
IFIP/IEEE DSOM-95

1

OSI Management Model
in the

ODP Architectural Framework

Kazi Farooqui
Department of Computer Science,

University of Ottawa,
Ottawa K1N 6N5, Canada.

(Internet: farooqui@csi.uottawa.ca)

Abstract
The ODP model is a generic architectural framework for describing distributed systems. It is relevant and
applicable to different application-domains. In this paper we demonstrate how the architectural concepts of the
ODP model help in the identification of a distributed management model. It is the goal of this paper to position
the current OSI management model within the ODP architectural framework. It is an attempt in answering the
question: “how can ODP be used to enhance the OSI management model towards a truly distributed manage-
ment model. As a first step in that direction, we show the application of ODP computational and engineering
models in the OSI management domain. It is desired that the architecture for true distributed OSI management
must gracefully evolve from (and be backwards compatible with) the current point-to-point architecture.

Keywords: Network management, OSI systems management, CMIS, CMIP, manager, agent, managed objects, open
distributed processing, computational model, engineering model, distribution transparency.

1.0 Introduction
The premise of our work is the recognition of the inherently distributed nature of the management activity. OSI Sys-
tems Management [1] is essentially a distributed processing activity and, as such, should be expressible using the
Reference Model for Open Distributed Processing (RM-ODP) [2,3,4,5].

The RM-ODP is a generic framework for the development of numerous future standards in various application
domains. It may be seen as ameta-standard to coordinate and guide the development of domain specific ODP stan-
dards. This paper illustrates the application of ODP to the OSI management domain that would lead to the definition
of anopen distributed management architecture.

The RM-ODP gives a generic framework for describing a distributed system completely from different system
abstractions - a framework ofviewpoints. OSI-Systems Management offers a particular example of a distributed man-
agement system. The question is which aspects of OSI management needs to be described and in which viewpoint(s)
these aspects should be placed. This paper presents the aspects of OSI-Systems Management related to the computa-
tional and engineering viewpoints.
Section 2 provides a brief introduction to the OSI management model and to the RM-ODP - a generic architectural
framework for the organization of distributed systems. Section 3 presents the ODP computational model as an object-
oriented framework for the structuring and organization of distributed applications. In section 4, we show how the
full generality of the ODP computational model can be applied to the implicit and simple computational model of the
existing OSI management that permits the modelling of distributed management applications. Section 5 presents the
ODP engineering model as a framework for the definition of an object-based distributed platform for the support of
interactions between distributed application components. Section 6 illustrates how the genericity of the ODP engi-
neering model can serve as a basis for the identification of distributed platform for management applications. Conclu-
sions are drawn in section 7.

2.0 Background
This section provides a brief introduction to the current OSI Management Model and to the generic ODP model.

2.1 OSI Systems Management Model
The world of OSI Management Model is populated with Managing Systems and Managed Systems. All (traceable)
interactions in the OSI Management Model are between the managing and managed systems. As shown in figure 1,

IFIP/IEEE DSOM-95

2

the managing systems consists ofmanager processes and managed systems consists ofagent processes and a set of
managed objects organized (as a tree) in amanagement information base (MIB). Managed Objects (MOs) are an
abstraction of the actual resources being managed (for the purpose of the management of the resource). MOs repre-
sent the manager’s view of the resource. Systems management is achieved over associations established between
manager processes (in the managing system) and agent processes (which represent and control a set of managed
objects) in the managed systems
 The manager process requests the execution of management operations from the agent which performs them
(through the involvement of managed objects) and returns the responses to the manager. The agent may also generate
event reports asynchronously to be sent to the manager. The manager-agent interactions are supported by an OSI stan-
dard management service known as the Common Management Information Service (CMIS) [6], implemented by the
OSI standard management protocol called the Common Management Information Protocol (CMIP) [7]. The CMIS
supports the following operations and notifications:
a. M-Get: operation is used by the manager to retrieve attribute values from managed objects.
b. M-Set: operation is used by the manager to set the attributes of the managed objects.
c. M-Action: facilitates non-standardized operations on managed objects.
d. M-Create: operation allows the manager to request the agent to create an instance of MO.
e. M-Delete: operations allows the manager to request the agent to delete an instance of MO.
f. M-Event-Report: notification is used by the agent to report to the manager the occurrence of an event associated

with an MO.

2.2 ODP: A Generic Architecture for Distributed Systems
The Reference Model for Open Distributed Processing (RM-ODP) is an architectural framework for the integrated
support of distribution, inter-working, inter-operability, and portability of distributed applications. It provides an
object-oriented model for building open distributed systems[8, 9].
 The ODP model is sufficiently general to be used in several areas. Specific fields of ODP applications include
advanced telecommunication architectures such as Intelligent Networks, Automated Manufacturing Systems, Office
Systems, Management Information Systems, etc. [10].

2.3 ODP: A Framework of System Abstractions
The ODP framework of viewpoints partitions the concerns to be addressed in the design of distributed systems. A
viewpoint leads to a representation of the system with emphasis on a specific set of concerns. Different viewpoints
address different concerns, but there is a common ground between them. These viewpoints should not be seen as
architectural layers, but rather a different abstraction of the same system. An object-oriented approach has been
adopted to model distributed applications in each viewpoint.

While all the viewpoints are relevant to the description of distributed systems, the computational and engineering
viewpoints are the ones that bear most directly on the design and implementation of distributed systems. From a dis-
tributed software engineering point of view, the computational and engineering models are the most important; they
reflect the (software) structure of distributed applications and of the underlying distributed platform more closely. In
this paper we concentrate on thecomputational modelling andengineering modelling of the OSI Management Model.

3.0 ODP Computational Model: An Object-Oriented View of Distributed Application
The computational model offers a framework for describing the structure and organization of applications into

distributable components (computational objects), identification of interfaces of the distributable components (com-
putational interfaces), identification of interactions (interrogations, announcements, etc.) between (the interfaces of)
application components, and for the expression of distribution requirements (environment contract), from the under-
lying distributed execution environment, for the support of interactions between application components.

The computational model is based on adistributed-object model. The model prescribes an object-oriented view
of the distributed application. In the computational model a distributed application is viewed an ‘object world’ popu-
lated with concurrent (computational) objects interacting with each other, in adistribution-transparent abstraction, by
invoking operations at their interfaces. An object can have multiple interfaces and these interfaces define the interac-
tions that are possible with the object.

While the computational objects are the units of structure and encapsulation of (application-specific) services,
interfaces are the units of provision of services; they are the places at which objects can interact and obtain or offer

IFIP/IEEE DSOM-95

3

services. A computational object may play different (application-specific)roles at its interfaces. These roles could be
client or serverrole,produceror consumer role,supervisor or subordinate role, etc. A computational object may sup-
port multiple interfaces which need not be of the same type. Interfaces of the same type may be provided by objects
which are not of the same type. Each object may provide interfaces which are unlike those provided by other objects
[11].

4.0 Computational Model of OSI Management
In this section we show how the implicit and the simple computational model of the current point-to-point OSI

management can be extended, using the ‘generic’ ODP computational model, to model the distributed OSI manage-
ment scenario.

4.1 Implicit Computational Model of OSI Management
The current OSI management model implicitly possesses a very simple computational model. This corresponds

to the point-to-point management model comprising of amanager object(in a managing system) interacting with a
(set of)managed object (s) through anagent object1(in a managed system), as shown in figure 1. This model is lim-
ited to management applications involving point-to-point communications. It does not model a fully distributed man-
agement scenario as portrayed by complex management applications.

Figure 1. Computational Model of Point-to-Point OSI Management

4.2 Towards a Computational Model of Distributed OSI Management
OSI management applications are inherently distributed applications and the modelling of interactions between

management application components should exploit the full genericity and power (concepts, structures, and rules)
offered by the ODP computational model. This would enable the expression (and subsequent analysis) of complex
distributed management applications through a single computational model.

We propose adistributed management computational modelas an object world populated with a set of“man-
agementobjects” distributed over different open systems and interacting in complex ways through operations invoca-
tions and notifications. Thesemanagement objects may bemanaging objects, or managed objects, or may include
both functionalities.

The section provides an interpretation of the existing OSI management model using the concepts of the ODP
computational model and offers extensions towards adistributed management computational model (figure 2) within
the framework of the ‘generic’ ODP computational model.

1. Computational Objects: The OSI management model comprises of objects either in themanagerrole orman-
aged2 role. However, these roles could be modelled through the interfaces of a computational object, as discussed
below. Hence a genericmanagement object serves as a computational object of thedistributed management com-
putational model. Themanagement object may possess multiple interfaces, and it is these interfaces that may act
either in themanager or managed role (or some application-specific role). Themanagement object may (dynami-
cally) offer either themanagerinterface(s) ormanagedinterface(s) or both. Themanagementobjects serve as the
unit of distribution and failure.
Themanagement computational object serves as an abstraction which is useful for modelling the relationship and
collective behavior of the set of interfaces it supports. It offers a powerful modelling concept, and as discussed in

1. It will be shown later in section 6, that part of the agent functionality can be placed in the ODP engineering
model.

2. A managed object is an abstraction of a real resource for the purpose of managing that resource.

MO

MO MO

MO

Message exchanges AgentManager

Managing System Managed System

MIB

IFIP/IEEE DSOM-95

4

section 6.3 it can be decomposed into implementable engineering objects of desired granularity.

2. Computational Interfaces: The ODP computational model prescribes that a computational object may contain
bothoperational interface andstream interface. The OSI management model contains only operational interfaces.
However, amanagementobject may possess stream interface if it is desired (such as in multimedia applications) to
sample the stream data locally at amanagement object.

3. Role of Interacting Objects at Interfaces:As mentioned earlier, the current OSI management model comprises
of objects either in amanageror amanagedrole. The ODP computational model has fine a granular concept of
role which can be applied to an interface of an object or can be associated with an individual interaction (opera-
tion) at an interface. The role taken by an object can vary at an interface or for a particular interaction at the inter-
face. The ODP computational model has afundamental concept of role: the computational interfaces model
different interaction concerns of a computational object, for e.g., theclient role (the initiator of an invocation), the
server role (the responder of an invocation),producer role (originator of information flow) andconsumer role
(destination of information flow). In general, interactions between objects should be treated as taking any of these
roles. In keeping with this genericity, it is flexible (as illustrated below) to model amanagement computational
object as possessingmanagerrole interfaces,managed role interfaces, or some application-specific interfaces
(which includes the interface between managed object and the real resource).
Interfaces in themanager role areclient interfaces invoking operations onmanaged role interfaces acting asserver
interfaces.

4. Computational Interaction: The computational model (in addition to describing the activities within themanage-
ment computational object, also) describes the interactions that occur between the computational interfaces in a
distribution transparent way. Interactions between the interfaces (of computational objects) are expressed by
means of operation exchanges that occur between the bound interfaces. An important exercise is the mapping of
OSI managementoperationsandnotifications on the ODP computational model.
The interactions, in the computational model of figure 2, may take one of the two forms:
a. a management operation initiated by themanager interface and performed by themanaged interface, resulting

in a response being returned to themanagerinterface, or
b. a notification sent from themanaged interface to themanager interface without any reply.
The former corresponds to theinterrogationstyle and the latter to theannouncement style of computational inter-
action.

A managed object, as specified in the current OSI management model, can support both operations and notifica-
tions. This can be modelled in thedistributed management computational modelas amanagement object with two
interfaces, both in themanaged role, one to accept operations (emitted by themanager interface) and the other to
emit notifications.

5. Environment Contract of Management Interfaces: The ODP computational model prescribes that the computa-
tional object templates3 and computational interface templates may have associated environment contract which
contains the information affecting the way in which the underlying distributed platform supports the computa-
tional interactions; this information constrains the type of distribution transparencies, choice of communication
protocols, etc. that must be placed in the interaction path between interacting objects. Themanageror managed
interfaces may include environment contract stating distribution transparency requirement, communication quality
of service such as throughput, delay, etc. For example a managed object may require its notifications to be deliv-
ered to the manager within certain maximum delay.

6. Behavior at Management Interface: The behavior at amanager or managed interface defines all possible order-
ing of operations and notifications that can be emitted or accepted at the interface. The behavior constitutes the
protocol between a pair interacting interfaces. The behavior is specific to management application and may vary
between a pair of interacting management interfaces. This is defined in the current OSI management model as the

3. A template is a object (interface) specification.

IFIP/IEEE DSOM-95

5

exchange of CMIP PDUs. However, as discussed in section 6.3, CMIP is a communication support mechanism for
the exchange of computational operations and notifications and it is modelled in the engineering model.

7. Binding of Management Interfaces: The ODP computational model supports a type-checked (dynamic) binding
between object interfaces. The binding between themanager andmanaged interfaces can be based on the ODP
computational type compatibility. The OSI management model defines a binding between a pair of objects. It lacks
the capability to model an arbitrary interaction pattern between manager and managed objects. However, this
model can be extended through the concept of binding object defined in the ODP computational model. The bind-
ing object template can define complex interactions within a configuration ofmanager andmanaged interfaces.
In the context of current OSI management model, the binding object concept allows the modelling of multicast of
notifications issued by a managed object such as an event forwarding discriminator.

8. Failure Model: The current OSI management model lacks afailure model. There exists no way for the manager
and managed objects to be informed about the underlying infrastructure failure.
The ODP computational model supports the notification of infrastructure failures through response messages gen-
erated by the ODP engineering infrastructure. This waymanagementobjects can be informed about the failures in
the underlying distributed platform.

Figure 2. Distributed Management Computational Model
The distributed management computational model permits the modelling of the effect of interactions at one

interface of the object on interactions at the other. A management computational object possesses multiple interfaces,
each in either amanager or managedrole (or some application-specific role). Management operations received on
one interface would necessitate initiation of operations on other interface. Amanagement computational object can
be viewed as a composite object acting as a manager object over one association and as a managed object over the
other.

 Thedistributed management computational model, as identified above, offers the full flexibility of the ODP
computational model that permits the modelling of different distributed management scenarios:

1. amanagement object possesses multiple interfaces all of which aremanager interfaces: this models the case
of a single manager object managing a set of managed objects distributed on different open systems. Each
pair of manager-managed interface models a management association between the involved objects.

mco mco mco

mco mco mco mco

mcomcomco

manager agent
MO MO

MO MO

Managed system.Managing system.
Legend

Manager Interface.

Managed Interface.
Application Specific Interface.

� � �

� � � � � � � � 	
 �
 � � � � � � � � � � � � � � � � �
 � �
� � � � � � � � 	
 �
 � � � � � � � � � � � � � � � �

IFIP/IEEE DSOM-95

6

2. amanagementobject possesses multiple interfaces all of which aremanaged interfaces: this models the case
of a single managed object (event forwarding discriminator) sending notifications, via different interfaces, to
a set of manager objects distributed on different open systems or the case of a single managed object (log
object) responding to the queries of different manager objects, or a combination of both.

3. amanagement object possesses multiple interfaces some of which aremanager interfaces and some areman-
agedinterfaces (and someapplication-specific interfaces): this models a very general management scenario
in which themanagement object takes the role of both the manager and managedobjects. This corresponds
to the generic and distributed management scenario where there exists a hierarchy of managers managing a
set of distributed managed objects and reporting the status to (and responding to the queries of their) supe-
rior managers. It permits the modelling of the delegation of responsibility from one manager to another man-
ager for the purpose of assigning different management (sub) activities to lower level (manager) objects.

4. a managementobject dynamically offers (creates)managerand/or managed interfaces and withdraws
(deletes) them during its lifetime: a managed object representing a mobile resource (such as a cellular
phone) may move from one location to another very frequently. It is convenient (and economical) to manage
that resource locally. A localmanagement object may dynamically offer amanager interface to manage the
mobile object and report the status periodically to themanagement object higher up in the hierarchy. When
the mobile object moves again, themanagerinterface may be withdrawn.

As shown in figure 2, thisdistributed management computational model is backwards compatible with the existing
point-to-point management model. In the managing system, themanagementobjects reduces to a single-interfaced
object with themanagerrole and in the managed system themanagement object reduces to an (agent) object with two
interfaces: one in themanaged role and the other in themanager role. (However, as discussed below, part of the
agent’s functionality includes the engineering functionality and is modelled in the ODP engineering viewpoint). The
managed interface is bound to themanager interface (of themanagement object) in the managing system. Theman-
ager interface is bound to the managed object at the root of the MIB.

The management concepts in the present OSI management model that are visible in the ODP computational model
are mangers, managed objects, interactions between them such as operations, notifications (and their arguments), and
(as explained in section 6.4) part of the agent functionality. In the computational model, the role of the agent is as an
interceptor of operations invoked by the manager. Some of the management operations invoked on the agent, such as
M-CREATE, M-DELETE are performed by the ODP engineering functions as discussed in section 6.4. Other opera-
tions such as M-Get, M-Set, M-Action are performed by the managed objects.

5.0 ODP Engineering Model: An Object-Based Distributed Platform
The ODP engineering model is an architectural framework for the provision of an object-based distributed plat-

form for the support of the distributed applications modelled in the computational model. The set of basic services
and mechanisms, identified in the engineering model, are modelled as a collection of interacting objects which
together provide support for therealization of (computational) interactions between distributed application compo-
nents.

The engineering modelanimates the computational model. The model is concerned withhow an application,
specified in the computational model, may beengineered onto the distributed platform. The mechanisms which
enable, regulate, and hide distribution (in the computational model) are identified in the engineering model. The engi-
neering model provides a machine-independent execution environment for distributed applications.

The services and mechanisms currently identified in the engineering model are generic in nature and can sup-
port distribution requirements of applications in a broad range of enterprise domains (such as Telecommunications,
Office Information systems, Computer Integrated Manufacturing, etc.). However, domain-specific distribution sup-
port functions will have to be defined in the domain-specific engineering models (which may be considered as the
specializations of the ODP engineering model). It is our effort to define an engineering model corresponding to the
distributed management computational model described in section 4.2.

6.0 Engineering Model of OSI Management
This section is motivated by the fact that we need to identify and define the functionality of the distributed plat-

form for the support of distributed management applications within the framework of the ODP engineering model.

IFIP/IEEE DSOM-95

7

6.1 Implicit Engineering Model of OSI Management
The current OSI management model implicitly possesses a simple distribution support model comprising of

CMIS/CMIP, OSI-TP, ACSE, and the lower layer OSI transport protocols.
This architecture is sufficient to support point-to-point interactions between the managing and managed sys-

tems. In the following section, we propose an extension of this model such as to meet the requirements of a distrib-
uted management scenario by identifying the required distribution support mechanisms and organizing them within
the framework of the ‘generic’ ODP engineering model. In particular the ODP functions and distribution transparen-
cies that are applicable to the distributed management domain are identified.

6.2 Towards an Engineering Model of Distributed OSI Management
Our approach towards the identification of thedistributed management engineering model for the support of

distributed management applications consists of:
1. Identifying the relationship between the (relevant) OSI management model entities and the corresponding

ODP engineering model concepts. This permits an engineering interpretation of the management model.
2. Identifying the distribution support functionality from the existing OSI management model. As discussed

below, the agent object (in the managed system) contains some distribution support functionality. We sepa-
rate and identify different ODP (distribution support) functions out of the current agent functionality and
organize them in the engineering framework.

3. A fully distributed management scenario would involve interaction betweenmanagement objects distributed
over different (more than two) open systems. Such a management activity would involve multi-cast or other-
wise complex interaction scenario. Such general interaction patterns are supported within the generic engi-
neering model. We identify the ODP functions and distribution transparencies which are required to support
such a distributed management activity.

6.3 OSI Management Model in the ODP Engineering Language
The following is an interpretation of the ODP engineering model concepts in OSI management model:

1. Basic Engineering Object: Basic Engineering Objects (BEOs) are the run time representation of computational
objects (obtained through compilation, interpretation, or through some other transformation of computational
object). A management BEO corresponds to the (system representation of the)management computational object.
As discussed in [12], computational objects with multiple interfaces may be split (mapped) into multiple engineer-
ing objects4 (or merged into a single engineering object), but the interfaces are preserved in the transformation.
Hence in a real open system, we may see amanagement (computational) object with multiple (manager or man-
aged) interfaces split into multiple engineering objects offering the originalmanager or managed interfaces. The
decomposed management engineering objects may possess either single or multiple (manager or managed) inter-
faces. Additionally, they may be enriched with extra interfaces to:
a. to synchronize actions between decomposed objects in order to maintain consistent computational object state.
b. interact with the (distribution support) objects in the channel (see below).

2. Cluster: The ODP cluster expresses the concept of a configuration of related basic engineering objects that should
be grouped together on a single node (an open system). A cluster is a unit of distribution, storage, and migration. A
cluster corresponds to a group of management engineering objects obtained from the decomposition ofmanage-
mentcomputational object with multiple interfaces. It may be noted that amanagementcomputational object is
also a unit of distribution and engineering objects obtained by decomposing amanagement computational object
can communicate directly, whereas objects in different clusters interact throughchannels. So, the modelling of
management computational object must ensure that it offers only those interfaces which must (or can) be co-
located and moved together as a unit. The concepts ofmanagement computational object and cluster together offer
a very powerful modelling paradigm in the management world:
a.coordination of distributed management activities: amanagement computational object with multiplemanager

interfaces models the case of the management of a set of related resources (distributed on the network) such
that the outcome of management operation on one resource affects the issue of management operation on the
other (via another interface). As shown in figure 3, this compositemanagement computational object can be

4. This transformation may involve object(s) providing synchronization between the component BEOs.

IFIP/IEEE DSOM-95

8

represented in the engineering model as a cluster of related engineering (manager) objects (synchronized via
internal interfaces) accomplishing a common management function.

Figure 3. Computational Object and Cluster: A powerful modelling paradigm
b. coordination of different management activities: all managed objects corresponding to a mobile resource can be

modelled (in the computational model) asa management computational object with multiplemanaged inter-
faces. In the engineering model, these interfaces would be represented as a cluster of engineering (managed)
objects which are deactivated, migrated, and reactivated as a unit.

In the current OSI management model, a manager or a group of managed objects (i.e., MIB) represents a cluster.

3. Cluster Manager: A cluster manager performs management operations on the cluster such as activating, passivat-
ing, deleting, checkpointing, and migrating a cluster, etc. In the current OSI management model, part of this func-
tionality is performed by the agent object. In a distributed management model, every managing/managed system
will have a cluster manager per cluster of engineering objects obtained by decomposing amanagement computa-
tional object with multiple (manageror managed interfaces). It would be responsible for migrating, checkpoint-
ing, deleting the (related) group of engineering (manager or managed or combined) objects (obtained from
management computational object), and hence also responsible for the provision of migration transparency, failure
transparency, persistence transparency, etc.

4. Capsule: A capsule consists of a set of clusters and other distribution support objects such as transparency objects,
protocol objects, etc. While a cluster corresponds to a group of engineering (manager or managed or combined)
objects with a related management activity, a capsule corresponds to a set of clusters, in a given open system, with
unrelated management responsibilities.

5. Capsule Manager: A capsule manager is responsible for the management of clusters in the capsule. The capsule
manager functionality is currently a part of the agent functionality which is responsible for a group of unrelated
managed objects.

6. Nucleus: A nucleus provides access to communications functions of an open system, to enable inter-system com-
munication. In the current management model, the agent provides access to CMISE / CMIP communication facil-
ity.

7. Node: An open system containing both themanagerandmanaged interfaces.

8. Channel: A channel is a configuration oftransparency stub objects, transparency binder objects, andprotocol
objects providing a binding between a set ofmanager andmanaged interfaces. The structure (composition) of the

mco

m5

m1

m3 m2

m4

meo

meo

meo

meo

m1

m2

m3m4

m5

�
 	
 � � �� � � � � � � � 	
 �
 � � � � � � � � � � � � � �
� � �
 � ��
 � � � � � � 	
 �
 � �
 � 	 � �

 � � � 	
� � �
 � �

IFIP/IEEE DSOM-95

9

channel is dependent on the environment contracts of the (manager and managed) interfaces involved in the inter-
action. The channel is a composition of objects identified in section 6.5.

9. Stub Objects: The stub object add further interaction and /or information to interactions between interactingman-
agementcomputational objects to support (some aspect of) distribution transparency. As discussed in section 6.4,
the stub functionality is currently a part of the agent functionality. It is required to transform management opera-
tions into messages that are exchanged as CMIP PDUs.

10.Binder Objects: The binder objects interact with one another to maintain the integrity of the binding between
managementcomputational objects. As discussed in section 6.5, the binder objects in the channel between man-
ager and managed interfaces comprises of objects supporting location transparency, migration transparency, repli-
cation transparency. They support the management association between the involved interfaces, irrespective of
whether the interfaces dynamically migrate or if they are replicated.

11.Protocol Object: A protocol object encapsulates communication protocol functionality for supporting communi-
cation betweenmanager andmanaged interfaces. The CMIS/CMIP (and the underlying OSI stack of communica-
tion protocols) correspond to the protocol objects identified in the generic ODP engineering channel structure. The
CMIS/CMIP assure that themanagement objects can interact remotely.

6.4 OSI Management Model: Extracting ODP Functions
The existing OSI management model implicitly possesses an engineering model sufficient to support point-to-

point communication between management objects and functions (such as scoping, synchronization, etc.) to address
a group of managed objects in the same system. The engineering support for the distribution of manager/managed
objects on different open systems is not available. The computational and engineering functions are intermixed in the
current model. Moreover, some of the engineering functions, such as those clubbed in the agent object, need to be
identified, separated, extended in their scope for the purpose of distributed management, and organized within the
framework of ODP engineering model. In the following we show how theagent functionality can be decomposed and
performed by different ODP functions (and in a broader, i.e., distributed context). Such functions are identified and
discussed below.
1. Scoping: The scoping allows a manager to select either a single managed object or multiple managed objects

within a subtree of MIB for a specific operation. Basically, what is being achieved is that a group of managed
objects in a single open system is being selected for a particular operation. (Additionally, these managed objects
are organized as a tree).

Figure 4. Replication and Scoping in a Distributed Management System

� � � � 	
 � � � � �
 � � � � � � � 	
 � � � � �
 � � �

� � � � 	
 � � � � �
 � � �

� � � � � �

� � � � � � 	

� � �

� � �

� � �

IFIP/IEEE DSOM-95

10

 In a distributed management scenario, the concept ofscoping can be extended usingthe ODP concept of group. In
the distributed management model, a manager would require an operation to be performed on agroup of managed
objects distributed over different open systems. In general, these managed objects need not be organized as a tree.
The related managed objects on which some common operations can be invoked are collectively identified by a
group-id. The members of the group, identified by thegroup-id, are distributed on different systems. The scoping
functionality can be taken out of the agent and replaced (or more precisely extended) with the ODP Group (Repli-
cation) Function.
As shown in figure 4, while replication allows the addressing and selection of a distributed managed objects (i.e.,
the base level objects) in different open systems, scoping allows the selection of managed objects in a local sys-
tem.
The infrastructure first performs the multicast of the management operation on base level managed objects and
then a local system function performs scoping on the local managed objects (which may be organized as a tree in a
given open system).

2. Filtering: A filter specifies a condition that must be true in an object for it to be selected for a specified operation.
Filtering imposes further constraints on the objects selected by scoping for an operation. While scoping uses the
object hierarchy in an MIB to select objects, filtering uses the state of an object instance. Filtering can be per-
formed by the managed objects before the execution of operation.

3. Synchronization: The agent performs two types of synchronization across managed objects in an open system:
atomic andbest effort. Atomic synchronization has all-or-none semantics, i.e., the management operation succeeds
or fails on all objects selected. Best effort aims at performing the operation on as many selected objects as possi-
ble.

Figure 5. Transaction in a Distributed Management System
Again, as in the case of scoping, the scope of synchronization in the OSI management model is limited to objects
in a single system. In a distributed management model, the manager would require a management operation per-
formedatomically on a set of objects distributed over different systems. This can be achieved through the use of
ODP Transaction Function.
A transaction model for distributed management systems is shown in figure 5. The management operations are
intercepted by the Transaction Function. The transaction protocol5 is actually carried over the CMIS service (sup-
ported by the CMIP protocol). One such CMIS service primitive that can be used for the exchange of transaction
protocol is M-Action. Depending upon whether a Ready-To-Commit is obtained (enveloped in M-Action PDU)
from all subordinate Transaction Functions (on the managed object side) or a Refuse-To-Commit is obtained from

� � � � 	
 � ! 	
 � �
� �

� �

� �

� �

" � � � " � � �
� � �� � � � � � � �
� � � � #

� � �� � � � � � � �
� � � � #

$ % $ %
$ � � � &
 �� � � � 	
 �� � � �
 � � � � %

' � (' � (

�
 	
 � � �$ % � $ � � � � � � � � � � % � � � � � ��) � � � � � �
 �) � � � � � � � � �
� � % � � � � � � � � � � & � � � � * � � � � �% � � � � � �

IFIP/IEEE DSOM-95

11

at least one, the master Transaction Function (on the manager side) can issue a Commit or Abort (which is again
carried by M-Action PDU). On the receipt of Commit (or Abort) the subordinate Transaction Functions can advise
the managed objects (possibly via agent6) to make the results of the management operation permanent (or discard
the results). The Local Synchronization Function, shown in figure 5, performs the transaction on the set of local
objects.

4. Event Notification: In the OSI management model, the agent reports to the manager the occurrence of events asso-
ciated with the managed objects. However, event notification function is a very commonly used function in the
management world.
In order to relieve agent objects regarding the complex policies concerning event notification, this function can be
readily mapped onto the ODP Event Notification Function. Event producers are managed objects and event con-
sumers are managers. Both the managed objects and managers subscribe to the ODP Event Notification Function
to send and receive events. Event Notification Function on the managed objects’ open system7 interfaces with the
CMIP protocol object to send events via M-Event-Report PDU to the manager.

Figure 6. Event Notification and Object Management Function in the ODP Framework
5. Object Management Function: In the OSI management model, the agent is responsible for the creation and dele-

tion of instances of managed objects. However, as discussed in section 4.2, the ODP cluster manager and capsule
manager perform object management functions, which includes not only object creation and deletion, but also
checkpointing, deactivation and reactivation. Hence, the managed objects in the cluster interface with the cluster
manager/capsule manager to obtain object management services. As usual agent intercepts all management opera-
tions, and object management operations such as M-Create and M-Delete are performed by capsule manager/clus-
ter manager.

5. The transaction protocol is essentially the exchange of operations such as Begin-Transaction, Ready-To-Commit,
Refuse-To-Comit, Commit, Abort, and End-Transaction between master transaction function and subordinate
transaction functions.

6. The routing of operation invocations on managed objects via agent is retained for backward compatibility with
the current management model. Since the ODP functions such as Transaction Function, Replication Function,
etc. perform the agent functionality, the indirection via agent can be eliminated.

7. Event Notification Function could exit on a system other than that of a manager or managed objects.

" � � � " � � �

� � �� � � � � � � �
� � �� � � � � � � �

" � �)
" � � + , %

� �

� �

� �

� �
! 	
 � �� � � � 	
 �

$ � � � &
 �" � � �
 � �
$ � � � &
 �" � � �
 � �

+ -
 � �� � 	 	 � � 	

+ -
 � �, � � � . � � � � � �

� � �
 � �� � � � 	
 �
 � �+ -
 � �, � � � . � � � � � � ��
 	
 � � �
" � � � " � � � �
� � � � 	
 �" � � � " � � �
 �� � � � 	
 �+ , % � + -
 � �, � � � . � � � � � �% � � � � � �

� � � � # � � � � #

IFIP/IEEE DSOM-95

12

6.5 ODP Distribution Transparencies applied to OSI Management Model
The basic premise of our work is the recognition that management applications are inherently distributed appli-

cations. Given that the advanced telecommunications involve mobile objects and that these objects are also subject to
management operations, the management model should evolve to address a distributed and dynamic scenario.

The details of distribution can be hidden from the management applications (specified in the computational
model) through theselective application ODP transparency recipe. This section investigates which ODP distribution
transparencies are applicable in distributed management environment.
1. Access Transparency: Access transparency hides the differences in data representation and invocation mecha-

nisms from the interacting objects. The manager may have a data representation and invocation mechanism differ-
ent from the objects it manages. In the management model, access transparency is achieved by requiring the
application to invoke the CMIS service through standardized service primitives. Similarly the conversion of the
CMIP PDUs to service primitives (operation invocations) on the manager/agent objects is done by the CMIP ser-
vice interface. Consequently, this part of the protocol can be identified with the access stub.

2. Location Transparency: Location transparency hides from the client objects (interfaces) the location of the server
objects (interfaces) in the distributed system. Location transparency requires that management objects (both man-
agers and managed objects) have location-independent globally unique names.
In dynamic environments, wherein managers wish to manage a particular managed object (resource) rather than
the managed object on a particular system, location transparency is required.
The naming structure assumes an important role w.r.t. location transparency. The naming structure in the current
model follows an X.500 [13] naming scheme which is very location specific. In the management model, the provi-
sion of location transparency requires the alteration of the naming model to allow objects to retain their names
irrespective of their migration in the distributed system.
The ODP Relocator Object plays a central role in provision of location transparency and is a potential candidate
for inclusion in the distributed management model.

3. Migration Transparency: Given that the managed objects are an abstraction of the real managed resource, and in
a mobile environment such as in a telecommunication domain managed resources may dynamically move from
one location to another, the manager object needs to maintain the management session established with the mobile
managed object. The need for the provision of migration transparency to both the manager and managed objects is
very obvious in highly dynamic mobile environments.

4. Transaction Transparency: The transaction mechanism involves coordination of activities among a configuration
of objects to achieve (the specified) consistency. In most cases the condition that has to be satisfied is atomicity,
i.e, all-or-nothing semantics. The case of transaction mechanisms arises in the management world when we adopt
a distributed perspective of management activities. This requirement is illustrated in many management applica-
tions (for example, the Test Management Function [14]) in a distributed scenario. The operations such asSus-
pend_Test(), Resume_Test(), Set_Attributes(), are requested by the manager to be performed either on all the
managed objects distributed on different systems or on none of them. In such cases the manager requires transac-
tion transparency from the underlying distributed platform.

5. Replication Transparency: The need for replication transparency in the management model arise in a distributed
management environment where proxies of managed objects may be kept (stored) at different management sys-
tems. This contrasts with the current management model which permits communication between two open sys-
tems.
Manager wishes its operation, such asGet_Attributes(), or Start_Test(), to be performed on a set of replicated
Test Objects (without invoking the identical operation on every individual object), organized as an ODP Group.
Similarly replication transparency may be required by a managed object that wishes to send notifications (status
reports) to a group of manager objects.

6. Persistence Transparency: Both the manager and managed object may require persistence transparency in order
to reactivate them when a notification / operation is invoked on them. However, the case of reactivation at a differ-
ent system needs consideration.

IFIP/IEEE DSOM-95

13

7. Conclusion
The ODP model is primarily a powerful and generalized model and like all powerful models the trade-off is in

terms of simplicity. Being a generic model, it can be mapped onto different application-domains. In this paper, we
have demonstrated the application of ODP architecture to OSI management model.

This paper is an attempt in answering the questions: how does OSI management model fit in the ODP frame-
work and does the OSI management model be extended to a truly distributed management model using the ODP
functions. We have demonstrated these complimentary aspects within the framework of ODP computational and
engineering model.

8. References
1. C. Ashford. The OSI-Managed Object Model, Proceedings of European Conference on Object-Oriented Program-

ming, Kaiserlautern, Germany, (Lecture Notes in Computer Science 707), Springer Verlag, Berlin, 1993.
2. Draft Recommendation ITU-T X.901 / ISO 10746-1: Basic Reference Model of Open Distributed Processing -

Part-1: Overview./10
Draft International Standard ITU-T X.902 / ISO 10746-2: Basic Reference Model of Open Distributed Processing
- Part-2: Descriptive Model.

4. Draft International Standard ITU-T X.903 / ISO 10746-3: Basic Reference Model of Open Distributed Processing
- Part-3: Prescriptive Model.

5.Draft Recommendation ITU-T X.904 / ISO 10746-4: Basic Reference Model of Open Distributed Processing -
Part-4: Architectural Semantics.

6. Information Technology - Open Systems Interconnection - Common Management Information Service - ISO/IEC-
9595, 1991.

7. Information Technology - Open Systems Interconnection - Common Management Information Protocol - ISO/
IEC-9596, 1991.

8. K. Raymond. Reference Model of Open Distributed Processing: A Tutorial, Proceedings of the IFIP TC6 Interna-
tional Conference on Open Distributed Processing (eds: J.d. Meer, B. Mahr, O.Spaniol), Berlin, Germany, Septem-
ber 1993 (North Holland).

9. P.F. Linington. Introduction to Open Distributed Processing Basic Reference Model, Proceedings of the IFIP TC6
International Workshop on Open Distributed Processing (eds: J.d. Meer, V. Heymer, R. Roth), Berlin, Germany,
September 1991 (North Holland).

10.G.Bregant. Towards a Convergence between Telecommunications Services Architectures and Open Distributed
Processing, Proceedings of the IFIP TC6 International Workshop on Open Distributed Processing (eds: J.d. Meer,
V. Heymer, R. Roth), Berlin, Germany, September 1991 (North Holland).

11.ANSA Reference Manual, Volume A., Release 01.01, Advanced Projects Management Limited, Cambridge, U.K.,
July 1989.

12.K.Farooqui, L.Logrippo. Viewpoint Transformation, Proceedings of the IFIP TC6 International Conference on
Open Distributed Processing (eds: J.d. Meer, B. Mahr, O.Spaniol), Berlin, Germany, September 1993 (North Hol-
land).

13.CCITT Recommendation X.500 - Directory Services, 1992.
14.CCITT Recommendation X.745 (1992) | ISO/IEC 10164-12: 1992, Information Technology - Open Systems

Interconnection- Systems Management: Test Management Function.

