IFIP/IEEE DSOM-95

OSI Management Model
in the
ODP Architectural Framework

Kazi Farooqui
Department of Computer Science,
University of Ottawa,
Ottawa K1N 6N5, Canada.
(Internet: farooqui@csi.uottawa.ca)

Abstract
The ODP model is a genericduitectural framework for describing distributed systems. lelsvant and
applicable to diffeent application-domains. In this paper we demonstrate how tétectural concepts of the
ODP model help in the identification of a distributed management model. It is the goal of this paper to position
the curent OSI management model within the ODé&hdectural framework. It is an attempt in answering the
guestion: “how can ODP be used to enhance the OSI management modektaviarly distributed manage-
ment model. As a first step in thatedition, we show the application of ODP computational and engineering
models in the OSI management domain. It is ddgiat the arhitectue for true distributed OSI management
must gracefully evolvedm (and be backwds compatible with) the cuent point-to-point achitectue.

Keywords: Network management, OSI systems management, CMIS, ,@hdliRageragent, managed objects, open
distributed processing, computational model, engineering model, distribution transparency

1.0 Introduction

The premise of our work is the recognition of the inherently distributed nature of the management@&tivitys-

tems Management [1] is essentially a distributed processing activity and, as such, should be expressible using the
Reference Model for Open Distributed Processing (RM-ODP) [2,3,4,5].

The RM-ODP is a generic framework for the development of numerous future standards in various application
domains. It may be seen asata-standat to coordinate and guide the development of domain specific ODP stan-
dards. This paper illustrates the application of ODP to the OSI management domain that would lead to the definition
of anopen distributed managementhitectue.

The RM-ODP gives a generic framework for describing a distributed system completely fferantdifystem
abstractions - a framework wiewpoints OSI-Systems Managementas a particular example of a distributed man-
agement system. The question is which aspects of OSI management needs to be described and in which viewpoint(s)
these aspects should be placed. This paper presents the aspects of OSI-Systems Management related to the computa-
tional and engineering viewpoints.

Section 2 provides a brief introduction to the OSI management model and to the RM-ODP - a generic architectural
framework for the ayanization of distributed systems. Section 3 presents the ODP computational model as an object-
oriented framework for the structuring andyamnization of distributed applications. In section 4, we show how the

full generality of the ODP computational model can be applied to the implicit and simple computational model of the
existing OSI management that permits the modelling of distributed management applications. Section 5 presents the
ODP engineering model as a framework for the definition of an object-based distributed platform for the support of
interactions between distributed application components. Section 6 illustrates how the genericity of the ODP engi-
neering model can serve as a basis for the identification of distributed platform for management applications. Conclu-
sions are drawn in section 7.

2.0 Backgound
This section provides a brief introduction to the current OSI Management Model and to the generic ODP model.

2.1 OSI Systems Management Model
The world of OSI Management Model is populated with Managing Systems and Managed Systems. All (traceable)
interactions in the OSI Management Model are between the managing and managed systems. As shown in figure 1,

IFIP/IEEE DSOM-95

the managing systems consistsranager pocessesand managed systems consistagént pocessesnd a set of
managed objectsrganized (as a tree) inmanagement information bagkliB). Managed Objects (MOs) are an
abstraction of the actual resources being managed (for the purpose of the management of the resource). MOs repre-
sent the manager view of the resource. Systems management is achieved over associations established between
manager processes (in the managing system) and agent processes (which represent and control a set of managed
objects) in the managed systems

The manager process requests the execution of management operations from the agent which performs them
(through the involvement of managed objects) and returns the responses to the.Mbaag@Ent may also generate
event reports asynchronously to be sent to the manBgemanageagent interactions are supported by an OSI stan-
dard management service known as the Common Management Information Service (CMIS) [6], implemented by the
OSI standard management protocol called the Common Management Information Protocol (CMIP) [7]. The CMIS
supports the following operations and notifications:
a. M-Get: operation is used by the manager to retrieve attribute values from managed objects.
b. M-Set: operation is used by the manager to set the attributes of the managed objects.
c. M-Action: facilitates non-standardized operations on managed objects.
d. M-Create: operation allows the manager to request the agent to create an instance of MO.
e. M-Delete: operations allows the manager to request the agent to delete an instance of MO.
f. M-Event-Report: notification is used by the agent to report to the manager the occurrence of an event associated

with an MO.

2.2 ODP: A Generic Architecture for Distributed Systems

The Reference Model for Open Distributed Processing (RM-ODP) is an architectural framework for the integrated
support of distribution, inteworking, interoperability and portability of distributed applications. It provides an
object-oriented model for building open distributed systems[8, 9].

The ODP model is sfi€iently general to be used in several areas. Specific fields of ODP applications include
advanced telecommunication architectures such as Intelligent Networks, Automated Manufacturing Syistems, Of
Systems, Management Information Systems, etc. [10].

2.3 ODP: A Framework of System Abstractions

The ODP framework of viewpoints partitions the concerns to be addressed in the design of distributed systems. A
viewpoint leads to a representation of the system with emphasis on a specific set of conderast Dgwpoints

address dferent concerns, but there is a common ground between them. These viewpoints should not be seen as
architectural layers, but rather afdient abstraction of the same system. An object-oriented approach has been
adopted to model distributed applications in each viewpoint.

While all the viewpoints are relevant to the description of distributed systems, the computational and engineering
viewpoints are the ones that bear most directly on the design and implementation of distributed systems. From a dis-
tributed software engineering point of vietlve computational and engineering models are the most important; they
reflect the (software) structure of distributed applications and of the underlying distributed platform morelalosely

this paper we concentrate on tmnputational modellingndengineering modellingf the OSI Management Model.

3.0 ODP Computational Model: An Object-Oriented Mew of Distributed Application

The computational modelfefs a framework for describing the structure arghnoization of applications into
distributable componentsgmputational objecjsidentification of interfaces of the distributable componeris¢
putational interfaceks identification of interactionsnterrogations, announcementsc.) between (the interfaces of)
application components, and for the expression of distribution requirereami®iiment contragt from the under-
lying distributed execution environment, for the support of interactions between application components.

The computational model is based atigributed-object modelThe model prescribes an object-oriented view
of the distributed application. In the computational model a distributed application is viewed an ‘object world’ popu-
lated with concurrent (computational) objects interacting with each athaedtistribution-transpaentabstraction, by
invoking operations at their interfaces. An object can have multiple interfaces and these interfaces define the interac-
tions that are possible with the object.

While the computational objects are the units of structure and encapsulation of (application-specific) services,
interfaces are the units of provision of services; they are the places at which objects can interact and dbtain or of

IFIP/IEEE DSOM-95

services. A computational object may playetiént (application-specifieplesat its interfaces. These roles could be
clientor serverrole, produceror consumerole,supervisoror subodinaterole, etc. A computational object may sup-

port multiple interfaces which need not be of the same type. Interfaces of the same type may be provided by objects
which are not of the same type. Each object may provide interfaces which are unlike those provided by other objects
[11].

4.0 Computational Model of OSI Management

In this section we show how the implicit and the simple computational model of the current point-to-point OSI
management can be extended, using the ‘generic’ ODP computational model, to model the distributed OSI manage-
ment scenario.

4.1 Implicit Computational Model of OSI Management

The current OSI management model implicitly possesses a very simple computational model. This corresponds
to the point-to-point management model comprising wfamager objecfin a managing system) interacting with a
(set of)managed objedfs) through amgent objeé’(in a managed system), as shown in figure 1. This model is lim-
ited to management applications involving point-to-point communications. It does not model a fully distributed man-
agement scenario as portrayed by complex management applications.

MIB

r<Message exchange} @ .I

Managing System Managed System
Figure 1. Computational Model of Point-to-Point OSI Management

4.2 Towards a Computational Model of Distributed OSI Management

OSI management applications are inherently distributed applications and the modelling of interactions between
management application components should exploit the full genericity and power (concepts, structures, and rules)
offered by the ODP computational model. This would enable the expression (and subsequent analysis) of complex
distributed management applications through a single computational model.

We propose distributed management computational magkekn object world populated with a setrofin-
agemenbbjects distributed over diierent open systems and interacting in complex ways through operations invoca-
tions and natifications. Thegeanagemenobbjects may benanaging objectsor managed objector may include
both functionalities.

The section provides an interpretation of the existing OSI management model using the concepts of the ODP
computational model andfefs extensions towardsdgstributed management computational mggigure 2) within
the framework of the ‘generic’ ODP computational model.

1. Computational Objects The OSI management model comprises of objects either ima@hagerrole or man-
aged2 role. Howeverthese roles could be modelled through the interfaces of a computational object, as discussed
below Hence a generimanagemenbbject serves as a computational object offikibuted management com-
putational modelThemanagemenbbject may possess multiple interfaces, and it is these interfaces that may act
either in themanageror managedole (or some application-specific role). Thanagemenbbject may (dynami-
cally) offer either thenanagerinterface(s) omanagednterface(s) or both. Thmanagemembjects serve as the
unit of distribution and failure.
The managementomputational object serves as an abstraction which is useful for modelling the relationship and
collective behavior of the set of interfaces it supports férefa powerful modelling concept, and as discussed in

1. It will be shown later in section 6, that part of the agent functionality can be placed in the ODP engineering
model.
2. A managed object is an abstraction of a real resource for the purpose of managing that resource.

IFIP/IEEE DSOM-95

section 6.3 it can be decomposed into implementable engineering objects of desired granularity

2. Computational Interfaces The ODP computational model prescribes that a computational object may contain
bothoperational interfacendstream interfaceThe OSI management model contains only operational interfaces.
However amanagementbject may possess stream interface if it is desired (such as in multimedia applications) to
sample the stream data locally ahanagementbject.

3. Role of Interacting Objects at Interfaces:As mentioned earliethe current OSI management model comprises
of objects either in ananageror amanagedole. The ODP computational model has fine a granular concept of
role which can be applied to an interface of an object or can be associated with an individual interaction (opera-
tion) at an interface. The role taken by an object can vary at an interface or for a particular interaction at the inter-
face. The ODP computational model hatuadamentalconcept of role: the computational interfaces model
different interaction concerns of a computational object, for e.gcli#re role (the initiator of an invocation), the
serverrole (the responder of an invocatiopjpducerrole (originator of information flow) andonsumerrole
(destination of information flow). In general, interactions between objects should be treated as taking any of these
roles. In keeping with this genericitiy is flexible (as illustrated below) to modehmnagementomputational
object as possessinmganagerrole interfacesmanagedrole interfaces, or some application-specific interfaces
(which includes the interface between managed object and the real resource).
Interfaces in thenanagerrole areclientinterfaces invoking operations amanagedole interfaces acting agrver
interfaces.

4. Computational Interaction: The computational model (in addition to describing the activities withimdreage-
mentcomputational object, also) describes the interactions that occur between the computational interfaces in a
distribution transparent waynteractions between the interfaces (of computational objects) are expressed by
means of operation exchanges that occur between the bound interfaces. An important exercise is the mapping of
OSI managemertperationsandnotificationson the ODP computational model.

The interactions, in the computational model of figure 2, may take one of the two forms:

a. a management operation initiated byrtanagerinterface and performed by theanagednterface, resulting
in a response being returned to thenagelinterface, or

b. a notification sent from thmanagednterface to thenanagerinterface without any reply

The former corresponds to theerrogationstyle and the latter to tranouncemergtyle of computational inter-

action.

A managed object, as specified in the current OSI management model, can support both operations and notifica-
tions. This can be modelled in tHestributed management computational madeamanagemenbbject with two
interfaces, both in themanagedole, one to accept operations (emitted byntfamagerinterface) and the other to

emit notifications.

5. Environment Contract of Management InterfacesThe ODP computational model prescribes that the computa-
tional object templatésand computational interface templates may have associated environment contract which
contains the information fafcting the way in which the underlying distributed platform supports the computa-
tional interactions; this information constrains the type of distribution transparencies, choice of communication
protocols, etc. that must be placed in the interaction path between interacting objeatsin@geror managed
interfaces may include environment contract stating distribution transparency requirement, communication quality
of service such as throughput, delatc. For example a managed object may require its notifications to be deliv-
ered to the manager within certain maximum delay

6. Behavior at Management Interface The behavior at manageror managednterface defines all possible order-
ing of operations and notifications that can be emitted or accepted at the interface. The behavior constitutes the
protocol between a pair interacting interfaces. The behavior is specific to management application and may vary
between a pair of interacting management interfaces. This is defined in the current OSI management model as the

3. Atemplate is a object (interface) specification.

IFIP/IEEE DSOM-95

exchange of CMIP PDUs. Howevass discussed in section 6.3, CMIP is a communication support mechanism for
the exchange of computational operations and notifications and it is modelled in the engineering model.

7. Binding of Management Interfaces The ODP computational model supports a type-checked (dynamic) binding
between object interfaces. The binding betweemthragerandmanagednterfaces can be based on the ODP
computational type compatibilitf he OSI management model defines a binding between a pair of objects. It lacks
the capability to model an arbitrary interaction pattern between manager and managed objects, Huasvever
model can be extended through the concept of binding object defined in the ODP computational model. The bind-
ing object template can define complex interactions within a configuratmamdgerandmanagednterfaces.

In the context of current OSI management model, the binding object concept allows the modelling of multicast of
notifications issued by a managed object such as an event forwarding discriminator

8. Failure Model The current OSI management model lacKsilare model There exists no way for the manager
and managed objects to be informed about the underlying infrastructure failure.
The ODP computational model supports the notification of infrastructure failures through response messages gen-
erated by the ODP engineering infrastructure. This wagagemenbbjects can be informed about the failures in
the underlying distributed platform.

MI%)_@
@# @ 9 9

Managing system. Managed system.

— Manager Interface. mco: management computational object

— Application Specific Interface MIB: Management Information Base
>— Managed Interface.

Figure 2. Distributed Management Computational Model
The distributed management computational mogefmits the modelling of thefett of interactions at one
interface of the object on interactions at the otAenanagementomputational object possesses multiple interfaces,
each in either ananageror managedole (or some application-specific role). Management operations received on
one interface would necessitate initiation of operations on other interfananAgementomputational object can
be viewed as a composite object acting as a manager object over one association and as a managed object over the
other
Thedistributed management computational model identified above, fefrs the full flexibility of the ODP
computational model that permits the modelling ofiedént distributed management scenarios:
1. amanagemenbbject possesses multiple interfaces all of whichraeagerinterfaces: this models the case
of a single manager object managing a set of managed objects distributei@remtdifpen systems. Each
pair of managemanaged interface models a management association between the involved objects.

Legend

IFIP/IEEE DSOM-95

2. amanagemenbject possesses multiple interfaces all of whichrapeagednterfaces: this models the case
of a single managed object (event forwarding discriminator) sending notificationsfetardifnterfaces, to
a set of manager objects distributed offiedént open systems or the case of a single managed object (log
object) responding to the queries of@iént manager objects, or a combination of both.

3. amanagemembject possesses multiple interfaces some of whicitnanagerinterfaces and some arean-
agedinterfaces (and sonmapplication-specifiénterfaces): this models a very general management scenario
in which themanagemenbbject takes the role of both the manager and mar@gedts. This corresponds
to the generic and distributed management scenario where there exists a hierarchy of managers managing a
set of distributed managed objects and reporting the status to (and responding to the queries of their) supe-
rior managers. It permits the modelling of the delegation of responsibility from one manager to another man-
ager for the purpose of assigningfeliént management (sub) activities to lower level (manager) objects.

4. a managemenbbject dynamically dérs (createsmanagerand/or managedinterfaces and withdraws
(deletes) them during its lifetime: a managed object representing a mobile resource (such as a cellular
phone) may move from one location to another very frequdnityconvenient (and economical) to manage
that resource localhA localmanagemenbbject may dynamically &ér amanagerinterface to manage the
mobile object and report the status periodically tonla@agemenbbject higher up in the hierarchyhen
the mobile object moves again, tim@nagerinterface may be withdrawn.

As shown in figure 2, thidistributed management computational maddbackwards compatible with the existing
point-to-point management model. In the managing systenmémagemenobjects reduces to a single-interfaced
object with themanagerole and in the managed system iti@nagemendbject reduces to an (agent) object with two
interfaces: one in thmanagedrole and the other in th@managerrole. (Howeveras discussed belowart of the
agents functionality includes the engineering functionality and is modelled in the ODP engineering viewpoint). The
managednterface is bound to theanagerinterface (of thenanagemenobject) in the managing system. Than-
agerinterface is bound to the managed object at the root of the MIB.

The management concepts in the present OSI management model that are visible in the ODP computational model
are mangers, managed objects, interactions between them such as operations, notifications (gndhtérgs)aand

(as explained in section 6.4) part of the agent function#titthe computational model, the role of the agent is as an
interceptor of operations invoked by the manageme of the management operations invoked on the agent, such as
M-CREATE, M-DELETE are performed by the ODP engineering functions as discussed in section 6.4. Other opera-
tions such as M-Get, M-Set, M-Action are performed by the managed objects.

5.0 ODP Engineering Model: An Object-Based Distributed Platform

The ODP engineering model is an architectural framework for the provision of an object-based distributed plat-
form for the support of the distributed applications modelled in the computational model. The set of basic services
and mechanisms, identified in the engineering model, are modelled as a collection of interacting objects which
together provide support for thealizationof (computational) interactions between distributed application compo-
nents.

The engineering modahnimatesthe computational model. The model is concerned kgt an application,
specified in the computational model, may dymgineeed onto the distributed platform. The mechanisms which
enable, regulate, and hide distribution (in the computational model) are identified in the engineering model. The engi-
neering model provides a machine-independent execution environment for distributed applications.

The services and mechanisms currently identified in the engineering model are generic in nature and can sup-
port distribution requirements of applications in a broad range of enterprise domains (selgt@smunications,

Office Information systems, Computer Integrated Manufacturing, etc.). Howmraain-specific distribution sup-

port functions will have to be defined in the domain-specific engineering models (which may be considered as the
specializations of the ODP engineering model). It is ofartefo define an engineering model corresponding to the
distributed management computational mattdcribed in section 4.2.

6.0 Engineering Model of OSI Management
This section is motivated by the fact that we need to identify and define the functionality of the distributed plat-
form for the support of distributed management applications within the framework of the ODP engineering model.

IFIP/IEEE DSOM-95

6.1 Implicit Engineering Model of OSI Management

The current OSI management model implicitly possesses a simple distribution support model comprising of
CMIS/CMIP, OSI-TR ACSE, and the lower layer OSI transport protocols.

This architecture is sfifient to support point-to-point interactions between the managing and managed sys-
tems. In the following section, we propose an extension of this model such as to meet the requirements of a distrib-
uted management scenario by identifying the required distribution support mechanisngaaimngr them within
the framework of the ‘generic’ ODP engineering model. In particular the ODP functions and distribution transparen-
cies that are applicable to the distributed management domain are identified.

6.2 Towards an Engineering Model of Distributed OSI Management
Our approach towards the identification of thstributed management engineering maoielthe support of
distributed management applications consists of:
1. Identifying the relationship between the (relevant) OSI management model entities and the corresponding
ODP engineering model concepts. This permits an engineering interpretation of the management model.
2. ldentifying the distribution support functionality from the existing OSI management model. As discussed
below the agent object (in the managed system) contains some distribution support functivaadipa-
rate and identify dferent ODP (distribution support) functions out of the current agent functionality and
organize them in the engineering framework.
3. A fully distributed management scenario would involve interaction betmaaagemenbbjects distributed
over diferent (more than two) open systems. Such a management activity would involve multi-cast or other-
wise complex interaction scenario. Such general interaction patterns are supported within the generic engi-
neering model. W identify the ODP functions and distribution transparencies which are required to support
such a distributed management activity

6.3 OSI Management Model in the ODP Engineering Language
The following is an interpretation of the ODP engineering model concepts in OSI management model:

1. Basic Engineering Object Basic Engineering Objects (BEOs) are the run time representation of computational
objects (obtained through compilation, interpretation, or through some other transformation of computational
object). A management BEO corresponds to the (system representatiomodriaglementomputational object.

As discussed in [12], computational objects with multiple interfaces may be split (mapped) into multiple engineer-
ing objecté (or mepged into a single engineering object), but the interfaces are preserved in the transformation.
Hence in a real open system, we may se@aagemenfcomputational) object with multiplen@anageror man-

aged interfaces split into multiple engineering object®enfg the originalmanageror managednterfaces. The
decomposed management engineering objects may possess either single or multiple (manager or managed) inter-
faces. Additionallythey may be enriched with extra interfaces to:

a. to synchronize actions between decomposed objects in order to maintain consistent computational object state.
b. interact with the (distribution support) objects in the channel (see below).

2. Cluster. The ODP cluster expresses the concept of a configuration of related basic engineering objects that should
be grouped together on a single node (an open system). A cluster is a unit of distribution, storage, and migration. A
cluster corresponds to a group of management engineering objects obtained from the decompsitiagesf
mentcomputational object with multiple interfacésmay be noted that managementomputational object is
also a unit of distribution and engineering objects obtained by decompasiagagementomputational object
can communicate directlyvhereas objects in @i#rent clusters interact througimannels So, the modelling of
managementomputational object must ensure that fersf only those interfaces which must (or can) be co-
located and moved together as a unit. The conceptsuaigementomputational object and cluster togethéerof
a very powerful modelling paradigm in the management world:
a.coordination of distributed management activitiasnanagementomputational object with multipiemanager

interfaces models the case of the management of a set of related resources (distributed on the network) such
that the outcome of management operation on one resotectsdhe issue of management operation on the
other (via another interface). As shown in figure 3, this composgagementomputational object can be

4. This transformation may involve object(s) providing synchronization between the component BEOs.

IFIP/IEEE DSOM-95

represented in the engineering model as a cluster of related engineering (manager) objects (synchronized via
internal interfaces) accomplishing a common management function.

Legend:

A mco: management computational
m4 @ @ m3 object ‘ .
meo: management engineering
object

Figure 3. Computational Object and Cluster: A powerful modelling paradigm
b. coodination of diffeent management activitiesll managed objects corresponding to a mobile resource can be
modelled (in the computational model) asnanagementomputational object with multiplmanagednter-
faces. In the engineering model, these interfaces would be represented as a cluster of engineering (managed)
objects which are deactivated, migrated, and reactivated as a unit.
In the current OSI management model, a manager or a group of managed objects (i.e., MIB) represents a cluster

3. Cluster Manager. A cluster manager performs management operations on the cluster such as activating, passivat-
ing, deleting, checkpointing, and migrating a clystée. In the current OSI management model, part of this func-
tionality is performed by the agent object. In a distributed management model, every managing/managed system
will have a cluster manager per cluster of engineering objects obtained by decompoamggamentomputa-
tional object with multiple thanageror managednterfaces). It would be responsible for migrating, checkpoint-
ing, deleting the (related) group of engineering (manager or managed or combined) objects (obtained from
managementomputational object), and hence also responsible for the provision of migration transgareney
transparencgypersistence transpareneyc.

4. Capsule A capsule consists of a set of clusters and other distribution support objects such as transparency objects,
protocol objects, etc. While a cluster corresponds to a group of engineering (manager or managed or combined)
objects with a related management actj\atgapsule corresponds to a set of clusters, in a given open system, with
unrelated management responsibilities.

5. Capsule Manager A capsule manager is responsible for the management of clusters in the capsule. The capsule
manager functionality is currently a part of the agent functionality which is responsible for a group of unrelated
managed objects.

6. Nucleus A nucleus provides access to communications functions of an open system, to enagystanecom-
munication. In the current management model, the agent provides access to CMISE / CMIP communication facil-

ity.
7. Node An open system containing both tim@anagerandmanagednterfaces.

8. Channel A channel is a configuration tfanspaency stub objectdranspaency binder objectsand protocol
objectsproviding a binding between a setménagerandmanagednterfaces. The structure (composition) of the

IFIP/IEEE DSOM-95

channel is dependent on the environment contracts of the (manager and managed) interfaces involved in the inter-
action. The channel is a composition of objects identified in section 6.5.

9. Stub Objects The stub object add further interaction and /or information to interactions between intereating
agementomputational objects to support (some aspect of) distribution transpafsndigcussed in section 6.4,
the stub functionality is currently a part of the agent functionatiig required to transform management opera-
tions into messages that are exchanged as CMIP PDUs.

10.Binder Objects The binder objects interact with one another to maintain the integrity of the binding between
managementomputational objects. As discussed in section 6.5, the binder objects in the channel between man-
ager and managed interfaces comprises of objects supporting location transpaigratipn transparencyepli-
cation transparencylfhey support the management association between the involved interfaces, irrespective of
whether the interfaces dynamically migrate or if they are replicated.

11.Protocol Object: A protocol object encapsulates communication protocol functionality for supporting communi-
cation betweemanagerandmanagednterfaces. The CMIS/CMIP (and the underlying OSI stack of communica-
tion protocols) correspond to the protocol objects identified in the generic ODP engineering channel structure. The
CMIS/CMIP assure that thmanagementbjects can interact remotely

6.4 OSI Management Model: Extracting ODP Functions
The existing OSI management model implicitly possesses an engineering mbdehsub support point-to-

point communication between management objects and functions (such as scoping, synchronization, etc.) to address
a group of managed objects in the same system. The engineering support for the distribution of manager/managed
objects on dierent open systems is not available. The computational and engineering functions are intermixed in the
current model. Moreovesome of the engineering functions, such as those clubbed in the agent object, need to be
identified, separated, extended in their scope for the purpose of distributed managemeggranedowithin the
framework of ODP engineering model. In the following we show hovadgieatfunctionality can be decomposed and
performed by dierent ODP functions (and in a broadeg., distributed context). Such functions are identified and
discussed below
1. Scoping The scoping allows a manager to select either a single managed object or multiple managed objects

within a subtree of MIB for a specific operation. Basicalat is being achieved is that a group of managed

objects in a single open system is being selected for a particular operation. (Addjttbeallymanaged objects

are oganized as a tree).

. N
Q/%@\ ODP Group O b
m 00 O L 00 O

Managed System-1

Managed System-2

Scoping <« | Q/ b

O

Managed System-3
Figure 4. Replication and Scoping in a Distributed Management System

M

IFIP/IEEE DSOM-95

In a distributed management scenario, the concegatopiingcan be extended usitige ODP concept aroup. In

the distributed management model, a manager would require an operation to be perforgredjpofananaged

objects distributed over didrent open systems. In general, these managed objects need myzrieedras a tree.

The related managed objects on which some common operations can be invoked are collectively identified by a
group-id The members of the group, identified by gneup-id, are distributed on dérent systems. The scoping
functionality can be taken out of the agent and replaced (or more precisely extended) with the ODP Group (Repli-
cation) Function.

As shown in figure 4, while replication allows the addressing and selection of a distributed managed objects (i.e.,
the base level objects) in fifent open systems, scoping allows the selection of managed objects in a local sys-
tem.

The infrastructure first performs the multicast of the management operation on base level managed objects and
then a local system function performs scoping on the local managed objects (which nganizedras a tree in a

given open system).

2. Filtering: A filter specifies a condition that must be true in an object for it to be selected for a specified operation.
Filtering imposes further constraints on the objects selected by scoping for an operation. While scoping uses the
object hierarchy in an MIB to select objects, filtering uses the state of an object instance. Filtering can be per-
formed by the managed objects before the execution of operation.

3. Synchonization: The agent performs two types of synchronization across managed objects in an open system:
atomicandbest effort Atomic synchronization has all-oone semantics, i.e., the management operation succeeds
or fails on all objects selected. Bedoef aims at performing the operation on as many selected objects as possi-

ble.
Manager}— Agen
@ 0 othe @
Managed

Systems
CMIP CMIP Legend:
TF: Transaction Function
OSI OSI M /S:Master / Subordinate
Protocol Protocol LSF: Local Synchronization
StaCk StaCk Function

I |

Figure 5. Tansaction in a Distributed Management System
Again, as in the case of scoping, the scope of synchronization in the OSI management model is limited to objects
in a single system. In a distributed management model, the manager would require a management operation per-
formedatomicallyon a set of objects distributed overfeliént systems. This can be achieved through the use of
ODP Transaction Function.
A transaction model for distributed management systems is shown in figure 5. The management operations are
intercepted by ther@insaction Function. The transaction protadmlactually carried over the CMIS service (sup-
ported by the CMIP protocol). One such CMIS service primitive that can be used for the exchange of transaction
protocol is M-Action. Depending upon whether a Readycbmmit is obtained (enveloped in M-Action PDU)
from all subordinate fAnsaction Functions (on the managed object side) or a ReftGesimit is obtained from

IFIP/IEEE DSOM-95

at least one, the masterafsaction Function (on the manager side) can issue a Commit or Abort (which is again
carried by M-Action PDU). On the receipt of Commit (or Abort) the subordinatesaction Functions can advise

the managed objects (possibly via a@)am make the results of the management operation permanent (or discard
the results). The Local Synchronization Function, shown in figure 5, performs the transaction on the set of local
objects.

4. Event Notification In the OSI management model, the agent reports to the manager the occurrence of events asso-
ciated with the managed objects. Howewsfent notification function is a very commonly used function in the
management world.

In order to relieve agent objects regarding the complex policies concerning event notification, this function can be
readily mapped onto the ODP Event Notification Function. Event producers are managed objects and event con-
sumers are managers. Both the managed objects and managers subscribe to the ODP Event Notification Function
to send and receive events. Event Notification Function on the managed objects’ opeﬁisgaﬁaces with the

CMIP protocol object to send events via M-Event-Report PDU to the manager

Manager i I
%Jject \%
E t Management vent
Legend: vent Logging
Notifications
CPM: Capsule — To other
Manager i Clusters ENF —‘
CLM: Cluster T To other
Manager | CMIP CMIP Clusters
ENE: Event T
Notification 0sl oSl Event
Protocol Protocol Notification
Stack Stack
| |

Figure 6. Event Notification and Object Management Function in the ODP Framework

5. Object Management Function In the OSI management model, the agent is responsible for the creation and dele-
tion of instances of managed objects. Howgeaerdiscussed in section 4.2, the ODP cluster manager and capsule
manager perform object management functions, which includes not only object creation and deletion, but also
checkpointing, deactivation and reactivation. Hence, the managed objects in the cluster interface with the cluster
manager/capsule manager to obtain object management services. As usual agent intercepts all management opera-
tions, and object management operations such as M-Create and M-Delete are performed by capsule manager/clus-
ter manager

5. The transaction protocol is essentially the exchange of operations such asrBegatiion, ReadyeFCommit,
Refuse-B-Comit, Commit, Abort, and Endrdnsaction between master transaction function and subordinate
transaction functions.

6. The routing of operation invocations on managed objects via agent is retained for backward compatibility with
the current management model. Since the ODP functions sucarsadtion Function, Replication Function,
etc. perform the agent functionalithe indirection via agent can be eliminated.

7. Event Notification Function could exit on a system other than that of a manager or managed objects.

11

IFIP/IEEE DSOM-95

6.5 ODP Distribution Transparencies applied to OSI Management Model

The basic premise of our work is the recognition that management applications are inherently distributed appli-
cations. Given that the advanced telecommunications involve mobile objects and that these objects are also subject to
management operations, the management model should evolve to address a distributed and dynamic scenario.

The details of distribution can be hidden from the management applications (specified in the computational
model) through theelectiveapplication ODP transparency recipe. This section investigates which ODP distribution
transparencies are applicable in distributed management environment.

1. Access Tansparency. Access transparency hides thefeténces in data representation and invocation mecha-
nisms from the interacting objects. The manager may have a data representation and invocation meddanism dif
ent from the objects it manages. In the management model, access transparency is achieved by requiring the
application to invoke the CMIS service through standardized service primitives. Similarly the conversion of the
CMIP PDUs to service primitives (operation invocations) on the manager/agent objects is done by the CMIP ser-
vice interface. Consequenthpis part of the protocol can be identified with the access stub.

2. Location Transparency. Location transparency hides from the client objects (interfaces) the location of the server
objects (interfaces) in the distributed system. Location transparency requires that management objects (both man-
agers and managed objects) have location-independent globally unique names.

In dynamic environments, wherein managers wish to manage a particular managed object (resource) rather than
the managed object on a particular system, location transparency is required.

The naming structure assumes an important rale Wcation transparencyfhe naming structure in the current

model follows an X.500 [13] naming scheme which is very location specific. In the management model, the provi-
sion of location transparency requires the alteration of the naming model to allow objects to retain their names
irrespective of their migration in the distributed system.

The ODP Relocator Object plays a central role in provision of location transparency and is a potential candidate
for inclusion in the distributed management model.

3. Migration Transparency. Given that the managed objects are an abstraction of the real managed resource, and in
a mobile environment such as in a telecommunication domain managed resources may dynamically move from
one location to anothegthe manager object needs to maintain the management session established with the mobile
managed object. The need for the provision of migration transparency to both the manager and managed objects is
very obvious in highly dynamic mobile environments.

4. Transaction Transparency. The transaction mechanism involves coordination of activities among a configuration
of objects to achieve (the specified) consistefrtynost cases the condition that has to be satisfied is atgmicity
i.e, all-ornothing semantics. The case of transaction mechanisms arises in the management world when we adopt
a distributed perspective of management activities. This requirement is illustrated in many management applica-
tions (for example, theeébt Management Function [14]) in a distributed scenario. The operations sbak-as
pend_Test(), Resume_Test(), Set_Attributes(), are requested by the manager to be performed either on all the
managed objects distributed onferent systems or on none of them. In such cases the manager requires transac-
tion transparency from the underlying distributed platform.

5. Replication Transparency. The need for replication transparency in the management model arise in a distributed
management environment where proxies of managed objects may be kept (storéebeat dibnagement sys-
tems. This contrasts with the current management model which permits communication between two open sys-
tems.
Manager wishes its operation, suchGes_Attributes(), or Start_Test(), to be performed on a set of replicated
Test Objects (without invoking the identical operation on every individual objeg8niaed as an ODP Group.
Similarly replication transparency may be required by a managed object that wishes to send notifications (status
reports) to a group of manager objects.

6. Persistence flansparency. Both the manager and managed object may require persistence transparency in order

to reactivate them when a notification / operation is invoked on them. Howleverse of reactivation at afdif
ent system needs consideration.

12

IFIP/IEEE DSOM-95

7. Conclusion

The ODP model is primarily a powerful and generalized model and like all powerful models the ftiade-of
terms of simplicity Being a generic model, it can be mapped ontereifit application-domains. In this papee
have demonstrated the application of ODP architecture to OSI management model.

This paper is an attempt in answering the questions: how does OSI management model fit in the ODP frame-
work and does the OSI management model be extended to a truly distributed management model using the ODP
functions. V¢ have demonstrated these complimentary aspects within the framework of ODP computational and
engineering model.

8. Refeences

1. C. Ashford. The OSI-Managed Object Model, Proceedings of European Conference on Object-Oriented Program-
ming, Kaiserlautern, Germanftecture Notes in Computer Science 707), Springelay, Berlin, 1993.

2. Draft Recommendation ITU-T X.901 / ISO 10746-1: Basic Reference Model of Open Distributed Processing -
Part-1: Overview

3. Draft International Standard ITU-T X.902 / ISO 10746-2: Basic Reference Model of Open Distributed Processing

- Part-2: Descriptive Model.

4. Draft International Standard ITU-T X.903 / ISO 10746-3: Basic Reference Model of Open Distributed Processing
- Part-3: Prescriptive Model.

5.Draft Recommendation ITU-T X.904 / ISO 10746-4: Basic Reference Model of Open Distributed Processing -
Part-4: Architectural Semantics.

6. Information Bchnology - Open Systems Interconnection - Common Management Information Service - ISO/IEC-
9595, 1991.

7. Information Echnology - Open Systems Interconnection - Common Management Information Protocol - ISO/
IEC-9596, 1991.

8. K. Raymond. Reference Model of Open Distributed Processingtakidl, Proceedings of the IFIP TC6 Interna-
tional Conference on Open Distributed Processing (eds: J.d, Blédahr O.Spaniol), Berlin, German$eptem-
ber 1993 (North Holland).

9. PE Linington. Introduction to Open Distributed Processing Basic Reference Model, Proceedings of the IFIP TC6
International Vdrkshop on Open Distributed Processing (eds: J.d.,Meéteymer R. Roth), Berlin, Germany
September 1991 (North Holland).

10.G.Bregant. dwards a Convegence betweenelecommunications Services Architectures and Open Distributed
Processing, Proceedings of the IFIP TC6 Internatiorak®top on Open Distributed Processing (eds: J.d.,Meer
V. Heymer R. Roth), Berlin, Germanyeptember 1991 (North Holland).

11.ANSA Reference Manualolime A., Release 01.01, Advanced Projects Management Limited, Cambridge, U.K.,
July 1989.

12.K.Farooqui, L.Logrippo. Mwpoint Transformation, Proceedings of the IFIP TC6 International Conference on
Open Distributed Processing (eds: J.d. MBeMaht O.Spaniol), Berlin, Germangeptember 1993 (North Hol-
land).

13.CCITT Recommendation X.500 - Directory Services, 1992.

14.CCITT Recommendation X.745 (1992) | ISO/IEC 10164-12: 1992, Informag¢ichndlogy - Open Systems
Interconnection- Systems ManagememstiManagement Function.

13

