � � 	 � 	 � �
� � � �
 � � � � � �
� � � � � � � � � � � � � � �
� � � � � 	 ?

D 	 � C � � 	 � �

= � = � = � = � = �

= �

S �

S �

S �

= �

= �

12

1. Recursive use of enterprise viewpoint: is used to identify the enterprise requirements of the system or of its compo-
nents.

2. Recursive use of information viewpoint: is used to identify the information (processing) requirements associated
with the system or with its components. Additional information objects (and hence the manipulations, quality
requirements, information flows, etc.) associated with the system (or its components) may be identified. This
activity is dependent on the designer and on the available technology mappings for the identifiedinformation con-
cepts (information objects, etc.).

3. Recursive use of computational viewpoint: is used to identify the (additional) computational objects (and hence the
computational interfaces, interactions between computational interfaces, environment constraints associated with
computational interfaces) into which the system (or its components) can be refined. This activity is dependent on
the designer and on the available technology mappings for the identifiedcomputational concepts (computational
objects, etc.).

4. Recursive use of engineering viewpoint: is used identify the required (and possibly additional) supporting objects
for the engineering of the system (or its components). This activity is dependent on the designer and on the avail-
able technology mappings for the identifiedengineering concepts (engineering objects, etc.).

5. Recursive use of technology viewpoint: is used to identify the technology artifacts for the realization of the system
or its components.

Dif ferent viewpoints allow specifiers to view distributed systems from different abstractions, allowing the com-
plex problem of the specification of distributed systems to be divided into smaller, more manageable parts.

9.0 Conclusion
This paper has explored the subtle concepts of abstraction and consistency between the viewpoint models and

analyzed them in the perspective of a design process framework.
We have identified different approaches for using viewpoint models in a design activity. We have proposed

methodical approaches to support the design trajectory of (distributed) systems within the architectural framework of
ODP viewpoints.

What is crucial in all these approaches is to maintain the consistency between viewpoint specification during
the design process and to ensure that the design reflects the requirements and constraints specified in the viewpoint
models.

Any future ODP design tool must take into account these aspects related to abstraction, consistency, and the
applicability of viewpoints models in the design process framework.

Acknowledgment: We would like to express our sincere thanks to Dr.Andrew Herbert, APM Ltd., Cambridge, U.K.,
Mr.Jean-Bernard Stefani, CNET, France, Dr.Kerry Raymond, University of Queensland, Australia, and to Jonathan-
Legh Smith, British Telecom, U.K. for the numerous discussions we have had with them on the issues related to the
topic.

10.0 References

1. P.F. Linington. Introduction to Open Distributed Processing Basic Reference Model, Proceedings of the IFIP TC6
International Workshop on Open Distributed Processing (eds: J.d. Meer, V. Heymer, R. Roth), Berlin, Germany,
September 1991 (North Holland).

2. K. Raymond. Reference Model of Open Distributed Processing: A Tutorial, Proceedings of the IFIP TC6 Interna-
tional Conference on Open Distributed Processing (eds: J.d. Meer, B. Mahr, O.Spaniol), Berlin, Germany, Septem-
ber 1993 (North Holland).

3. ANSA: An Engineer’s Introduction to the Architecture, TR.03.02, Advanced Projects Management Limited, Cam-
bridge, U.K., November 1989.

4. A.J. Watson. Types and Projections, APM/RC.258.03, Advanced Projects Management Limited, Cambridge, U.K.,
April 1992.

5. J.Indulska, K. Raymond, M. Bearman. A Type Management System for ODP Trader, Proceedings of the IFIP TC6
International Conference on Open Distributed Processing (eds: J.d. Meer, B. Mahr, O.Spaniol), Berlin, Germany,
September 1993 (North Holland).

13

6. ANSA Reference Manual, Volume A., Release 01.01, Advanced Projects Management Limited, Cambridge, U.K.,
July 1989.TVU
Draft Recommendation ITU-T X.901 / ISO 10746-1: Basic Reference Model of Open Distributed Processing -
Part-1: Overview.WVU
Draft International Standard ITU-T X.902 / ISO 10746-2: Basic Reference Model of Open Distributed Processing
- Part-2: Descriptive Model.

9. Draft International Standard ITU-T X.903 / ISO 10746-3: Basic Reference Model of Open Distributed Processing
- Part-3: Prescriptive Model.

10.Draft Recommendation ITU-T X.904 / ISO 10746-4: Basic Reference Model of Open Distributed Processing -
Part-4: Architectural Semantics.

11.M.v. Sinderen, J. Schot. An Engineering Approach to ODP Systems Design, Proceedings of the IFIP TC6 Interna-
tional Workshop on Open Distributed Processing (eds: J.d. Meer, V. Heymer, R. Roth), Berlin, Germany, Septem-
ber 1991 (North Holland).

12.G.Cowen, J.Derrick, M.Gill, G.Girling, A.Herbert, P.Linington, D.Rayner, F.Schulz, R.Soley. PROST Report of
the Study on Testing for Open Distributed Processing, Advanced Projects Management Limited, Cambridge,
U.K., May 1993.

13.D.Iggulden, O.Rees, R.v.d.Linden. Architecture and Frameworks, APM.1017.00.03, Advanced Projects Manage-
ment Limited, Cambridge, U.K., June 1993.

14.I.Sommerville. Software Engineering (4th Edition), Addison-Wesley Publishing Company, 1993.
15.Pressman. Software Engineering (2nd Edition).
16.J.J.v.Griethuysen. Enterprise Modelling, a Necessary Basis for Modern Information Systems, Proceedings of the

IFIP TC6 International Workshop on Open Distributed Processing (eds: J.d. Meer, V. Heymer, R. Roth), Berlin,
Germany, September 1991 (North Holland).

17. S.Rudkin. Modelling Information Objects in Z, Proceedings of the IFIP TC6 International Workshop on Open
Distributed Processing (eds: J.d. Meer, V. Heymer, R. Roth), Berlin, Germany, September 1991 (North Holland).

18.L.Cerchio, N.Curci, O.Ghisio, R.Saracco, M.Volpe. Information Modelling: Paving the Way Towards the Tele-
communication Management Network of Future, CSELT Technical Report, Vol.18, No.6, December 1990.

19.K.Farooqui. Viewpoint Transformation, Proceedings of the IFIP TC6 International Conference on Open Distrib-
uted Processing (eds: J.d. Meer, B. Mahr, O.Spaniol), Berlin, Germany, September 1993 (North Holland).

