On the Notions of Abstraction, Consistency, and Design
in the ODP Framework of Viewpoints

Kazi Farooqui, Luigi Logrippo,
Department of Computer Science,
University of Ottawa,

Ottawa K1N 6N5, Canada.
(Internet: farooqui|luigi@csi.uottawa.ca)

Abstract
One of the most fundamental systems analysis and design principle is that of “abstraction”. Esstially
purpose of abstraction is to clarify or highlight some feasunf a poblem by concealing others. The set of
viewpoints identified in the ODP chitectue is meely a pragmatic classification of concerns. A viewpoint
leads to aepresentation of the system with emphasis on a specific set of concerns, asdltimgrepresen-
tation is an abstraction of the system, i.e., a description wieicbgnizes some distinctions tha¢ aglevant
to the concern and ignes others. The viewpoint models exhibit very subtle conceptsesjihat to the
notion of abstraction and consistency between them. They offer a very powerful structuring paradigm suitable
for a design activityln this paper we explerthe notion of abstraction, consistency between viewpoint mod-
els, and theale of viewpoint models in the desigogess framework. The ceat understanding of thela-
tionship between viewpoint models and thelerin design activity is crucial for the construction of ODP
development tools.

Keywords. Viewpoint modelling, enterprise model, information model, computational model, engineering model,
technology model, viewpoint consistendgsign process framework.

1.0 Viewpoint Model: System Abstraction

Different abstract models of a (distributed) system are appropriate friemeuifviewpoints. In order to man-
age the complexity involved, it is necessary to consider a system friarenifviewpoints, rather than attempt to
capture the whole picture at once [1,2]. Each viewpoint focusesferedif concerns (or aspects) of the system; the
whole picture is the summation of féifent viewpoints.

The ODP viewpoints should not be seen as architectural layers, but rathéerantd#bstractions of the same
system, and should all be used to completely analyze the syst#mthi/approach, consistent and complete system
models may be described and developed based on concepts and methods still to be designed for individual view-
points.

Specifying a distributed system in each of the viewpoints allows an othervgseatad complex specification of
a (distributed) system to be separated into manageable pieces, each focussed on the issues reflenanmtrienhif
bers of the design team.

2.0 Abstraction Principlein the ODP Framework of Viewpoints

A viewpoint is not necessarily an abstraction of another and there is no hierarchy (or layering) between view-
points. Howevereach viewpoint in some way or the other acknowledges the concerns expressed in other viewpoints
but with a lesser emphasis (or detail) [3]. For example, the interaction between application components can be dis-
cussed irseveralviewpoints. In a particular viewpoint, the detail of interactions between objects is simultaneously
increased and decreased. There is a more detailed description of the interaction in the terminology selected for that
viewpoint. There will be a less detailed description of interaction in the terminology selected for all other viewpoints.
In terms of type systems [4,5], this detail is reduced to a single name for each viewpoinani¢istaken to stand
for the attributes of objects in a viewpoint other than the one currently considered [6].

In the computational viewpoint, for example, it is not possible to elaborate on the names that stand for attributes
of objects that are discussed in other viewpoints [6]. For instance, the attributes of engineering objects (which enable,
regulate, and hide distribution) are treated in the computational moale$taactionsof the distribution (interaction)
requirement between application components.

Each viewpoint-model is self-contained and complete. Thierdifce between the models is hot how much of
the system they describe, but rather what aspects of the system they emphasize.

3.0 Viewpoint Languages

The Reference Model of ODP [7,8,9,10] defines a set of five viewpoint models and then identifies key generic
functions which are related to these models. A sebateptsstructues andrules, is given for each of the view-
points, providing a “language” for the specification of the system in that viewpoint [9].

The specification of a (distributed) system in any viewpoint is based on the concepts of that viewpoint and satis-
fies the structuring rules specified for the viewpoint. For exampleoti@utational languages based on the con-
cepts of activity operations, environment constraints, computational interface, computational object, etc. and
contains the structuring rules such as interface binding rules, interface subtyping rules, invocation rules, activity
rules, portability rules, etc. [9].

Any existing language can, in principle, be used for specification of a system from a particular viewpoint pro-
vided that those specifications can be interpreted in terms of relevant viewpoint concepts. What is required is to map
the viewpoint-specific concepts and rules onto the formal syntax and semantics of the language.

Since ODP viewpoints are used to modefeddnt aspects of a distributed system, the language requirements for
modelling the concerns in fi#rent viewpoints vary considerably from one viewpoint to another

It is desirable to use a single formal language for the specification of all the viewpoint models. This would facili-
tate transformations and consistency checks between viewpoints to be developed within the single framework of the
semantic model of the language. Howees interesting to note that téfent modelling techniques are required to
represent the specific system view in each of the viewpoints. This means that the whole system is described by the
integrated viewof the diferent viewpoints and therefore, byfdifent models.

This approach immediately points to another important aspect that needs further investigation and studies: the
definition of a methodology that allows to correlate the objects defined by mearferehdifechniques in dérent
viewpoints in order to make consistent the overall system model.

4.0 Consistency between Viewpoints

As mentioned before, a single model of a (distributed) system would be overwhelming in comptexijore,
we need a way to separate concerns such that we can check consistency between alternate specifications of the same
system. Hence, théewpointconcept - each viewpoint looks at the whole system, but uses modelling concepts spe-
cific to a defined subset of modelling concerns.

Viewpoint specificationsorrespond to alternate views of the same system. Since each viewpoint encompasses
the whole system, we can assert consistency (between viewpoints) by identifying matching terms (concepts) in the
correspondingiewpoint specifications

A Concept/Constrain
Property in the

_ Viewpoint
terminology of V1

V1

Transformatio Consistency

The same Concep
Constraint/Property in the

terminology of V2 OR
A mechanism to achieve th
roperty or Constraint.

Figure 1. Consistency betweere¥Wpoints

Viewpoint
V2

A concept in a viewpoint may be represented by multiple concepts in another viewpoint; similarly multiple con-
cepts in a viewpoint may be represented by a single (or fewer) concept(s) in another viewpoint. Addtamally
cepts in one viewpoint (specification) may be abstractions or refinements of concepts in another

Any complete specification of a system should include not only the viewpoint specifications but also the map-
ping between them.

Although diferent viewpoints address f#ifent concerns, there is a common ground between them. The frame-
work of viewpoints must treat this common ground consisteintlgrder to relate viewpoint models and to make it
possible to assert correspondence between the representations of the same sydeentrviditvpoints. As men-
tioned in [1L], achieving consistency may not be an easy job. Changes to requirements in one of the viewpoint models
may require adapting requirements in other models. Moretheerequired adaptations may be quite complex; it is
desired to define transformations such that minimal changes to other viewpoint models are necessitated as a result of
a change in one of the models.

It may be noted that the viewpoint models are both a source of requirements and constraints on the design of a
(distributed) system, and any changes to one of these mofdeits dhe specifications in other models. Although it
may be agued that enterprise and information viewpoints are a source of design requirements, and computational,
engineering, and technology viewpoints are a source of constraints on the system design, the design requirements and
constraints originate from across all viewpoint models (albeit terdiit degree). The issue is identifying the require-
ments and constraints in all viewpoints and satisfying them in the system design. The design template may be seen as
a unification of (and consistent with) all the viewpoint models.

Computational
Model

Information
Model

Engineering
Model

Enterprise
Model

Technology
Model

Source of Requiremer)ts and Constraints

Design Template

Figure 2. ODP ‘éwpoints: Source of Design Requirements and Constraints.

As mentioned in [12], the viewpoint models have a direct impact on the design. The more the prescription in the
enterprise and information specification, the less freedom of interpretation of design requirements., Shailarly
more the prescription in computational, engineering, and technology specification, the less freedom the design has in
its choice of components and their configuration.

Specifications from diérent viewpoints may be checked for consistency (by applying some transformations) in
order to ensure that incompatible or otherwise contradictory requirements are not placed in individual viewpoint
models.

Formally, one can identify the relationship or consistency constraints that must be satisfied to demonstrate that a
specification of a (distributed) system in one viewpoint language is consistent with the specification of the same (dis-

tributed) system in other viewpoint languages. The consistency rules specify valid transformations of a specification
in one viewpoint to a specification in another

The consistency constraints ensure that the specification of the systefarentifiewpoints are not in conflict
with respect to the structuring rules of the corresponding viewpoints. Howewsistency constraints are notfisuf
cient to ensure exact equivalence of the specifications. As stated in [9], equivalence is not decidable, in general, since
to do so requires the validation of assertions relating to the meaning of concepts (terms) in each specification.

5.0 Viewpoint Modelling

This section presents a brief and informal review of what is involve@ivpoint modellingpefore dwelling into
the issue of their use Bystem desigrit is apparent that viewpoints can be thought of as constituencies of concerns
involved in the system specification process. The system specification concerns that are addressed in the individual
viewpoints are outlined belowt is not intended to give a ‘formal’ treatment to the concepts that arise in a viewpoint.
Instead individual concerns specific to a viewpoint are iterhiredrder to relate them in int@rewpoint consis-
tency exercise performed in section 7.

5.1 Enterprise Modelling: The enterprise modellingleals with the objectives of the system. The main concerns
addressed in the enterprise modelling are:
(Purpose + Scope + Role + Policies + Obligation) of SYSTEM

Enterprise Modelling allows us to make statements such as:

ER1: What is th@urposeof the system (or its components) in the enterprise.

ER2: What is thescopeof the system (or its components) in the enterprise.

ER3: What is theole of the system (or its components) in the enterprise.

ER4: Whatpoliciesare associated to the system (or its components) in the enterprise.
ER5: What are thebligationsof the system (or its components) in the enterprise.
ERG6: What are thdistributionrequirements of the system (or its components).

ER7: What are thimteractionsbetween the system and its environment.

ER8: What are the application-specifejuirrmentof the enterprise from the system.

The enterprise specificatiois composed of a combination of these kinds of statements. These statements are made
with respect to the system or its components, calteerprise objectsThe specification from this viewpoint captures
requirements that justify and orient (impact) the design of the system. The enterprise specification is at the most
abstract level of detail suitable for representing user concerns and requirements.

5.2 Information Modelling: The information modellingdeals with aspects related to information content of the
enterprise. The concerns addressed in the information viewpoint are:

Identification of (Information Objects + Quality Attributes of Information Objects + Manipulations on Information
Objects + Rules/constraints for Information manipulation + Relationship between Information Objects + Semantics
of information stored and exchanged between components + Information Flows) of SYSTEM.

Information objectsare information elements or structures of information. Information objects define the subset of
the information content of the enterprise.

The specification of the system from the information viewpoint consists of the following statements:

IN1: What are thénformation object®f the system.

IN2: What are theuality attributesof the information objects of the system.

IN3: Whatmanipulations/pocessingcan be performed on the information objects of the system.

IN4: What are theules andconstraintsfor information manipulation

IN5: What is theelationshipbetween information objects.

IN6: Whatsemanticsa human would associate with the information stored in and exchanged between information

1. Although, some of the items overlap.tvtheir scope, the intention is to relate them with the concerns in
other viewpoint(s).

objects.
IN7: What are thsources sinks andinformation flowsn the system.

5.3 Computational Modelling: Thecomputational modellingeals with the functional decomposition of the system
into components, calletbmputational objectahich are candidates for distribution and identification of interactions
between these components. It consists of:

Identification of (Computational Objects + Activities that occur within Computational Objects + Interfaces of Com-
putational Objects + Operations of Computational Interfaces + Behavior observable at Computational Interface +
Role of Computational Interfaces + Environment Constraints associated with Computational Objects and their Inter-
faces + Interactions between Computational Interfaces) of SYSTEM.

The computational modellingctivity consists of the following concerns:

CO1: What are theomputational objectsf the system.

CO2: Whatactivitiesoccur within the computational objects of the system.

CO3: What are thimterfacesof computational objects of the system.

CO4: Whatoperationscan be invoked to/from the computational interfaces.

CO5: Whatbhehavioris observable at the computational interfaces.

CO6: What is theole of the computational interface.

CO7: Whatenviomnment constraintare associated with the computational objects and their interfaces.
CO8: Whatinteractionsare possible between computational objects (interfaces).

5.4 Engineering Modelling: Theengineering modellingeals with the infrastructure required to support the system
components and interaction between them. It is concerned with:

Identification of (Infrastructure Objects and their configuration required to support the distribution of components) of
SYSTEM.

Infrastructure objects amengineering objectwhich are either obtained from computational objects or provide spe-
cific distribution support functionality

5.5 Technology Modelling: Thetechnology modellings concerned with the identification of technology artifacts to
support the system or its components.

6.0 Design M ethodology based on ODP Viewpoints

As mentioned in [13], there are a number of ways to interpret the concepivpbints The basic interpretation
of a viewpoint is that of aonstituencyframework- expression of concerns of féifent players involved in system
development. This section and the following one presents two alternatives of using viewpoidésigngpocess
framework

Although there is no (explicit) ordering or hierarchy between viewpoints, the issuedesilya pocess frame-
work relates to theonsistencypetween viewpoints. The specification in a given viewpoint must reflect the require-
ments posed in other viewpoints and not contradict them.

The design pocess frameworls used to illustrate the relationships that can be identified between viewpoints,
and is not intended to suggest that other relationships are unsuitable. The design process interpretation ascribes to
each viewpoint a diérent role in the design process.

Although, as suggested in section 8, the viewpoints can be used at all stages of the design of the system in order
to ensure consistency between viewpoint specification during the design process, some viewpoints play a predomi-
nant role (than other viewpoints) in particular phases of system design. In particular some stages of system design tra-
jectory are heavily dependent on the specifications in some viewpoint(s) than others. Of particular importance is the
observation that some viewpoint specification(s) capture much details of a certain stage of design trajectory than oth-
ers.

In particular the system specification in one viewpoint is based upon requirements expressed in some other
viewpoint(s). This relationship between viewpoints, which is related to the concerngeierdiphases of system
design, is illustrated in figure 3.

The system design process potentially involves all the viewpoint specifications. One specification may be

responsible for the generation of other specifications through the application of appropriate transformations.

The viewpoints can be used to structure the specification of a (distributed) system, and can be related to a design
methodology As outlined in [7], design of the system can be regarded as a process that may be subdivided into
phases related to tkfent viewpoints. These phases and their relationship to the ODP viewpoints are shown in figure
3.

In the figure, the four major phases in the system design trajectory are congidguédment captu (and
analysig, functional specification(detail) design implementationThis corresponds to the three major design steps
identified in the classical waterfall model described in [14] and [15]. The phases related to testing and maintenance
are not shown. Each of the viewpoints can be used as problem analysis technigue as well as a solution space of the
relevant issues of the problem domain.

Apart from their use in the (parallel and) alternate system specification, the use of the viewpoints gan be or
nized to assist the design trajectory from requirements specification to final design and implementation.

1.Requiement captwe and analysisThe classical “waterfall” model of the software life cycle [14], [15], begins with
requirement analysis and definitigehase. According to the model, the sysgega®@rvices, constraints and goals are
established, in this phase, by consultation with system users. This is precisely the concern of the enterprise view-
point in the ODP framework of viewpoints.

The enterprise view covers the enterprise objectives of an information system. It focusesequigm@ents,
objectivesand theole of the system within the ganization. It is the most abstract of the ODP framework of view-
points stating high-level enterprise requirements. This allows the designer to develop a closed (i.e., bounded) model
which represents all the real world requirements which the designer must incorporate, later in the design trajectory
into the final realization of the system.

The classical “waterfall” model identifies a single phase corresponding to “system design”. For complex (dis-
tributed) systems, it is not possible to achieve an implementable design in a single step from requirement specifica-
tion. The ODP framework of viewpoints allows the identification (and specification) of an intermediate design step-
thearchitecturalor functionaldesign of the system which is followed by a detailed design of the system.

2 Functional specification (ahitectural design)This step consists of decomposition of system fatztional or
architecturalcomponents and identification of interconnections between them using the requirement definition as
the base. The interaction requirements of the functional components are identified. This is the domain of the compu-
tational viewpoint. The computational specification of the system contains detailed design constraints (reflected in
terms of environment constraints associated with computational objects, computational interfaces, and interactions
between them). This forms the basis for the detailed system design in the next step.

Apart fromfunctional decompositigrit is also possible to specify the system based on its information content
[16,17,18]. This activityreferred to asformation modellings concerned with the semantics of information, infor-
mation processing activities, and information flow in the system.cbheeptual decompositioof the system is
performed as part of information modelling.

Although the information model does not directly impact the system design process, the computational view-
point plays a central role in the design process. While the computational viewpoint heldsctioaaldecompo-
sition of the system, the information viewpoint enablesctireceptualdecomposition of the systenodether they
help in constructing the architectural specification of the system. For example, the information model ascribes
meaning to the information that is exchanged in interactions befweetonalcomponents identified in the com-
putational model.

3.(Detail) design The detailed design step fills in the gap of the architectural design by completing the design step
corresponding to some special system requirements sulisti@isution of the system. Thiunctionalor architec-
tural components identified in the previous design step need to interact in order to perform the objectives of the sys-
tem identified in the enterprise viewpoint. The components required to support the interactions between
architectural components and the configuration of the supporting components are identified in the engineering
viewpoint. The functionality of the supporting components is consistent with the requirements of interaction (envi-
ronment constraints) between thechitectural components identified in the computational vidWoreover the
identifiedarchitecturalcomponents may be decomposed, in the final design step, to enable mapping onto an imple-
mentable design.

Source of Requirements

Enterprise
/ Requirement Analysis
ER2, ER3,
ER4, ER5,
ER3, ER6 ER6, ER7.
/ ERS8
IN1,
. IN2, :
Information N3, Computational
IN7
[Architectural Design
CO1, CO2,
CO3, CO4,
ER6, CO5, COe6,
ERS. CO7, COs.
Technology ¢ / Technology
Mapping ' Mapping
Engineering
|
| System Design
Technology
Mapping
Technology
Source of Constraints
Implementation

NB: The direction of arrows indicates what statements of the source viewpoint
impact the specification in the destination viewpoint.

Figure 3. fewpoints in System Design Process

4.Implementation The implementation phase corresponds to giving technology mappings to the system design
obtained in the previous step. The identified system components (functional components and supporting compo-
nents) are mapped onto the available technology artifacts. This step relates to software coding using programming
languages, embedding into computer systems, and identification of communication protocols (networks) for con-
necting system components.

However from an application designers perspective, the issues related to enterprise and information viewpoint are
only visible in terms of application requirements they generate; issues related to related to engineering and technol-
ogy viewpoint are invisible, buried somewhere in the distribution support environment being used. As shown in fig-
ure 4, the computational model plays an important role in bridging the gap between requirements and solutions.

Requirement
Domain

A

Enterprise Model Information Model

Computational
Model

Solution

Engineering Model Domain

Figure 4. Computational Model: Bridge the gap between requirements and solution

While the enterprise viewpoint is the ultimate source of (design) requirements, the technology viewpoint is the final
source of (design) constraints (what can be implemented with the available technical artifacts). The enterprise and
technology viewpoints together delimit the design space for the designer of a (distributed) system.

However it should be noted that the specification of the system in one viewpoint should be consistent with the system
specification in all other viewpoints during all phases of design trajectory

7.0 Viewpoint Consistency in the Design Process Framewor k

In the following we identify the consistency relations between viewpoint models and show how the statements
made in a viewpoint specification impact the system specification in another viewpoint, as illustrated in figure 3. This
mapping process is not meant to give a ‘formal’ interpretation but to informally explain the relationship between each
of these models.

Enterprise and Computational Specificatioffhe enterprise specification is the source of design requirements.
Hence it has a direct impact on other viewpoint models.

With respect to the enterprise concerns identified in section 5.1, the following enterprise cofeerttseadrchitec-

tural design of the system (specified in the computational viewpoint):

ER2: Thescopeof the system (or its components) in the enterprise helps in the identification and subsequent delimit-

ing of the functionality of computational objects.

ER3: Therole of the system (or its components) in the enterprise decides what activities will be performed by compu-
tational objects. These roles may be reflected at computational interfaces. This mapping need not be one-to-
one, for example, some roles (of enterprise objects) may be distributed amongst computational objects.

ER4: Thepermissionandprohibitionsof the system (or its components) in the enterprise has an impact on the con-
straints on the activities performed by computational objects and on the interactions between them.

ERS5: Theobligationsof the system (or its components) in the enterprise are to perform some enfenutises;
this decides the processing (or behavior) of the computational objects.

ERG6: Thedistributionrequirements of the system (or its components) decides the interfaces of computational objects.

ER7: Theinteractiors between the system and its environment identify the computational objects that constitute the

man machine interface.

ER8: The (speciabequirrmentf the enterprise from the system have an influence onemliabnment constraints

(such as securipdistribution transparencyommunication QoS, etc.) are associated with computational
objects or their interfaces.

Enterprise and Information Specificatiofhe enterprise requirements also impacts the information modelling of the

system. Apart from establishing the “ownership” of information, i.e., which enterprise roles are associated with man-

aging which information, there is also the issue of associating information with enterprise (business) functions. The

latter has an impact on the design process, for example having identified the enterprise functions it is possible to

define the information associated with it. The resulting information specification will get refined as it is decided

exactly what information objects the computational specification will deal with.

The information viewpoint must capture information about the systeiiisaf to allow the roles, policies, etc., of

the enterprise model to be performed, for example, how various enterprise roles are held and by which objects.

There are few rules that apply to the consistency between enterprise and information viewpoint because there are few

prescriptive rules in these languages (compared to computational and engineering viewpoints).

ER3: Therole of the system (or its components) in the enterprise decides what manipulations can be performed on
the information objects.

ERG6: Thedistributionrequirements of the system (or its components) decide the source, sink, and information flows,
in the information model of the system.

Information and Computational Specificatidrhe information model defines the overall state for the part of the sys-
tem being modelled. The aspects of the computational specification wiachthé information objects should be
consistent with the information specification.
The computational viewpoint describes how the information described in the information viewpoint is processed in
the computational objects and which information, modelled, in the information viewpoint, is exchanged between
computational interfaces (for example, eguanents to operation invocations).
Similarly, the computational type systd@] requires that operation and termination names be known to the recipi-
ents. Howeverit does not guarantee that the recipients agree on the semantics of the names. The agreement on the
semantics of the exchanged information is performed in the information model.
IN1: Theinformation objectof the system are processed (or manipulated) by computational objects. There is not
necessarily a one to one correspondence between information and computational objects.,Ntueaofar
mation objects may correspond to computational objects that perform information processing or to the compu-
tational objects that store information.
IN2: Thequality attributesof information objects may require additional environment constraints to be associated
with computational objects or their interfaces.
IN3: Themanipulations/pocessinghat can be performed on information objecfscs$ the exact nature of computa-
tional operations that are possible within the computational objects. This should be consistent with enterprise
requirement ER3.
IN7: The sources and sinks ioformation flowshelps identify client and server roles of computational objects and
their interfaces.

Computational and Engineering Specificatidine computational specification has a direct impact on engineering
specification. The engineering model of the system animates its computational model. A detailed discussion of the
relationship between computational and engineering models is given in [19].

CO1: Thecomputational objectsan be mapped directlgr refined into (a number of) basic engineering objects.

CO2: Theactivitiesof the BEOs are the orgeodf the corresponding computational objects.

CO3: Thecomputational interfacemay map onto single BEO or onto an interface of a BEO. The computational
interfaces cannot be decomposed.

CO4: Theoperationsinvoked to or from BEO interfaces correspond to computational operations.

CO5: The computationdlehaviormust be preserved in transformation to engineering specification.

CO6: Since computational interfaces cannot be decomposed, there is an interface to BEOs corresponding to computa-
tional interface with the identicable.

CO7: The computational interactions are performed in a distribution transparent .nidmenvionment con-
straints associated with computational object and their interfaces are the main source of requirements that
decide the composition of structures of supporting objects within the channel between BEOs.

CO8: All computational interactionmust be preserved as interactions between interfaces of BEOs.

Enterprise and Engineering Specificatigdithough, in general, it must be ensured that engineering specification is

consistent with the enterprise specification, there are certain enterprise concerns which have a direct impact on the

engineering design. They are:

ERG6: Thedistribution requirrmentf the system have a direct bearing on the location of basic engineering objects.

ERS8: The (specialjequittmentsof the enterprise decide the distribution transparecaymunication, and other
supporting objects within the channel between BEOs.

Information and Engineering Specificatiofhe information viewpoint defines the types of information exchanged
and therefore determines the required communication service for exchanging information objects. Mmigoger
concerning distribution transparency are specified in the information viewpoint.

Information, Computational, Engineering t@chnology SpecificatioriThe mappings to technology artifacts are

identified for information objects, computational objects, and engineering objects. The technology mappings from

information, computational, and engineering specifications include:

1. Information objects can be realized as databases (or parts thereof).

2. Computational objects (application components) can be realized as technology objects such processes, computer
programs, etc.

3. Engineering objects (protocol objects, transparency objects) can be mapped on to technology objects such as proto-
col software modules, transparency software modules, etc.

8.0 Recursive use of Viewpointsin System Design

This section illustrates how viewpoints can be ussdirsivelyin the design of (distributed) system and of its
components.

The viewpoint models can be used atetént levels of granularityfhey can be used on thedarscale to spec-
ify complete systems, or on the small scale to talk about system components. As discussatiehpimeess is
recursive.
The methodology is based on the recursive use of viewpoints for the development of the specification of (distributed)
systems in dferent stages of design trajectohy this methodology the ODP concept of viewpoint is treated as a
“design or analysis tool” that aids in the identification and refinement of system into its constituent components. The
starting point are the enterprise policy statements relevant to the (distributed) system, and then the other viewpoints
are used to determine the constituent (or supporting) objects of the system. The same procedure is then applied recur-
sively on the constituent (or supporting) objects until the specified objects are detailed enough to be mapped to the
real resources (i.e., a mapping is found to technology artifacts in the technology viewpoint).

Similarly, objects identified in a given viewpoint specification can be specified fréenedif viewpoints. For
example arengineering objectsay aranspaency objectcan be specified using the enterprise viewpoint (its objec-
tives), information viewpoint (information requirements for that part of the system), computational viewpoint (the
computational activities, interfaces, and interactions associated with that object), engineering viewpoint (supporting
objects, if anyrequired for complete realization of that object), and technology viewpoint (what technical artifacts
can be used for the realization of that object).

10

SYSTEM
under
design

Viewpoint Selectign N
(Designer Driven) J

@ the System\ s the 1dentifix /fs the functi—\ /

ot cation of: onal decompos-|(TIs the infrastr- || Is the techno-
i)b{)elilvss o 1135;’55{?{1183 1it(if(())rr1r{nflqc;1tional ucture required | logy artifacts
! Scope ’ 2.manipulation 'Obje c}gcs to .supgor.t for the system
3. RolIe), ’ 3 ?{fullce)s, for man- 2.Computational (thStrlt ution) (gorf}[PfQH(fnt)
4. Policies, ipulation of IO.3_]IEII1:[§{1~3IC§IS{ent ;)tssc}ésrrfgcl)r?;nts rdenttied.
5. Obligations |4.Semantics of I(Constraints, completel
completely 5. Information |#.Interactions Pf. d y
specified. ﬂowfetel completely speciiied.

J @&gifie & J Qpeciﬁed. AN J

o

Enterprise

Technology
Modelling

Modelling

Engineering
Modelling

Modelling

Choose the < Viewpoint modelling using viewpoint specific

concepts, structures, and rules.

!

Was there any decomposition/alteration of the
system during this iteration.

Ine

Is the system (and its components) completely
specified from all viewpoints.

#Yes

Can the system (and its components) mapped
No\ onto to real resources.

Yes

Figure 5. Recursive Use of ODReWpoints in System Design

11

1. Recursive use of enterprise viewpoistused to identify the enterprise requirements of the system or of its compo-
nents.

2. Recursive use of information viewpoiigt used to identify the information (processing) requirements associated
with the system or with its components. Additional information objects (and hence the manipulations, quality
requirements, information flows, etc.) associated with the system (or its components) may be identified. This
activity is dependent on the designer and on the available technology mappings for the iddptifiradion con-
cepts(information objects, etc.).

3. Recursive use of computational viewpnisitused to identify the (additional) computational objects (and hence the
computational interfaces, interactions between computational interfaces, environment constraints associated with
computational interfaces) into which the system (or its components) can be refined. This activity is dependent on
the designer and on the available technology mappings for the ideatifrgglitational conceptEomputational
objects, etc.).

4. Recursive use of engineering viewppigtused identify the required (and possibly additional) supporting objects
for the engineering of the system (or its components). This activity is dependent on the designer and on the avail-
able technology mappings for the identifestjineering concep{&ngineering objects, etc.).

5. Recursive use of technology viewppistused to identify the technology artifacts for the realization of the system
or its components.

Different viewpoints allow specifiers to view distributed systems frofardiit abstractions, allowing the com-
plex problem of the specification of distributed systems to be divided into smadler manageable parts.

9.0 Conclusion

This paper has explored the subtle concepts of abstraction and consistency between the viewpoint models and
analyzed them in the perspective of a design process framework.

We have identified diérent approaches for using viewpoint models in a design actA@yhave proposed
methodical approaches to support the design trajectory of (distributed) systems within the architectural framework of
ODP viewpoints.

What is crucial in all these approaches is to maintain the consistency between viewpoint specification during
the design process and to ensure that the design reflects the requirements and constraints specified in the viewpoint
models.

Any future ODP design tool must take into account these aspects related to abstraction, coraisteéhey
applicability of viewpoints models in the design process framework.

Acknowledgment: We would like to express our sincere thanks té\Bdrew Herbert, APM Ltd., Cambridge, U.K.,
Mr.Jean-Bernard Stefani, CNERrance, DKerry Raymond, University of Queensland, Australia, and to Jonathan-
Legh Smith, British €lecom, U.K. for the numerous discussions we have had with them on the issues related to the
topic.

10.0 References

1. PE Linington. Introduction to Open Distributed Processing Basic Reference Model, Proceedings of the IFIP TC6
International Vdrkshop on Open Distributed Processing (eds: J.d.,Meéteymer R. Roth), Berlin, Germany
September 1991 (North Holland).

2. K. Raymond. Reference Model of Open Distributed Processingtakidl, Proceedings of the IFIP TC6 Interna-
tional Conference on Open Distributed Processing (eds: J.d, Blédahr O.Spaniol), Berlin, German$eptem-
ber 1993 (North Holland).

3. ANSA: An Engineés Introduction to the Architecture, TR.03.02, Advanced Projects Management Limited, Cam-
bridge, U.K., November 1989.

4. A.J. Watson. Tpes and Projections, APM/RC.258.03, Advanced Projects Management Limited, Cambridge, U.K.,
April 1992.

5. J.Indulska, K. Raymond, M. Bearman. yp& Management System for ODRadler Proceedings of the IFIP TC6
International Conference on Open Distributed Processing (eds: J.d.Bi&&ahr O.Spaniol), Berlin, Germany
September 1993 (North Holland).

12

6. ANSA Reference Manualolume A., Release 01.01, Advanced Projects Management Limited, Cambridge, U.K.,
July 1989.

7. Draft Recommendation ITU-T X.901 / ISO 10746-1: Basic Reference Model of Open Distributed Processing -
Part-1: Overview

8. Draft International Standard ITU-T X.902 / ISO 10746-2: Basic Reference Model of Open Distributed Processing
- Part-2: Descriptive Model.

9. Draft International Standard ITU-T X.903 / ISO 10746-3: Basic Reference Model of Open Distributed Processing
- Part-3: Prescriptive Model.

10.Draft Recommendation ITU-T X.904 / ISO 10746-4: Basic Reference Model of Open Distributed Processing -
Part-4: Architectural Semantics.

11.M.v. Sinderen, J. Schot. An Engineering Approach to ODP Systems Design, Proceedings of the IFIP TC6 Interna-
tional Workshop on Open Distributed Processing (eds: J.d.,Mekleymer R. Roth), Berlin, Germanypeptem-
ber 1991 (North Holland).

12.G.Cowen, J.Derrick, M.Gill, G.Girling, A.HerbertLRington, D.RaynerESchulz, R.SoleyPROST Report of
the Study on @sting for Open Distributed Processing, Advanced Projects Management Limited, Cambridge,
U.K., May 1993.

13.D.Iggulden, O.Rees, RdvLinden. Architecture and Frameworks, APM.1017.00.03, Advanced Projects Manage-
ment Limited, Cambridge, U.K., June 1993.

14.1.Sommerville. Software Engineering (4th Edition), Addisoesl&y Publishing Compan$993.

15.Pressman. Software Engineering (2nd Edition).

16.J.J.\Griethuysen. Enterprise Modelling, a Necessary Basis for Modern Information Systems, Proceedings of the
IFIP TC6 International \WWkshop on Open Distributed Processing (eds: J.d.,Meéteymer R. Roth), Berlin,
Germany September 1991 (North Holland).

17. S.Rudkin. Modelling Information Objects in Z, Proceedings of the IFIP TC6 Internatiank$tdp on Open
Distributed Processing (eds: J.d. MeérHeymer R. Roth), Berlin, Germangeptember 1991 (North Holland).

18.L.Cerchio, N.Curci, O.Ghisio, R.Saracco, Mpé. Information Modelling: Paving the &y Towards the &le-
communication Management Network of Future, CBEkchnical Report, ™.18, No.6, December 1990.

19.K.Farooqui. ¥ewpoint Transformation, Proceedings of the IFIP TC6 International Conference on Open Distrib-
uted Processing (eds: J.d. Md&rMaht O.Spaniol), Berlin, Germangeptember 1993 (North Holland).

13

